xfs_buf.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/stddef.h>
  19. #include <linux/errno.h>
  20. #include <linux/slab.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/init.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/bio.h>
  25. #include <linux/sysctl.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/percpu.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/hash.h>
  31. #include <linux/kthread.h>
  32. #include "xfs_linux.h"
  33. STATIC kmem_cache_t *pagebuf_zone;
  34. STATIC kmem_shaker_t pagebuf_shake;
  35. STATIC int xfsbufd_wakeup(int, gfp_t);
  36. STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
  37. STATIC struct workqueue_struct *xfslogd_workqueue;
  38. struct workqueue_struct *xfsdatad_workqueue;
  39. #ifdef PAGEBUF_TRACE
  40. void
  41. pagebuf_trace(
  42. xfs_buf_t *pb,
  43. char *id,
  44. void *data,
  45. void *ra)
  46. {
  47. ktrace_enter(pagebuf_trace_buf,
  48. pb, id,
  49. (void *)(unsigned long)pb->pb_flags,
  50. (void *)(unsigned long)pb->pb_hold.counter,
  51. (void *)(unsigned long)pb->pb_sema.count.counter,
  52. (void *)current,
  53. data, ra,
  54. (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
  55. (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
  56. (void *)(unsigned long)pb->pb_buffer_length,
  57. NULL, NULL, NULL, NULL, NULL);
  58. }
  59. ktrace_t *pagebuf_trace_buf;
  60. #define PAGEBUF_TRACE_SIZE 4096
  61. #define PB_TRACE(pb, id, data) \
  62. pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
  63. #else
  64. #define PB_TRACE(pb, id, data) do { } while (0)
  65. #endif
  66. #ifdef PAGEBUF_LOCK_TRACKING
  67. # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
  68. # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
  69. # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
  70. #else
  71. # define PB_SET_OWNER(pb) do { } while (0)
  72. # define PB_CLEAR_OWNER(pb) do { } while (0)
  73. # define PB_GET_OWNER(pb) do { } while (0)
  74. #endif
  75. #define pb_to_gfp(flags) \
  76. ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
  77. ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  78. #define pb_to_km(flags) \
  79. (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  80. #define pagebuf_allocate(flags) \
  81. kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
  82. #define pagebuf_deallocate(pb) \
  83. kmem_zone_free(pagebuf_zone, (pb));
  84. /*
  85. * Page Region interfaces.
  86. *
  87. * For pages in filesystems where the blocksize is smaller than the
  88. * pagesize, we use the page->private field (long) to hold a bitmap
  89. * of uptodate regions within the page.
  90. *
  91. * Each such region is "bytes per page / bits per long" bytes long.
  92. *
  93. * NBPPR == number-of-bytes-per-page-region
  94. * BTOPR == bytes-to-page-region (rounded up)
  95. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  96. */
  97. #if (BITS_PER_LONG == 32)
  98. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  99. #elif (BITS_PER_LONG == 64)
  100. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  101. #else
  102. #error BITS_PER_LONG must be 32 or 64
  103. #endif
  104. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  105. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  106. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  107. STATIC unsigned long
  108. page_region_mask(
  109. size_t offset,
  110. size_t length)
  111. {
  112. unsigned long mask;
  113. int first, final;
  114. first = BTOPR(offset);
  115. final = BTOPRT(offset + length - 1);
  116. first = min(first, final);
  117. mask = ~0UL;
  118. mask <<= BITS_PER_LONG - (final - first);
  119. mask >>= BITS_PER_LONG - (final);
  120. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  121. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  122. return mask;
  123. }
  124. STATIC inline void
  125. set_page_region(
  126. struct page *page,
  127. size_t offset,
  128. size_t length)
  129. {
  130. set_page_private(page,
  131. page_private(page) | page_region_mask(offset, length));
  132. if (page_private(page) == ~0UL)
  133. SetPageUptodate(page);
  134. }
  135. STATIC inline int
  136. test_page_region(
  137. struct page *page,
  138. size_t offset,
  139. size_t length)
  140. {
  141. unsigned long mask = page_region_mask(offset, length);
  142. return (mask && (page_private(page) & mask) == mask);
  143. }
  144. /*
  145. * Mapping of multi-page buffers into contiguous virtual space
  146. */
  147. typedef struct a_list {
  148. void *vm_addr;
  149. struct a_list *next;
  150. } a_list_t;
  151. STATIC a_list_t *as_free_head;
  152. STATIC int as_list_len;
  153. STATIC DEFINE_SPINLOCK(as_lock);
  154. /*
  155. * Try to batch vunmaps because they are costly.
  156. */
  157. STATIC void
  158. free_address(
  159. void *addr)
  160. {
  161. a_list_t *aentry;
  162. aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
  163. if (likely(aentry)) {
  164. spin_lock(&as_lock);
  165. aentry->next = as_free_head;
  166. aentry->vm_addr = addr;
  167. as_free_head = aentry;
  168. as_list_len++;
  169. spin_unlock(&as_lock);
  170. } else {
  171. vunmap(addr);
  172. }
  173. }
  174. STATIC void
  175. purge_addresses(void)
  176. {
  177. a_list_t *aentry, *old;
  178. if (as_free_head == NULL)
  179. return;
  180. spin_lock(&as_lock);
  181. aentry = as_free_head;
  182. as_free_head = NULL;
  183. as_list_len = 0;
  184. spin_unlock(&as_lock);
  185. while ((old = aentry) != NULL) {
  186. vunmap(aentry->vm_addr);
  187. aentry = aentry->next;
  188. kfree(old);
  189. }
  190. }
  191. /*
  192. * Internal pagebuf object manipulation
  193. */
  194. STATIC void
  195. _pagebuf_initialize(
  196. xfs_buf_t *pb,
  197. xfs_buftarg_t *target,
  198. loff_t range_base,
  199. size_t range_length,
  200. page_buf_flags_t flags)
  201. {
  202. /*
  203. * We don't want certain flags to appear in pb->pb_flags.
  204. */
  205. flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
  206. memset(pb, 0, sizeof(xfs_buf_t));
  207. atomic_set(&pb->pb_hold, 1);
  208. init_MUTEX_LOCKED(&pb->pb_iodonesema);
  209. INIT_LIST_HEAD(&pb->pb_list);
  210. INIT_LIST_HEAD(&pb->pb_hash_list);
  211. init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
  212. PB_SET_OWNER(pb);
  213. pb->pb_target = target;
  214. pb->pb_file_offset = range_base;
  215. /*
  216. * Set buffer_length and count_desired to the same value initially.
  217. * I/O routines should use count_desired, which will be the same in
  218. * most cases but may be reset (e.g. XFS recovery).
  219. */
  220. pb->pb_buffer_length = pb->pb_count_desired = range_length;
  221. pb->pb_flags = flags;
  222. pb->pb_bn = XFS_BUF_DADDR_NULL;
  223. atomic_set(&pb->pb_pin_count, 0);
  224. init_waitqueue_head(&pb->pb_waiters);
  225. XFS_STATS_INC(pb_create);
  226. PB_TRACE(pb, "initialize", target);
  227. }
  228. /*
  229. * Allocate a page array capable of holding a specified number
  230. * of pages, and point the page buf at it.
