intelfbhw.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <asm/io.h>
  36. #include "intelfb.h"
  37. #include "intelfbhw.h"
  38. struct pll_min_max {
  39. int min_m, max_m;
  40. int min_m1, max_m1;
  41. int min_m2, max_m2;
  42. int min_n, max_n;
  43. int min_p, max_p;
  44. int min_p1, max_p1;
  45. int min_vco_freq, max_vco_freq;
  46. int p_transition_clock;
  47. int p_inc_lo, p_inc_hi;
  48. };
  49. #define PLLS_I8xx 0
  50. #define PLLS_I9xx 1
  51. #define PLLS_MAX 2
  52. struct pll_min_max plls[PLLS_MAX] = {
  53. { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
  54. { 75, 120, 10, 20, 5, 9, 4, 7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 } //I9xx
  55. };
  56. int
  57. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  58. {
  59. u32 tmp;
  60. if (!pdev || !dinfo)
  61. return 1;
  62. switch (pdev->device) {
  63. case PCI_DEVICE_ID_INTEL_830M:
  64. dinfo->name = "Intel(R) 830M";
  65. dinfo->chipset = INTEL_830M;
  66. dinfo->mobile = 1;
  67. dinfo->pll_index = PLLS_I8xx;
  68. return 0;
  69. case PCI_DEVICE_ID_INTEL_845G:
  70. dinfo->name = "Intel(R) 845G";
  71. dinfo->chipset = INTEL_845G;
  72. dinfo->mobile = 0;
  73. dinfo->pll_index = PLLS_I8xx;
  74. return 0;
  75. case PCI_DEVICE_ID_INTEL_85XGM:
  76. tmp = 0;
  77. dinfo->mobile = 1;
  78. dinfo->pll_index = PLLS_I8xx;
  79. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  80. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  81. INTEL_85X_VARIANT_MASK) {
  82. case INTEL_VAR_855GME:
  83. dinfo->name = "Intel(R) 855GME";
  84. dinfo->chipset = INTEL_855GME;
  85. return 0;
  86. case INTEL_VAR_855GM:
  87. dinfo->name = "Intel(R) 855GM";
  88. dinfo->chipset = INTEL_855GM;
  89. return 0;
  90. case INTEL_VAR_852GME:
  91. dinfo->name = "Intel(R) 852GME";
  92. dinfo->chipset = INTEL_852GME;
  93. return 0;
  94. case INTEL_VAR_852GM:
  95. dinfo->name = "Intel(R) 852GM";
  96. dinfo->chipset = INTEL_852GM;
  97. return 0;
  98. default:
  99. dinfo->name = "Intel(R) 852GM/855GM";
  100. dinfo->chipset = INTEL_85XGM;
  101. return 0;
  102. }
  103. break;
  104. case PCI_DEVICE_ID_INTEL_865G:
  105. dinfo->name = "Intel(R) 865G";
  106. dinfo->chipset = INTEL_865G;
  107. dinfo->mobile = 0;
  108. dinfo->pll_index = PLLS_I8xx;
  109. return 0;
  110. case PCI_DEVICE_ID_INTEL_915G:
  111. dinfo->name = "Intel(R) 915G";
  112. dinfo->chipset = INTEL_915G;
  113. dinfo->mobile = 0;
  114. dinfo->pll_index = PLLS_I9xx;
  115. return 0;
  116. case PCI_DEVICE_ID_INTEL_915GM:
  117. dinfo->name = "Intel(R) 915GM";
  118. dinfo->chipset = INTEL_915GM;
  119. dinfo->mobile = 1;
  120. dinfo->pll_index = PLLS_I9xx;
  121. return 0;
  122. default:
  123. return 1;
  124. }
  125. }
  126. int
  127. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  128. int *stolen_size)
  129. {
  130. struct pci_dev *bridge_dev;
  131. u16 tmp;
  132. if (!pdev || !aperture_size || !stolen_size)
  133. return 1;
  134. /* Find the bridge device. It is always 0:0.0 */
  135. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  136. ERR_MSG("cannot find bridge device\n");
  137. return 1;
  138. }
  139. /* Get the fb aperture size and "stolen" memory amount. */
  140. tmp = 0;
  141. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  142. switch (pdev->device) {
  143. case PCI_DEVICE_ID_INTEL_830M:
  144. case PCI_DEVICE_ID_INTEL_845G:
  145. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  146. *aperture_size = MB(64);
  147. else
  148. *aperture_size = MB(128);
  149. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  150. case INTEL_830_GMCH_GMS_STOLEN_512:
  151. *stolen_size = KB(512) - KB(132);
  152. return 0;
  153. case INTEL_830_GMCH_GMS_STOLEN_1024:
  154. *stolen_size = MB(1) - KB(132);
  155. return 0;
  156. case INTEL_830_GMCH_GMS_STOLEN_8192:
  157. *stolen_size = MB(8) - KB(132);
  158. return 0;
  159. case INTEL_830_GMCH_GMS_LOCAL:
  160. ERR_MSG("only local memory found\n");
  161. return 1;
  162. case INTEL_830_GMCH_GMS_DISABLED:
  163. ERR_MSG("video memory is disabled\n");
  164. return 1;
  165. default:
  166. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  167. tmp & INTEL_830_GMCH_GMS_MASK);
  168. return 1;
  169. }
  170. break;
  171. default:
  172. *aperture_size = MB(128);
  173. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  174. case INTEL_855_GMCH_GMS_STOLEN_1M:
  175. *stolen_size = MB(1) - KB(132);
  176. return 0;
  177. case INTEL_855_GMCH_GMS_STOLEN_4M:
  178. *stolen_size = MB(4) - KB(132);
  179. return 0;
  180. case INTEL_855_GMCH_GMS_STOLEN_8M:
  181. *stolen_size = MB(8) - KB(132);
  182. return 0;
  183. case INTEL_855_GMCH_GMS_STOLEN_16M:
  184. *stolen_size = MB(16) - KB(132);
  185. return 0;
  186. case INTEL_855_GMCH_GMS_STOLEN_32M:
  187. *stolen_size = MB(32) - KB(132);
  188. return 0;
  189. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  190. *stolen_size = MB(48) - KB(132);
  191. return 0;
  192. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  193. *stolen_size = MB(64) - KB(132);
  194. return 0;
  195. case INTEL_855_GMCH_GMS_DISABLED:
  196. ERR_MSG("video memory is disabled\n");
  197. return 0;
  198. default:
  199. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  200. tmp & INTEL_855_GMCH_GMS_MASK);
  201. return 1;
  202. }
  203. }
  204. }
  205. int
  206. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  207. {
  208. int dvo = 0;
  209. if (INREG(LVDS) & PORT_ENABLE)
  210. dvo |= LVDS_PORT;
  211. if (INREG(DVOA) & PORT_ENABLE)
  212. dvo |= DVOA_PORT;
  213. if (INREG(DVOB) & PORT_ENABLE)
  214. dvo |= DVOB_PORT;
  215. if (INREG(DVOC) & PORT_ENABLE)
  216. dvo |= DVOC_PORT;
  217. return dvo;
  218. }
  219. const char *
  220. intelfbhw_dvo_to_string(int dvo)
  221. {
  222. if (dvo & DVOA_PORT)
  223. return "DVO port A";
  224. else if (dvo & DVOB_PORT)
  225. return "DVO port B";
  226. else if (dvo & DVOC_PORT)
  227. return "DVO port C";
  228. else if (dvo & LVDS_PORT)
  229. return "LVDS port";
  230. else
  231. return NULL;
  232. }
  233. int
  234. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  235. struct fb_var_screeninfo *var)
  236. {
  237. int bytes_per_pixel;
  238. int tmp;
  239. #if VERBOSE > 0
  240. DBG_MSG("intelfbhw_validate_mode\n");
  241. #endif
  242. bytes_per_pixel = var->bits_per_pixel / 8;
  243. if (bytes_per_pixel == 3)
  244. bytes_per_pixel = 4;
  245. /* Check if enough video memory. */
  246. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  247. if (tmp > dinfo->fb.size) {
  248. WRN_MSG("Not enough video ram for mode "
  249. "(%d KByte vs %d KByte).\n",
  250. BtoKB(tmp), BtoKB(dinfo->fb.size));
  251. return 1;
  252. }
  253. /* Check if x/y limits are OK. */
