elevator.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. /*
  2. * linux/drivers/block/elevator.c
  3. *
  4. * Block device elevator/IO-scheduler.
  5. *
  6. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. *
  8. * 30042000 Jens Axboe <axboe@suse.de> :
  9. *
  10. * Split the elevator a bit so that it is possible to choose a different
  11. * one or even write a new "plug in". There are three pieces:
  12. * - elevator_fn, inserts a new request in the queue list
  13. * - elevator_merge_fn, decides whether a new buffer can be merged with
  14. * an existing request
  15. * - elevator_dequeue_fn, called when a request is taken off the active list
  16. *
  17. * 20082000 Dave Jones <davej@suse.de> :
  18. * Removed tests for max-bomb-segments, which was breaking elvtune
  19. * when run without -bN
  20. *
  21. * Jens:
  22. * - Rework again to work with bio instead of buffer_heads
  23. * - loose bi_dev comparisons, partition handling is right now
  24. * - completely modularize elevator setup and teardown
  25. *
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/fs.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/elevator.h>
  31. #include <linux/bio.h>
  32. #include <linux/config.h>
  33. #include <linux/module.h>
  34. #include <linux/slab.h>
  35. #include <linux/init.h>
  36. #include <linux/compiler.h>
  37. #include <linux/delay.h>
  38. #include <asm/uaccess.h>
  39. static DEFINE_SPINLOCK(elv_list_lock);
  40. static LIST_HEAD(elv_list);
  41. /*
  42. * can we safely merge with this request?
  43. */
  44. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  45. {
  46. if (!rq_mergeable(rq))
  47. return 0;
  48. /*
  49. * different data direction or already started, don't merge
  50. */
  51. if (bio_data_dir(bio) != rq_data_dir(rq))
  52. return 0;
  53. /*
  54. * same device and no special stuff set, merge is ok
  55. */
  56. if (rq->rq_disk == bio->bi_bdev->bd_disk &&
  57. !rq->waiting && !rq->special)
  58. return 1;
  59. return 0;
  60. }
  61. EXPORT_SYMBOL(elv_rq_merge_ok);
  62. inline int elv_try_merge(struct request *__rq, struct bio *bio)
  63. {
  64. int ret = ELEVATOR_NO_MERGE;
  65. /*
  66. * we can merge and sequence is ok, check if it's possible
  67. */
  68. if (elv_rq_merge_ok(__rq, bio)) {
  69. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  70. ret = ELEVATOR_BACK_MERGE;
  71. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  72. ret = ELEVATOR_FRONT_MERGE;
  73. }
  74. return ret;
  75. }
  76. EXPORT_SYMBOL(elv_try_merge);
  77. static struct elevator_type *elevator_find(const char *name)
  78. {
  79. struct elevator_type *e = NULL;
  80. struct list_head *entry;
  81. list_for_each(entry, &elv_list) {
  82. struct elevator_type *__e;
  83. __e = list_entry(entry, struct elevator_type, list);
  84. if (!strcmp(__e->elevator_name, name)) {
  85. e = __e;
  86. break;
  87. }
  88. }
  89. return e;
  90. }
  91. static void elevator_put(struct elevator_type *e)
  92. {
  93. module_put(e->elevator_owner);
  94. }
  95. static struct elevator_type *elevator_get(const char *name)
  96. {
  97. struct elevator_type *e;
  98. spin_lock_irq(&elv_list_lock);
  99. e = elevator_find(name);
  100. if (e && !try_module_get(e->elevator_owner))
  101. e = NULL;
  102. spin_unlock_irq(&elv_list_lock);
  103. return e;
  104. }
  105. static int elevator_attach(request_queue_t *q, struct elevator_type *e,
  106. struct elevator_queue *eq)
  107. {
  108. int ret = 0;
  109. memset(eq, 0, sizeof(*eq));
  110. eq->ops = &e->ops;
  111. eq->elevator_type = e;
  112. q->elevator = eq;
  113. if (eq->ops->elevator_init_fn)
  114. ret = eq->ops->elevator_init_fn(q, eq);
  115. return ret;
  116. }
  117. static char chosen_elevator[16];
  118. static void elevator_setup_default(void)
  119. {
  120. struct elevator_type *e;
  121. /*
  122. * check if default is set and exists
  123. */
  124. if (chosen_elevator[0] && (e = elevator_get(chosen_elevator))) {
  125. elevator_put(e);
  126. return;
  127. }
  128. #if defined(CONFIG_IOSCHED_AS)
  129. strcpy(chosen_elevator, "anticipatory");
  130. #elif defined(CONFIG_IOSCHED_DEADLINE)
  131. strcpy(chosen_elevator, "deadline");
  132. #elif defined(CONFIG_IOSCHED_CFQ)
  133. strcpy(chosen_elevator, "cfq");
  134. #elif defined(CONFIG_IOSCHED_NOOP)
  135. strcpy(chosen_elevator, "noop");
  136. #else
  137. #error "You must build at least 1 IO scheduler into the kernel"
  138. #endif
  139. }
  140. static int __init elevator_setup(char *str)
  141. {
  142. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  143. return 0;
  144. }