  231. */
  232. STATIC int
  233. _pagebuf_get_pages(
  234. xfs_buf_t *pb,
  235. int page_count,
  236. page_buf_flags_t flags)
  237. {
  238. /* Make sure that we have a page list */
  239. if (pb->pb_pages == NULL) {
  240. pb->pb_offset = page_buf_poff(pb->pb_file_offset);
  241. pb->pb_page_count = page_count;
  242. if (page_count <= PB_PAGES) {
  243. pb->pb_pages = pb->pb_page_array;
  244. } else {
  245. pb->pb_pages = kmem_alloc(sizeof(struct page *) *
  246. page_count, pb_to_km(flags));
  247. if (pb->pb_pages == NULL)
  248. return -ENOMEM;
  249. }
  250. memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
  251. }
  252. return 0;
  253. }
  254. /*
  255. * Frees pb_pages if it was malloced.
  256. */
  257. STATIC void
  258. _pagebuf_free_pages(
  259. xfs_buf_t *bp)
  260. {
  261. if (bp->pb_pages != bp->pb_page_array) {
  262. kmem_free(bp->pb_pages,
  263. bp->pb_page_count * sizeof(struct page *));
  264. }
  265. }
  266. /*
  267. * Releases the specified buffer.
  268. *
  269. * The modification state of any associated pages is left unchanged.
  270. * The buffer most not be on any hash - use pagebuf_rele instead for
  271. * hashed and refcounted buffers
  272. */
  273. void
  274. pagebuf_free(
  275. xfs_buf_t *bp)
  276. {
  277. PB_TRACE(bp, "free", 0);
  278. ASSERT(list_empty(&bp->pb_hash_list));
  279. if (bp->pb_flags & _PBF_PAGE_CACHE) {
  280. uint i;
  281. if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
  282. free_address(bp->pb_addr - bp->pb_offset);
  283. for (i = 0; i < bp->pb_page_count; i++)
  284. page_cache_release(bp->pb_pages[i]);
  285. _pagebuf_free_pages(bp);
  286. } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
  287. /*
  288. * XXX(hch): bp->pb_count_desired might be incorrect (see
  289. * pagebuf_associate_memory for details), but fortunately
  290. * the Linux version of kmem_free ignores the len argument..
  291. */
  292. kmem_free(bp->pb_addr, bp->pb_count_desired);
  293. _pagebuf_free_pages(bp);
  294. }
  295. pagebuf_deallocate(bp);
  296. }
  297. /*
  298. * Finds all pages for buffer in question and builds it's page list.
  299. */
  300. STATIC int
  301. _pagebuf_lookup_pages(
  302. xfs_buf_t *bp,
  303. uint flags)
  304. {
  305. struct address_space *mapping = bp->pb_target->pbr_mapping;
  306. size_t blocksize = bp->pb_target->pbr_bsize;
  307. size_t size = bp->pb_count_desired;
  308. size_t nbytes, offset;
  309. gfp_t gfp_mask = pb_to_gfp(flags);
  310. unsigned short page_count, i;
  311. pgoff_t first;
  312. loff_t end;
  313. int error;
  314. end = bp->pb_file_offset + bp->pb_buffer_length;
  315. page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
  316. error = _pagebuf_get_pages(bp, page_count, flags);
  317. if (unlikely(error))
  318. return error;
  319. bp->pb_flags |= _PBF_PAGE_CACHE;
  320. offset = bp->pb_offset;
  321. first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
  322. for (i = 0; i < bp->pb_page_count; i++) {
  323. struct page *page;
  324. uint retries = 0;
  325. retry:
  326. page = find_or_create_page(mapping, first + i, gfp_mask);
  327. if (unlikely(page == NULL)) {
  328. if (flags & PBF_READ_AHEAD) {
  329. bp->pb_page_count = i;
  330. for (i = 0; i < bp->pb_page_count; i++)
  331. unlock_page(bp->pb_pages[i]);
  332. return -ENOMEM;
  333. }
  334. /*
  335. * This could deadlock.
  336. *
  337. * But until all the XFS lowlevel code is revamped to
  338. * handle buffer allocation failures we can't do much.
  339. */
  340. if (!(++retries % 100))
  341. printk(KERN_ERR
  342. "XFS: possible memory allocation "
  343. "deadlock in %s (mode:0x%x)\n",
  344. __FUNCTION__, gfp_mask);
  345. XFS_STATS_INC(pb_page_retries);
  346. xfsbufd_wakeup(0, gfp_mask);
  347. blk_congestion_wait(WRITE, HZ/50);
  348. goto retry;
  349. }
  350. XFS_STATS_INC(pb_page_found);
  351. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  352. size -= nbytes;
  353. if (!PageUptodate(page)) {
  354. page_count--;
  355. if (blocksize >= PAGE_CACHE_SIZE) {
  356. if (flags & PBF_READ)
  357. bp->pb_locked = 1;
  358. } else if (!PagePrivate(page)) {
  359. if (test_page_region(page, offset, nbytes))
  360. page_count++;
  361. }
  362. }
  363. bp->pb_pages[i] = page;
  364. offset = 0;
  365. }
  366. if (!bp->pb_locked) {
  367. for (i = 0; i < bp->pb_page_count; i++)
  368. unlock_page(bp->pb_pages[i]);
  369. }
  370. if (page_count == bp->pb_page_count)
  371. bp->pb_flags |= PBF_DONE;
  372. PB_TRACE(bp, "lookup_pages", (long)page_count);
  373. return error;
  374. }
  375. /*
  376. * Map buffer into kernel address-space if nessecary.
  377. */
  378. STATIC int
  379. _pagebuf_map_pages(
  380. xfs_buf_t *bp,
  381. uint flags)
  382. {
  383. /* A single page buffer is always mappable */
  384. if (bp->pb_page_count == 1) {
  385. bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
  386. bp->pb_flags |= PBF_MAPPED;
  387. } else if (flags & PBF_MAPPED) {
  388. if (as_list_len > 64)
  389. purge_addresses();
  390. bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
  391. VM_MAP, PAGE_KERNEL);
  392. if (unlikely(bp->pb_addr == NULL))
  393. return -ENOMEM;
  394. bp->pb_addr += bp->pb_offset;
  395. bp->pb_flags |= PBF_MAPPED;
  396. }
  397. return 0;
  398. }
  399. /*
  400. * Finding and Reading Buffers
  401. */
  402. /*
  403. * _pagebuf_find
  404. *
  405. * Looks up, and creates if absent, a lockable buffer for
  406. * a given range of an inode. The buffer is returned
  407. * locked. If other overlapping buffers exist, they are
  408. * released before the new buffer is created and locked,
  409. * which may imply that this call will block until those buffers
  410. * are unlocked. No I/O is implied by this call.
  411. */
  412. xfs_buf_t *
  413. _pagebuf_find(
  414. xfs_buftarg_t *btp, /* block device target */
  415. loff_t ioff, /* starting offset of range */
  416. size_t isize, /* length of range */
  417. page_buf_flags_t flags, /* PBF_TRYLOCK */
  418. xfs_buf_t *new_pb)/* newly allocated buffer */
  419. {
  420. loff_t range_base;
  421. size_t range_length;
  422. xfs_bufhash_t *hash;
  423. xfs_buf_t *pb, *n;
  424. range_base = (ioff << BBSHIFT);
  425. range_length = (isize << BBSHIFT);
  426. /* Check for IOs smaller than the sector size / not sector aligned */
  427. ASSERT(!(range_length < (1 << btp->pbr_sshift)));
  428. ASSERT(!(range_base & (loff_t)btp->pbr_smask));
  429. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  430. spin_lock(&hash->bh_lock);
  431. list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
  432. ASSERT(btp == pb->pb_target);
  433. if (pb->pb_file_offset == range_base &&
  434. pb->pb_buffer_length == range_length) {
  435. /*
  436. * If we look at something bring it to the
  437. * front of the list for next time.
