bnx2.c 185 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2008 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #ifdef NETIF_F_HW_VLAN_TX
  36. #include <linux/if_vlan.h>
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/zlib.h>
  47. #include "bnx2.h"
  48. #include "bnx2_fw.h"
  49. #include "bnx2_fw2.h"
  50. #define FW_BUF_SIZE 0x10000
  51. #define DRV_MODULE_NAME "bnx2"
  52. #define PFX DRV_MODULE_NAME ": "
  53. #define DRV_MODULE_VERSION "1.7.4"
  54. #define DRV_MODULE_RELDATE "February 18, 2008"
  55. #define RUN_AT(x) (jiffies + (x))
  56. /* Time in jiffies before concluding the transmitter is hung. */
  57. #define TX_TIMEOUT (5*HZ)
  58. static char version[] __devinitdata =
  59. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  60. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  61. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
  62. MODULE_LICENSE("GPL");
  63. MODULE_VERSION(DRV_MODULE_VERSION);
  64. static int disable_msi = 0;
  65. module_param(disable_msi, int, 0);
  66. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  67. typedef enum {
  68. BCM5706 = 0,
  69. NC370T,
  70. NC370I,
  71. BCM5706S,
  72. NC370F,
  73. BCM5708,
  74. BCM5708S,
  75. BCM5709,
  76. BCM5709S,
  77. } board_t;
  78. /* indexed by board_t, above */
  79. static struct {
  80. char *name;
  81. } board_info[] __devinitdata = {
  82. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  83. { "HP NC370T Multifunction Gigabit Server Adapter" },
  84. { "HP NC370i Multifunction Gigabit Server Adapter" },
  85. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  86. { "HP NC370F Multifunction Gigabit Server Adapter" },
  87. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  88. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  89. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  90. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  91. };
  92. static struct pci_device_id bnx2_pci_tbl[] = {
  93. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  94. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  95. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  96. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  97. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  98. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  99. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  100. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  101. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  102. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  103. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  104. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  105. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  106. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  107. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  108. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  111. { 0, }
  112. };
  113. static struct flash_spec flash_table[] =
  114. {
  115. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  116. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  117. /* Slow EEPROM */
  118. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  119. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  120. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  121. "EEPROM - slow"},
  122. /* Expansion entry 0001 */
  123. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  124. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  125. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  126. "Entry 0001"},
  127. /* Saifun SA25F010 (non-buffered flash) */
  128. /* strap, cfg1, & write1 need updates */
  129. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  130. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  131. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  132. "Non-buffered flash (128kB)"},
  133. /* Saifun SA25F020 (non-buffered flash) */
  134. /* strap, cfg1, & write1 need updates */
  135. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  136. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  137. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  138. "Non-buffered flash (256kB)"},
  139. /* Expansion entry 0100 */
  140. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  141. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  142. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  143. "Entry 0100"},
  144. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  145. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  147. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  148. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  149. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  150. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  152. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  153. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  154. /* Saifun SA25F005 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  159. "Non-buffered flash (64kB)"},
  160. /* Fast EEPROM */
  161. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  162. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  163. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  164. "EEPROM - fast"},
  165. /* Expansion entry 1001 */
  166. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  168. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  169. "Entry 1001"},
  170. /* Expansion entry 1010 */
  171. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  173. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  174. "Entry 1010"},
  175. /* ATMEL AT45DB011B (buffered flash) */
  176. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  177. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  178. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  179. "Buffered flash (128kB)"},
  180. /* Expansion entry 1100 */
  181. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  182. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  183. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  184. "Entry 1100"},
  185. /* Expansion entry 1101 */
  186. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1101"},
  190. /* Ateml Expansion entry 1110 */
  191. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  192. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  193. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1110 (Atmel)"},
  195. /* ATMEL AT45DB021B (buffered flash) */
  196. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  199. "Buffered flash (256kB)"},
  200. };
  201. static struct flash_spec flash_5709 = {
  202. .flags = BNX2_NV_BUFFERED,
  203. .page_bits = BCM5709_FLASH_PAGE_BITS,
  204. .page_size = BCM5709_FLASH_PAGE_SIZE,
  205. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  206. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  207. .name = "5709 Buffered flash (256kB)",
  208. };
  209. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  210. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_napi *bnapi)
  211. {
  212. u32 diff;
  213. smp_mb();
  214. /* The ring uses 256 indices for 255 entries, one of them
  215. * needs to be skipped.
  216. */
  217. diff = bp->tx_prod - bnapi->tx_cons;
  218. if (unlikely(diff >= TX_DESC_CNT)) {
  219. diff &= 0xffff;
  220. if (diff == TX_DESC_CNT)
  221. diff = MAX_TX_DESC_CNT;
  222. }
  223. return (bp->tx_ring_size - diff);
  224. }
  225. static u32
  226. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  227. {
  228. u32 val;
  229. spin_lock_bh(&bp->indirect_lock);
  230. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  231. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  232. spin_unlock_bh(&bp->indirect_lock);
  233. return val;
  234. }
  235. static void
  236. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  237. {
  238. spin_lock_bh(&bp->indirect_lock);
  239. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  240. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  241. spin_unlock_bh(&bp->indirect_lock);
  242. }
  243. static void
  244. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  245. {
  246. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  247. }
  248. static u32
  249. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  250. {
  251. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  252. }
  253. static void
  254. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  255. {
  256. offset += cid_addr;
  257. spin_lock_bh(&bp->indirect_lock);
  258. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  259. int i;
  260. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  261. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  262. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  263. for (i = 0; i < 5; i++) {
  264. u32 val;
  265. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  266. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  267. break;
  268. udelay(5);
  269. }
  270. } else {
  271. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  272. REG_WR(bp, BNX2_CTX_DATA, val);
  273. }
  274. spin_unlock_bh(&bp->indirect_lock);
  275. }
  276. static int
  277. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  278. {
  279. u32 val1;
  280. int i, ret;
  281. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  282. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  283. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  284. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  285. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  286. udelay(40);
  287. }
  288. val1 = (bp->phy_addr << 21) | (reg << 16) |
  289. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  290. BNX2_EMAC_MDIO_COMM_START_BUSY;
  291. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  292. for (i = 0; i < 50; i++) {
  293. udelay(10);
  294. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  295. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  296. udelay(5);
  297. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  298. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  299. break;
  300. }
  301. }
  302. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  303. *val = 0x0;
  304. ret = -EBUSY;
  305. }
  306. else {
  307. *val = val1;
  308. ret = 0;
  309. }
  310. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  311. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  312. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  313. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  314. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  315. udelay(40);
  316. }
  317. return ret;
  318. }
  319. static int
  320. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  321. {
  322. u32 val1;
  323. int i, ret;
  324. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  325. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  326. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  327. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  328. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  329. udelay(40);
  330. }
  331. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  332. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  333. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  334. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  335. for (i = 0; i < 50; i++) {
  336. udelay(10);
  337. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  338. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  339. udelay(5);
  340. break;
  341. }
  342. }
  343. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  344. ret = -EBUSY;
  345. else
  346. ret = 0;
  347. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  348. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  349. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  350. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  351. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  352. udelay(40);
  353. }
  354. return ret;
  355. }
  356. static void
  357. bnx2_disable_int(struct bnx2 *bp)
  358. {
  359. int i;
  360. struct bnx2_napi *bnapi;
  361. for (i = 0; i < bp->irq_nvecs; i++) {
  362. bnapi = &bp->bnx2_napi[i];
  363. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  364. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  365. }
  366. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  367. }
  368. static void
  369. bnx2_enable_int(struct bnx2 *bp)
  370. {
  371. int i;
  372. struct bnx2_napi *bnapi;
  373. for (i = 0; i < bp->irq_nvecs; i++) {
  374. bnapi = &bp->bnx2_napi[i];
  375. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  376. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  377. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  378. bnapi->last_status_idx);
  379. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  380. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  381. bnapi->last_status_idx);
  382. }
  383. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  384. }
  385. static void
  386. bnx2_disable_int_sync(struct bnx2 *bp)
  387. {
  388. int i;
  389. atomic_inc(&bp->intr_sem);
  390. bnx2_disable_int(bp);
  391. for (i = 0; i < bp->irq_nvecs; i++)
  392. synchronize_irq(bp->irq_tbl[i].vector);
  393. }
  394. static void
  395. bnx2_napi_disable(struct bnx2 *bp)
  396. {
  397. int i;
  398. for (i = 0; i < bp->irq_nvecs; i++)
  399. napi_disable(&bp->bnx2_napi[i].napi);
  400. }
  401. static void
  402. bnx2_napi_enable(struct bnx2 *bp)
  403. {
  404. int i;
  405. for (i = 0; i < bp->irq_nvecs; i++)
  406. napi_enable(&bp->bnx2_napi[i].napi);
  407. }
  408. static void
  409. bnx2_netif_stop(struct bnx2 *bp)
  410. {
  411. bnx2_disable_int_sync(bp);