  145. __setup("elevator=", elevator_setup);
  146. int elevator_init(request_queue_t *q, char *name)
  147. {
  148. struct elevator_type *e = NULL;
  149. struct elevator_queue *eq;
  150. int ret = 0;
  151. INIT_LIST_HEAD(&q->queue_head);
  152. q->last_merge = NULL;
  153. q->end_sector = 0;
  154. q->boundary_rq = NULL;
  155. elevator_setup_default();
  156. if (!name)
  157. name = chosen_elevator;
  158. e = elevator_get(name);
  159. if (!e)
  160. return -EINVAL;
  161. eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
  162. if (!eq) {
  163. elevator_put(e->elevator_type);
  164. return -ENOMEM;
  165. }
  166. ret = elevator_attach(q, e, eq);
  167. if (ret) {
  168. kfree(eq);
  169. elevator_put(e->elevator_type);
  170. }
  171. return ret;
  172. }
  173. void elevator_exit(elevator_t *e)
  174. {
  175. if (e->ops->elevator_exit_fn)
  176. e->ops->elevator_exit_fn(e);
  177. elevator_put(e->elevator_type);
  178. e->elevator_type = NULL;
  179. kfree(e);
  180. }
  181. /*
  182. * Insert rq into dispatch queue of q. Queue lock must be held on
  183. * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
  184. * appended to the dispatch queue. To be used by specific elevators.
  185. */
  186. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  187. {
  188. sector_t boundary;
  189. struct list_head *entry;
  190. if (q->last_merge == rq)
  191. q->last_merge = NULL;
  192. boundary = q->end_sector;
  193. list_for_each_prev(entry, &q->queue_head) {
  194. struct request *pos = list_entry_rq(entry);
  195. if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  196. break;
  197. if (rq->sector >= boundary) {
  198. if (pos->sector < boundary)
  199. continue;
  200. } else {
  201. if (pos->sector >= boundary)
  202. break;
  203. }
  204. if (rq->sector >= pos->sector)
  205. break;
  206. }
  207. list_add(&rq->queuelist, entry);
  208. }
  209. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  210. {
  211. elevator_t *e = q->elevator;
  212. int ret;
  213. if (q->last_merge) {
  214. ret = elv_try_merge(q->last_merge, bio);
  215. if (ret != ELEVATOR_NO_MERGE) {
  216. *req = q->last_merge;
  217. return ret;
  218. }
  219. }
  220. if (e->ops->elevator_merge_fn)
  221. return e->ops->elevator_merge_fn(q, req, bio);
  222. return ELEVATOR_NO_MERGE;
  223. }
  224. void elv_merged_request(request_queue_t *q, struct request *rq)
  225. {
  226. elevator_t *e = q->elevator;
  227. if (e->ops->elevator_merged_fn)
  228. e->ops->elevator_merged_fn(q, rq);
  229. q->last_merge = rq;
  230. }
  231. void elv_merge_requests(request_queue_t *q, struct request *rq,
  232. struct request *next)
  233. {
  234. elevator_t *e = q->elevator;
  235. if (e->ops->elevator_merge_req_fn)
  236. e->ops->elevator_merge_req_fn(q, rq, next);
  237. q->last_merge = rq;
  238. }
  239. void elv_requeue_request(request_queue_t *q, struct request *rq)
  240. {
  241. elevator_t *e = q->elevator;
  242. /*
  243. * it already went through dequeue, we need to decrement the
  244. * in_flight count again
  245. */
  246. if (blk_account_rq(rq)) {
  247. q->in_flight--;
  248. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  249. e->ops->elevator_deactivate_req_fn(q, rq);
  250. }
  251. rq->flags &= ~REQ_STARTED;
  252. /*
  253. * if this is the flush, requeue the original instead and drop the flush
  254. */
  255. if (rq->flags & REQ_BAR_FLUSH) {
  256. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  257. rq = rq->end_io_data;
  258. }
  259. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  260. }
  261. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  262. int plug)
  263. {
  264. if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  265. /*
  266. * barriers implicitly indicate back insertion
  267. */
  268. if (where == ELEVATOR_INSERT_SORT)
  269. where = ELEVATOR_INSERT_BACK;
  270. /*
  271. * this request is scheduling boundary, update end_sector
  272. */
  273. if (blk_fs_request(rq)) {
  274. q->end_sector = rq_end_sector(rq);
  275. q->boundary_rq = rq;
  276. }
  277. } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  278. where = ELEVATOR_INSERT_BACK;
  279. if (plug)
  280. blk_plug_device(q);
  281. rq->q = q;
  282. switch (where) {
  283. case ELEVATOR_INSERT_FRONT:
  284. rq->flags |= REQ_SOFTBARRIER;
  285. list_add(&rq->queuelist, &q->queue_head);
  286. break;
  287. case ELEVATOR_INSERT_BACK:
  288. rq->flags |= REQ_SOFTBARRIER;
  289. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  290. ;
  291. list_add_tail(&rq->queuelist, &q->queue_head);
  292. /*
  293. * We kick the queue here for the following reasons.