  254. if (var->xres - 1 > HACTIVE_MASK) {
  255. WRN_MSG("X resolution too large (%d vs %d).\n",
  256. var->xres, HACTIVE_MASK + 1);
  257. return 1;
  258. }
  259. if (var->yres - 1 > VACTIVE_MASK) {
  260. WRN_MSG("Y resolution too large (%d vs %d).\n",
  261. var->yres, VACTIVE_MASK + 1);
  262. return 1;
  263. }
  264. /* Check for interlaced/doublescan modes. */
  265. if (var->vmode & FB_VMODE_INTERLACED) {
  266. WRN_MSG("Mode is interlaced.\n");
  267. return 1;
  268. }
  269. if (var->vmode & FB_VMODE_DOUBLE) {
  270. WRN_MSG("Mode is double-scan.\n");
  271. return 1;
  272. }
  273. /* Check if clock is OK. */
  274. tmp = 1000000000 / var->pixclock;
  275. if (tmp < MIN_CLOCK) {
  276. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  277. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  278. return 1;
  279. }
  280. if (tmp > MAX_CLOCK) {
  281. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  282. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  283. return 1;
  284. }
  285. return 0;
  286. }
  287. int
  288. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  289. {
  290. struct intelfb_info *dinfo = GET_DINFO(info);
  291. u32 offset, xoffset, yoffset;
  292. #if VERBOSE > 0
  293. DBG_MSG("intelfbhw_pan_display\n");
  294. #endif
  295. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  296. yoffset = var->yoffset;
  297. if ((xoffset + var->xres > var->xres_virtual) ||
  298. (yoffset + var->yres > var->yres_virtual))
  299. return -EINVAL;
  300. offset = (yoffset * dinfo->pitch) +
  301. (xoffset * var->bits_per_pixel) / 8;
  302. offset += dinfo->fb.offset << 12;
  303. OUTREG(DSPABASE, offset);
  304. return 0;
  305. }
  306. /* Blank the screen. */
  307. void
  308. intelfbhw_do_blank(int blank, struct fb_info *info)
  309. {
  310. struct intelfb_info *dinfo = GET_DINFO(info);
  311. u32 tmp;
  312. #if VERBOSE > 0
  313. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  314. #endif
  315. /* Turn plane A on or off */
  316. tmp = INREG(DSPACNTR);
  317. if (blank)
  318. tmp &= ~DISPPLANE_PLANE_ENABLE;
  319. else
  320. tmp |= DISPPLANE_PLANE_ENABLE;
  321. OUTREG(DSPACNTR, tmp);
  322. /* Flush */
  323. tmp = INREG(DSPABASE);
  324. OUTREG(DSPABASE, tmp);
  325. /* Turn off/on the HW cursor */
  326. #if VERBOSE > 0
  327. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  328. #endif
  329. if (dinfo->cursor_on) {
  330. if (blank) {
  331. intelfbhw_cursor_hide(dinfo);
  332. } else {
  333. intelfbhw_cursor_show(dinfo);
  334. }
  335. dinfo->cursor_on = 1;
  336. }
  337. dinfo->cursor_blanked = blank;
  338. /* Set DPMS level */
  339. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  340. switch (blank) {
  341. case FB_BLANK_UNBLANK:
  342. case FB_BLANK_NORMAL:
  343. tmp |= ADPA_DPMS_D0;
  344. break;
  345. case FB_BLANK_VSYNC_SUSPEND:
  346. tmp |= ADPA_DPMS_D1;
  347. break;
  348. case FB_BLANK_HSYNC_SUSPEND:
  349. tmp |= ADPA_DPMS_D2;
  350. break;
  351. case FB_BLANK_POWERDOWN:
  352. tmp |= ADPA_DPMS_D3;
  353. break;
  354. }
  355. OUTREG(ADPA, tmp);
  356. return;
  357. }
  358. void
  359. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  360. unsigned red, unsigned green, unsigned blue,
  361. unsigned transp)
  362. {
  363. #if VERBOSE > 0
  364. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  365. regno, red, green, blue);
  366. #endif
  367. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  368. PALETTE_A : PALETTE_B;
  369. OUTREG(palette_reg + (regno << 2),
  370. (red << PALETTE_8_RED_SHIFT) |
  371. (green << PALETTE_8_GREEN_SHIFT) |
  372. (blue << PALETTE_8_BLUE_SHIFT));
  373. }
  374. int
  375. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  376. int flag)
  377. {
  378. int i;
  379. #if VERBOSE > 0
  380. DBG_MSG("intelfbhw_read_hw_state\n");
  381. #endif
  382. if (!hw || !dinfo)
  383. return -1;
  384. /* Read in as much of the HW state as possible. */
  385. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  386. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  387. hw->vga_pd = INREG(VGAPD);
  388. hw->dpll_a = INREG(DPLL_A);
  389. hw->dpll_b = INREG(DPLL_B);
  390. hw->fpa0 = INREG(FPA0);
  391. hw->fpa1 = INREG(FPA1);
  392. hw->fpb0 = INREG(FPB0);
  393. hw->fpb1 = INREG(FPB1);
  394. if (flag == 1)
  395. return flag;
  396. #if 0
  397. /* This seems to be a problem with the 852GM/855GM */
  398. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  399. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  400. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  401. }
  402. #endif
  403. if (flag == 2)
  404. return flag;
  405. hw->htotal_a = INREG(HTOTAL_A);
  406. hw->hblank_a = INREG(HBLANK_A);
  407. hw->hsync_a = INREG(HSYNC_A);
  408. hw->vtotal_a = INREG(VTOTAL_A);
  409. hw->vblank_a = INREG(VBLANK_A);
  410. hw->vsync_a = INREG(VSYNC_A);
  411. hw->src_size_a = INREG(SRC_SIZE_A);
  412. hw->bclrpat_a = INREG(BCLRPAT_A);
  413. hw->htotal_b = INREG(HTOTAL_B);
  414. hw->hblank_b = INREG(HBLANK_B);
  415. hw->hsync_b = INREG(HSYNC_B);
  416. hw->vtotal_b = INREG(VTOTAL_B);
  417. hw->vblank_b = INREG(VBLANK_B);
  418. hw->vsync_b = INREG(VSYNC_B);
  419. hw->src_size_b = INREG(SRC_SIZE_B);
  420. hw->bclrpat_b = INREG(BCLRPAT_B);
  421. if (flag == 3)
  422. return flag;
  423. hw->adpa = INREG(ADPA);
  424. hw->dvoa = INREG(DVOA);
  425. hw->dvob = INREG(DVOB);
  426. hw->dvoc = INREG(DVOC);
  427. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  428. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  429. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  430. hw->lvds = INREG(LVDS);
  431. if (flag == 4)
  432. return flag;
  433. hw->pipe_a_conf = INREG(PIPEACONF);
  434. hw->pipe_b_conf = INREG(PIPEBCONF);
  435. hw->disp_arb = INREG(DISPARB);
  436. if (flag == 5)
  437. return flag;
  438. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  439. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  440. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  441. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  442. if (flag == 6)
  443. return flag;
  444. for (i = 0; i < 4; i++) {
  445. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  446. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  447. }
  448. if (flag == 7)
  449. return flag;
  450. hw->cursor_size = INREG(CURSOR_SIZE);
  451. if (flag == 8)
  452. return flag;
  453. hw->disp_a_ctrl = INREG(DSPACNTR);
  454. hw->disp_b_ctrl = INREG(DSPBCNTR);
  455. hw->disp_a_base = INREG(DSPABASE);
  456. hw->disp_b_base = INREG(DSPBBASE);
  457. hw->disp_a_stride = INREG(DSPASTRIDE);
  458. hw->disp_b_stride = INREG(DSPBSTRIDE);
  459. if (flag == 9)
  460. return flag;
  461. hw->vgacntrl = INREG(VGACNTRL);