  412. if (netif_running(bp->dev)) {
  413. bnx2_napi_disable(bp);
  414. netif_tx_disable(bp->dev);
  415. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  416. }
  417. }
  418. static void
  419. bnx2_netif_start(struct bnx2 *bp)
  420. {
  421. if (atomic_dec_and_test(&bp->intr_sem)) {
  422. if (netif_running(bp->dev)) {
  423. netif_wake_queue(bp->dev);
  424. bnx2_napi_enable(bp);
  425. bnx2_enable_int(bp);
  426. }
  427. }
  428. }
  429. static void
  430. bnx2_free_mem(struct bnx2 *bp)
  431. {
  432. int i;
  433. for (i = 0; i < bp->ctx_pages; i++) {
  434. if (bp->ctx_blk[i]) {
  435. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  436. bp->ctx_blk[i],
  437. bp->ctx_blk_mapping[i]);
  438. bp->ctx_blk[i] = NULL;
  439. }
  440. }
  441. if (bp->status_blk) {
  442. pci_free_consistent(bp->pdev, bp->status_stats_size,
  443. bp->status_blk, bp->status_blk_mapping);
  444. bp->status_blk = NULL;
  445. bp->stats_blk = NULL;
  446. }
  447. if (bp->tx_desc_ring) {
  448. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  449. bp->tx_desc_ring, bp->tx_desc_mapping);
  450. bp->tx_desc_ring = NULL;
  451. }
  452. kfree(bp->tx_buf_ring);
  453. bp->tx_buf_ring = NULL;
  454. for (i = 0; i < bp->rx_max_ring; i++) {
  455. if (bp->rx_desc_ring[i])
  456. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  457. bp->rx_desc_ring[i],
  458. bp->rx_desc_mapping[i]);
  459. bp->rx_desc_ring[i] = NULL;
  460. }
  461. vfree(bp->rx_buf_ring);
  462. bp->rx_buf_ring = NULL;
  463. for (i = 0; i < bp->rx_max_pg_ring; i++) {
  464. if (bp->rx_pg_desc_ring[i])
  465. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  466. bp->rx_pg_desc_ring[i],
  467. bp->rx_pg_desc_mapping[i]);
  468. bp->rx_pg_desc_ring[i] = NULL;
  469. }
  470. if (bp->rx_pg_ring)
  471. vfree(bp->rx_pg_ring);
  472. bp->rx_pg_ring = NULL;
  473. }
  474. static int
  475. bnx2_alloc_mem(struct bnx2 *bp)
  476. {
  477. int i, status_blk_size;
  478. bp->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  479. if (bp->tx_buf_ring == NULL)
  480. return -ENOMEM;
  481. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  482. &bp->tx_desc_mapping);
  483. if (bp->tx_desc_ring == NULL)
  484. goto alloc_mem_err;
  485. bp->rx_buf_ring = vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  486. if (bp->rx_buf_ring == NULL)
  487. goto alloc_mem_err;
  488. memset(bp->rx_buf_ring, 0, SW_RXBD_RING_SIZE * bp->rx_max_ring);
  489. for (i = 0; i < bp->rx_max_ring; i++) {
  490. bp->rx_desc_ring[i] =
  491. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  492. &bp->rx_desc_mapping[i]);
  493. if (bp->rx_desc_ring[i] == NULL)
  494. goto alloc_mem_err;
  495. }
  496. if (bp->rx_pg_ring_size) {
  497. bp->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  498. bp->rx_max_pg_ring);
  499. if (bp->rx_pg_ring == NULL)
  500. goto alloc_mem_err;
  501. memset(bp->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  502. bp->rx_max_pg_ring);
  503. }
  504. for (i = 0; i < bp->rx_max_pg_ring; i++) {
  505. bp->rx_pg_desc_ring[i] =
  506. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  507. &bp->rx_pg_desc_mapping[i]);
  508. if (bp->rx_pg_desc_ring[i] == NULL)
  509. goto alloc_mem_err;
  510. }
  511. /* Combine status and statistics blocks into one allocation. */
  512. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  513. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  514. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  515. BNX2_SBLK_MSIX_ALIGN_SIZE);
  516. bp->status_stats_size = status_blk_size +
  517. sizeof(struct statistics_block);
  518. bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  519. &bp->status_blk_mapping);
  520. if (bp->status_blk == NULL)
  521. goto alloc_mem_err;
  522. memset(bp->status_blk, 0, bp->status_stats_size);
  523. bp->bnx2_napi[0].status_blk = bp->status_blk;
  524. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  525. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  526. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  527. bnapi->status_blk_msix = (void *)
  528. ((unsigned long) bp->status_blk +
  529. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  530. bnapi->int_num = i << 24;
  531. }
  532. }
  533. bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
  534. status_blk_size);
  535. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  536. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  537. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  538. if (bp->ctx_pages == 0)
  539. bp->ctx_pages = 1;
  540. for (i = 0; i < bp->ctx_pages; i++) {
  541. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  542. BCM_PAGE_SIZE,
  543. &bp->ctx_blk_mapping[i]);
  544. if (bp->ctx_blk[i] == NULL)
  545. goto alloc_mem_err;
  546. }
  547. }
  548. return 0;
  549. alloc_mem_err:
  550. bnx2_free_mem(bp);
  551. return -ENOMEM;
  552. }
  553. static void
  554. bnx2_report_fw_link(struct bnx2 *bp)
  555. {
  556. u32 fw_link_status = 0;
  557. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  558. return;
  559. if (bp->link_up) {
  560. u32 bmsr;
  561. switch (bp->line_speed) {
  562. case SPEED_10:
  563. if (bp->duplex == DUPLEX_HALF)
  564. fw_link_status = BNX2_LINK_STATUS_10HALF;
  565. else
  566. fw_link_status = BNX2_LINK_STATUS_10FULL;
  567. break;
  568. case SPEED_100:
  569. if (bp->duplex == DUPLEX_HALF)
  570. fw_link_status = BNX2_LINK_STATUS_100HALF;
  571. else
  572. fw_link_status = BNX2_LINK_STATUS_100FULL;
  573. break;
  574. case SPEED_1000:
  575. if (bp->duplex == DUPLEX_HALF)
  576. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  577. else
  578. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  579. break;
  580. case SPEED_2500:
  581. if (bp->duplex == DUPLEX_HALF)
  582. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  583. else
  584. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  585. break;
  586. }
  587. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  588. if (bp->autoneg) {
  589. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  590. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  591. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  592. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  593. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  594. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  595. else
  596. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  597. }
  598. }
  599. else
  600. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  601. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  602. }
  603. static char *
  604. bnx2_xceiver_str(struct bnx2 *bp)
  605. {
  606. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  607. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  608. "Copper"));
  609. }
  610. static void
  611. bnx2_report_link(struct bnx2 *bp)
  612. {
  613. if (bp->link_up) {
  614. netif_carrier_on(bp->dev);
  615. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  616. bnx2_xceiver_str(bp));
  617. printk("%d Mbps ", bp->line_speed);
  618. if (bp->duplex == DUPLEX_FULL)
  619. printk("full duplex");
  620. else
  621. printk("half duplex");
  622. if (bp->flow_ctrl) {
  623. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  624. printk(", receive ");
  625. if (bp->flow_ctrl & FLOW_CTRL_TX)
  626. printk("& transmit ");
  627. }
  628. else {
  629. printk(", transmit ");
  630. }
  631. printk("flow control ON");
  632. }
  633. printk("\n");
  634. }
  635. else {
  636. netif_carrier_off(bp->dev);
  637. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  638. bnx2_xceiver_str(bp));
  639. }
  640. bnx2_report_fw_link(bp);
  641. }
  642. static void
  643. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  644. {
  645. u32 local_adv, remote_adv;
  646. bp->flow_ctrl = 0;
  647. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  648. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  649. if (bp->duplex == DUPLEX_FULL) {
  650. bp->flow_ctrl = bp->req_flow_ctrl;
  651. }
  652. return;
  653. }
  654. if (bp->duplex != DUPLEX_FULL) {
  655. return;
  656. }
  657. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  658. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  659. u32 val;
  660. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  661. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  662. bp->flow_ctrl |= FLOW_CTRL_TX;
  663. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  664. bp->flow_ctrl |= FLOW_CTRL_RX;
  665. return;
  666. }
  667. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  668. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  669. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  670. u32 new_local_adv = 0;
  671. u32 new_remote_adv = 0;
  672. if (local_adv & ADVERTISE_1000XPAUSE)
  673. new_local_adv |= ADVERTISE_PAUSE_CAP;
  674. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  675. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  676. if (remote_adv & ADVERTISE_1000XPAUSE)
  677. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  678. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  679. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  680. local_adv = new_local_adv;
  681. remote_adv = new_remote_adv;
  682. }
  683. /* See Table 28B-3 of 802.3ab-1999 spec. */
  684. if (local_adv & ADVERTISE_PAUSE_CAP) {
  685. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  686. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  687. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  688. }
  689. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  690. bp->flow_ctrl = FLOW_CTRL_RX;
  691. }
  692. }
  693. else {
  694. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  695. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  696. }
  697. }
  698. }
  699. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  700. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  701. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  702. bp->flow_ctrl = FLOW_CTRL_TX;
  703. }
  704. }
  705. }
  706. static int
  707. bnx2_5709s_linkup(struct bnx2 *bp)
  708. {
  709. u32 val, speed;
  710. bp->link_up = 1;
  711. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  712. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  713. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  714. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  715. bp->line_speed = bp->req_line_speed;
  716. bp->duplex = bp->req_duplex;
  717. return 0;
  718. }
  719. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  720. switch (speed) {
  721. case MII_BNX2_GP_TOP_AN_SPEED_10:
  722. bp->line_speed = SPEED_10;
  723. break;
  724. case MII_BNX2_GP_TOP_AN_SPEED_100:
  725. bp->line_speed = SPEED_100;
  726. break;
  727. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  728. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  729. bp->line_speed = SPEED_1000;
  730. break;
  731. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  732. bp->line_speed = SPEED_2500;
  733. break;
  734. }
  735. if (val & MII_BNX2_GP_TOP_AN_FD)
  736. bp->duplex = DUPLEX_FULL;
  737. else
  738. bp->duplex = DUPLEX_HALF;
  739. return 0;
  740. }
  741. static int
  742. bnx2_5708s_linkup(struct bnx2 *bp)
  743. {
  744. u32 val;
  745. bp->link_up = 1;
  746. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  747. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  748. case BCM5708S_1000X_STAT1_SPEED_10:
  749. bp->line_speed = SPEED_10;
  750. break;
  751. case BCM5708S_1000X_STAT1_SPEED_100:
  752. bp->line_speed = SPEED_100;
  753. break;
  754. case BCM5708S_1000X_STAT1_SPEED_1G:
  755. bp->line_speed = SPEED_1000;
  756. break;
  757. case BCM5708S_1000X_STAT1_SPEED_2G5:
  758. bp->line_speed = SPEED_2500;
  759. break;
  760. }
  761. if (val & BCM5708S_1000X_STAT1_FD)
  762. bp->duplex = DUPLEX_FULL;
  763. else
  764. bp->duplex = DUPLEX_HALF;
  765. return 0;
  766. }
  767. static int
  768. bnx2_5706s_linkup(struct bnx2 *bp)
  769. {
  770. u32 bmcr, local_adv, remote_adv, common;
  771. bp->link_up = 1;
  772. bp->line_speed = SPEED_1000;
  773. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  774. if (bmcr & BMCR_FULLDPLX) {
  775. bp->duplex = DUPLEX_FULL;
  776. }
  777. else {
  778. bp->duplex = DUPLEX_HALF;
  779. }
  780. if (!(bmcr & BMCR_ANENABLE)) {
  781. return 0;
  782. }
  783. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  784. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  785. common = local_adv & remote_adv;
  786. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  787. if (common & ADVERTISE_1000XFULL) {
  788. bp->duplex = DUPLEX_FULL;
  789. }
  790. else {
  791. bp->duplex = DUPLEX_HALF;
  792. }
  793. }
  794. return 0;
  795. }
  796. static int
  797. bnx2_copper_linkup(struct bnx2 *bp)
  798. {
  799. u32 bmcr;
  800. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  801. if (bmcr & BMCR_ANENABLE) {
  802. u32 local_adv, remote_adv, common;
  803. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  804. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  805. common = local_adv & (remote_adv >> 2);
  806. if (common & ADVERTISE_1000FULL) {
  807. bp->line_speed = SPEED_1000;
  808. bp->duplex = DUPLEX_FULL;
  809. }
  810. else if (common & ADVERTISE_1000HALF) {
  811. bp->line_speed = SPEED_1000;
  812. bp->duplex = DUPLEX_HALF;
  813. }
  814. else {
  815. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  816. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  817. common = local_adv & remote_adv;
  818. if (common & ADVERTISE_100FULL) {
  819. bp->line_speed = SPEED_100;
  820. bp->duplex = DUPLEX_FULL;
  821. }
