ktime.h 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. /*
  2. * include/linux/ktime.h
  3. *
  4. * ktime_t - nanosecond-resolution time format.
  5. *
  6. * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
  7. * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
  8. *
  9. * data type definitions, declarations, prototypes and macros.
  10. *
  11. * Started by: Thomas Gleixner and Ingo Molnar
  12. *
  13. * Credits:
  14. *
  15. * Roman Zippel provided the ideas and primary code snippets of
  16. * the ktime_t union and further simplifications of the original
  17. * code.
  18. *
  19. * For licencing details see kernel-base/COPYING
  20. */
  21. #ifndef _LINUX_KTIME_H
  22. #define _LINUX_KTIME_H
  23. #include <linux/time.h>
  24. #include <linux/jiffies.h>
  25. /*
  26. * ktime_t:
  27. *
  28. * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
  29. * internal representation of time values in scalar nanoseconds. The
  30. * design plays out best on 64-bit CPUs, where most conversions are
  31. * NOPs and most arithmetic ktime_t operations are plain arithmetic
  32. * operations.
  33. *
  34. * On 32-bit CPUs an optimized representation of the timespec structure
  35. * is used to avoid expensive conversions from and to timespecs. The
  36. * endian-aware order of the tv struct members is choosen to allow
  37. * mathematical operations on the tv64 member of the union too, which
  38. * for certain operations produces better code.
  39. *
  40. * For architectures with efficient support for 64/32-bit conversions the
  41. * plain scalar nanosecond based representation can be selected by the
  42. * config switch CONFIG_KTIME_SCALAR.
  43. */
  44. typedef union {
  45. s64 tv64;
  46. #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
  47. struct {
  48. # ifdef __BIG_ENDIAN
  49. s32 sec, nsec;
  50. # else
  51. s32 nsec, sec;
  52. # endif
  53. } tv;
  54. #endif
  55. } ktime_t;
  56. #define KTIME_MAX (~((u64)1 << 63))
  57. /*
  58. * ktime_t definitions when using the 64-bit scalar representation:
  59. */
  60. #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
  61. /**
  62. * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
  63. * @secs: seconds to set
  64. * @nsecs: nanoseconds to set
  65. *
  66. * Return the ktime_t representation of the value
  67. */
  68. static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
  69. {
  70. return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
  71. }
  72. /* Subtract two ktime_t variables. rem = lhs -rhs: */
  73. #define ktime_sub(lhs, rhs) \
  74. ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
  75. /* Add two ktime_t variables. res = lhs + rhs: */
  76. #define ktime_add(lhs, rhs) \
  77. ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
  78. /*
  79. * Add a ktime_t variable and a scalar nanosecond value.
  80. * res = kt + nsval:
  81. */
  82. #define ktime_add_ns(kt, nsval) \
  83. ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
  84. /* convert a timespec to ktime_t format: */
  85. static inline ktime_t timespec_to_ktime(struct timespec ts)
  86. {
  87. return ktime_set(ts.tv_sec, ts.tv_nsec);
  88. }
  89. /* convert a timeval to ktime_t format: */
  90. static inline ktime_t timeval_to_ktime(struct timeval tv)
  91. {
  92. return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
  93. }
  94. /* Map the ktime_t to timespec conversion to ns_to_timespec function */
  95. #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
  96. /* Map the ktime_t to timeval conversion to ns_to_timeval function */
  97. #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
  98. /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
  99. #define ktime_to_ns(kt) ((kt).tv64)
  100. #else
  101. /*
  102. * Helper macros/inlines to get the ktime_t math right in the timespec
  103. * representation. The macros are sometimes ugly - their actual use is
  104. * pretty okay-ish, given the circumstances. We do all this for
  105. * performance reasons. The pure scalar nsec_t based code was nice and
  106. * simple, but created too many 64-bit / 32-bit conversions and divisions.
  107. *
  108. * Be especially aware that negative values are represented in a way
  109. * that the tv.sec field is negative and the tv.nsec field is greater
  110. * or equal to zero but less than nanoseconds per second. This is the
  111. * same representation which is used by timespecs.