  438. */
  439. atomic_inc(&pb->pb_hold);
  440. list_move(&pb->pb_hash_list, &hash->bh_list);
  441. goto found;
  442. }
  443. }
  444. /* No match found */
  445. if (new_pb) {
  446. _pagebuf_initialize(new_pb, btp, range_base,
  447. range_length, flags);
  448. new_pb->pb_hash = hash;
  449. list_add(&new_pb->pb_hash_list, &hash->bh_list);
  450. } else {
  451. XFS_STATS_INC(pb_miss_locked);
  452. }
  453. spin_unlock(&hash->bh_lock);
  454. return new_pb;
  455. found:
  456. spin_unlock(&hash->bh_lock);
  457. /* Attempt to get the semaphore without sleeping,
  458. * if this does not work then we need to drop the
  459. * spinlock and do a hard attempt on the semaphore.
  460. */
  461. if (down_trylock(&pb->pb_sema)) {
  462. if (!(flags & PBF_TRYLOCK)) {
  463. /* wait for buffer ownership */
  464. PB_TRACE(pb, "get_lock", 0);
  465. pagebuf_lock(pb);
  466. XFS_STATS_INC(pb_get_locked_waited);
  467. } else {
  468. /* We asked for a trylock and failed, no need
  469. * to look at file offset and length here, we
  470. * know that this pagebuf at least overlaps our
  471. * pagebuf and is locked, therefore our buffer
  472. * either does not exist, or is this buffer
  473. */
  474. pagebuf_rele(pb);
  475. XFS_STATS_INC(pb_busy_locked);
  476. return (NULL);
  477. }
  478. } else {
  479. /* trylock worked */
  480. PB_SET_OWNER(pb);
  481. }
  482. if (pb->pb_flags & PBF_STALE) {
  483. ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
  484. pb->pb_flags &= PBF_MAPPED;
  485. }
  486. PB_TRACE(pb, "got_lock", 0);
  487. XFS_STATS_INC(pb_get_locked);
  488. return (pb);
  489. }
  490. /*
  491. * xfs_buf_get_flags assembles a buffer covering the specified range.
  492. *
  493. * Storage in memory for all portions of the buffer will be allocated,
  494. * although backing storage may not be.
  495. */
  496. xfs_buf_t *
  497. xfs_buf_get_flags( /* allocate a buffer */
  498. xfs_buftarg_t *target,/* target for buffer */
  499. loff_t ioff, /* starting offset of range */
  500. size_t isize, /* length of range */
  501. page_buf_flags_t flags) /* PBF_TRYLOCK */
  502. {
  503. xfs_buf_t *pb, *new_pb;
  504. int error = 0, i;
  505. new_pb = pagebuf_allocate(flags);
  506. if (unlikely(!new_pb))
  507. return NULL;
  508. pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
  509. if (pb == new_pb) {
  510. error = _pagebuf_lookup_pages(pb, flags);
  511. if (error)
  512. goto no_buffer;
  513. } else {
  514. pagebuf_deallocate(new_pb);
  515. if (unlikely(pb == NULL))
  516. return NULL;
  517. }
  518. for (i = 0; i < pb->pb_page_count; i++)
  519. mark_page_accessed(pb->pb_pages[i]);
  520. if (!(pb->pb_flags & PBF_MAPPED)) {
  521. error = _pagebuf_map_pages(pb, flags);
  522. if (unlikely(error)) {
  523. printk(KERN_WARNING "%s: failed to map pages\n",
  524. __FUNCTION__);
  525. goto no_buffer;
  526. }
  527. }
  528. XFS_STATS_INC(pb_get);
  529. /*
  530. * Always fill in the block number now, the mapped cases can do
  531. * their own overlay of this later.
  532. */
  533. pb->pb_bn = ioff;
  534. pb->pb_count_desired = pb->pb_buffer_length;
  535. PB_TRACE(pb, "get", (unsigned long)flags);
  536. return pb;
  537. no_buffer:
  538. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  539. pagebuf_unlock(pb);
  540. pagebuf_rele(pb);
  541. return NULL;
  542. }
  543. xfs_buf_t *
  544. xfs_buf_read_flags(
  545. xfs_buftarg_t *target,
  546. loff_t ioff,
  547. size_t isize,
  548. page_buf_flags_t flags)
  549. {
  550. xfs_buf_t *pb;
  551. flags |= PBF_READ;
  552. pb = xfs_buf_get_flags(target, ioff, isize, flags);
  553. if (pb) {
  554. if (!XFS_BUF_ISDONE(pb)) {
  555. PB_TRACE(pb, "read", (unsigned long)flags);
  556. XFS_STATS_INC(pb_get_read);
  557. pagebuf_iostart(pb, flags);
  558. } else if (flags & PBF_ASYNC) {
  559. PB_TRACE(pb, "read_async", (unsigned long)flags);
  560. /*
  561. * Read ahead call which is already satisfied,
  562. * drop the buffer
  563. */
  564. goto no_buffer;
  565. } else {
  566. PB_TRACE(pb, "read_done", (unsigned long)flags);
  567. /* We do not want read in the flags */
  568. pb->pb_flags &= ~PBF_READ;
  569. }
  570. }
  571. return pb;
  572. no_buffer:
  573. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  574. pagebuf_unlock(pb);
  575. pagebuf_rele(pb);
  576. return NULL;
  577. }
  578. /*
  579. * If we are not low on memory then do the readahead in a deadlock
  580. * safe manner.