  822. else if (common & ADVERTISE_100HALF) {
  823. bp->line_speed = SPEED_100;
  824. bp->duplex = DUPLEX_HALF;
  825. }
  826. else if (common & ADVERTISE_10FULL) {
  827. bp->line_speed = SPEED_10;
  828. bp->duplex = DUPLEX_FULL;
  829. }
  830. else if (common & ADVERTISE_10HALF) {
  831. bp->line_speed = SPEED_10;
  832. bp->duplex = DUPLEX_HALF;
  833. }
  834. else {
  835. bp->line_speed = 0;
  836. bp->link_up = 0;
  837. }
  838. }
  839. }
  840. else {
  841. if (bmcr & BMCR_SPEED100) {
  842. bp->line_speed = SPEED_100;
  843. }
  844. else {
  845. bp->line_speed = SPEED_10;
  846. }
  847. if (bmcr & BMCR_FULLDPLX) {
  848. bp->duplex = DUPLEX_FULL;
  849. }
  850. else {
  851. bp->duplex = DUPLEX_HALF;
  852. }
  853. }
  854. return 0;
  855. }
  856. static void
  857. bnx2_init_rx_context0(struct bnx2 *bp)
  858. {
  859. u32 val, rx_cid_addr = GET_CID_ADDR(RX_CID);
  860. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  861. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  862. val |= 0x02 << 8;
  863. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  864. u32 lo_water, hi_water;
  865. if (bp->flow_ctrl & FLOW_CTRL_TX)
  866. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  867. else
  868. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  869. if (lo_water >= bp->rx_ring_size)
  870. lo_water = 0;
  871. hi_water = bp->rx_ring_size / 4;
  872. if (hi_water <= lo_water)
  873. lo_water = 0;
  874. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  875. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  876. if (hi_water > 0xf)
  877. hi_water = 0xf;
  878. else if (hi_water == 0)
  879. lo_water = 0;
  880. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  881. }
  882. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  883. }
  884. static int
  885. bnx2_set_mac_link(struct bnx2 *bp)
  886. {
  887. u32 val;
  888. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  889. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  890. (bp->duplex == DUPLEX_HALF)) {
  891. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  892. }
  893. /* Configure the EMAC mode register. */
  894. val = REG_RD(bp, BNX2_EMAC_MODE);
  895. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  896. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  897. BNX2_EMAC_MODE_25G_MODE);
  898. if (bp->link_up) {
  899. switch (bp->line_speed) {
  900. case SPEED_10:
  901. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  902. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  903. break;
  904. }
  905. /* fall through */
  906. case SPEED_100:
  907. val |= BNX2_EMAC_MODE_PORT_MII;
  908. break;
  909. case SPEED_2500:
  910. val |= BNX2_EMAC_MODE_25G_MODE;
  911. /* fall through */
  912. case SPEED_1000:
  913. val |= BNX2_EMAC_MODE_PORT_GMII;
  914. break;
  915. }
  916. }
  917. else {
  918. val |= BNX2_EMAC_MODE_PORT_GMII;
  919. }
  920. /* Set the MAC to operate in the appropriate duplex mode. */
  921. if (bp->duplex == DUPLEX_HALF)
  922. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  923. REG_WR(bp, BNX2_EMAC_MODE, val);
  924. /* Enable/disable rx PAUSE. */
  925. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  926. if (bp->flow_ctrl & FLOW_CTRL_RX)
  927. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  928. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  929. /* Enable/disable tx PAUSE. */
  930. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  931. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  932. if (bp->flow_ctrl & FLOW_CTRL_TX)
  933. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  934. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  935. /* Acknowledge the interrupt. */
  936. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  937. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  938. bnx2_init_rx_context0(bp);
  939. return 0;
  940. }
  941. static void
  942. bnx2_enable_bmsr1(struct bnx2 *bp)
  943. {
  944. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  945. (CHIP_NUM(bp) == CHIP_NUM_5709))
  946. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  947. MII_BNX2_BLK_ADDR_GP_STATUS);
  948. }
  949. static void
  950. bnx2_disable_bmsr1(struct bnx2 *bp)
  951. {
  952. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  953. (CHIP_NUM(bp) == CHIP_NUM_5709))
  954. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  955. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  956. }
  957. static int
  958. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  959. {
  960. u32 up1;
  961. int ret = 1;
  962. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  963. return 0;
  964. if (bp->autoneg & AUTONEG_SPEED)
  965. bp->advertising |= ADVERTISED_2500baseX_Full;
  966. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  967. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  968. bnx2_read_phy(bp, bp->mii_up1, &up1);
  969. if (!(up1 & BCM5708S_UP1_2G5)) {
  970. up1 |= BCM5708S_UP1_2G5;
  971. bnx2_write_phy(bp, bp->mii_up1, up1);
  972. ret = 0;
  973. }
  974. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  975. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  976. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  977. return ret;
  978. }
  979. static int
  980. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  981. {
  982. u32 up1;
  983. int ret = 0;
  984. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  985. return 0;
  986. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  987. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  988. bnx2_read_phy(bp, bp->mii_up1, &up1);
  989. if (up1 & BCM5708S_UP1_2G5) {
  990. up1 &= ~BCM5708S_UP1_2G5;
  991. bnx2_write_phy(bp, bp->mii_up1, up1);
  992. ret = 1;
  993. }
  994. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  995. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  996. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  997. return ret;
  998. }
  999. static void
  1000. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1001. {
  1002. u32 bmcr;
  1003. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1004. return;
  1005. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1006. u32 val;
  1007. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1008. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1009. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1010. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1011. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1012. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1013. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1014. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1015. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1016. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1017. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1018. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1019. }
  1020. if (bp->autoneg & AUTONEG_SPEED) {
  1021. bmcr &= ~BMCR_ANENABLE;
  1022. if (bp->req_duplex == DUPLEX_FULL)
  1023. bmcr |= BMCR_FULLDPLX;
  1024. }
  1025. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1026. }
  1027. static void
  1028. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1029. {
  1030. u32 bmcr;
  1031. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1032. return;
  1033. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1034. u32 val;
  1035. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1036. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1037. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1038. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1039. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1040. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1041. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1042. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1043. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1044. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1045. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1046. }
  1047. if (bp->autoneg & AUTONEG_SPEED)
  1048. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1049. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1050. }
  1051. static void
  1052. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1053. {
  1054. u32 val;
  1055. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1056. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1057. if (start)
  1058. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1059. else
  1060. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1061. }
  1062. static int
  1063. bnx2_set_link(struct bnx2 *bp)
  1064. {
  1065. u32 bmsr;
  1066. u8 link_up;
  1067. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1068. bp->link_up = 1;
  1069. return 0;
  1070. }
  1071. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1072. return 0;
  1073. link_up = bp->link_up;
  1074. bnx2_enable_bmsr1(bp);
  1075. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1076. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1077. bnx2_disable_bmsr1(bp);
  1078. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1079. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1080. u32 val, an_dbg;
  1081. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1082. bnx2_5706s_force_link_dn(bp, 0);
  1083. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1084. }
  1085. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1086. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1087. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1088. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1089. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1090. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1091. bmsr |= BMSR_LSTATUS;
  1092. else
  1093. bmsr &= ~BMSR_LSTATUS;
  1094. }
  1095. if (bmsr & BMSR_LSTATUS) {
  1096. bp->link_up = 1;
  1097. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1098. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1099. bnx2_5706s_linkup(bp);
  1100. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1101. bnx2_5708s_linkup(bp);
  1102. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1103. bnx2_5709s_linkup(bp);
  1104. }
  1105. else {
  1106. bnx2_copper_linkup(bp);
  1107. }
  1108. bnx2_resolve_flow_ctrl(bp);
  1109. }
  1110. else {
  1111. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1112. (bp->autoneg & AUTONEG_SPEED))
  1113. bnx2_disable_forced_2g5(bp);
  1114. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1115. u32 bmcr;
  1116. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1117. bmcr |= BMCR_ANENABLE;
  1118. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1119. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1120. }
  1121. bp->link_up = 0;
  1122. }
  1123. if (bp->link_up != link_up) {
  1124. bnx2_report_link(bp);
  1125. }
  1126. bnx2_set_mac_link(bp);
  1127. return 0;
  1128. }
  1129. static int
  1130. bnx2_reset_phy(struct bnx2 *bp)
  1131. {
  1132. int i;
  1133. u32 reg;
  1134. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1135. #define PHY_RESET_MAX_WAIT 100
  1136. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1137. udelay(10);
  1138. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1139. if (!(reg & BMCR_RESET)) {
  1140. udelay(20);
  1141. break;
  1142. }
  1143. }
  1144. if (i == PHY_RESET_MAX_WAIT) {
  1145. return -EBUSY;
  1146. }
  1147. return 0;
  1148. }
  1149. static u32
  1150. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1151. {
  1152. u32 adv = 0;
  1153. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1154. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1155. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1156. adv = ADVERTISE_1000XPAUSE;
  1157. }
  1158. else {
  1159. adv = ADVERTISE_PAUSE_CAP;
  1160. }
  1161. }
  1162. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1163. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1164. adv = ADVERTISE_1000XPSE_ASYM;
  1165. }
  1166. else {
  1167. adv = ADVERTISE_PAUSE_ASYM;
  1168. }
  1169. }
  1170. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1171. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1172. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1173. }
  1174. else {
  1175. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1176. }
  1177. }
  1178. return adv;
  1179. }
  1180. static int bnx2_fw_sync(struct bnx2 *, u32, int);
  1181. static int
  1182. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1183. {
  1184. u32 speed_arg = 0, pause_adv;
  1185. pause_adv = bnx2_phy_get_pause_adv(bp);
  1186. if (bp->autoneg & AUTONEG_SPEED) {
  1187. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1188. if (bp->advertising & ADVERTISED_10baseT_Half)
  1189. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1190. if (bp->advertising & ADVERTISED_10baseT_Full)
  1191. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1192. if (bp->advertising & ADVERTISED_100baseT_Half)
  1193. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1194. if (bp->advertising & ADVERTISED_100baseT_Full)
  1195. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1196. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1197. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1198. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1199. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1200. } else {
  1201. if (bp->req_line_speed == SPEED_2500)
  1202. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1203. else if (bp->req_line_speed == SPEED_1000)
  1204. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1205. else if (bp->req_line_speed == SPEED_100) {