  462. if (flag == 10)
  463. return flag;
  464. hw->add_id = INREG(ADD_ID);
  465. if (flag == 11)
  466. return flag;
  467. for (i = 0; i < 7; i++) {
  468. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  469. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  470. if (i < 3)
  471. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  472. }
  473. for (i = 0; i < 8; i++)
  474. hw->fence[i] = INREG(FENCE + (i << 2));
  475. hw->instpm = INREG(INSTPM);
  476. hw->mem_mode = INREG(MEM_MODE);
  477. hw->fw_blc_0 = INREG(FW_BLC_0);
  478. hw->fw_blc_1 = INREG(FW_BLC_1);
  479. return 0;
  480. }
  481. static int calc_vclock3(int index, int m, int n, int p)
  482. {
  483. return PLL_REFCLK * m / n / p;
  484. }
  485. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
  486. {
  487. switch(index)
  488. {
  489. case PLLS_I9xx:
  490. return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  491. ((p1)) * (p2 ? 10 : 5)));
  492. case PLLS_I8xx:
  493. default:
  494. return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  495. ((p1+2) * (1 << (p2 + 1)))));
  496. }
  497. }
  498. void
  499. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  500. {
  501. #if REGDUMP
  502. int i, m1, m2, n, p1, p2;
  503. int index = dinfo->pll_index;
  504. DBG_MSG("intelfbhw_print_hw_state\n");
  505. if (!hw || !dinfo)
  506. return;
  507. /* Read in as much of the HW state as possible. */
  508. printk("hw state dump start\n");
  509. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  510. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  511. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  512. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  513. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  514. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  515. if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
  516. p1 = 0;
  517. else
  518. p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
  519. p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
  520. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  521. m1, m2, n, p1, p2);
  522. printk(" VGA0: clock is %d\n",
  523. calc_vclock(index, m1, m2, n, p1, p2));
  524. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  525. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  526. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  527. if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
  528. p1 = 0;
  529. else
  530. p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
  531. p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
  532. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  533. m1, m2, n, p1, p2);
  534. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  535. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  536. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  537. printk(" FPA0: 0x%08x\n", hw->fpa0);
  538. printk(" FPA1: 0x%08x\n", hw->fpa1);
  539. printk(" FPB0: 0x%08x\n", hw->fpb0);
  540. printk(" FPB1: 0x%08x\n", hw->fpb1);
  541. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  542. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  543. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  544. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  545. p1 = 0;
  546. else
  547. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  548. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  549. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  550. m1, m2, n, p1, p2);
  551. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  552. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  553. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  554. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  555. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  556. p1 = 0;
  557. else
  558. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  559. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  560. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  561. m1, m2, n, p1, p2);
  562. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
  563. #if 0
  564. printk(" PALETTE_A:\n");
  565. for (i = 0; i < PALETTE_8_ENTRIES)
  566. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  567. printk(" PALETTE_B:\n");
  568. for (i = 0; i < PALETTE_8_ENTRIES)
  569. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  570. #endif
  571. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  572. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  573. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  574. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  575. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  576. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  577. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  578. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  579. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  580. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  581. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  582. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  583. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  584. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  585. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  586. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  587. printk(" ADPA: 0x%08x\n", hw->adpa);
  588. printk(" DVOA: 0x%08x\n", hw->dvoa);
  589. printk(" DVOB: 0x%08x\n", hw->dvob);
  590. printk(" DVOC: 0x%08x\n", hw->dvoc);
  591. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  592. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  593. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  594. printk(" LVDS: 0x%08x\n", hw->lvds);
  595. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  596. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  597. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  598. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  599. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  600. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  601. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  602. printk(" CURSOR_A_PALETTE: ");
  603. for (i = 0; i < 4; i++) {
  604. printk("0x%08x", hw->cursor_a_palette[i]);
  605. if (i < 3)
  606. printk(", ");
  607. }
  608. printk("\n");
  609. printk(" CURSOR_B_PALETTE: ");
  610. for (i = 0; i < 4; i++) {
  611. printk("0x%08x", hw->cursor_b_palette[i]);
  612. if (i < 3)
  613. printk(", ");
  614. }
  615. printk("\n");