  581. */
  582. void
  583. pagebuf_readahead(
  584. xfs_buftarg_t *target,
  585. loff_t ioff,
  586. size_t isize,
  587. page_buf_flags_t flags)
  588. {
  589. struct backing_dev_info *bdi;
  590. bdi = target->pbr_mapping->backing_dev_info;
  591. if (bdi_read_congested(bdi))
  592. return;
  593. flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
  594. xfs_buf_read_flags(target, ioff, isize, flags);
  595. }
  596. xfs_buf_t *
  597. pagebuf_get_empty(
  598. size_t len,
  599. xfs_buftarg_t *target)
  600. {
  601. xfs_buf_t *pb;
  602. pb = pagebuf_allocate(0);
  603. if (pb)
  604. _pagebuf_initialize(pb, target, 0, len, 0);
  605. return pb;
  606. }
  607. static inline struct page *
  608. mem_to_page(
  609. void *addr)
  610. {
  611. if (((unsigned long)addr < VMALLOC_START) ||
  612. ((unsigned long)addr >= VMALLOC_END)) {
  613. return virt_to_page(addr);
  614. } else {
  615. return vmalloc_to_page(addr);
  616. }
  617. }
  618. int
  619. pagebuf_associate_memory(
  620. xfs_buf_t *pb,
  621. void *mem,
  622. size_t len)
  623. {
  624. int rval;
  625. int i = 0;
  626. size_t ptr;
  627. size_t end, end_cur;
  628. off_t offset;
  629. int page_count;
  630. page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
  631. offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
  632. if (offset && (len > PAGE_CACHE_SIZE))
  633. page_count++;
  634. /* Free any previous set of page pointers */
  635. if (pb->pb_pages)
  636. _pagebuf_free_pages(pb);
  637. pb->pb_pages = NULL;
  638. pb->pb_addr = mem;
  639. rval = _pagebuf_get_pages(pb, page_count, 0);
  640. if (rval)
  641. return rval;
  642. pb->pb_offset = offset;
  643. ptr = (size_t) mem & PAGE_CACHE_MASK;
  644. end = PAGE_CACHE_ALIGN((size_t) mem + len);
  645. end_cur = end;
  646. /* set up first page */
  647. pb->pb_pages[0] = mem_to_page(mem);
  648. ptr += PAGE_CACHE_SIZE;
  649. pb->pb_page_count = ++i;
  650. while (ptr < end) {
  651. pb->pb_pages[i] = mem_to_page((void *)ptr);
  652. pb->pb_page_count = ++i;
  653. ptr += PAGE_CACHE_SIZE;
  654. }
  655. pb->pb_locked = 0;
  656. pb->pb_count_desired = pb->pb_buffer_length = len;
  657. pb->pb_flags |= PBF_MAPPED;
  658. return 0;
  659. }
  660. xfs_buf_t *
  661. pagebuf_get_no_daddr(
  662. size_t len,
  663. xfs_buftarg_t *target)
  664. {
  665. size_t malloc_len = len;
  666. xfs_buf_t *bp;
  667. void *data;
  668. int error;
  669. bp = pagebuf_allocate(0);
  670. if (unlikely(bp == NULL))
  671. goto fail;
  672. _pagebuf_initialize(bp, target, 0, len, 0);
  673. try_again:
  674. data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
  675. if (unlikely(data == NULL))
  676. goto fail_free_buf;
  677. /* check whether alignment matches.. */
  678. if ((__psunsigned_t)data !=
  679. ((__psunsigned_t)data & ~target->pbr_smask)) {
  680. /* .. else double the size and try again */
  681. kmem_free(data, malloc_len);
  682. malloc_len <<= 1;
  683. goto try_again;
  684. }
  685. error = pagebuf_associate_memory(bp, data, len);
  686. if (error)
  687. goto fail_free_mem;
  688. bp->pb_flags |= _PBF_KMEM_ALLOC;
  689. pagebuf_unlock(bp);
  690. PB_TRACE(bp, "no_daddr", data);
  691. return bp;
  692. fail_free_mem:
  693. kmem_free(data, malloc_len);
  694. fail_free_buf:
  695. pagebuf_free(bp);
  696. fail:
  697. return NULL;
  698. }
  699. /*
  700. * pagebuf_hold
  701. *
  702. * Increment reference count on buffer, to hold the buffer concurrently
  703. * with another thread which may release (free) the buffer asynchronously.
  704. *
  705. * Must hold the buffer already to call this function.
  706. */
  707. void
  708. pagebuf_hold(
  709. xfs_buf_t *pb)
  710. {
  711. atomic_inc(&pb->pb_hold);
  712. PB_TRACE(pb, "hold", 0);
  713. }
  714. /*
  715. * pagebuf_rele
  716. *
  717. * pagebuf_rele releases a hold on the specified buffer. If the
  718. * the hold count is 1, pagebuf_rele calls pagebuf_free.
  719. */
  720. void
  721. pagebuf_rele(
  722. xfs_buf_t *pb)
  723. {
  724. xfs_bufhash_t *hash = pb->pb_hash;
  725. PB_TRACE(pb, "rele", pb->pb_relse);
  726. if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
  727. if (pb->pb_relse) {
  728. atomic_inc(&pb->pb_hold);
  729. spin_unlock(&hash->bh_lock);
  730. (*(pb->pb_relse)) (pb);
  731. } else if (pb->pb_flags & PBF_FS_MANAGED) {
  732. spin_unlock(&hash->bh_lock);
  733. } else {
  734. ASSERT(!(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)));
  735. list_del_init(&pb->pb_hash_list);
  736. spin_unlock(&hash->bh_lock);
  737. pagebuf_free(pb);
  738. }
  739. } else {
  740. /*
  741. * Catch reference count leaks
  742. */
  743. ASSERT(atomic_read(&pb->pb_hold) >= 0);
  744. }
  745. }
  746. /*
  747. * Mutual exclusion on buffers. Locking model:
  748. *
  749. * Buffers associated with inodes for which buffer locking
  750. * is not enabled are not protected by semaphores, and are
  751. * assumed to be exclusively owned by the caller. There is a
  752. * spinlock in the buffer, used by the caller when concurrent
  753. * access is possible.
  754. */
  755. /*
  756. * pagebuf_cond_lock
  757. *
  758. * pagebuf_cond_lock locks a buffer object, if it is not already locked.
  759. * Note that this in no way
  760. * locks the underlying pages, so it is only useful for synchronizing
  761. * concurrent use of page buffer objects, not for synchronizing independent
  762. * access to the underlying pages.
  763. */
  764. int
  765. pagebuf_cond_lock( /* lock buffer, if not locked */
  766. /* returns -EBUSY if locked) */
  767. xfs_buf_t *pb)
  768. {
  769. int locked;
  770. locked = down_trylock(&pb->pb_sema) == 0;
  771. if (locked) {
  772. PB_SET_OWNER(pb);
  773. }
  774. PB_TRACE(pb, "cond_lock", (long)locked);
  775. return(locked ? 0 : -EBUSY);
  776. }
  777. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  778. /*
  779. * pagebuf_lock_value
  780. *
  781. * Return lock value for a pagebuf
  782. */
  783. int
  784. pagebuf_lock_value(
  785. xfs_buf_t *pb)
  786. {
  787. return(atomic_read(&pb->pb_sema.count));
  788. }
  789. #endif
  790. /*
  791. * pagebuf_lock
  792. *
  793. * pagebuf_lock locks a buffer object. Note that this in no way
  794. * locks the underlying pages, so it is only useful for synchronizing
  795. * concurrent use of page buffer objects, not for synchronizing independent
  796. * access to the underlying pages.
  797. */
  798. int
  799. pagebuf_lock(
  800. xfs_buf_t *pb)
  801. {
  802. PB_TRACE(pb, "lock", 0);
  803. if (atomic_read(&pb->pb_io_remaining))
  804. blk_run_address_space(pb->pb_target->pbr_mapping);
  805. down(&pb->pb_sema);
  806. PB_SET_OWNER(pb);
  807. PB_TRACE(pb, "locked", 0);
  808. return 0;
  809. }
  810. /*
  811. * pagebuf_unlock
  812. *
  813. * pagebuf_unlock releases the lock on the buffer object created by
  814. * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
  815. * created by pagebuf_pin).
  816. *
  817. * If the buffer is marked delwri but is not queued, do so before we
  818. * unlock the buffer as we need to set flags correctly. We also need to
  819. * take a reference for the delwri queue because the unlocker is going to
  820. * drop their's and they don't know we just queued it.