  1206. if (bp->req_duplex == DUPLEX_FULL)
  1207. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1208. else
  1209. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1210. } else if (bp->req_line_speed == SPEED_10) {
  1211. if (bp->req_duplex == DUPLEX_FULL)
  1212. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1213. else
  1214. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1215. }
  1216. }
  1217. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1218. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1219. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1220. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1221. if (port == PORT_TP)
  1222. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1223. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1224. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1225. spin_unlock_bh(&bp->phy_lock);
  1226. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 0);
  1227. spin_lock_bh(&bp->phy_lock);
  1228. return 0;
  1229. }
  1230. static int
  1231. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1232. {
  1233. u32 adv, bmcr;
  1234. u32 new_adv = 0;
  1235. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1236. return (bnx2_setup_remote_phy(bp, port));
  1237. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1238. u32 new_bmcr;
  1239. int force_link_down = 0;
  1240. if (bp->req_line_speed == SPEED_2500) {
  1241. if (!bnx2_test_and_enable_2g5(bp))
  1242. force_link_down = 1;
  1243. } else if (bp->req_line_speed == SPEED_1000) {
  1244. if (bnx2_test_and_disable_2g5(bp))
  1245. force_link_down = 1;
  1246. }
  1247. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1248. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1249. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1250. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1251. new_bmcr |= BMCR_SPEED1000;
  1252. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1253. if (bp->req_line_speed == SPEED_2500)
  1254. bnx2_enable_forced_2g5(bp);
  1255. else if (bp->req_line_speed == SPEED_1000) {
  1256. bnx2_disable_forced_2g5(bp);
  1257. new_bmcr &= ~0x2000;
  1258. }
  1259. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1260. if (bp->req_line_speed == SPEED_2500)
  1261. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1262. else
  1263. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1264. }
  1265. if (bp->req_duplex == DUPLEX_FULL) {
  1266. adv |= ADVERTISE_1000XFULL;
  1267. new_bmcr |= BMCR_FULLDPLX;
  1268. }
  1269. else {
  1270. adv |= ADVERTISE_1000XHALF;
  1271. new_bmcr &= ~BMCR_FULLDPLX;
  1272. }
  1273. if ((new_bmcr != bmcr) || (force_link_down)) {
  1274. /* Force a link down visible on the other side */
  1275. if (bp->link_up) {
  1276. bnx2_write_phy(bp, bp->mii_adv, adv &
  1277. ~(ADVERTISE_1000XFULL |
  1278. ADVERTISE_1000XHALF));
  1279. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1280. BMCR_ANRESTART | BMCR_ANENABLE);
  1281. bp->link_up = 0;
  1282. netif_carrier_off(bp->dev);
  1283. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1284. bnx2_report_link(bp);
  1285. }
  1286. bnx2_write_phy(bp, bp->mii_adv, adv);
  1287. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1288. } else {
  1289. bnx2_resolve_flow_ctrl(bp);
  1290. bnx2_set_mac_link(bp);
  1291. }
  1292. return 0;
  1293. }
  1294. bnx2_test_and_enable_2g5(bp);
  1295. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1296. new_adv |= ADVERTISE_1000XFULL;
  1297. new_adv |= bnx2_phy_get_pause_adv(bp);
  1298. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1299. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1300. bp->serdes_an_pending = 0;
  1301. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1302. /* Force a link down visible on the other side */
  1303. if (bp->link_up) {
  1304. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1305. spin_unlock_bh(&bp->phy_lock);
  1306. msleep(20);
  1307. spin_lock_bh(&bp->phy_lock);
  1308. }
  1309. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1310. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1311. BMCR_ANENABLE);
  1312. /* Speed up link-up time when the link partner
  1313. * does not autonegotiate which is very common
  1314. * in blade servers. Some blade servers use
  1315. * IPMI for kerboard input and it's important
  1316. * to minimize link disruptions. Autoneg. involves
  1317. * exchanging base pages plus 3 next pages and
  1318. * normally completes in about 120 msec.
  1319. */
  1320. bp->current_interval = SERDES_AN_TIMEOUT;
  1321. bp->serdes_an_pending = 1;
  1322. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1323. } else {
  1324. bnx2_resolve_flow_ctrl(bp);
  1325. bnx2_set_mac_link(bp);
  1326. }
  1327. return 0;
  1328. }
  1329. #define ETHTOOL_ALL_FIBRE_SPEED \
  1330. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1331. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1332. (ADVERTISED_1000baseT_Full)
  1333. #define ETHTOOL_ALL_COPPER_SPEED \
  1334. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1335. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1336. ADVERTISED_1000baseT_Full)
  1337. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1338. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1339. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1340. static void
  1341. bnx2_set_default_remote_link(struct bnx2 *bp)
  1342. {
  1343. u32 link;
  1344. if (bp->phy_port == PORT_TP)
  1345. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1346. else
  1347. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1348. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1349. bp->req_line_speed = 0;
  1350. bp->autoneg |= AUTONEG_SPEED;
  1351. bp->advertising = ADVERTISED_Autoneg;
  1352. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1353. bp->advertising |= ADVERTISED_10baseT_Half;
  1354. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1355. bp->advertising |= ADVERTISED_10baseT_Full;
  1356. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1357. bp->advertising |= ADVERTISED_100baseT_Half;
  1358. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1359. bp->advertising |= ADVERTISED_100baseT_Full;
  1360. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1361. bp->advertising |= ADVERTISED_1000baseT_Full;
  1362. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1363. bp->advertising |= ADVERTISED_2500baseX_Full;
  1364. } else {
  1365. bp->autoneg = 0;
  1366. bp->advertising = 0;
  1367. bp->req_duplex = DUPLEX_FULL;
  1368. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1369. bp->req_line_speed = SPEED_10;
  1370. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1371. bp->req_duplex = DUPLEX_HALF;
  1372. }
  1373. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1374. bp->req_line_speed = SPEED_100;
  1375. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1376. bp->req_duplex = DUPLEX_HALF;
  1377. }
  1378. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1379. bp->req_line_speed = SPEED_1000;
  1380. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1381. bp->req_line_speed = SPEED_2500;
  1382. }
  1383. }
  1384. static void
  1385. bnx2_set_default_link(struct bnx2 *bp)
  1386. {
  1387. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1388. bnx2_set_default_remote_link(bp);
  1389. return;
  1390. }
  1391. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1392. bp->req_line_speed = 0;
  1393. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1394. u32 reg;
  1395. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1396. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1397. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1398. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1399. bp->autoneg = 0;
  1400. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1401. bp->req_duplex = DUPLEX_FULL;
  1402. }
  1403. } else
  1404. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1405. }
  1406. static void
  1407. bnx2_send_heart_beat(struct bnx2 *bp)
  1408. {
  1409. u32 msg;
  1410. u32 addr;
  1411. spin_lock(&bp->indirect_lock);
  1412. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1413. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1414. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1415. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1416. spin_unlock(&bp->indirect_lock);
  1417. }
  1418. static void
  1419. bnx2_remote_phy_event(struct bnx2 *bp)
  1420. {
  1421. u32 msg;
  1422. u8 link_up = bp->link_up;
  1423. u8 old_port;
  1424. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1425. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1426. bnx2_send_heart_beat(bp);
  1427. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1428. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1429. bp->link_up = 0;
  1430. else {
  1431. u32 speed;
  1432. bp->link_up = 1;
  1433. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1434. bp->duplex = DUPLEX_FULL;
  1435. switch (speed) {
  1436. case BNX2_LINK_STATUS_10HALF:
  1437. bp->duplex = DUPLEX_HALF;
  1438. case BNX2_LINK_STATUS_10FULL:
  1439. bp->line_speed = SPEED_10;
  1440. break;
  1441. case BNX2_LINK_STATUS_100HALF:
  1442. bp->duplex = DUPLEX_HALF;
  1443. case BNX2_LINK_STATUS_100BASE_T4:
  1444. case BNX2_LINK_STATUS_100FULL:
  1445. bp->line_speed = SPEED_100;
  1446. break;
  1447. case BNX2_LINK_STATUS_1000HALF:
  1448. bp->duplex = DUPLEX_HALF;
  1449. case BNX2_LINK_STATUS_1000FULL:
  1450. bp->line_speed = SPEED_1000;
  1451. break;
  1452. case BNX2_LINK_STATUS_2500HALF:
  1453. bp->duplex = DUPLEX_HALF;
  1454. case BNX2_LINK_STATUS_2500FULL:
  1455. bp->line_speed = SPEED_2500;
  1456. break;
  1457. default:
  1458. bp->line_speed = 0;
  1459. break;
  1460. }
  1461. bp->flow_ctrl = 0;
  1462. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1463. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1464. if (bp->duplex == DUPLEX_FULL)
  1465. bp->flow_ctrl = bp->req_flow_ctrl;
  1466. } else {
  1467. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1468. bp->flow_ctrl |= FLOW_CTRL_TX;
  1469. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1470. bp->flow_ctrl |= FLOW_CTRL_RX;
  1471. }
  1472. old_port = bp->phy_port;
  1473. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1474. bp->phy_port = PORT_FIBRE;
  1475. else
  1476. bp->phy_port = PORT_TP;
  1477. if (old_port != bp->phy_port)
  1478. bnx2_set_default_link(bp);
  1479. }
  1480. if (bp->link_up != link_up)
  1481. bnx2_report_link(bp);
  1482. bnx2_set_mac_link(bp);
  1483. }
  1484. static int
  1485. bnx2_set_remote_link(struct bnx2 *bp)
  1486. {
  1487. u32 evt_code;
  1488. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1489. switch (evt_code) {
  1490. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1491. bnx2_remote_phy_event(bp);
  1492. break;
  1493. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1494. default:
  1495. bnx2_send_heart_beat(bp);
  1496. break;
  1497. }
  1498. return 0;
  1499. }
  1500. static int
  1501. bnx2_setup_copper_phy(struct bnx2 *bp)
  1502. {
  1503. u32 bmcr;
  1504. u32 new_bmcr;
  1505. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1506. if (bp->autoneg & AUTONEG_SPEED) {
  1507. u32 adv_reg, adv1000_reg;
  1508. u32 new_adv_reg = 0;
  1509. u32 new_adv1000_reg = 0;
  1510. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1511. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1512. ADVERTISE_PAUSE_ASYM);
  1513. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1514. adv1000_reg &= PHY_ALL_1000_SPEED;
  1515. if (bp->advertising & ADVERTISED_10baseT_Half)
  1516. new_adv_reg |= ADVERTISE_10HALF;
  1517. if (bp->advertising & ADVERTISED_10baseT_Full)
  1518. new_adv_reg |= ADVERTISE_10FULL;
  1519. if (bp->advertising & ADVERTISED_100baseT_Half)
  1520. new_adv_reg |= ADVERTISE_100HALF;
  1521. if (bp->advertising & ADVERTISED_100baseT_Full)
  1522. new_adv_reg |= ADVERTISE_100FULL;
  1523. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1524. new_adv1000_reg |= ADVERTISE_1000FULL;
  1525. new_adv_reg |= ADVERTISE_CSMA;
  1526. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1527. if ((adv1000_reg != new_adv1000_reg) ||
  1528. (adv_reg != new_adv_reg) ||
  1529. ((bmcr & BMCR_ANENABLE) == 0)) {
  1530. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1531. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1532. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1533. BMCR_ANENABLE);
  1534. }
  1535. else if (bp->link_up) {
  1536. /* Flow ctrl may have changed from auto to forced */
  1537. /* or vice-versa. */
  1538. bnx2_resolve_flow_ctrl(bp);
  1539. bnx2_set_mac_link(bp);
  1540. }
  1541. return 0;
  1542. }
  1543. new_bmcr = 0;
  1544. if (bp->req_line_speed == SPEED_100) {
  1545. new_bmcr |= BMCR_SPEED100;
  1546. }
  1547. if (bp->req_duplex == DUPLEX_FULL) {
  1548. new_bmcr |= BMCR_FULLDPLX;
  1549. }
  1550. if (new_bmcr != bmcr) {
  1551. u32 bmsr;
  1552. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1553. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1554. if (bmsr & BMSR_LSTATUS) {
  1555. /* Force link down */
  1556. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1557. spin_unlock_bh(&bp->phy_lock);
  1558. msleep(50);
  1559. spin_lock_bh(&bp->phy_lock);
  1560. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1561. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1562. }
  1563. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1564. /* Normally, the new speed is setup after the link has
  1565. * gone down and up again. In some cases, link will not go
  1566. * down so we need to set up the new speed here.