  112. *
  113. * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
  114. */
  115. /* Set a ktime_t variable to a value in sec/nsec representation: */
  116. static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
  117. {
  118. return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
  119. }
  120. /**
  121. * ktime_sub - subtract two ktime_t variables
  122. * @lhs: minuend
  123. * @rhs: subtrahend
  124. *
  125. * Returns the remainder of the substraction
  126. */
  127. static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
  128. {
  129. ktime_t res;
  130. res.tv64 = lhs.tv64 - rhs.tv64;
  131. if (res.tv.nsec < 0)
  132. res.tv.nsec += NSEC_PER_SEC;
  133. return res;
  134. }
  135. /**
  136. * ktime_add - add two ktime_t variables
  137. * @add1: addend1
  138. * @add2: addend2
  139. *
  140. * Returns the sum of addend1 and addend2
  141. */
  142. static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
  143. {
  144. ktime_t res;
  145. res.tv64 = add1.tv64 + add2.tv64;
  146. /*
  147. * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
  148. * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
  149. *
  150. * it's equivalent to:
  151. * tv.nsec -= NSEC_PER_SEC
  152. * tv.sec ++;
  153. */
  154. if (res.tv.nsec >= NSEC_PER_SEC)
  155. res.tv64 += (u32)-NSEC_PER_SEC;
  156. return res;
  157. }
  158. /**
  159. * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
  160. * @kt: addend
  161. * @nsec: the scalar nsec value to add
  162. *
  163. * Returns the sum of kt and nsec in ktime_t format
  164. */
  165. extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
  166. /**
  167. * timespec_to_ktime - convert a timespec to ktime_t format
  168. * @ts: the timespec variable to convert
  169. *
  170. * Returns a ktime_t variable with the converted timespec value
  171. */
  172. static inline ktime_t timespec_to_ktime(const struct timespec ts)
  173. {
  174. return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
  175. .nsec = (s32)ts.tv_nsec } };
  176. }
  177. /**
  178. * timeval_to_ktime - convert a timeval to ktime_t format
  179. * @tv: the timeval variable to convert
  180. *
  181. * Returns a ktime_t variable with the converted timeval value
  182. */
  183. static inline ktime_t timeval_to_ktime(const struct timeval tv)
  184. {
  185. return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
  186. .nsec = (s32)tv.tv_usec * 1000 } };
  187. }
  188. /**
  189. * ktime_to_timespec - convert a ktime_t variable to timespec format
  190. * @kt: the ktime_t variable to convert
  191. *
  192. * Returns the timespec representation of the ktime value
  193. */
  194. static inline struct timespec ktime_to_timespec(const ktime_t kt)
  195. {
  196. return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
  197. .tv_nsec = (long) kt.tv.nsec };
  198. }
  199. /**
  200. * ktime_to_timeval - convert a ktime_t variable to timeval format
  201. * @kt: the ktime_t variable to convert
  202. *
  203. * Returns the timeval representation of the ktime value
  204. */
  205. static inline struct timeval ktime_to_timeval(const ktime_t kt)
  206. {
  207. return (struct timeval) {
  208. .tv_sec = (time_t) kt.tv.sec,
  209. .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
  210. }
  211. /**
  212. * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
  213. * @kt: the ktime_t variable to convert
  214. *
  215. * Returns the scalar nanoseconds representation of kt
  216. */
  217. static inline u64 ktime_to_ns(const ktime_t kt)
  218. {
  219. return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
  220. }
  221. #endif
  222. /*
  223. * The resolution of the clocks. The resolution value is returned in
  224. * the clock_getres() system call to give application programmers an
  225. * idea of the (in)accuracy of timers. Timer values are rounded up to
  226. * this resolution values.
  227. */
  228. #define KTIME_REALTIME_RES (ktime_t){ .tv64 = TICK_NSEC }
  229. #define KTIME_MONOTONIC_RES (ktime_t){ .tv64 = TICK_NSEC }
  230. /* Get the monotonic time in timespec format: */
  231. extern void ktime_get_ts(struct timespec *ts);
  232. /* Get the real (wall-) time in timespec format: */
  233. #define ktime_get_real_ts(ts) getnstimeofday(ts)
  234. #endif