  294. * - The elevator might have returned NULL previously
  295. * to delay requests and returned them now. As the
  296. * queue wasn't empty before this request, ll_rw_blk
  297. * won't run the queue on return, resulting in hang.
  298. * - Usually, back inserted requests won't be merged
  299. * with anything. There's no point in delaying queue
  300. * processing.
  301. */
  302. blk_remove_plug(q);
  303. q->request_fn(q);
  304. break;
  305. case ELEVATOR_INSERT_SORT:
  306. BUG_ON(!blk_fs_request(rq));
  307. rq->flags |= REQ_SORTED;
  308. q->elevator->ops->elevator_add_req_fn(q, rq);
  309. if (q->last_merge == NULL && rq_mergeable(rq))
  310. q->last_merge = rq;
  311. break;
  312. default:
  313. printk(KERN_ERR "%s: bad insertion point %d\n",
  314. __FUNCTION__, where);
  315. BUG();
  316. }
  317. if (blk_queue_plugged(q)) {
  318. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  319. - q->in_flight;
  320. if (nrq >= q->unplug_thresh)
  321. __generic_unplug_device(q);
  322. }
  323. }
  324. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  325. int plug)
  326. {
  327. unsigned long flags;
  328. spin_lock_irqsave(q->queue_lock, flags);
  329. __elv_add_request(q, rq, where, plug);
  330. spin_unlock_irqrestore(q->queue_lock, flags);
  331. }
  332. static inline struct request *__elv_next_request(request_queue_t *q)
  333. {
  334. struct request *rq;
  335. if (unlikely(list_empty(&q->queue_head) &&
  336. !q->elevator->ops->elevator_dispatch_fn(q, 0)))
  337. return NULL;
  338. rq = list_entry_rq(q->queue_head.next);
  339. /*
  340. * if this is a barrier write and the device has to issue a
  341. * flush sequence to support it, check how far we are
  342. */
  343. if (blk_fs_request(rq) && blk_barrier_rq(rq)) {
  344. BUG_ON(q->ordered == QUEUE_ORDERED_NONE);
  345. if (q->ordered == QUEUE_ORDERED_FLUSH &&
  346. !blk_barrier_preflush(rq))
  347. rq = blk_start_pre_flush(q, rq);
  348. }
  349. return rq;
  350. }
  351. struct request *elv_next_request(request_queue_t *q)
  352. {
  353. struct request *rq;
  354. int ret;
  355. while ((rq = __elv_next_request(q)) != NULL) {
  356. if (!(rq->flags & REQ_STARTED)) {
  357. elevator_t *e = q->elevator;
  358. /*
  359. * This is the first time the device driver
  360. * sees this request (possibly after
  361. * requeueing). Notify IO scheduler.
  362. */
  363. if (blk_sorted_rq(rq) &&
  364. e->ops->elevator_activate_req_fn)
  365. e->ops->elevator_activate_req_fn(q, rq);
  366. /*
  367. * just mark as started even if we don't start
  368. * it, a request that has been delayed should
  369. * not be passed by new incoming requests
  370. */
  371. rq->flags |= REQ_STARTED;
  372. }
  373. if (!q->boundary_rq || q->boundary_rq == rq) {
  374. q->end_sector = rq_end_sector(rq);
  375. q->boundary_rq = NULL;
  376. }
  377. if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
  378. break;
  379. ret = q->prep_rq_fn(q, rq);
  380. if (ret == BLKPREP_OK) {
  381. break;
  382. } else if (ret == BLKPREP_DEFER) {
  383. /*
  384. * the request may have been (partially) prepped.