  1567. */
  1568. if (bmsr & BMSR_LSTATUS) {
  1569. bp->line_speed = bp->req_line_speed;
  1570. bp->duplex = bp->req_duplex;
  1571. bnx2_resolve_flow_ctrl(bp);
  1572. bnx2_set_mac_link(bp);
  1573. }
  1574. } else {
  1575. bnx2_resolve_flow_ctrl(bp);
  1576. bnx2_set_mac_link(bp);
  1577. }
  1578. return 0;
  1579. }
  1580. static int
  1581. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1582. {
  1583. if (bp->loopback == MAC_LOOPBACK)
  1584. return 0;
  1585. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1586. return (bnx2_setup_serdes_phy(bp, port));
  1587. }
  1588. else {
  1589. return (bnx2_setup_copper_phy(bp));
  1590. }
  1591. }
  1592. static int
  1593. bnx2_init_5709s_phy(struct bnx2 *bp)
  1594. {
  1595. u32 val;
  1596. bp->mii_bmcr = MII_BMCR + 0x10;
  1597. bp->mii_bmsr = MII_BMSR + 0x10;
  1598. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1599. bp->mii_adv = MII_ADVERTISE + 0x10;
  1600. bp->mii_lpa = MII_LPA + 0x10;
  1601. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1602. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1603. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1604. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1605. bnx2_reset_phy(bp);
  1606. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1607. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1608. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1609. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1610. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1611. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1612. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1613. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1614. val |= BCM5708S_UP1_2G5;
  1615. else
  1616. val &= ~BCM5708S_UP1_2G5;
  1617. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1618. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1619. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1620. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1621. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1622. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1623. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1624. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1625. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1626. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1627. return 0;
  1628. }
  1629. static int
  1630. bnx2_init_5708s_phy(struct bnx2 *bp)
  1631. {
  1632. u32 val;
  1633. bnx2_reset_phy(bp);
  1634. bp->mii_up1 = BCM5708S_UP1;
  1635. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1636. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1637. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1638. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1639. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1640. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1641. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1642. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1643. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1644. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1645. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1646. val |= BCM5708S_UP1_2G5;
  1647. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1648. }
  1649. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1650. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1651. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1652. /* increase tx signal amplitude */
  1653. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1654. BCM5708S_BLK_ADDR_TX_MISC);
  1655. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1656. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1657. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1658. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1659. }
  1660. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1661. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1662. if (val) {
  1663. u32 is_backplane;
  1664. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1665. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1666. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1667. BCM5708S_BLK_ADDR_TX_MISC);
  1668. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1669. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1670. BCM5708S_BLK_ADDR_DIG);
  1671. }
  1672. }
  1673. return 0;
  1674. }
  1675. static int
  1676. bnx2_init_5706s_phy(struct bnx2 *bp)
  1677. {
  1678. bnx2_reset_phy(bp);
  1679. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1680. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1681. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1682. if (bp->dev->mtu > 1500) {
  1683. u32 val;
  1684. /* Set extended packet length bit */
  1685. bnx2_write_phy(bp, 0x18, 0x7);
  1686. bnx2_read_phy(bp, 0x18, &val);
  1687. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1688. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1689. bnx2_read_phy(bp, 0x1c, &val);
  1690. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1691. }
  1692. else {
  1693. u32 val;
  1694. bnx2_write_phy(bp, 0x18, 0x7);
  1695. bnx2_read_phy(bp, 0x18, &val);
  1696. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1697. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1698. bnx2_read_phy(bp, 0x1c, &val);
  1699. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1700. }
  1701. return 0;
  1702. }
  1703. static int
  1704. bnx2_init_copper_phy(struct bnx2 *bp)
  1705. {
  1706. u32 val;
  1707. bnx2_reset_phy(bp);
  1708. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1709. bnx2_write_phy(bp, 0x18, 0x0c00);
  1710. bnx2_write_phy(bp, 0x17, 0x000a);
  1711. bnx2_write_phy(bp, 0x15, 0x310b);
  1712. bnx2_write_phy(bp, 0x17, 0x201f);
  1713. bnx2_write_phy(bp, 0x15, 0x9506);
  1714. bnx2_write_phy(bp, 0x17, 0x401f);
  1715. bnx2_write_phy(bp, 0x15, 0x14e2);
  1716. bnx2_write_phy(bp, 0x18, 0x0400);
  1717. }
  1718. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1719. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1720. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1721. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1722. val &= ~(1 << 8);
  1723. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1724. }
  1725. if (bp->dev->mtu > 1500) {
  1726. /* Set extended packet length bit */
  1727. bnx2_write_phy(bp, 0x18, 0x7);
  1728. bnx2_read_phy(bp, 0x18, &val);
  1729. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1730. bnx2_read_phy(bp, 0x10, &val);
  1731. bnx2_write_phy(bp, 0x10, val | 0x1);
  1732. }
  1733. else {
  1734. bnx2_write_phy(bp, 0x18, 0x7);
  1735. bnx2_read_phy(bp, 0x18, &val);
  1736. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1737. bnx2_read_phy(bp, 0x10, &val);
  1738. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1739. }
  1740. /* ethernet@wirespeed */
  1741. bnx2_write_phy(bp, 0x18, 0x7007);
  1742. bnx2_read_phy(bp, 0x18, &val);
  1743. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1744. return 0;
  1745. }
  1746. static int
  1747. bnx2_init_phy(struct bnx2 *bp)
  1748. {
  1749. u32 val;
  1750. int rc = 0;
  1751. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1752. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1753. bp->mii_bmcr = MII_BMCR;
  1754. bp->mii_bmsr = MII_BMSR;
  1755. bp->mii_bmsr1 = MII_BMSR;
  1756. bp->mii_adv = MII_ADVERTISE;
  1757. bp->mii_lpa = MII_LPA;
  1758. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1759. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1760. goto setup_phy;
  1761. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1762. bp->phy_id = val << 16;
  1763. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1764. bp->phy_id |= val & 0xffff;
  1765. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1766. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1767. rc = bnx2_init_5706s_phy(bp);
  1768. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1769. rc = bnx2_init_5708s_phy(bp);
  1770. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1771. rc = bnx2_init_5709s_phy(bp);
  1772. }
  1773. else {
  1774. rc = bnx2_init_copper_phy(bp);
  1775. }
  1776. setup_phy:
  1777. if (!rc)
  1778. rc = bnx2_setup_phy(bp, bp->phy_port);
  1779. return rc;
  1780. }
  1781. static int
  1782. bnx2_set_mac_loopback(struct bnx2 *bp)
  1783. {
  1784. u32 mac_mode;
  1785. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1786. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1787. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1788. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1789. bp->link_up = 1;
  1790. return 0;
  1791. }
  1792. static int bnx2_test_link(struct bnx2 *);
  1793. static int
  1794. bnx2_set_phy_loopback(struct bnx2 *bp)
  1795. {
  1796. u32 mac_mode;
  1797. int rc, i;
  1798. spin_lock_bh(&bp->phy_lock);
  1799. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  1800. BMCR_SPEED1000);
  1801. spin_unlock_bh(&bp->phy_lock);
  1802. if (rc)
  1803. return rc;
  1804. for (i = 0; i < 10; i++) {
  1805. if (bnx2_test_link(bp) == 0)
  1806. break;
  1807. msleep(100);
  1808. }
  1809. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1810. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1811. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1812. BNX2_EMAC_MODE_25G_MODE);
  1813. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  1814. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1815. bp->link_up = 1;
  1816. return 0;
  1817. }
  1818. static int
  1819. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
  1820. {
  1821. int i;
  1822. u32 val;
  1823. bp->fw_wr_seq++;
  1824. msg_data |= bp->fw_wr_seq;
  1825. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  1826. /* wait for an acknowledgement. */
  1827. for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
  1828. msleep(10);
  1829. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  1830. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1831. break;
  1832. }
  1833. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  1834. return 0;