  616. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  617. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  618. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  619. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  620. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  621. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  622. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  623. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  624. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  625. for (i = 0; i < 7; i++) {
  626. printk(" SWF0%d 0x%08x\n", i,
  627. hw->swf0x[i]);
  628. }
  629. for (i = 0; i < 7; i++) {
  630. printk(" SWF1%d 0x%08x\n", i,
  631. hw->swf1x[i]);
  632. }
  633. for (i = 0; i < 3; i++) {
  634. printk(" SWF3%d 0x%08x\n", i,
  635. hw->swf3x[i]);
  636. }
  637. for (i = 0; i < 8; i++)
  638. printk(" FENCE%d 0x%08x\n", i,
  639. hw->fence[i]);
  640. printk(" INSTPM 0x%08x\n", hw->instpm);
  641. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  642. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  643. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  644. printk("hw state dump end\n");
  645. #endif
  646. }
  647. /* Split the M parameter into M1 and M2. */
  648. static int
  649. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  650. {
  651. int m1, m2;
  652. int testm;
  653. /* no point optimising too much - brute force m */
  654. for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++)
  655. {
  656. for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++)
  657. {
  658. testm = ( 5 * ( m1 + 2 )) + (m2 + 2);
  659. if (testm == m)
  660. {
  661. *retm1 = (unsigned int)m1;
  662. *retm2 = (unsigned int)m2;
  663. return 0;
  664. }
  665. }
  666. }
  667. return 1;
  668. }
  669. /* Split the P parameter into P1 and P2. */
  670. static int
  671. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  672. {
  673. int p1, p2;
  674. if (index == PLLS_I9xx)
  675. {
  676. p1 = (p / 10) + 1;
  677. p2 = 0;
  678. *retp1 = (unsigned int)p1;
  679. *retp2 = (unsigned int)p2;
  680. return 0;
  681. }
  682. if (index == PLLS_I8xx)
  683. {
  684. if (p % 4 == 0)
  685. p2 = 1;
  686. else
  687. p2 = 0;
  688. p1 = (p / (1 << (p2 + 1))) - 2;
  689. if (p % 4 == 0 && p1 < plls[index].min_p1) {
  690. p2 = 0;
  691. p1 = (p / (1 << (p2 + 1))) - 2;
  692. }
  693. if (p1 < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
  694. return 1;
  695. } else {
  696. *retp1 = (unsigned int)p1;
  697. *retp2 = (unsigned int)p2;
  698. return 0;
  699. }
  700. }
  701. return 1;
  702. }
  703. static int
  704. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  705. u32 *retp2, u32 *retclock)
  706. {
  707. u32 m1, m2, n, p1, p2, n1;
  708. u32 f_vco, p, p_best = 0, m, f_out;
  709. u32 err_max, err_target, err_best = 10000000;
  710. u32 n_best = 0, m_best = 0, f_best, f_err;
  711. u32 p_min, p_max, p_inc, div_min, div_max;
  712. /* Accept 0.5% difference, but aim for 0.1% */
  713. err_max = 5 * clock / 1000;
  714. err_target = clock / 1000;
  715. DBG_MSG("Clock is %d\n", clock);
  716. div_max = plls[index].max_vco_freq / clock;
  717. div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
  718. if (clock <= plls[index].p_transition_clock)
  719. p_inc = plls[index].p_inc_lo;
  720. else
  721. p_inc = plls[index].p_inc_hi;
  722. p_min = ROUND_UP_TO(div_min, p_inc);
  723. p_max = ROUND_DOWN_TO(div_max, p_inc);
  724. if (p_min < plls[index].min_p)
  725. p_min = plls[index].min_p;
  726. if (p_max > plls[index].max_p)
  727. p_max = plls[index].max_p;
  728. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  729. p = p_min;
  730. do {
  731. if (splitp(index, p, &p1, &p2)) {
  732. WRN_MSG("cannot split p = %d\n", p);
  733. p += p_inc;
  734. continue;
  735. }
  736. n = plls[index].min_n;
  737. f_vco = clock * p;
  738. do {
  739. m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
  740. if (m < plls[index].min_m)
  741. m = plls[index].min_m;
  742. if (m > plls[index].max_m)
  743. m = plls[index].max_m;
  744. f_out = calc_vclock3(index, m, n, p);
  745. if (splitm(index, m, &m1, &m2)) {
  746. WRN_MSG("cannot split m = %d\n", m);
  747. n++;
  748. continue;
  749. }
  750. if (clock > f_out)
  751. f_err = clock - f_out;
  752. else
  753. f_err = f_out - clock;
  754. if (f_err < err_best) {
  755. m_best = m;
  756. n_best = n;
  757. p_best = p;
  758. f_best = f_out;
  759. err_best = f_err;
  760. }
  761. n++;
  762. } while ((n <= plls[index].max_n) && (f_out >= clock));
  763. p += p_inc;
  764. } while ((p <= p_max));
  765. if (!m_best) {
  766. WRN_MSG("cannot find parameters for clock %d\n", clock);
  767. return 1;
  768. }
  769. m = m_best;
  770. n = n_best;
  771. p = p_best;
  772. splitm(index, m, &m1, &m2);
  773. splitp(index, p, &p1, &p2);
  774. n1 = n - 2;
  775. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  776. "f: %d (%d), VCO: %d\n",
  777. m, m1, m2, n, n1, p, p1, p2,
  778. calc_vclock3(index, m, n, p),
  779. calc_vclock(index, m1, m2, n1, p1, p2),
  780. calc_vclock3(index, m, n, p) * p);
  781. *retm1 = m1;
  782. *retm2 = m2;
  783. *retn = n1;
  784. *retp1 = p1;
  785. *retp2 = p2;
  786. *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
  787. return 0;
  788. }
  789. static __inline__ int
  790. check_overflow(u32 value, u32 limit, const char *description)
  791. {
  792. if (value > limit) {
  793. WRN_MSG("%s value %d exceeds limit %d\n",
  794. description, value, limit);
  795. return 1;
  796. }
  797. return 0;
  798. }
  799. /* It is assumed that hw is filled in with the initial state information. */
  800. int
  801. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  802. struct fb_var_screeninfo *var)
  803. {
  804. int pipe = PIPE_A;
  805. u32 *dpll, *fp0, *fp1;
  806. u32 m1, m2, n, p1, p2, clock_target, clock;
  807. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  808. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  809. u32 vsync_pol, hsync_pol;
  810. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  811. DBG_MSG("intelfbhw_mode_to_hw\n");
  812. /* Disable VGA */
  813. hw->vgacntrl |= VGA_DISABLE;
  814. /* Check whether pipe A or pipe B is enabled. */
  815. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  816. pipe = PIPE_A;
  817. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  818. pipe = PIPE_B;
  819. /* Set which pipe's registers will be set. */
  820. if (pipe == PIPE_B) {
  821. dpll = &hw->dpll_b;
  822. fp0 = &hw->fpb0;
  823. fp1 = &hw->fpb1;
  824. hs = &hw->hsync_b;
  825. hb = &hw->hblank_b;
  826. ht = &hw->htotal_b;
  827. vs = &hw->vsync_b;
  828. vb = &hw->vblank_b;
  829. vt = &hw->vtotal_b;
  830. ss = &hw->src_size_b;
  831. pipe_conf = &hw->pipe_b_conf;
  832. } else {
  833. dpll = &hw->dpll_a;
  834. fp0 = &hw->fpa0;
  835. fp1 = &hw->fpa1;
  836. hs = &hw->hsync_a;
  837. hb = &hw->hblank_a;
  838. ht = &hw->htotal_a;
  839. vs = &hw->vsync_a;
