arm_big_little.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * ARM big.LITTLE Platforms CPUFreq support
  3. *
  4. * Copyright (C) 2013 ARM Ltd.
  5. * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
  6. *
  7. * Copyright (C) 2013 Linaro.
  8. * Viresh Kumar <viresh.kumar@linaro.org>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  15. * kind, whether express or implied; without even the implied warranty
  16. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20. #include <linux/clk.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpufreq.h>
  23. #include <linux/cpumask.h>
  24. #include <linux/export.h>
  25. #include <linux/mutex.h>
  26. #include <linux/of_platform.h>
  27. #include <linux/pm_opp.h>
  28. #include <linux/slab.h>
  29. #include <linux/topology.h>
  30. #include <linux/types.h>
  31. #include <asm/bL_switcher.h>
  32. #include "arm_big_little.h"
  33. /* Currently we support only two clusters */
  34. #define A15_CLUSTER 0
  35. #define A7_CLUSTER 1
  36. #define MAX_CLUSTERS 2
  37. #ifdef CONFIG_BL_SWITCHER
  38. static bool bL_switching_enabled;
  39. #define is_bL_switching_enabled() bL_switching_enabled
  40. #define set_switching_enabled(x) (bL_switching_enabled = (x))
  41. #else
  42. #define is_bL_switching_enabled() false
  43. #define set_switching_enabled(x) do { } while (0)
  44. #endif
  45. #define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
  46. #define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
  47. static struct cpufreq_arm_bL_ops *arm_bL_ops;
  48. static struct clk *clk[MAX_CLUSTERS];
  49. static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
  50. static atomic_t cluster_usage[MAX_CLUSTERS + 1];
  51. static unsigned int clk_big_min; /* (Big) clock frequencies */
  52. static unsigned int clk_little_max; /* Maximum clock frequency (Little) */
  53. static DEFINE_PER_CPU(unsigned int, physical_cluster);
  54. static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
  55. static struct mutex cluster_lock[MAX_CLUSTERS];
  56. static inline int raw_cpu_to_cluster(int cpu)
  57. {
  58. return topology_physical_package_id(cpu);
  59. }
  60. static inline int cpu_to_cluster(int cpu)
  61. {
  62. return is_bL_switching_enabled() ?
  63. MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
  64. }
  65. static unsigned int find_cluster_maxfreq(int cluster)
  66. {
  67. int j;
  68. u32 max_freq = 0, cpu_freq;
  69. for_each_online_cpu(j) {
  70. cpu_freq = per_cpu(cpu_last_req_freq, j);
  71. if ((cluster == per_cpu(physical_cluster, j)) &&
  72. (max_freq < cpu_freq))
  73. max_freq = cpu_freq;
  74. }
  75. pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
  76. max_freq);
  77. return max_freq;
  78. }
  79. static unsigned int clk_get_cpu_rate(unsigned int cpu)
  80. {
  81. u32 cur_cluster = per_cpu(physical_cluster, cpu);
  82. u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
  83. /* For switcher we use virtual A7 clock rates */
  84. if (is_bL_switching_enabled())
  85. rate = VIRT_FREQ(cur_cluster, rate);
  86. pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
  87. cur_cluster, rate);
  88. return rate;
  89. }
  90. static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
  91. {
  92. if (is_bL_switching_enabled()) {
  93. pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
  94. cpu));
  95. return per_cpu(cpu_last_req_freq, cpu);
  96. } else {
  97. return clk_get_cpu_rate(cpu);
  98. }
  99. }
  100. static unsigned int
  101. bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
  102. {
  103. u32 new_rate, prev_rate;
  104. int ret;
  105. bool bLs = is_bL_switching_enabled();
  106. mutex_lock(&cluster_lock[new_cluster]);
  107. if (bLs) {
  108. prev_rate = per_cpu(cpu_last_req_freq, cpu);
  109. per_cpu(cpu_last_req_freq, cpu) = rate;
  110. per_cpu(physical_cluster, cpu) = new_cluster;
  111. new_rate = find_cluster_maxfreq(new_cluster);
  112. new_rate = ACTUAL_FREQ(new_cluster, new_rate);
  113. } else {
  114. new_rate = rate;
  115. }
  116. pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
  117. __func__, cpu, old_cluster, new_cluster, new_rate);
  118. ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