  1835. /* If we timed out, inform the firmware that this is the case. */
  1836. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  1837. if (!silent)
  1838. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  1839. "%x\n", msg_data);
  1840. msg_data &= ~BNX2_DRV_MSG_CODE;
  1841. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1842. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  1843. return -EBUSY;
  1844. }
  1845. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  1846. return -EIO;
  1847. return 0;
  1848. }
  1849. static int
  1850. bnx2_init_5709_context(struct bnx2 *bp)
  1851. {
  1852. int i, ret = 0;
  1853. u32 val;
  1854. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  1855. val |= (BCM_PAGE_BITS - 8) << 16;
  1856. REG_WR(bp, BNX2_CTX_COMMAND, val);
  1857. for (i = 0; i < 10; i++) {
  1858. val = REG_RD(bp, BNX2_CTX_COMMAND);
  1859. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  1860. break;
  1861. udelay(2);
  1862. }
  1863. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  1864. return -EBUSY;
  1865. for (i = 0; i < bp->ctx_pages; i++) {
  1866. int j;
  1867. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  1868. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  1869. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  1870. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  1871. (u64) bp->ctx_blk_mapping[i] >> 32);
  1872. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  1873. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  1874. for (j = 0; j < 10; j++) {
  1875. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  1876. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  1877. break;
  1878. udelay(5);
  1879. }
  1880. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  1881. ret = -EBUSY;
  1882. break;
  1883. }
  1884. }
  1885. return ret;
  1886. }
  1887. static void
  1888. bnx2_init_context(struct bnx2 *bp)
  1889. {
  1890. u32 vcid;
  1891. vcid = 96;
  1892. while (vcid) {
  1893. u32 vcid_addr, pcid_addr, offset;
  1894. int i;
  1895. vcid--;
  1896. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1897. u32 new_vcid;
  1898. vcid_addr = GET_PCID_ADDR(vcid);
  1899. if (vcid & 0x8) {
  1900. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1901. }
  1902. else {
  1903. new_vcid = vcid;
  1904. }
  1905. pcid_addr = GET_PCID_ADDR(new_vcid);
  1906. }
  1907. else {
  1908. vcid_addr = GET_CID_ADDR(vcid);
  1909. pcid_addr = vcid_addr;
  1910. }
  1911. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  1912. vcid_addr += (i << PHY_CTX_SHIFT);
  1913. pcid_addr += (i << PHY_CTX_SHIFT);
  1914. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1915. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1916. /* Zero out the context. */
  1917. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  1918. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  1919. }
  1920. }
  1921. }
  1922. static int
  1923. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1924. {
  1925. u16 *good_mbuf;
  1926. u32 good_mbuf_cnt;
  1927. u32 val;
  1928. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1929. if (good_mbuf == NULL) {
  1930. printk(KERN_ERR PFX "Failed to allocate memory in "
  1931. "bnx2_alloc_bad_rbuf\n");
  1932. return -ENOMEM;
  1933. }
  1934. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1935. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1936. good_mbuf_cnt = 0;
  1937. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1938. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  1939. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1940. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  1941. BNX2_RBUF_COMMAND_ALLOC_REQ);
  1942. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1943. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1944. /* The addresses with Bit 9 set are bad memory blocks. */
  1945. if (!(val & (1 << 9))) {
  1946. good_mbuf[good_mbuf_cnt] = (u16) val;
  1947. good_mbuf_cnt++;
  1948. }
  1949. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  1950. }
  1951. /* Free the good ones back to the mbuf pool thus discarding
  1952. * all the bad ones. */
  1953. while (good_mbuf_cnt) {
  1954. good_mbuf_cnt--;
  1955. val = good_mbuf[good_mbuf_cnt];
  1956. val = (val << 9) | val | 1;
  1957. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1958. }
  1959. kfree(good_mbuf);
  1960. return 0;
  1961. }
  1962. static void
  1963. bnx2_set_mac_addr(struct bnx2 *bp)
  1964. {
  1965. u32 val;
  1966. u8 *mac_addr = bp->dev->dev_addr;
  1967. val = (mac_addr[0] << 8) | mac_addr[1];
  1968. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1969. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1970. (mac_addr[4] << 8) | mac_addr[5];
  1971. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1972. }
  1973. static inline int
  1974. bnx2_alloc_rx_page(struct bnx2 *bp, u16 index)
  1975. {
  1976. dma_addr_t mapping;
  1977. struct sw_pg *rx_pg = &bp->rx_pg_ring[index];
  1978. struct rx_bd *rxbd =
  1979. &bp->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  1980. struct page *page = alloc_page(GFP_ATOMIC);
  1981. if (!page)
  1982. return -ENOMEM;
  1983. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  1984. PCI_DMA_FROMDEVICE);
  1985. rx_pg->page = page;
  1986. pci_unmap_addr_set(rx_pg, mapping, mapping);
  1987. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1988. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1989. return 0;
  1990. }
  1991. static void
  1992. bnx2_free_rx_page(struct bnx2 *bp, u16 index)
  1993. {
  1994. struct sw_pg *rx_pg = &bp->rx_pg_ring[index];
  1995. struct page *page = rx_pg->page;
  1996. if (!page)
  1997. return;
  1998. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  1999. PCI_DMA_FROMDEVICE);
  2000. __free_page(page);
  2001. rx_pg->page = NULL;
  2002. }
  2003. static inline int
  2004. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_napi *bnapi, u16 index)
  2005. {
  2006. struct sk_buff *skb;
  2007. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  2008. dma_addr_t mapping;
  2009. struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2010. unsigned long align;
  2011. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2012. if (skb == NULL) {
  2013. return -ENOMEM;
  2014. }
  2015. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2016. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2017. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2018. PCI_DMA_FROMDEVICE);
  2019. rx_buf->skb = skb;
  2020. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2021. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2022. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2023. bnapi->rx_prod_bseq += bp->rx_buf_use_size;
  2024. return 0;
  2025. }
  2026. static int
  2027. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2028. {
  2029. struct status_block *sblk = bnapi->status_blk;
  2030. u32 new_link_state, old_link_state;
  2031. int is_set = 1;
  2032. new_link_state = sblk->status_attn_bits & event;
  2033. old_link_state = sblk->status_attn_bits_ack & event;
  2034. if (new_link_state != old_link_state) {
  2035. if (new_link_state)
  2036. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2037. else
  2038. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2039. } else
  2040. is_set = 0;
  2041. return is_set;
  2042. }
  2043. static void
  2044. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2045. {
  2046. spin_lock(&bp->phy_lock);
  2047. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2048. bnx2_set_link(bp);
  2049. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2050. bnx2_set_remote_link(bp);
  2051. spin_unlock(&bp->phy_lock);
  2052. }
  2053. static inline u16
  2054. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2055. {
  2056. u16 cons;
  2057. if (bnapi->int_num == 0)
  2058. cons = bnapi->status_blk->status_tx_quick_consumer_index0;
  2059. else
  2060. cons = bnapi->status_blk_msix->status_tx_quick_consumer_index;
  2061. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2062. cons++;
  2063. return cons;
  2064. }
  2065. static int
  2066. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2067. {
  2068. u16 hw_cons, sw_cons, sw_ring_cons;
  2069. int tx_pkt = 0;
  2070. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2071. sw_cons = bnapi->tx_cons;
  2072. while (sw_cons != hw_cons) {
  2073. struct sw_bd *tx_buf;
  2074. struct sk_buff *skb;
  2075. int i, last;
  2076. sw_ring_cons = TX_RING_IDX(sw_cons);
  2077. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  2078. skb = tx_buf->skb;
  2079. /* partial BD completions possible with TSO packets */
  2080. if (skb_is_gso(skb)) {
  2081. u16 last_idx, last_ring_idx;
  2082. last_idx = sw_cons +
  2083. skb_shinfo(skb)->nr_frags + 1;
  2084. last_ring_idx = sw_ring_cons +
  2085. skb_shinfo(skb)->nr_frags + 1;
  2086. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2087. last_idx++;
  2088. }
  2089. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2090. break;
  2091. }
  2092. }
  2093. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2094. skb_headlen(skb), PCI_DMA_TODEVICE);
  2095. tx_buf->skb = NULL;
  2096. last = skb_shinfo(skb)->nr_frags;
  2097. for (i = 0; i < last; i++) {
  2098. sw_cons = NEXT_TX_BD(sw_cons);
  2099. pci_unmap_page(bp->pdev,
  2100. pci_unmap_addr(
  2101. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2102. mapping),
  2103. skb_shinfo(skb)->frags[i].size,
  2104. PCI_DMA_TODEVICE);
  2105. }
  2106. sw_cons = NEXT_TX_BD(sw_cons);
  2107. dev_kfree_skb(skb);
  2108. tx_pkt++;
  2109. if (tx_pkt == budget)
  2110. break;
  2111. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2112. }
  2113. bnapi->hw_tx_cons = hw_cons;
  2114. bnapi->tx_cons = sw_cons;
  2115. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2116. * before checking for netif_queue_stopped(). Without the
  2117. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2118. * will miss it and cause the queue to be stopped forever.