  821. */
  822. void
  823. pagebuf_unlock( /* unlock buffer */
  824. xfs_buf_t *pb) /* buffer to unlock */
  825. {
  826. if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
  827. atomic_inc(&pb->pb_hold);
  828. pb->pb_flags |= PBF_ASYNC;
  829. pagebuf_delwri_queue(pb, 0);
  830. }
  831. PB_CLEAR_OWNER(pb);
  832. up(&pb->pb_sema);
  833. PB_TRACE(pb, "unlock", 0);
  834. }
  835. /*
  836. * Pinning Buffer Storage in Memory
  837. */
  838. /*
  839. * pagebuf_pin
  840. *
  841. * pagebuf_pin locks all of the memory represented by a buffer in
  842. * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
  843. * the same or different buffers affecting a given page, will
  844. * properly count the number of outstanding "pin" requests. The
  845. * buffer may be released after the pagebuf_pin and a different
  846. * buffer used when calling pagebuf_unpin, if desired.
  847. * pagebuf_pin should be used by the file system when it wants be
  848. * assured that no attempt will be made to force the affected
  849. * memory to disk. It does not assure that a given logical page
  850. * will not be moved to a different physical page.
  851. */
  852. void
  853. pagebuf_pin(
  854. xfs_buf_t *pb)
  855. {
  856. atomic_inc(&pb->pb_pin_count);
  857. PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
  858. }
  859. /*
  860. * pagebuf_unpin
  861. *
  862. * pagebuf_unpin reverses the locking of memory performed by
  863. * pagebuf_pin. Note that both functions affected the logical
  864. * pages associated with the buffer, not the buffer itself.
  865. */
  866. void
  867. pagebuf_unpin(
  868. xfs_buf_t *pb)
  869. {
  870. if (atomic_dec_and_test(&pb->pb_pin_count)) {
  871. wake_up_all(&pb->pb_waiters);
  872. }
  873. PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
  874. }
  875. int
  876. pagebuf_ispin(
  877. xfs_buf_t *pb)
  878. {
  879. return atomic_read(&pb->pb_pin_count);
  880. }
  881. /*
  882. * pagebuf_wait_unpin
  883. *
  884. * pagebuf_wait_unpin waits until all of the memory associated
  885. * with the buffer is not longer locked in memory. It returns
  886. * immediately if none of the affected pages are locked.
  887. */
  888. static inline void
  889. _pagebuf_wait_unpin(
  890. xfs_buf_t *pb)
  891. {
  892. DECLARE_WAITQUEUE (wait, current);
  893. if (atomic_read(&pb->pb_pin_count) == 0)
  894. return;
  895. add_wait_queue(&pb->pb_waiters, &wait);
  896. for (;;) {
  897. set_current_state(TASK_UNINTERRUPTIBLE);
  898. if (atomic_read(&pb->pb_pin_count) == 0)
  899. break;
  900. if (atomic_read(&pb->pb_io_remaining))
  901. blk_run_address_space(pb->pb_target->pbr_mapping);
  902. schedule();
  903. }
  904. remove_wait_queue(&pb->pb_waiters, &wait);
  905. set_current_state(TASK_RUNNING);
  906. }
  907. /*
  908. * Buffer Utility Routines
  909. */
  910. /*
  911. * pagebuf_iodone
  912. *
  913. * pagebuf_iodone marks a buffer for which I/O is in progress
  914. * done with respect to that I/O. The pb_iodone routine, if
  915. * present, will be called as a side-effect.
  916. */
  917. STATIC void
  918. pagebuf_iodone_work(
  919. void *v)
  920. {
  921. xfs_buf_t *bp = (xfs_buf_t *)v;
  922. if (bp->pb_iodone)
  923. (*(bp->pb_iodone))(bp);
  924. else if (bp->pb_flags & PBF_ASYNC)
  925. xfs_buf_relse(bp);
  926. }
  927. void
  928. pagebuf_iodone(
  929. xfs_buf_t *pb,
  930. int schedule)
  931. {
  932. pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
  933. if (pb->pb_error == 0)
  934. pb->pb_flags |= PBF_DONE;
  935. PB_TRACE(pb, "iodone", pb->pb_iodone);
  936. if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
  937. if (schedule) {
  938. INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
  939. queue_work(xfslogd_workqueue, &pb->pb_iodone_work);
  940. } else {
  941. pagebuf_iodone_work(pb);
  942. }
  943. } else {
  944. up(&pb->pb_iodonesema);
  945. }
  946. }
  947. /*
  948. * pagebuf_ioerror
  949. *
  950. * pagebuf_ioerror sets the error code for a buffer.
  951. */
  952. void
  953. pagebuf_ioerror( /* mark/clear buffer error flag */
  954. xfs_buf_t *pb, /* buffer to mark */
  955. int error) /* error to store (0 if none) */
  956. {
  957. ASSERT(error >= 0 && error <= 0xffff);
  958. pb->pb_error = (unsigned short)error;
  959. PB_TRACE(pb, "ioerror", (unsigned long)error);
  960. }
  961. /*
  962. * pagebuf_iostart
  963. *
  964. * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
  965. * If necessary, it will arrange for any disk space allocation required,
  966. * and it will break up the request if the block mappings require it.
  967. * The pb_iodone routine in the buffer supplied will only be called
  968. * when all of the subsidiary I/O requests, if any, have been completed.
  969. * pagebuf_iostart calls the pagebuf_ioinitiate routine or
  970. * pagebuf_iorequest, if the former routine is not defined, to start
  971. * the I/O on a given low-level request.
  972. */
  973. int
  974. pagebuf_iostart( /* start I/O on a buffer */
  975. xfs_buf_t *pb, /* buffer to start */
  976. page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
  977. /* PBF_WRITE, PBF_DELWRI, */
  978. /* PBF_DONT_BLOCK */
  979. {
  980. int status = 0;
  981. PB_TRACE(pb, "iostart", (unsigned long)flags);
  982. if (flags & PBF_DELWRI) {
  983. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
  984. pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
  985. pagebuf_delwri_queue(pb, 1);
  986. return status;
  987. }
  988. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
  989. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  990. pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
  991. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  992. BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
  993. /* For writes allow an alternate strategy routine to precede
  994. * the actual I/O request (which may not be issued at all in
  995. * a shutdown situation, for example).
  996. */
  997. status = (flags & PBF_WRITE) ?
  998. pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
  999. /* Wait for I/O if we are not an async request.
  1000. * Note: async I/O request completion will release the buffer,
  1001. * and that can already be done by this point. So using the
  1002. * buffer pointer from here on, after async I/O, is invalid.