  840. vb = &hw->vblank_a;
  841. vt = &hw->vtotal_a;
  842. ss = &hw->src_size_a;
  843. pipe_conf = &hw->pipe_a_conf;
  844. }
  845. /* Use ADPA register for sync control. */
  846. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  847. /* sync polarity */
  848. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  849. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  850. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  851. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  852. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  853. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  854. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  855. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  856. /* Connect correct pipe to the analog port DAC */
  857. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  858. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  859. /* Set DPMS state to D0 (on) */
  860. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  861. hw->adpa |= ADPA_DPMS_D0;
  862. hw->adpa |= ADPA_DAC_ENABLE;
  863. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  864. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  865. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  866. /* Desired clock in kHz */
  867. clock_target = 1000000000 / var->pixclock;
  868. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
  869. WRN_MSG("calc_pll_params failed\n");
  870. return 1;
  871. }
  872. /* Check for overflow. */
  873. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  874. return 1;
  875. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  876. return 1;
  877. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  878. return 1;
  879. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  880. return 1;
  881. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  882. return 1;
  883. *dpll &= ~DPLL_P1_FORCE_DIV2;
  884. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  885. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  886. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  887. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  888. (m1 << FP_M1_DIVISOR_SHIFT) |
  889. (m2 << FP_M2_DIVISOR_SHIFT);
  890. *fp1 = *fp0;
  891. hw->dvob &= ~PORT_ENABLE;
  892. hw->dvoc &= ~PORT_ENABLE;
  893. /* Use display plane A. */
  894. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  895. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  896. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  897. switch (intelfb_var_to_depth(var)) {
  898. case 8:
  899. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  900. break;
  901. case 15:
  902. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  903. break;
  904. case 16:
  905. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  906. break;
  907. case 24:
  908. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  909. break;
  910. }
  911. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  912. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  913. /* Set CRTC registers. */
  914. hactive = var->xres;
  915. hsync_start = hactive + var->right_margin;
  916. hsync_end = hsync_start + var->hsync_len;
  917. htotal = hsync_end + var->left_margin;
  918. hblank_start = hactive;
  919. hblank_end = htotal;
  920. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  921. hactive, hsync_start, hsync_end, htotal, hblank_start,
  922. hblank_end);
  923. vactive = var->yres;
  924. vsync_start = vactive + var->lower_margin;
  925. vsync_end = vsync_start + var->vsync_len;
  926. vtotal = vsync_end + var->upper_margin;
  927. vblank_start = vactive;
  928. vblank_end = vtotal;
  929. vblank_end = vsync_end + 1;
  930. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  931. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  932. vblank_end);
  933. /* Adjust for register values, and check for overflow. */
  934. hactive--;
  935. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  936. return 1;
  937. hsync_start--;
  938. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  939. return 1;
  940. hsync_end--;
  941. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  942. return 1;
  943. htotal--;
  944. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  945. return 1;
  946. hblank_start--;
  947. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  948. return 1;
  949. hblank_end--;
  950. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  951. return 1;
  952. vactive--;
  953. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  954. return 1;
  955. vsync_start--;
  956. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  957. return 1;
  958. vsync_end--;
  959. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  960. return 1;
  961. vtotal--;
  962. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  963. return 1;
  964. vblank_start--;
  965. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  966. return 1;
  967. vblank_end--;
  968. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  969. return 1;
  970. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  971. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  972. (hblank_end << HSYNCEND_SHIFT);
  973. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  974. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  975. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  976. (vblank_end << VSYNCEND_SHIFT);
  977. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  978. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  979. (vactive << SRC_SIZE_VERT_SHIFT);
  980. hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
  981. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  982. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  983. var->xoffset * var->bits_per_pixel / 8;
  984. hw->disp_a_base += dinfo->fb.offset << 12;
  985. /* Check stride alignment. */
  986. if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
  987. WRN_MSG("display stride %d has bad alignment %d\n",
  988. hw->disp_a_stride, STRIDE_ALIGNMENT);
  989. return 1;
  990. }
  991. /* Set the palette to 8-bit mode. */
  992. *pipe_conf &= ~PIPECONF_GAMMA;
  993. return 0;
  994. }
  995. /* Program a (non-VGA) video mode. */
  996. int
  997. intelfbhw_program_mode(struct intelfb_info *dinfo,
  998. const struct intelfb_hwstate *hw, int blank)
  999. {
  1000. int pipe = PIPE_A;
  1001. u32 tmp;
  1002. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1003. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1004. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1005. u32 hsync_reg, htotal_reg, hblank_reg;
  1006. u32 vsync_reg, vtotal_reg, vblank_reg;
  1007. u32 src_size_reg;