  2119. */
  2120. smp_mb();
  2121. if (unlikely(netif_queue_stopped(bp->dev)) &&
  2122. (bnx2_tx_avail(bp, bnapi) > bp->tx_wake_thresh)) {
  2123. netif_tx_lock(bp->dev);
  2124. if ((netif_queue_stopped(bp->dev)) &&
  2125. (bnx2_tx_avail(bp, bnapi) > bp->tx_wake_thresh))
  2126. netif_wake_queue(bp->dev);
  2127. netif_tx_unlock(bp->dev);
  2128. }
  2129. return tx_pkt;
  2130. }
  2131. static void
  2132. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2133. struct sk_buff *skb, int count)
  2134. {
  2135. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2136. struct rx_bd *cons_bd, *prod_bd;
  2137. dma_addr_t mapping;
  2138. int i;
  2139. u16 hw_prod = bnapi->rx_pg_prod, prod;
  2140. u16 cons = bnapi->rx_pg_cons;
  2141. for (i = 0; i < count; i++) {
  2142. prod = RX_PG_RING_IDX(hw_prod);
  2143. prod_rx_pg = &bp->rx_pg_ring[prod];
  2144. cons_rx_pg = &bp->rx_pg_ring[cons];
  2145. cons_bd = &bp->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2146. prod_bd = &bp->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2147. if (i == 0 && skb) {
  2148. struct page *page;
  2149. struct skb_shared_info *shinfo;
  2150. shinfo = skb_shinfo(skb);
  2151. shinfo->nr_frags--;
  2152. page = shinfo->frags[shinfo->nr_frags].page;
  2153. shinfo->frags[shinfo->nr_frags].page = NULL;
  2154. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2155. PCI_DMA_FROMDEVICE);
  2156. cons_rx_pg->page = page;
  2157. pci_unmap_addr_set(cons_rx_pg, mapping, mapping);
  2158. dev_kfree_skb(skb);
  2159. }
  2160. if (prod != cons) {
  2161. prod_rx_pg->page = cons_rx_pg->page;
  2162. cons_rx_pg->page = NULL;
  2163. pci_unmap_addr_set(prod_rx_pg, mapping,
  2164. pci_unmap_addr(cons_rx_pg, mapping));
  2165. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2166. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2167. }
  2168. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2169. hw_prod = NEXT_RX_BD(hw_prod);
  2170. }
  2171. bnapi->rx_pg_prod = hw_prod;
  2172. bnapi->rx_pg_cons = cons;
  2173. }
  2174. static inline void
  2175. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_napi *bnapi, struct sk_buff *skb,
  2176. u16 cons, u16 prod)
  2177. {
  2178. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2179. struct rx_bd *cons_bd, *prod_bd;
  2180. cons_rx_buf = &bp->rx_buf_ring[cons];
  2181. prod_rx_buf = &bp->rx_buf_ring[prod];
  2182. pci_dma_sync_single_for_device(bp->pdev,
  2183. pci_unmap_addr(cons_rx_buf, mapping),
  2184. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2185. bnapi->rx_prod_bseq += bp->rx_buf_use_size;
  2186. prod_rx_buf->skb = skb;
  2187. if (cons == prod)
  2188. return;
  2189. pci_unmap_addr_set(prod_rx_buf, mapping,
  2190. pci_unmap_addr(cons_rx_buf, mapping));
  2191. cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2192. prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2193. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2194. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2195. }
  2196. static int
  2197. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_napi *bnapi, struct sk_buff *skb,
  2198. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2199. u32 ring_idx)
  2200. {
  2201. int err;
  2202. u16 prod = ring_idx & 0xffff;
  2203. err = bnx2_alloc_rx_skb(bp, bnapi, prod);
  2204. if (unlikely(err)) {
  2205. bnx2_reuse_rx_skb(bp, bnapi, skb, (u16) (ring_idx >> 16), prod);
  2206. if (hdr_len) {
  2207. unsigned int raw_len = len + 4;
  2208. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2209. bnx2_reuse_rx_skb_pages(bp, bnapi, NULL, pages);
  2210. }
  2211. return err;
  2212. }
  2213. skb_reserve(skb, bp->rx_offset);
  2214. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2215. PCI_DMA_FROMDEVICE);
  2216. if (hdr_len == 0) {
  2217. skb_put(skb, len);
  2218. return 0;
  2219. } else {
  2220. unsigned int i, frag_len, frag_size, pages;
  2221. struct sw_pg *rx_pg;
  2222. u16 pg_cons = bnapi->rx_pg_cons;
  2223. u16 pg_prod = bnapi->rx_pg_prod;
  2224. frag_size = len + 4 - hdr_len;
  2225. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2226. skb_put(skb, hdr_len);
  2227. for (i = 0; i < pages; i++) {
  2228. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2229. if (unlikely(frag_len <= 4)) {
  2230. unsigned int tail = 4 - frag_len;
  2231. bnapi->rx_pg_cons = pg_cons;
  2232. bnapi->rx_pg_prod = pg_prod;
  2233. bnx2_reuse_rx_skb_pages(bp, bnapi, NULL,
  2234. pages - i);
  2235. skb->len -= tail;
  2236. if (i == 0) {
  2237. skb->tail -= tail;
  2238. } else {
  2239. skb_frag_t *frag =
  2240. &skb_shinfo(skb)->frags[i - 1];
  2241. frag->size -= tail;
  2242. skb->data_len -= tail;
  2243. skb->truesize -= tail;
  2244. }
  2245. return 0;
  2246. }
  2247. rx_pg = &bp->rx_pg_ring[pg_cons];
  2248. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping),
  2249. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2250. if (i == pages - 1)
  2251. frag_len -= 4;
  2252. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2253. rx_pg->page = NULL;
  2254. err = bnx2_alloc_rx_page(bp, RX_PG_RING_IDX(pg_prod));
  2255. if (unlikely(err)) {
  2256. bnapi->rx_pg_cons = pg_cons;
  2257. bnapi->rx_pg_prod = pg_prod;
  2258. bnx2_reuse_rx_skb_pages(bp, bnapi, skb,
  2259. pages - i);
  2260. return err;
  2261. }
  2262. frag_size -= frag_len;
  2263. skb->data_len += frag_len;
  2264. skb->truesize += frag_len;
  2265. skb->len += frag_len;
  2266. pg_prod = NEXT_RX_BD(pg_prod);
  2267. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2268. }
  2269. bnapi->rx_pg_prod = pg_prod;
  2270. bnapi->rx_pg_cons = pg_cons;
  2271. }
  2272. return 0;
  2273. }
  2274. static inline u16
  2275. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2276. {
  2277. u16 cons = bnapi->status_blk->status_rx_quick_consumer_index0;
  2278. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2279. cons++;
  2280. return cons;
  2281. }
  2282. static int
  2283. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2284. {
  2285. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2286. struct l2_fhdr *rx_hdr;
  2287. int rx_pkt = 0, pg_ring_used = 0;
  2288. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2289. sw_cons = bnapi->rx_cons;
  2290. sw_prod = bnapi->rx_prod;
  2291. /* Memory barrier necessary as speculative reads of the rx
  2292. * buffer can be ahead of the index in the status block
  2293. */
  2294. rmb();
  2295. while (sw_cons != hw_cons) {
  2296. unsigned int len, hdr_len;
  2297. u32 status;
  2298. struct sw_bd *rx_buf;
  2299. struct sk_buff *skb;
  2300. dma_addr_t dma_addr;
  2301. sw_ring_cons = RX_RING_IDX(sw_cons);
  2302. sw_ring_prod = RX_RING_IDX(sw_prod);
  2303. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  2304. skb = rx_buf->skb;
  2305. rx_buf->skb = NULL;
  2306. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2307. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2308. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2309. rx_hdr = (struct l2_fhdr *) skb->data;
  2310. len = rx_hdr->l2_fhdr_pkt_len;
  2311. if ((status = rx_hdr->l2_fhdr_status) &
  2312. (L2_FHDR_ERRORS_BAD_CRC |
  2313. L2_FHDR_ERRORS_PHY_DECODE |
  2314. L2_FHDR_ERRORS_ALIGNMENT |
  2315. L2_FHDR_ERRORS_TOO_SHORT |
  2316. L2_FHDR_ERRORS_GIANT_FRAME)) {
  2317. bnx2_reuse_rx_skb(bp, bnapi, skb, sw_ring_cons,
  2318. sw_ring_prod);
  2319. goto next_rx;
  2320. }
  2321. hdr_len = 0;
  2322. if (status & L2_FHDR_STATUS_SPLIT) {
  2323. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2324. pg_ring_used = 1;
  2325. } else if (len > bp->rx_jumbo_thresh) {
  2326. hdr_len = bp->rx_jumbo_thresh;
  2327. pg_ring_used = 1;
  2328. }
  2329. len -= 4;
  2330. if (len <= bp->rx_copy_thresh) {
  2331. struct sk_buff *new_skb;
  2332. new_skb = netdev_alloc_skb(bp->dev, len + 2);
  2333. if (new_skb == NULL) {
  2334. bnx2_reuse_rx_skb(bp, bnapi, skb, sw_ring_cons,
  2335. sw_ring_prod);
  2336. goto next_rx;
  2337. }
  2338. /* aligned copy */
  2339. skb_copy_from_linear_data_offset(skb, bp->rx_offset - 2,
  2340. new_skb->data, len + 2);
  2341. skb_reserve(new_skb, 2);
  2342. skb_put(new_skb, len);
  2343. bnx2_reuse_rx_skb(bp, bnapi, skb,
  2344. sw_ring_cons, sw_ring_prod);
  2345. skb = new_skb;
  2346. } else if (unlikely(bnx2_rx_skb(bp, bnapi, skb, len, hdr_len,
  2347. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2348. goto next_rx;
  2349. skb->protocol = eth_type_trans(skb, bp->dev);
  2350. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2351. (ntohs(skb->protocol) != 0x8100)) {
  2352. dev_kfree_skb(skb);
  2353. goto next_rx;
  2354. }
  2355. skb->ip_summed = CHECKSUM_NONE;
  2356. if (bp->rx_csum &&
  2357. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2358. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2359. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2360. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2361. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2362. }
  2363. #ifdef BCM_VLAN
  2364. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && bp->vlgrp) {
  2365. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  2366. rx_hdr->l2_fhdr_vlan_tag);
  2367. }
  2368. else
  2369. #endif
  2370. netif_receive_skb(skb);
  2371. bp->dev->last_rx = jiffies;
  2372. rx_pkt++;
  2373. next_rx:
  2374. sw_cons = NEXT_RX_BD(sw_cons);
  2375. sw_prod = NEXT_RX_BD(sw_prod);
  2376. if ((rx_pkt == budget))
  2377. break;
  2378. /* Refresh hw_cons to see if there is new work */
  2379. if (sw_cons == hw_cons) {
  2380. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2381. rmb();
  2382. }
  2383. }
  2384. bnapi->rx_cons = sw_cons;
  2385. bnapi->rx_prod = sw_prod;
  2386. if (pg_ring_used)
  2387. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_PG_BDIDX,
  2388. bnapi->rx_pg_prod);
  2389. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  2390. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bnapi->rx_prod_bseq);
  2391. mmiowb();
  2392. return rx_pkt;
  2393. }
  2394. /* MSI ISR - The only difference between this and the INTx ISR
  2395. * is that the MSI interrupt is always serviced.
  2396. */
  2397. static irqreturn_t
  2398. bnx2_msi(int irq, void *dev_instance)
  2399. {
  2400. struct net_device *dev = dev_instance;
  2401. struct bnx2 *bp = netdev_priv(dev);
  2402. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2403. prefetch(bnapi->status_blk);
  2404. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2405. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2406. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2407. /* Return here if interrupt is disabled. */
  2408. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2409. return IRQ_HANDLED;
  2410. netif_rx_schedule(dev, &bnapi->napi);
  2411. return IRQ_HANDLED;
  2412. }
  2413. static irqreturn_t
  2414. bnx2_msi_1shot(int irq, void *dev_instance)
  2415. {
  2416. struct net_device *dev = dev_instance;
  2417. struct bnx2 *bp = netdev_priv(dev);
  2418. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2419. prefetch(bnapi->status_blk);
  2420. /* Return here if interrupt is disabled. */
  2421. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2422. return IRQ_HANDLED;
  2423. netif_rx_schedule(dev, &bnapi->napi);
  2424. return IRQ_HANDLED;
  2425. }
  2426. static irqreturn_t
  2427. bnx2_interrupt(int irq, void *dev_instance)
  2428. {
  2429. struct net_device *dev = dev_instance;
  2430. struct bnx2 *bp = netdev_priv(dev);
  2431. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2432. struct status_block *sblk = bnapi->status_blk;
  2433. /* When using INTx, it is possible for the interrupt to arrive
  2434. * at the CPU before the status block posted prior to the
  2435. * interrupt. Reading a register will flush the status block.
  2436. * When using MSI, the MSI message will always complete after
  2437. * the status block write.
  2438. */
  2439. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2440. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2441. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2442. return IRQ_NONE;
  2443. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2444. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2445. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2446. /* Read back to deassert IRQ immediately to avoid too many
  2447. * spurious interrupts.