  119. if (WARN_ON(ret)) {
  120. pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
  121. new_cluster);
  122. if (bLs) {
  123. per_cpu(cpu_last_req_freq, cpu) = prev_rate;
  124. per_cpu(physical_cluster, cpu) = old_cluster;
  125. }
  126. mutex_unlock(&cluster_lock[new_cluster]);
  127. return ret;
  128. }
  129. mutex_unlock(&cluster_lock[new_cluster]);
  130. /* Recalc freq for old cluster when switching clusters */
  131. if (old_cluster != new_cluster) {
  132. pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
  133. __func__, cpu, old_cluster, new_cluster);
  134. /* Switch cluster */
  135. bL_switch_request(cpu, new_cluster);
  136. mutex_lock(&cluster_lock[old_cluster]);
  137. /* Set freq of old cluster if there are cpus left on it */
  138. new_rate = find_cluster_maxfreq(old_cluster);
  139. new_rate = ACTUAL_FREQ(old_cluster, new_rate);
  140. if (new_rate) {
  141. pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
  142. __func__, old_cluster, new_rate);
  143. if (clk_set_rate(clk[old_cluster], new_rate * 1000))
  144. pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
  145. __func__, ret, old_cluster);
  146. }
  147. mutex_unlock(&cluster_lock[old_cluster]);
  148. }
  149. return 0;
  150. }
  151. /* Set clock frequency */
  152. static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
  153. unsigned int index)
  154. {
  155. u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
  156. unsigned int freqs_new;
  157. cur_cluster = cpu_to_cluster(cpu);
  158. new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
  159. freqs_new = freq_table[cur_cluster][index].frequency;
  160. if (is_bL_switching_enabled()) {
  161. if ((actual_cluster == A15_CLUSTER) &&
  162. (freqs_new < clk_big_min)) {
  163. new_cluster = A7_CLUSTER;
  164. } else if ((actual_cluster == A7_CLUSTER) &&
  165. (freqs_new > clk_little_max)) {
  166. new_cluster = A15_CLUSTER;
  167. }
  168. }
  169. return bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
  170. }
  171. static inline u32 get_table_count(struct cpufreq_frequency_table *table)
  172. {
  173. int count;
  174. for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
  175. ;
  176. return count;
  177. }
  178. /* get the minimum frequency in the cpufreq_frequency_table */
  179. static inline u32 get_table_min(struct cpufreq_frequency_table *table)
  180. {
  181. int i;
  182. uint32_t min_freq = ~0;
  183. for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
  184. if (table[i].frequency < min_freq)
  185. min_freq = table[i].frequency;
  186. return min_freq;
  187. }
  188. /* get the maximum frequency in the cpufreq_frequency_table */
  189. static inline u32 get_table_max(struct cpufreq_frequency_table *table)
  190. {
  191. int i;
  192. uint32_t max_freq = 0;
  193. for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
  194. if (table[i].frequency > max_freq)
  195. max_freq = table[i].frequency;
  196. return max_freq;
  197. }
  198. static int merge_cluster_tables(void)
  199. {
  200. int i, j, k = 0, count = 1;
  201. struct cpufreq_frequency_table *table;
  202. for (i = 0; i < MAX_CLUSTERS; i++)
  203. count += get_table_count(freq_table[i]);
  204. table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
  205. if (!table)
  206. return -ENOMEM;
  207. freq_table[MAX_CLUSTERS] = table;
  208. /* Add in reverse order to get freqs in increasing order */
  209. for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
  210. for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
  211. j++) {
  212. table[k].frequency = VIRT_FREQ(i,
  213. freq_table[i][j].frequency);
  214. pr_debug("%s: index: %d, freq: %d\n", __func__, k,
  215. table[k].frequency);
  216. k++;
  217. }
  218. }
  219. table[k].driver_data = k;
  220. table[k].frequency = CPUFREQ_TABLE_END;
  221. pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
  222. return 0;
  223. }
  224. static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
  225. {
  226. u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
  227. if (!freq_table[cluster])
  228. return;
  229. clk_put(clk[cluster]);
  230. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