  1008. /* Assume single pipe, display plane A, analog CRT. */
  1009. #if VERBOSE > 0
  1010. DBG_MSG("intelfbhw_program_mode\n");
  1011. #endif
  1012. /* Disable VGA */
  1013. tmp = INREG(VGACNTRL);
  1014. tmp |= VGA_DISABLE;
  1015. OUTREG(VGACNTRL, tmp);
  1016. /* Check whether pipe A or pipe B is enabled. */
  1017. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1018. pipe = PIPE_A;
  1019. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1020. pipe = PIPE_B;
  1021. dinfo->pipe = pipe;
  1022. if (pipe == PIPE_B) {
  1023. dpll = &hw->dpll_b;
  1024. fp0 = &hw->fpb0;
  1025. fp1 = &hw->fpb1;
  1026. pipe_conf = &hw->pipe_b_conf;
  1027. hs = &hw->hsync_b;
  1028. hb = &hw->hblank_b;
  1029. ht = &hw->htotal_b;
  1030. vs = &hw->vsync_b;
  1031. vb = &hw->vblank_b;
  1032. vt = &hw->vtotal_b;
  1033. ss = &hw->src_size_b;
  1034. dpll_reg = DPLL_B;
  1035. fp0_reg = FPB0;
  1036. fp1_reg = FPB1;
  1037. pipe_conf_reg = PIPEBCONF;
  1038. hsync_reg = HSYNC_B;
  1039. htotal_reg = HTOTAL_B;
  1040. hblank_reg = HBLANK_B;
  1041. vsync_reg = VSYNC_B;
  1042. vtotal_reg = VTOTAL_B;
  1043. vblank_reg = VBLANK_B;
  1044. src_size_reg = SRC_SIZE_B;
  1045. } else {
  1046. dpll = &hw->dpll_a;
  1047. fp0 = &hw->fpa0;
  1048. fp1 = &hw->fpa1;
  1049. pipe_conf = &hw->pipe_a_conf;
  1050. hs = &hw->hsync_a;
  1051. hb = &hw->hblank_a;
  1052. ht = &hw->htotal_a;
  1053. vs = &hw->vsync_a;
  1054. vb = &hw->vblank_a;
  1055. vt = &hw->vtotal_a;
  1056. ss = &hw->src_size_a;
  1057. dpll_reg = DPLL_A;
  1058. fp0_reg = FPA0;
  1059. fp1_reg = FPA1;
  1060. pipe_conf_reg = PIPEACONF;
  1061. hsync_reg = HSYNC_A;
  1062. htotal_reg = HTOTAL_A;
  1063. hblank_reg = HBLANK_A;
  1064. vsync_reg = VSYNC_A;
  1065. vtotal_reg = VTOTAL_A;
  1066. vblank_reg = VBLANK_A;
  1067. src_size_reg = SRC_SIZE_A;
  1068. }
  1069. /* Disable planes A and B. */
  1070. tmp = INREG(DSPACNTR);
  1071. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1072. OUTREG(DSPACNTR, tmp);
  1073. tmp = INREG(DSPBCNTR);
  1074. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1075. OUTREG(DSPBCNTR, tmp);
  1076. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1077. mdelay(20);
  1078. /* Disable Sync */
  1079. tmp = INREG(ADPA);
  1080. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1081. tmp |= ADPA_DPMS_D3;
  1082. OUTREG(ADPA, tmp);
  1083. /* turn off pipe */
  1084. tmp = INREG(pipe_conf_reg);
  1085. tmp &= ~PIPECONF_ENABLE;
  1086. OUTREG(pipe_conf_reg, tmp);
  1087. /* turn off PLL */
  1088. tmp = INREG(dpll_reg);
  1089. dpll_reg &= ~DPLL_VCO_ENABLE;
  1090. OUTREG(dpll_reg, tmp);
  1091. /* Set PLL parameters */
  1092. OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
  1093. OUTREG(fp0_reg, *fp0);
  1094. OUTREG(fp1_reg, *fp1);
  1095. /* Set pipe parameters */
  1096. OUTREG(hsync_reg, *hs);
  1097. OUTREG(hblank_reg, *hb);
  1098. OUTREG(htotal_reg, *ht);
  1099. OUTREG(vsync_reg, *vs);
  1100. OUTREG(vblank_reg, *vb);
  1101. OUTREG(vtotal_reg, *vt);
  1102. OUTREG(src_size_reg, *ss);
  1103. /* Set DVOs B/C */
  1104. OUTREG(DVOB, hw->dvob);
  1105. OUTREG(DVOC, hw->dvoc);
  1106. /* Set ADPA */
  1107. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1108. /* Enable PLL */
  1109. tmp = INREG(dpll_reg);
  1110. tmp |= DPLL_VCO_ENABLE;
  1111. OUTREG(dpll_reg, tmp);
  1112. /* Enable pipe */
  1113. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1114. /* Enable sync */
  1115. tmp = INREG(ADPA);
  1116. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1117. tmp |= ADPA_DPMS_D0;
  1118. OUTREG(ADPA, tmp);
  1119. /* setup display plane */
  1120. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1121. /*
  1122. * i830M errata: the display plane must be enabled
  1123. * to allow writes to the other bits in the plane
  1124. * control register.
  1125. */
  1126. tmp = INREG(DSPACNTR);
  1127. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1128. tmp |= DISPPLANE_PLANE_ENABLE;
  1129. OUTREG(DSPACNTR, tmp);
  1130. OUTREG(DSPACNTR,
  1131. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1132. mdelay(1);
  1133. }
  1134. }
  1135. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1136. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1137. OUTREG(DSPABASE, hw->disp_a_base);
  1138. /* Enable plane */
  1139. if (!blank) {
  1140. tmp = INREG(DSPACNTR);
  1141. tmp |= DISPPLANE_PLANE_ENABLE;
  1142. OUTREG(DSPACNTR, tmp);
  1143. OUTREG(DSPABASE, hw->disp_a_base);
  1144. }
  1145. return 0;
  1146. }
  1147. /* forward declarations */
  1148. static void refresh_ring(struct intelfb_info *dinfo);
  1149. static void reset_state(struct intelfb_info *dinfo);
  1150. static void do_flush(struct intelfb_info *dinfo);
  1151. static int
  1152. wait_ring(struct intelfb_info *dinfo, int n)
  1153. {
  1154. int i = 0;
  1155. unsigned long end;
  1156. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1157. #if VERBOSE > 0
  1158. DBG_MSG("wait_ring: %d\n", n);
  1159. #endif
  1160. end = jiffies + (HZ * 3);
  1161. while (dinfo->ring_space < n) {
  1162. dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
  1163. RING_HEAD_MASK);
  1164. if (dinfo->ring_tail + RING_MIN_FREE <
  1165. (u32 __iomem) dinfo->ring_head)
  1166. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1167. - (dinfo->ring_tail + RING_MIN_FREE);
  1168. else
  1169. dinfo->ring_space = (dinfo->ring.size +
  1170. (u32 __iomem) dinfo->ring_head)
  1171. - (dinfo->ring_tail + RING_MIN_FREE);
  1172. if ((u32 __iomem) dinfo->ring_head != last_head) {
  1173. end = jiffies + (HZ * 3);
  1174. last_head = (u32 __iomem) dinfo->ring_head;
  1175. }
  1176. i++;
  1177. if (time_before(end, jiffies)) {
  1178. if (!i) {
  1179. /* Try again */
  1180. reset_state(dinfo);
  1181. refresh_ring(dinfo);
  1182. do_flush(dinfo);
  1183. end = jiffies + (HZ * 3);
  1184. i = 1;
  1185. } else {
  1186. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1187. dinfo->ring_space, n);
  1188. WRN_MSG("lockup - turning off hardware "
  1189. "acceleration\n");
  1190. dinfo->ring_lockup = 1;
  1191. break;
  1192. }
  1193. }
  1194. udelay(1);
  1195. }
  1196. return i;
  1197. }
  1198. static void
  1199. do_flush(struct intelfb_info *dinfo) {
  1200. START_RING(2);
  1201. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1202. OUT_RING(MI_NOOP);
  1203. ADVANCE_RING();
  1204. }
  1205. void
  1206. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1207. {
  1208. #if VERBOSE > 0
  1209. DBG_MSG("intelfbhw_do_sync\n");
  1210. #endif
  1211. if (!dinfo->accel)
  1212. return;
  1213. /*
  1214. * Send a flush, then wait until the ring is empty. This is what
  1215. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1216. * than the recommended method (both have problems).