  1003. */
  1004. if (!status && !(flags & PBF_ASYNC))
  1005. status = pagebuf_iowait(pb);
  1006. return status;
  1007. }
  1008. /*
  1009. * Helper routine for pagebuf_iorequest
  1010. */
  1011. STATIC __inline__ int
  1012. _pagebuf_iolocked(
  1013. xfs_buf_t *pb)
  1014. {
  1015. ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
  1016. if (pb->pb_flags & PBF_READ)
  1017. return pb->pb_locked;
  1018. return 0;
  1019. }
  1020. STATIC __inline__ void
  1021. _pagebuf_iodone(
  1022. xfs_buf_t *pb,
  1023. int schedule)
  1024. {
  1025. if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
  1026. pb->pb_locked = 0;
  1027. pagebuf_iodone(pb, schedule);
  1028. }
  1029. }
  1030. STATIC int
  1031. bio_end_io_pagebuf(
  1032. struct bio *bio,
  1033. unsigned int bytes_done,
  1034. int error)
  1035. {
  1036. xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
  1037. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1038. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1039. if (bio->bi_size)
  1040. return 1;
  1041. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1042. pb->pb_error = EIO;
  1043. do {
  1044. struct page *page = bvec->bv_page;
  1045. if (unlikely(pb->pb_error)) {
  1046. if (pb->pb_flags & PBF_READ)
  1047. ClearPageUptodate(page);
  1048. SetPageError(page);
  1049. } else if (blocksize == PAGE_CACHE_SIZE) {
  1050. SetPageUptodate(page);
  1051. } else if (!PagePrivate(page) &&
  1052. (pb->pb_flags & _PBF_PAGE_CACHE)) {
  1053. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1054. }
  1055. if (--bvec >= bio->bi_io_vec)
  1056. prefetchw(&bvec->bv_page->flags);
  1057. if (_pagebuf_iolocked(pb)) {
  1058. unlock_page(page);
  1059. }
  1060. } while (bvec >= bio->bi_io_vec);
  1061. _pagebuf_iodone(pb, 1);
  1062. bio_put(bio);
  1063. return 0;
  1064. }
  1065. STATIC void
  1066. _pagebuf_ioapply(
  1067. xfs_buf_t *pb)
  1068. {
  1069. int i, rw, map_i, total_nr_pages, nr_pages;
  1070. struct bio *bio;
  1071. int offset = pb->pb_offset;
  1072. int size = pb->pb_count_desired;
  1073. sector_t sector = pb->pb_bn;
  1074. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1075. int locking = _pagebuf_iolocked(pb);
  1076. total_nr_pages = pb->pb_page_count;
  1077. map_i = 0;
  1078. if (pb->pb_flags & _PBF_RUN_QUEUES) {
  1079. pb->pb_flags &= ~_PBF_RUN_QUEUES;
  1080. rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
  1081. } else {
  1082. rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
  1083. }
  1084. if (pb->pb_flags & PBF_ORDERED) {
  1085. ASSERT(!(pb->pb_flags & PBF_READ));
  1086. rw = WRITE_BARRIER;
  1087. }
  1088. /* Special code path for reading a sub page size pagebuf in --
  1089. * we populate up the whole page, and hence the other metadata
  1090. * in the same page. This optimization is only valid when the
  1091. * filesystem block size and the page size are equal.
  1092. */
  1093. if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
  1094. (pb->pb_flags & PBF_READ) && locking &&
  1095. (blocksize == PAGE_CACHE_SIZE)) {
  1096. bio = bio_alloc(GFP_NOIO, 1);
  1097. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1098. bio->bi_sector = sector - (offset >> BBSHIFT);
  1099. bio->bi_end_io = bio_end_io_pagebuf;
  1100. bio->bi_private = pb;
  1101. bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
  1102. size = 0;
  1103. atomic_inc(&pb->pb_io_remaining);
  1104. goto submit_io;
  1105. }
  1106. /* Lock down the pages which we need to for the request */
  1107. if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
  1108. for (i = 0; size; i++) {
  1109. int nbytes = PAGE_CACHE_SIZE - offset;
  1110. struct page *page = pb->pb_pages[i];
  1111. if (nbytes > size)
  1112. nbytes = size;
  1113. lock_page(page);
  1114. size -= nbytes;
  1115. offset = 0;
  1116. }
  1117. offset = pb->pb_offset;
  1118. size = pb->pb_count_desired;
  1119. }
  1120. next_chunk:
  1121. atomic_inc(&pb->pb_io_remaining);
  1122. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1123. if (nr_pages > total_nr_pages)
  1124. nr_pages = total_nr_pages;
  1125. bio = bio_alloc(GFP_NOIO, nr_pages);
  1126. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1127. bio->bi_sector = sector;
  1128. bio->bi_end_io = bio_end_io_pagebuf;
  1129. bio->bi_private = pb;
  1130. for (; size && nr_pages; nr_pages--, map_i++) {
  1131. int nbytes = PAGE_CACHE_SIZE - offset;
  1132. if (nbytes > size)
  1133. nbytes = size;
  1134. if (bio_add_page(bio, pb->pb_pages[map_i],
  1135. nbytes, offset) < nbytes)
  1136. break;
  1137. offset = 0;
  1138. sector += nbytes >> BBSHIFT;
  1139. size -= nbytes;
  1140. total_nr_pages--;
  1141. }
  1142. submit_io:
  1143. if (likely(bio->bi_size)) {
  1144. submit_bio(rw, bio);
  1145. if (size)
  1146. goto next_chunk;
  1147. } else {
  1148. bio_put(bio);
  1149. pagebuf_ioerror(pb, EIO);
  1150. }
  1151. }
  1152. /*
  1153. * pagebuf_iorequest -- the core I/O request routine.
  1154. */
  1155. int
  1156. pagebuf_iorequest( /* start real I/O */
  1157. xfs_buf_t *pb) /* buffer to convey to device */
  1158. {
  1159. PB_TRACE(pb, "iorequest", 0);
  1160. if (pb->pb_flags & PBF_DELWRI) {
  1161. pagebuf_delwri_queue(pb, 1);
  1162. return 0;
  1163. }
  1164. if (pb->pb_flags & PBF_WRITE) {
  1165. _pagebuf_wait_unpin(pb);
  1166. }
  1167. pagebuf_hold(pb);
  1168. /* Set the count to 1 initially, this will stop an I/O
  1169. * completion callout which happens before we have started
  1170. * all the I/O from calling pagebuf_iodone too early.
  1171. */
  1172. atomic_set(&pb->pb_io_remaining, 1);
  1173. _pagebuf_ioapply(pb);
  1174. _pagebuf_iodone(pb, 0);
  1175. pagebuf_rele(pb);
  1176. return 0;
  1177. }
  1178. /*
  1179. * pagebuf_iowait
  1180. *
  1181. * pagebuf_iowait waits for I/O to complete on the buffer supplied.
  1182. * It returns immediately if no I/O is pending. In any case, it returns
  1183. * the error code, if any, or 0 if there is no error.
  1184. */
  1185. int
  1186. pagebuf_iowait(
  1187. xfs_buf_t *pb)
  1188. {
  1189. PB_TRACE(pb, "iowait", 0);
  1190. if (atomic_read(&pb->pb_io_remaining))
  1191. blk_run_address_space(pb->pb_target->pbr_mapping);
  1192. down(&pb->pb_iodonesema);
  1193. PB_TRACE(pb, "iowaited", (long)pb->pb_error);
  1194. return pb->pb_error;
  1195. }
  1196. caddr_t
  1197. pagebuf_offset(
  1198. xfs_buf_t *pb,
  1199. size_t offset)
  1200. {
  1201. struct page *page;
  1202. offset += pb->pb_offset;
  1203. page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
  1204. return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
  1205. }
  1206. /*
  1207. * pagebuf_iomove
  1208. *
  1209. * Move data into or out of a buffer.
  1210. */
  1211. void
  1212. pagebuf_iomove(
  1213. xfs_buf_t *pb, /* buffer to process */
  1214. size_t boff, /* starting buffer offset */
  1215. size_t bsize, /* length to copy */
  1216. caddr_t data, /* data address */
  1217. page_buf_rw_t mode) /* read/write flag */
  1218. {
  1219. size_t bend, cpoff, csize;
  1220. struct page *page;
  1221. bend = boff + bsize;
  1222. while (boff < bend) {
  1223. page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
  1224. cpoff = page_buf_poff(boff + pb->pb_offset);
  1225. csize = min_t(size_t,
  1226. PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
  1227. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1228. switch (mode) {
  1229. case PBRW_ZERO:
  1230. memset(page_address(page) + cpoff, 0, csize);
  1231. break;
  1232. case PBRW_READ:
  1233. memcpy(data, page_address(page) + cpoff, csize);
  1234. break;
  1235. case PBRW_WRITE:
  1236. memcpy(page_address(page) + cpoff, data, csize);
  1237. }
  1238. boff += csize;
  1239. data += csize;
  1240. }
  1241. }
  1242. /*
  1243. * Handling of buftargs.