  385. * we need to keep this request in the front to
  386. * avoid resource deadlock. REQ_STARTED will
  387. * prevent other fs requests from passing this one.
  388. */
  389. rq = NULL;
  390. break;
  391. } else if (ret == BLKPREP_KILL) {
  392. int nr_bytes = rq->hard_nr_sectors << 9;
  393. if (!nr_bytes)
  394. nr_bytes = rq->data_len;
  395. blkdev_dequeue_request(rq);
  396. rq->flags |= REQ_QUIET;
  397. end_that_request_chunk(rq, 0, nr_bytes);
  398. end_that_request_last(rq);
  399. } else {
  400. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  401. ret);
  402. break;
  403. }
  404. }
  405. return rq;
  406. }
  407. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  408. {
  409. BUG_ON(list_empty(&rq->queuelist));
  410. list_del_init(&rq->queuelist);
  411. /*
  412. * the time frame between a request being removed from the lists
  413. * and to it is freed is accounted as io that is in progress at
  414. * the driver side.
  415. */
  416. if (blk_account_rq(rq))
  417. q->in_flight++;
  418. }
  419. int elv_queue_empty(request_queue_t *q)
  420. {
  421. elevator_t *e = q->elevator;
  422. if (!list_empty(&q->queue_head))
  423. return 0;
  424. if (e->ops->elevator_queue_empty_fn)
  425. return e->ops->elevator_queue_empty_fn(q);
  426. return 1;
  427. }
  428. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  429. {
  430. struct list_head *next;
  431. elevator_t *e = q->elevator;
  432. if (e->ops->elevator_latter_req_fn)
  433. return e->ops->elevator_latter_req_fn(q, rq);
  434. next = rq->queuelist.next;
  435. if (next != &q->queue_head && next != &rq->queuelist)
  436. return list_entry_rq(next);
  437. return NULL;
  438. }
  439. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  440. {
  441. struct list_head *prev;
  442. elevator_t *e = q->elevator;
  443. if (e->ops->elevator_former_req_fn)
  444. return e->ops->elevator_former_req_fn(q, rq);
  445. prev = rq->queuelist.prev;
  446. if (prev != &q->queue_head && prev != &rq->queuelist)
  447. return list_entry_rq(prev);
  448. return NULL;
  449. }
  450. int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
  451. gfp_t gfp_mask)
  452. {
  453. elevator_t *e = q->elevator;
  454. if (e->ops->elevator_set_req_fn)
  455. return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
  456. rq->elevator_private = NULL;
  457. return 0;
  458. }
  459. void elv_put_request(request_queue_t *q, struct request *rq)
  460. {
  461. elevator_t *e = q->elevator;
  462. if (e->ops->elevator_put_req_fn)
  463. e->ops->elevator_put_req_fn(q, rq);
  464. }
  465. int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
  466. {
  467. elevator_t *e = q->elevator;
  468. if (e->ops->elevator_may_queue_fn)
  469. return e->ops->elevator_may_queue_fn(q, rw, bio);
  470. return ELV_MQUEUE_MAY;
  471. }
  472. void elv_completed_request(request_queue_t *q, struct request *rq)
  473. {
  474. elevator_t *e = q->elevator;
  475. /*
  476. * request is released from the driver, io must be done
  477. */
  478. if (blk_account_rq(rq)) {
  479. q->in_flight--;
  480. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  481. e->ops->elevator_completed_req_fn(q, rq);
  482. }
  483. }
  484. int elv_register_queue(struct request_queue *q)
  485. {
  486. elevator_t *e = q->elevator;
  487. e->kobj.parent = kobject_get(&q->kobj);
  488. if (!e->kobj.parent)
  489. return -EBUSY;
  490. snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  491. e->kobj.ktype = e->elevator_type->elevator_ktype;
  492. return kobject_register(&e->kobj);
  493. }
  494. void elv_unregister_queue(struct request_queue *q)
  495. {
  496. if (q) {
  497. elevator_t *e = q->elevator;
  498. kobject_unregister(&e->kobj);
  499. kobject_put(&q->kobj);
  500. }
  501. }
  502. int elv_register(struct elevator_type *e)
  503. {
  504. spin_lock_irq(&elv_list_lock);
  505. if (elevator_find(e->elevator_name))
  506. BUG();
  507. list_add_tail(&e->list, &elv_list);
  508. spin_unlock_irq(&elv_list_lock);
  509. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  510. if (!strcmp(e->elevator_name, chosen_elevator))
  511. printk(" (default)");
  512. printk("\n");
  513. return 0;
  514. }
  515. EXPORT_SYMBOL_GPL(elv_register);
  516. void elv_unregister(struct elevator_type *e)
  517. {
  518. spin_lock_irq(&elv_list_lock);
  519. list_del_init(&e->list);
  520. spin_unlock_irq(&elv_list_lock);
  521. }
  522. EXPORT_SYMBOL_GPL(elv_unregister);
  523. /*
  524. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  525. * we don't free the old io scheduler, before we have allocated what we
  526. * need for the new one. this way we have a chance of going back to the old
  527. * one, if the new one fails init for some reason.