  1217. */
  1218. do_flush(dinfo);
  1219. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1220. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1221. }
  1222. static void
  1223. refresh_ring(struct intelfb_info *dinfo)
  1224. {
  1225. #if VERBOSE > 0
  1226. DBG_MSG("refresh_ring\n");
  1227. #endif
  1228. dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
  1229. RING_HEAD_MASK);
  1230. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1231. if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
  1232. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1233. - (dinfo->ring_tail + RING_MIN_FREE);
  1234. else
  1235. dinfo->ring_space = (dinfo->ring.size +
  1236. (u32 __iomem) dinfo->ring_head)
  1237. - (dinfo->ring_tail + RING_MIN_FREE);
  1238. }
  1239. static void
  1240. reset_state(struct intelfb_info *dinfo)
  1241. {
  1242. int i;
  1243. u32 tmp;
  1244. #if VERBOSE > 0
  1245. DBG_MSG("reset_state\n");
  1246. #endif
  1247. for (i = 0; i < FENCE_NUM; i++)
  1248. OUTREG(FENCE + (i << 2), 0);
  1249. /* Flush the ring buffer if it's enabled. */
  1250. tmp = INREG(PRI_RING_LENGTH);
  1251. if (tmp & RING_ENABLE) {
  1252. #if VERBOSE > 0
  1253. DBG_MSG("reset_state: ring was enabled\n");
  1254. #endif
  1255. refresh_ring(dinfo);
  1256. intelfbhw_do_sync(dinfo);
  1257. DO_RING_IDLE();
  1258. }
  1259. OUTREG(PRI_RING_LENGTH, 0);
  1260. OUTREG(PRI_RING_HEAD, 0);
  1261. OUTREG(PRI_RING_TAIL, 0);
  1262. OUTREG(PRI_RING_START, 0);
  1263. }
  1264. /* Stop the 2D engine, and turn off the ring buffer. */
  1265. void
  1266. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1267. {
  1268. #if VERBOSE > 0
  1269. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1270. dinfo->ring_active);
  1271. #endif
  1272. if (!dinfo->accel)
  1273. return;
  1274. dinfo->ring_active = 0;
  1275. reset_state(dinfo);
  1276. }
  1277. /*
  1278. * Enable the ring buffer, and initialise the 2D engine.
  1279. * It is assumed that the graphics engine has been stopped by previously
  1280. * calling intelfb_2d_stop().
  1281. */
  1282. void
  1283. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1284. {
  1285. #if VERBOSE > 0
  1286. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1287. dinfo->accel, dinfo->ring_active);
  1288. #endif
  1289. if (!dinfo->accel)
  1290. return;
  1291. /* Initialise the primary ring buffer. */
  1292. OUTREG(PRI_RING_LENGTH, 0);
  1293. OUTREG(PRI_RING_TAIL, 0);
  1294. OUTREG(PRI_RING_HEAD, 0);
  1295. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1296. OUTREG(PRI_RING_LENGTH,
  1297. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1298. RING_NO_REPORT | RING_ENABLE);
  1299. refresh_ring(dinfo);
  1300. dinfo->ring_active = 1;
  1301. }
  1302. /* 2D fillrect (solid fill or invert) */
  1303. void
  1304. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1305. u32 color, u32 pitch, u32 bpp, u32 rop)
  1306. {
  1307. u32 br00, br09, br13, br14, br16;
  1308. #if VERBOSE > 0
  1309. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1310. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1311. #endif
  1312. br00 = COLOR_BLT_CMD;
  1313. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1314. br13 = (rop << ROP_SHIFT) | pitch;
  1315. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1316. br16 = color;
  1317. switch (bpp) {
  1318. case 8:
  1319. br13 |= COLOR_DEPTH_8;
  1320. break;
  1321. case 16:
  1322. br13 |= COLOR_DEPTH_16;
  1323. break;
  1324. case 32:
  1325. br13 |= COLOR_DEPTH_32;
  1326. br00 |= WRITE_ALPHA | WRITE_RGB;
  1327. break;
  1328. }
  1329. START_RING(6);
  1330. OUT_RING(br00);
  1331. OUT_RING(br13);
  1332. OUT_RING(br14);
  1333. OUT_RING(br09);
  1334. OUT_RING(br16);
  1335. OUT_RING(MI_NOOP);
  1336. ADVANCE_RING();
  1337. #if VERBOSE > 0
  1338. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1339. dinfo->ring_tail, dinfo->ring_space);
  1340. #endif
  1341. }
  1342. void
  1343. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1344. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1345. {
  1346. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1347. #if VERBOSE > 0
  1348. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1349. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1350. #endif
  1351. br00 = XY_SRC_COPY_BLT_CMD;
  1352. br09 = dinfo->fb_start;
  1353. br11 = (pitch << PITCH_SHIFT);
  1354. br12 = dinfo->fb_start;
  1355. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1356. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1357. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1358. ((dsty + h) << HEIGHT_SHIFT);
  1359. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1360. switch (bpp) {
  1361. case 8:
  1362. br13 |= COLOR_DEPTH_8;
  1363. break;
  1364. case 16:
  1365. br13 |= COLOR_DEPTH_16;
  1366. break;
  1367. case 32:
  1368. br13 |= COLOR_DEPTH_32;
  1369. br00 |= WRITE_ALPHA | WRITE_RGB;
  1370. break;
  1371. }
  1372. START_RING(8);
  1373. OUT_RING(br00);
  1374. OUT_RING(br13);
  1375. OUT_RING(br22);
  1376. OUT_RING(br23);
  1377. OUT_RING(br09);
  1378. OUT_RING(br26);
  1379. OUT_RING(br11);
  1380. OUT_RING(br12);
  1381. ADVANCE_RING();
  1382. }
  1383. int
  1384. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1385. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1386. {
  1387. int nbytes, ndwords, pad, tmp;
  1388. u32 br00, br09, br13, br18, br19, br22, br23;
  1389. int dat, ix, iy, iw;
  1390. int i, j;
  1391. #if VERBOSE > 0
  1392. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1393. #endif
  1394. /* size in bytes of a padded scanline */
  1395. nbytes = ROUND_UP_TO(w, 16) / 8;
  1396. /* Total bytes of padded scanline data to write out. */
  1397. nbytes = nbytes * h;
  1398. /*
  1399. * Check if the glyph data exceeds the immediate mode limit.
  1400. * It would take a large font (1K pixels) to hit this limit.