  231. dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
  232. }
  233. static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
  234. {
  235. u32 cluster = cpu_to_cluster(cpu_dev->id);
  236. int i;
  237. if (atomic_dec_return(&cluster_usage[cluster]))
  238. return;
  239. if (cluster < MAX_CLUSTERS)
  240. return _put_cluster_clk_and_freq_table(cpu_dev);
  241. for_each_present_cpu(i) {
  242. struct device *cdev = get_cpu_device(i);
  243. if (!cdev) {
  244. pr_err("%s: failed to get cpu%d device\n", __func__, i);
  245. return;
  246. }
  247. _put_cluster_clk_and_freq_table(cdev);
  248. }
  249. /* free virtual table */
  250. kfree(freq_table[cluster]);
  251. }
  252. static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
  253. {
  254. u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
  255. char name[14] = "cpu-cluster.";
  256. int ret;
  257. if (freq_table[cluster])
  258. return 0;
  259. ret = arm_bL_ops->init_opp_table(cpu_dev);
  260. if (ret) {
  261. dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
  262. __func__, cpu_dev->id, ret);
  263. goto out;
  264. }
  265. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
  266. if (ret) {
  267. dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
  268. __func__, cpu_dev->id, ret);
  269. goto out;
  270. }
  271. name[12] = cluster + '0';
  272. clk[cluster] = clk_get(cpu_dev, name);
  273. if (!IS_ERR(clk[cluster])) {
  274. dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
  275. __func__, clk[cluster], freq_table[cluster],
  276. cluster);
  277. return 0;
  278. }
  279. dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
  280. __func__, cpu_dev->id, cluster);
  281. ret = PTR_ERR(clk[cluster]);
  282. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
  283. out:
  284. dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
  285. cluster);
  286. return ret;
  287. }
  288. static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
  289. {
  290. u32 cluster = cpu_to_cluster(cpu_dev->id);
  291. int i, ret;
  292. if (atomic_inc_return(&cluster_usage[cluster]) != 1)
  293. return 0;
  294. if (cluster < MAX_CLUSTERS) {
  295. ret = _get_cluster_clk_and_freq_table(cpu_dev);
  296. if (ret)
  297. atomic_dec(&cluster_usage[cluster]);
  298. return ret;
  299. }
  300. /*
  301. * Get data for all clusters and fill virtual cluster with a merge of
  302. * both
  303. */
  304. for_each_present_cpu(i) {
  305. struct device *cdev = get_cpu_device(i);
  306. if (!cdev) {
  307. pr_err("%s: failed to get cpu%d device\n", __func__, i);
  308. return -ENODEV;
  309. }
  310. ret = _get_cluster_clk_and_freq_table(cdev);
  311. if (ret)
  312. goto put_clusters;
  313. }
  314. ret = merge_cluster_tables();
  315. if (ret)
  316. goto put_clusters;
  317. /* Assuming 2 cluster, set clk_big_min and clk_little_max */
  318. clk_big_min = get_table_min(freq_table[0]);
  319. clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
  320. pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
  321. __func__, cluster, clk_big_min, clk_little_max);
  322. return 0;
  323. put_clusters:
  324. for_each_present_cpu(i) {
  325. struct device *cdev = get_cpu_device(i);
  326. if (!cdev) {
  327. pr_err("%s: failed to get cpu%d device\n", __func__, i);
  328. return -ENODEV;
  329. }
  330. _put_cluster_clk_and_freq_table(cdev);
  331. }
  332. atomic_dec(&cluster_usage[cluster]);
  333. return ret;
  334. }
  335. /* Per-CPU initialization */
  336. static int bL_cpufreq_init(struct cpufreq_policy *policy)
  337. {
  338. u32 cur_cluster = cpu_to_cluster(policy->cpu);
  339. struct device *cpu_dev;
  340. int ret;
  341. cpu_dev = get_cpu_device(policy->cpu);
  342. if (!cpu_dev) {
  343. pr_err("%s: failed to get cpu%d device\n", __func__,
  344. policy->cpu);
  345. return -ENODEV;
  346. }
  347. ret = get_cluster_clk_and_freq_table(cpu_dev);
  348. if (ret)
  349. return ret;
  350. ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
  351. if (ret) {
  352. dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
  353. policy->cpu, cur_cluster);
  354. put_cluster_clk_and_freq_table(cpu_dev);
  355. return ret;
  356. }
  357. if (cur_cluster < MAX_CLUSTERS) {