  528. */
  529. static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  530. {
  531. elevator_t *old_elevator, *e;
  532. /*
  533. * Allocate new elevator
  534. */
  535. e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
  536. if (!e)
  537. goto error;
  538. /*
  539. * Turn on BYPASS and drain all requests w/ elevator private data
  540. */
  541. spin_lock_irq(q->queue_lock);
  542. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  543. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  544. ;
  545. while (q->rq.elvpriv) {
  546. spin_unlock_irq(q->queue_lock);
  547. msleep(10);
  548. spin_lock_irq(q->queue_lock);
  549. }
  550. spin_unlock_irq(q->queue_lock);
  551. /*
  552. * unregister old elevator data
  553. */
  554. elv_unregister_queue(q);
  555. old_elevator = q->elevator;
  556. /*
  557. * attach and start new elevator
  558. */
  559. if (elevator_attach(q, new_e, e))
  560. goto fail;
  561. if (elv_register_queue(q))
  562. goto fail_register;
  563. /*
  564. * finally exit old elevator and turn off BYPASS.
  565. */
  566. elevator_exit(old_elevator);
  567. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  568. return;
  569. fail_register:
  570. /*
  571. * switch failed, exit the new io scheduler and reattach the old
  572. * one again (along with re-adding the sysfs dir)
  573. */
  574. elevator_exit(e);
  575. e = NULL;
  576. fail:
  577. q->elevator = old_elevator;
  578. elv_register_queue(q);
  579. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  580. kfree(e);
  581. error:
  582. elevator_put(new_e);
  583. printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
  584. }
  585. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  586. {
  587. char elevator_name[ELV_NAME_MAX];
  588. struct elevator_type *e;
  589. memset(elevator_name, 0, sizeof(elevator_name));
  590. strncpy(elevator_name, name, sizeof(elevator_name));
  591. if (elevator_name[strlen(elevator_name) - 1] == '\n')
  592. elevator_name[strlen(elevator_name) - 1] = '\0';
  593. e = elevator_get(elevator_name);
  594. if (!e) {
  595. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  596. return -EINVAL;
  597. }
  598. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name))
  599. return count;
  600. elevator_switch(q, e);
  601. return count;
  602. }
  603. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  604. {
  605. elevator_t *e = q->elevator;
  606. struct elevator_type *elv = e->elevator_type;
  607. struct list_head *entry;
  608. int len = 0;
  609. spin_lock_irq(q->queue_lock);
  610. list_for_each(entry, &elv_list) {
  611. struct elevator_type *__e;
  612. __e = list_entry(entry, struct elevator_type, list);
  613. if (!strcmp(elv->elevator_name, __e->elevator_name))
  614. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  615. else
  616. len += sprintf(name+len, "%s ", __e->elevator_name);
  617. }
  618. spin_unlock_irq(q->queue_lock);
  619. len += sprintf(len+name, "\n");
  620. return len;
  621. }
  622. EXPORT_SYMBOL(elv_dispatch_sort);
  623. EXPORT_SYMBOL(elv_add_request);
  624. EXPORT_SYMBOL(__elv_add_request);
  625. EXPORT_SYMBOL(elv_requeue_request);
  626. EXPORT_SYMBOL(elv_next_request);
  627. EXPORT_SYMBOL(elv_dequeue_request);
  628. EXPORT_SYMBOL(elv_queue_empty);
  629. EXPORT_SYMBOL(elv_completed_request);
  630. EXPORT_SYMBOL(elevator_exit);
  631. EXPORT_SYMBOL(elevator_init);