  1401. */
  1402. if (nbytes > MAX_MONO_IMM_SIZE)
  1403. return 0;
  1404. /* Src data is packaged a dword (32-bit) at a time. */
  1405. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1406. /*
  1407. * Ring has to be padded to a quad word. But because the command starts
  1408. with 7 bytes, pad only if there is an even number of ndwords
  1409. */
  1410. pad = !(ndwords % 2);
  1411. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1412. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1413. br09 = dinfo->fb_start;
  1414. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1415. br18 = bg;
  1416. br19 = fg;
  1417. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1418. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1419. switch (bpp) {
  1420. case 8:
  1421. br13 |= COLOR_DEPTH_8;
  1422. break;
  1423. case 16:
  1424. br13 |= COLOR_DEPTH_16;
  1425. break;
  1426. case 32:
  1427. br13 |= COLOR_DEPTH_32;
  1428. br00 |= WRITE_ALPHA | WRITE_RGB;
  1429. break;
  1430. }
  1431. START_RING(8 + ndwords);
  1432. OUT_RING(br00);
  1433. OUT_RING(br13);
  1434. OUT_RING(br22);
  1435. OUT_RING(br23);
  1436. OUT_RING(br09);
  1437. OUT_RING(br18);
  1438. OUT_RING(br19);
  1439. ix = iy = 0;
  1440. iw = ROUND_UP_TO(w, 8) / 8;
  1441. while (ndwords--) {
  1442. dat = 0;
  1443. for (j = 0; j < 2; ++j) {
  1444. for (i = 0; i < 2; ++i) {
  1445. if (ix != iw || i == 0)
  1446. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1447. }
  1448. if (ix == iw && iy != (h-1)) {
  1449. ix = 0;
  1450. ++iy;
  1451. }
  1452. }
  1453. OUT_RING(dat);
  1454. }
  1455. if (pad)
  1456. OUT_RING(MI_NOOP);
  1457. ADVANCE_RING();
  1458. return 1;
  1459. }
  1460. /* HW cursor functions. */
  1461. void
  1462. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1463. {
  1464. u32 tmp;
  1465. #if VERBOSE > 0
  1466. DBG_MSG("intelfbhw_cursor_init\n");
  1467. #endif
  1468. if (dinfo->mobile) {
  1469. if (!dinfo->cursor.physical)
  1470. return;
  1471. tmp = INREG(CURSOR_A_CONTROL);
  1472. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1473. CURSOR_MEM_TYPE_LOCAL |
  1474. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1475. tmp |= CURSOR_MODE_DISABLE;
  1476. OUTREG(CURSOR_A_CONTROL, tmp);
  1477. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1478. } else {
  1479. tmp = INREG(CURSOR_CONTROL);
  1480. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1481. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1482. tmp = CURSOR_FORMAT_3C;
  1483. OUTREG(CURSOR_CONTROL, tmp);
  1484. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1485. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1486. (64 << CURSOR_SIZE_V_SHIFT);
  1487. OUTREG(CURSOR_SIZE, tmp);
  1488. }
  1489. }
  1490. void
  1491. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1492. {
  1493. u32 tmp;
  1494. #if VERBOSE > 0
  1495. DBG_MSG("intelfbhw_cursor_hide\n");
  1496. #endif
  1497. dinfo->cursor_on = 0;
  1498. if (dinfo->mobile) {
  1499. if (!dinfo->cursor.physical)
  1500. return;
  1501. tmp = INREG(CURSOR_A_CONTROL);
  1502. tmp &= ~CURSOR_MODE_MASK;
  1503. tmp |= CURSOR_MODE_DISABLE;
  1504. OUTREG(CURSOR_A_CONTROL, tmp);
  1505. /* Flush changes */
  1506. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1507. } else {
  1508. tmp = INREG(CURSOR_CONTROL);
  1509. tmp &= ~CURSOR_ENABLE;
  1510. OUTREG(CURSOR_CONTROL, tmp);
  1511. }
  1512. }
  1513. void
  1514. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1515. {
  1516. u32 tmp;
  1517. #if VERBOSE > 0
  1518. DBG_MSG("intelfbhw_cursor_show\n");
  1519. #endif
  1520. dinfo->cursor_on = 1;
  1521. if (dinfo->cursor_blanked)
  1522. return;
  1523. if (dinfo->mobile) {
  1524. if (!dinfo->cursor.physical)
  1525. return;
  1526. tmp = INREG(CURSOR_A_CONTROL);
  1527. tmp &= ~CURSOR_MODE_MASK;
  1528. tmp |= CURSOR_MODE_64_4C_AX;
  1529. OUTREG(CURSOR_A_CONTROL, tmp);
  1530. /* Flush changes */
  1531. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1532. } else {
  1533. tmp = INREG(CURSOR_CONTROL);
  1534. tmp |= CURSOR_ENABLE;
  1535. OUTREG(CURSOR_CONTROL, tmp);
  1536. }
  1537. }
  1538. void
  1539. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1540. {
  1541. u32 tmp;
  1542. #if VERBOSE > 0
  1543. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1544. #endif
  1545. /*
  1546. * Sets the position. The coordinates are assumed to already
  1547. * have any offset adjusted. Assume that the cursor is never
  1548. * completely off-screen, and that x, y are always >= 0.
  1549. */
  1550. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1551. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1552. OUTREG(CURSOR_A_POSITION, tmp);
  1553. }
  1554. void
  1555. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1556. {
  1557. #if VERBOSE > 0
  1558. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1559. #endif
  1560. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1561. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1562. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1563. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1564. }
  1565. void
  1566. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1567. u8 *data)
  1568. {
  1569. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1570. int i, j, w = width / 8;
  1571. int mod = width % 8, t_mask, d_mask;
  1572. #if VERBOSE > 0
  1573. DBG_MSG("intelfbhw_cursor_load\n");
  1574. #endif
  1575. if (!dinfo->cursor.virtual)
  1576. return;
  1577. t_mask = 0xff >> mod;
  1578. d_mask = ~(0xff >> mod);
  1579. for (i = height; i--; ) {
  1580. for (j = 0; j < w; j++) {
  1581. writeb(0x00, addr + j);
  1582. writeb(*(data++), addr + j+8);
  1583. }
  1584. if (mod) {
  1585. writeb(t_mask, addr + j);
  1586. writeb(*(data++) & d_mask, addr + j+8);
  1587. }
  1588. addr += 16;
  1589. }
  1590. }
  1591. void
  1592. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1593. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1594. int i, j;
  1595. #if VERBOSE > 0
  1596. DBG_MSG("intelfbhw_cursor_reset\n");
  1597. #endif
  1598. if (!dinfo->cursor.virtual)
  1599. return;
  1600. for (i = 64; i--; ) {
  1601. for (j = 0; j < 8; j++) {
  1602. writeb(0xff, addr + j+0);
  1603. writeb(0x00, addr + j+8);
  1604. }
  1605. addr += 16;
  1606. }
  1607. }