  358. cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
  359. per_cpu(physical_cluster, policy->cpu) = cur_cluster;
  360. } else {
  361. /* Assumption: during init, we are always running on A15 */
  362. per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
  363. }
  364. if (arm_bL_ops->get_transition_latency)
  365. policy->cpuinfo.transition_latency =
  366. arm_bL_ops->get_transition_latency(cpu_dev);
  367. else
  368. policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
  369. if (is_bL_switching_enabled())
  370. per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
  371. dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
  372. return 0;
  373. }
  374. static int bL_cpufreq_exit(struct cpufreq_policy *policy)
  375. {
  376. struct device *cpu_dev;
  377. cpu_dev = get_cpu_device(policy->cpu);
  378. if (!cpu_dev) {
  379. pr_err("%s: failed to get cpu%d device\n", __func__,
  380. policy->cpu);
  381. return -ENODEV;
  382. }
  383. cpufreq_frequency_table_put_attr(policy->cpu);
  384. put_cluster_clk_and_freq_table(cpu_dev);
  385. dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
  386. return 0;
  387. }
  388. static struct cpufreq_driver bL_cpufreq_driver = {
  389. .name = "arm-big-little",
  390. .flags = CPUFREQ_STICKY |
  391. CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
  392. .verify = cpufreq_generic_frequency_table_verify,
  393. .target_index = bL_cpufreq_set_target,
  394. .get = bL_cpufreq_get_rate,
  395. .init = bL_cpufreq_init,
  396. .exit = bL_cpufreq_exit,
  397. .attr = cpufreq_generic_attr,
  398. };
  399. static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
  400. unsigned long action, void *_arg)
  401. {
  402. pr_debug("%s: action: %ld\n", __func__, action);
  403. switch (action) {
  404. case BL_NOTIFY_PRE_ENABLE:
  405. case BL_NOTIFY_PRE_DISABLE:
  406. cpufreq_unregister_driver(&bL_cpufreq_driver);
  407. break;
  408. case BL_NOTIFY_POST_ENABLE:
  409. set_switching_enabled(true);
  410. cpufreq_register_driver(&bL_cpufreq_driver);
  411. break;
  412. case BL_NOTIFY_POST_DISABLE:
  413. set_switching_enabled(false);
  414. cpufreq_register_driver(&bL_cpufreq_driver);
  415. break;
  416. default:
  417. return NOTIFY_DONE;
  418. }
  419. return NOTIFY_OK;
  420. }
  421. static struct notifier_block bL_switcher_notifier = {
  422. .notifier_call = bL_cpufreq_switcher_notifier,
  423. };
  424. int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
  425. {
  426. int ret, i;
  427. if (arm_bL_ops) {
  428. pr_debug("%s: Already registered: %s, exiting\n", __func__,
  429. arm_bL_ops->name);
  430. return -EBUSY;
  431. }
  432. if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
  433. pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
  434. return -ENODEV;
  435. }
  436. arm_bL_ops = ops;
  437. ret = bL_switcher_get_enabled();
  438. set_switching_enabled(ret);
  439. for (i = 0; i < MAX_CLUSTERS; i++)
  440. mutex_init(&cluster_lock[i]);
  441. ret = cpufreq_register_driver(&bL_cpufreq_driver);
  442. if (ret) {
  443. pr_info("%s: Failed registering platform driver: %s, err: %d\n",
  444. __func__, ops->name, ret);
  445. arm_bL_ops = NULL;
  446. } else {
  447. ret = bL_switcher_register_notifier(&bL_switcher_notifier);
  448. if (ret) {
  449. cpufreq_unregister_driver(&bL_cpufreq_driver);
  450. arm_bL_ops = NULL;
  451. } else {
  452. pr_info("%s: Registered platform driver: %s\n",
  453. __func__, ops->name);
  454. }
  455. }
  456. bL_switcher_put_enabled();
  457. return ret;
  458. }
  459. EXPORT_SYMBOL_GPL(bL_cpufreq_register);
  460. void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
  461. {
  462. if (arm_bL_ops != ops) {
  463. pr_err("%s: Registered with: %s, can't unregister, exiting\n",
  464. __func__, arm_bL_ops->name);
  465. return;
  466. }
  467. bL_switcher_get_enabled();
  468. bL_switcher_unregister_notifier(&bL_switcher_notifier);
  469. cpufreq_unregister_driver(&bL_cpufreq_driver);
  470. bL_switcher_put_enabled();
  471. pr_info("%s: Un-registered platform driver: %s\n", __func__,
  472. arm_bL_ops->name);
  473. arm_bL_ops = NULL;
  474. }
  475. EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);