  1244. */
  1245. /*
  1246. * Wait for any bufs with callbacks that have been submitted but
  1247. * have not yet returned... walk the hash list for the target.
  1248. */
  1249. void
  1250. xfs_wait_buftarg(
  1251. xfs_buftarg_t *btp)
  1252. {
  1253. xfs_buf_t *bp, *n;
  1254. xfs_bufhash_t *hash;
  1255. uint i;
  1256. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1257. hash = &btp->bt_hash[i];
  1258. again:
  1259. spin_lock(&hash->bh_lock);
  1260. list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
  1261. ASSERT(btp == bp->pb_target);
  1262. if (!(bp->pb_flags & PBF_FS_MANAGED)) {
  1263. spin_unlock(&hash->bh_lock);
  1264. /*
  1265. * Catch superblock reference count leaks
  1266. * immediately
  1267. */
  1268. BUG_ON(bp->pb_bn == 0);
  1269. delay(100);
  1270. goto again;
  1271. }
  1272. }
  1273. spin_unlock(&hash->bh_lock);
  1274. }
  1275. }
  1276. /*
  1277. * Allocate buffer hash table for a given target.
  1278. * For devices containing metadata (i.e. not the log/realtime devices)
  1279. * we need to allocate a much larger hash table.
  1280. */
  1281. STATIC void
  1282. xfs_alloc_bufhash(
  1283. xfs_buftarg_t *btp,
  1284. int external)
  1285. {
  1286. unsigned int i;
  1287. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1288. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1289. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1290. sizeof(xfs_bufhash_t), KM_SLEEP);
  1291. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1292. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1293. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1294. }
  1295. }
  1296. STATIC void
  1297. xfs_free_bufhash(
  1298. xfs_buftarg_t *btp)
  1299. {
  1300. kmem_free(btp->bt_hash,
  1301. (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
  1302. btp->bt_hash = NULL;
  1303. }
  1304. void
  1305. xfs_free_buftarg(
  1306. xfs_buftarg_t *btp,
  1307. int external)
  1308. {
  1309. xfs_flush_buftarg(btp, 1);
  1310. if (external)
  1311. xfs_blkdev_put(btp->pbr_bdev);
  1312. xfs_free_bufhash(btp);
  1313. iput(btp->pbr_mapping->host);
  1314. kmem_free(btp, sizeof(*btp));
  1315. }
  1316. STATIC int
  1317. xfs_setsize_buftarg_flags(
  1318. xfs_buftarg_t *btp,
  1319. unsigned int blocksize,
  1320. unsigned int sectorsize,
  1321. int verbose)
  1322. {
  1323. btp->pbr_bsize = blocksize;
  1324. btp->pbr_sshift = ffs(sectorsize) - 1;
  1325. btp->pbr_smask = sectorsize - 1;
  1326. if (set_blocksize(btp->pbr_bdev, sectorsize)) {
  1327. printk(KERN_WARNING
  1328. "XFS: Cannot set_blocksize to %u on device %s\n",
  1329. sectorsize, XFS_BUFTARG_NAME(btp));
  1330. return EINVAL;
  1331. }
  1332. if (verbose &&
  1333. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1334. printk(KERN_WARNING
  1335. "XFS: %u byte sectors in use on device %s. "
  1336. "This is suboptimal; %u or greater is ideal.\n",
  1337. sectorsize, XFS_BUFTARG_NAME(btp),
  1338. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1339. }
  1340. return 0;
  1341. }
  1342. /*
  1343. * When allocating the initial buffer target we have not yet
  1344. * read in the superblock, so don't know what sized sectors
  1345. * are being used is at this early stage. Play safe.
  1346. */
  1347. STATIC int
  1348. xfs_setsize_buftarg_early(
  1349. xfs_buftarg_t *btp,
  1350. struct block_device *bdev)
  1351. {
  1352. return xfs_setsize_buftarg_flags(btp,
  1353. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1354. }
  1355. int
  1356. xfs_setsize_buftarg(
  1357. xfs_buftarg_t *btp,
  1358. unsigned int blocksize,
  1359. unsigned int sectorsize)
  1360. {
  1361. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1362. }
  1363. STATIC int
  1364. xfs_mapping_buftarg(
  1365. xfs_buftarg_t *btp,
  1366. struct block_device *bdev)
  1367. {
  1368. struct backing_dev_info *bdi;
  1369. struct inode *inode;
  1370. struct address_space *mapping;
  1371. static struct address_space_operations mapping_aops = {
  1372. .sync_page = block_sync_page,
  1373. };
  1374. inode = new_inode(bdev->bd_inode->i_sb);
  1375. if (!inode) {
  1376. printk(KERN_WARNING
  1377. "XFS: Cannot allocate mapping inode for device %s\n",
  1378. XFS_BUFTARG_NAME(btp));
  1379. return ENOMEM;
  1380. }
  1381. inode->i_mode = S_IFBLK;
  1382. inode->i_bdev = bdev;
  1383. inode->i_rdev = bdev->bd_dev;
  1384. bdi = blk_get_backing_dev_info(bdev);
  1385. if (!bdi)
  1386. bdi = &default_backing_dev_info;
  1387. mapping = &inode->i_data;
  1388. mapping->a_ops = &mapping_aops;
  1389. mapping->backing_dev_info = bdi;
  1390. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1391. btp->pbr_mapping = mapping;
  1392. return 0;
  1393. }
  1394. xfs_buftarg_t *
  1395. xfs_alloc_buftarg(
  1396. struct block_device *bdev,
  1397. int external)
  1398. {
  1399. xfs_buftarg_t *btp;
  1400. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1401. btp->pbr_dev = bdev->bd_dev;
  1402. btp->pbr_bdev = bdev;
  1403. if (xfs_setsize_buftarg_early(btp, bdev))
  1404. goto error;
  1405. if (xfs_mapping_buftarg(btp, bdev))
  1406. goto error;
  1407. xfs_alloc_bufhash(btp, external);
  1408. return btp;
  1409. error:
  1410. kmem_free(btp, sizeof(*btp));
  1411. return NULL;
  1412. }
  1413. /*
  1414. * Pagebuf delayed write buffer handling
  1415. */
  1416. STATIC LIST_HEAD(pbd_delwrite_queue);
  1417. STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
  1418. STATIC void
  1419. pagebuf_delwri_queue(
  1420. xfs_buf_t *pb,
  1421. int unlock)
  1422. {
  1423. PB_TRACE(pb, "delwri_q", (long)unlock);
  1424. ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
  1425. (PBF_DELWRI|PBF_ASYNC));
  1426. spin_lock(&pbd_delwrite_lock);
  1427. /* If already in the queue, dequeue and place at tail */
  1428. if (!list_empty(&pb->pb_list)) {
  1429. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1430. if (unlock) {
  1431. atomic_dec(&pb->pb_hold);
  1432. }
  1433. list_del(&pb->pb_list);
  1434. }
  1435. pb->pb_flags |= _PBF_DELWRI_Q;
  1436. list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
  1437. pb->pb_queuetime = jiffies;
  1438. spin_unlock(&pbd_delwrite_lock);
  1439. if (unlock)
  1440. pagebuf_unlock(pb);
  1441. }
  1442. void
  1443. pagebuf_delwri_dequeue(
  1444. xfs_buf_t *pb)
  1445. {
  1446. int dequeued = 0;
  1447. spin_lock(&pbd_delwrite_lock);
  1448. if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
  1449. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1450. list_del_init(&pb->pb_list);
  1451. dequeued = 1;
  1452. }
  1453. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1454. spin_unlock(&pbd_delwrite_lock);
  1455. if (dequeued)
  1456. pagebuf_rele(pb);
  1457. PB_TRACE(pb, "delwri_dq", (long)dequeued);
  1458. }
  1459. STATIC void
  1460. pagebuf_runall_queues(
  1461. struct workqueue_struct *queue)
  1462. {
  1463. flush_workqueue(queue);
  1464. }
  1465. /* Defines for pagebuf daemon */
  1466. STATIC struct task_struct *xfsbufd_task;
  1467. STATIC int xfsbufd_force_flush;
  1468. STATIC int xfsbufd_force_sleep;
  1469. STATIC int
  1470. xfsbufd_wakeup(
  1471. int priority,
  1472. gfp_t mask)
  1473. {
  1474. if (xfsbufd_force_sleep)
  1475. return 0;
  1476. xfsbufd_force_flush = 1;
  1477. barrier();
  1478. wake_up_process(xfsbufd_task);
  1479. return 0;
  1480. }
  1481. STATIC int
  1482. xfsbufd(
  1483. void *data)
  1484. {
  1485. struct list_head tmp;
  1486. unsigned long age;
  1487. xfs_buftarg_t *target;
  1488. xfs_buf_t *pb, *n;
  1489. current->flags |= PF_MEMALLOC;
  1490. INIT_LIST_HEAD(&tmp);
  1491. do {
  1492. if (unlikely(freezing(current))) {
  1493. xfsbufd_force_sleep = 1;
  1494. refrigerator();
  1495. } else {
  1496. xfsbufd_force_sleep = 0;
  1497. }
  1498. schedule_timeout_interruptible(
  1499. xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1500. age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
  1501. spin_lock(&pbd_delwrite_lock);
  1502. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1503. PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
  1504. ASSERT(pb->pb_flags & PBF_DELWRI);
  1505. if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
  1506. if (!xfsbufd_force_flush &&
  1507. time_before(jiffies,
  1508. pb->pb_queuetime + age)) {
  1509. pagebuf_unlock(pb);
  1510. break;
  1511. }
  1512. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1513. pb->pb_flags |= PBF_WRITE;
  1514. list_move(&pb->pb_list, &tmp);
  1515. }
  1516. }
  1517. spin_unlock(&pbd_delwrite_lock);
  1518. while (!list_empty(&tmp)) {
  1519. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1520. target = pb->pb_target;
  1521. list_del_init(&pb->pb_list);
  1522. pagebuf_iostrategy(pb);
  1523. blk_run_address_space(target->pbr_mapping);
  1524. }
  1525. if (as_list_len > 0)
  1526. purge_addresses();
  1527. xfsbufd_force_flush = 0;
  1528. } while (!kthread_should_stop());
  1529. return 0;
  1530. }
  1531. /*
  1532. * Go through all incore buffers, and release buffers if they belong to
  1533. * the given device. This is used in filesystem error handling to
  1534. * preserve the consistency of its metadata.
  1535. */
  1536. int
  1537. xfs_flush_buftarg(
  1538. xfs_buftarg_t *target,
  1539. int wait)
  1540. {
  1541. struct list_head tmp;
  1542. xfs_buf_t *pb, *n;
  1543. int pincount = 0;
  1544. pagebuf_runall_queues(xfsdatad_workqueue);
  1545. pagebuf_runall_queues(xfslogd_workqueue);
  1546. INIT_LIST_HEAD(&tmp);
  1547. spin_lock(&pbd_delwrite_lock);
  1548. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1549. if (pb->pb_target != target)
  1550. continue;
  1551. ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
  1552. PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
  1553. if (pagebuf_ispin(pb)) {
  1554. pincount++;
  1555. continue;
  1556. }
  1557. list_move(&pb->pb_list, &tmp);
  1558. }
  1559. spin_unlock(&pbd_delwrite_lock);
  1560. /*
  1561. * Dropped the delayed write list lock, now walk the temporary list
  1562. */
  1563. list_for_each_entry_safe(pb, n, &tmp, pb_list) {
  1564. pagebuf_lock(pb);
  1565. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1566. pb->pb_flags |= PBF_WRITE;
  1567. if (wait)
  1568. pb->pb_flags &= ~PBF_ASYNC;
  1569. else
  1570. list_del_init(&pb->pb_list);
  1571. pagebuf_iostrategy(pb);
  1572. }
  1573. /*
  1574. * Remaining list items must be flushed before returning
  1575. */
  1576. while (!list_empty(&tmp)) {
  1577. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1578. list_del_init(&pb->pb_list);
  1579. xfs_iowait(pb);
  1580. xfs_buf_relse(pb);
  1581. }
  1582. if (wait)
  1583. blk_run_address_space(target->pbr_mapping);
  1584. return pincount;
  1585. }
  1586. int __init
  1587. pagebuf_init(void)
  1588. {
  1589. int error = -ENOMEM;
  1590. #ifdef PAGEBUF_TRACE
  1591. pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
  1592. #endif
  1593. pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
  1594. if (!pagebuf_zone)
  1595. goto out_free_trace_buf;
  1596. xfslogd_workqueue = create_workqueue("xfslogd");
  1597. if (!xfslogd_workqueue)
  1598. goto out_free_buf_zone;
  1599. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1600. if (!xfsdatad_workqueue)
  1601. goto out_destroy_xfslogd_workqueue;
  1602. xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
  1603. if (IS_ERR(xfsbufd_task)) {
  1604. error = PTR_ERR(xfsbufd_task);
  1605. goto out_destroy_xfsdatad_workqueue;
  1606. }
  1607. pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
  1608. if (!pagebuf_shake)
  1609. goto out_stop_xfsbufd;
  1610. return 0;
  1611. out_stop_xfsbufd:
  1612. kthread_stop(xfsbufd_task);
  1613. out_destroy_xfsdatad_workqueue:
  1614. destroy_workqueue(xfsdatad_workqueue);
  1615. out_destroy_xfslogd_workqueue:
  1616. destroy_workqueue(xfslogd_workqueue);
  1617. out_free_buf_zone:
  1618. kmem_zone_destroy(pagebuf_zone);
  1619. out_free_trace_buf:
  1620. #ifdef PAGEBUF_TRACE
  1621. ktrace_free(pagebuf_trace_buf);
  1622. #endif
  1623. return error;
  1624. }
  1625. void
  1626. pagebuf_terminate(void)
  1627. {
  1628. kmem_shake_deregister(pagebuf_shake);
  1629. kthread_stop(xfsbufd_task);
  1630. destroy_workqueue(xfsdatad_workqueue);
  1631. destroy_workqueue(xfslogd_workqueue);
  1632. kmem_zone_destroy(pagebuf_zone);
  1633. #ifdef PAGEBUF_TRACE
  1634. ktrace_free(pagebuf_trace_buf);
  1635. #endif
  1636. }