  2448. */
  2449. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2450. /* Return here if interrupt is shared and is disabled. */
  2451. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2452. return IRQ_HANDLED;
  2453. if (netif_rx_schedule_prep(dev, &bnapi->napi)) {
  2454. bnapi->last_status_idx = sblk->status_idx;
  2455. __netif_rx_schedule(dev, &bnapi->napi);
  2456. }
  2457. return IRQ_HANDLED;
  2458. }
  2459. static irqreturn_t
  2460. bnx2_tx_msix(int irq, void *dev_instance)
  2461. {
  2462. struct net_device *dev = dev_instance;
  2463. struct bnx2 *bp = netdev_priv(dev);
  2464. struct bnx2_napi *bnapi = &bp->bnx2_napi[BNX2_TX_VEC];
  2465. prefetch(bnapi->status_blk_msix);
  2466. /* Return here if interrupt is disabled. */
  2467. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2468. return IRQ_HANDLED;
  2469. netif_rx_schedule(dev, &bnapi->napi);
  2470. return IRQ_HANDLED;
  2471. }
  2472. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2473. STATUS_ATTN_BITS_TIMER_ABORT)
  2474. static inline int
  2475. bnx2_has_work(struct bnx2_napi *bnapi)
  2476. {
  2477. struct status_block *sblk = bnapi->status_blk;
  2478. if ((bnx2_get_hw_rx_cons(bnapi) != bnapi->rx_cons) ||
  2479. (bnx2_get_hw_tx_cons(bnapi) != bnapi->hw_tx_cons))
  2480. return 1;
  2481. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2482. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2483. return 1;
  2484. return 0;
  2485. }
  2486. static int bnx2_tx_poll(struct napi_struct *napi, int budget)
  2487. {
  2488. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2489. struct bnx2 *bp = bnapi->bp;
  2490. int work_done = 0;
  2491. struct status_block_msix *sblk = bnapi->status_blk_msix;
  2492. do {
  2493. work_done += bnx2_tx_int(bp, bnapi, budget - work_done);
  2494. if (unlikely(work_done >= budget))
  2495. return work_done;
  2496. bnapi->last_status_idx = sblk->status_idx;
  2497. rmb();
  2498. } while (bnx2_get_hw_tx_cons(bnapi) != bnapi->hw_tx_cons);
  2499. netif_rx_complete(bp->dev, napi);
  2500. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2501. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2502. bnapi->last_status_idx);
  2503. return work_done;
  2504. }
  2505. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2506. int work_done, int budget)
  2507. {
  2508. struct status_block *sblk = bnapi->status_blk;
  2509. u32 status_attn_bits = sblk->status_attn_bits;
  2510. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2511. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2512. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2513. bnx2_phy_int(bp, bnapi);
  2514. /* This is needed to take care of transient status
  2515. * during link changes.
  2516. */
  2517. REG_WR(bp, BNX2_HC_COMMAND,
  2518. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2519. REG_RD(bp, BNX2_HC_COMMAND);
  2520. }
  2521. if (bnx2_get_hw_tx_cons(bnapi) != bnapi->hw_tx_cons)
  2522. bnx2_tx_int(bp, bnapi, 0);
  2523. if (bnx2_get_hw_rx_cons(bnapi) != bnapi->rx_cons)
  2524. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2525. return work_done;
  2526. }
  2527. static int bnx2_poll(struct napi_struct *napi, int budget)
  2528. {
  2529. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2530. struct bnx2 *bp = bnapi->bp;
  2531. int work_done = 0;
  2532. struct status_block *sblk = bnapi->status_blk;
  2533. while (1) {
  2534. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2535. if (unlikely(work_done >= budget))
  2536. break;
  2537. /* bnapi->last_status_idx is used below to tell the hw how
  2538. * much work has been processed, so we must read it before
  2539. * checking for more work.
  2540. */
  2541. bnapi->last_status_idx = sblk->status_idx;
  2542. rmb();
  2543. if (likely(!bnx2_has_work(bnapi))) {
  2544. netif_rx_complete(bp->dev, napi);
  2545. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2546. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2547. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2548. bnapi->last_status_idx);
  2549. break;
  2550. }
  2551. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2552. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2553. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2554. bnapi->last_status_idx);
  2555. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2556. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2557. bnapi->last_status_idx);
  2558. break;
  2559. }
  2560. }
  2561. return work_done;
  2562. }
  2563. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2564. * from set_multicast.
  2565. */
  2566. static void
  2567. bnx2_set_rx_mode(struct net_device *dev)
  2568. {
  2569. struct bnx2 *bp = netdev_priv(dev);
  2570. u32 rx_mode, sort_mode;
  2571. int i;
  2572. spin_lock_bh(&bp->phy_lock);
  2573. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2574. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2575. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2576. #ifdef BCM_VLAN
  2577. if (!bp->vlgrp && !(bp->flags & BNX2_FLAG_ASF_ENABLE))
  2578. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2579. #else
  2580. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  2581. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2582. #endif
  2583. if (dev->flags & IFF_PROMISC) {
  2584. /* Promiscuous mode. */
  2585. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2586. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2587. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2588. }
  2589. else if (dev->flags & IFF_ALLMULTI) {
  2590. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2591. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2592. 0xffffffff);
  2593. }
  2594. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2595. }
  2596. else {
  2597. /* Accept one or more multicast(s). */
  2598. struct dev_mc_list *mclist;
  2599. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2600. u32 regidx;
  2601. u32 bit;
  2602. u32 crc;
  2603. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2604. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2605. i++, mclist = mclist->next) {
  2606. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2607. bit = crc & 0xff;
  2608. regidx = (bit & 0xe0) >> 5;
  2609. bit &= 0x1f;
  2610. mc_filter[regidx] |= (1 << bit);
  2611. }
  2612. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2613. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2614. mc_filter[i]);
  2615. }
  2616. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2617. }
  2618. if (rx_mode != bp->rx_mode) {
  2619. bp->rx_mode = rx_mode;
  2620. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2621. }
  2622. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2623. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2624. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2625. spin_unlock_bh(&bp->phy_lock);
  2626. }
  2627. static void
  2628. load_rv2p_fw(struct bnx2 *bp, __le32 *rv2p_code, u32 rv2p_code_len,
  2629. u32 rv2p_proc)
  2630. {
  2631. int i;
  2632. u32 val;
  2633. for (i = 0; i < rv2p_code_len; i += 8) {
  2634. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, le32_to_cpu(*rv2p_code));
  2635. rv2p_code++;
  2636. REG_WR(bp, BNX2_RV2P_INSTR_LOW, le32_to_cpu(*rv2p_code));
  2637. rv2p_code++;
  2638. if (rv2p_proc == RV2P_PROC1) {
  2639. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  2640. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  2641. }
  2642. else {
  2643. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  2644. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  2645. }
  2646. }
  2647. /* Reset the processor, un-stall is done later. */
  2648. if (rv2p_proc == RV2P_PROC1) {
  2649. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  2650. }
  2651. else {
  2652. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  2653. }
  2654. }
  2655. static int
  2656. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  2657. {
  2658. u32 offset;
  2659. u32 val;
  2660. int rc;
  2661. /* Halt the CPU. */
  2662. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  2663. val |= cpu_reg->mode_value_halt;
  2664. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  2665. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2666. /* Load the Text area. */
  2667. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  2668. if (fw->gz_text) {
  2669. int j;
  2670. rc = zlib_inflate_blob(fw->text, FW_BUF_SIZE, fw->gz_text,
  2671. fw->gz_text_len);
  2672. if (rc < 0)
  2673. return rc;
  2674. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  2675. bnx2_reg_wr_ind(bp, offset, le32_to_cpu(fw->text[j]));
  2676. }
  2677. }
  2678. /* Load the Data area. */
  2679. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  2680. if (fw->data) {
  2681. int j;
  2682. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  2683. bnx2_reg_wr_ind(bp, offset, fw->data[j]);
  2684. }
  2685. }
  2686. /* Load the SBSS area. */
  2687. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  2688. if (fw->sbss_len) {
  2689. int j;
  2690. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  2691. bnx2_reg_wr_ind(bp, offset, 0);
  2692. }
  2693. }
  2694. /* Load the BSS area. */
  2695. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  2696. if (fw->bss_len) {
  2697. int j;
  2698. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  2699. bnx2_reg_wr_ind(bp, offset, 0);
  2700. }
  2701. }
  2702. /* Load the Read-Only area. */
  2703. offset = cpu_reg->spad_base +
  2704. (fw->rodata_addr - cpu_reg->mips_view_base);
  2705. if (fw->rodata) {
  2706. int j;
  2707. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  2708. bnx2_reg_wr_ind(bp, offset, fw->rodata[j]);
  2709. }
  2710. }
  2711. /* Clear the pre-fetch instruction. */
  2712. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  2713. bnx2_reg_wr_ind(bp, cpu_reg->pc, fw->start_addr);
  2714. /* Start the CPU. */
  2715. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  2716. val &= ~cpu_reg->mode_value_halt;
  2717. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2718. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  2719. return 0;
  2720. }
  2721. static int
  2722. bnx2_init_cpus(struct bnx2 *bp)
  2723. {
  2724. struct cpu_reg cpu_reg;
  2725. struct fw_info *fw;
  2726. int rc, rv2p_len;
  2727. void *text, *rv2p;
  2728. /* Initialize the RV2P processor. */
  2729. text = vmalloc(FW_BUF_SIZE);
  2730. if (!text)
  2731. return -ENOMEM;
  2732. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2733. rv2p = bnx2_xi_rv2p_proc1;
  2734. rv2p_len = sizeof(bnx2_xi_rv2p_proc1);
  2735. } else {
  2736. rv2p = bnx2_rv2p_proc1;
  2737. rv2p_len = sizeof(bnx2_rv2p_proc1);
  2738. }
  2739. rc = zlib_inflate_blob(text, FW_BUF_SIZE, rv2p, rv2p_len);
  2740. if (rc < 0)
  2741. goto init_cpu_err;
  2742. load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC1);
  2743. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2744. rv2p = bnx2_xi_rv2p_proc2;
  2745. rv2p_len = sizeof(bnx2_xi_rv2p_proc2);
  2746. } else {
  2747. rv2p = bnx2_rv2p_proc2;
  2748. rv2p_len = sizeof(bnx2_rv2p_proc2);
  2749. }
  2750. rc = zlib_inflate_blob(text, FW_BUF_SIZE, rv2p, rv2p_len);
  2751. if (rc < 0)
  2752. goto init_cpu_err;
  2753. load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC2);
  2754. /* Initialize the RX Processor. */
  2755. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  2756. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  2757. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  2758. cpu_reg.state = BNX2_RXP_CPU_STATE;
  2759. cpu_reg.state_value_clear = 0xffffff;
  2760. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  2761. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  2762. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  2763. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  2764. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  2765. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  2766. cpu_reg.mips_view_base = 0x8000000;
  2767. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2768. fw = &bnx2_rxp_fw_09;
  2769. else
  2770. fw = &bnx2_rxp_fw_06;
  2771. fw->text = text;
  2772. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2773. if (rc)
  2774. goto init_cpu_err;
  2775. /* Initialize the TX Processor. */
  2776. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  2777. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  2778. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  2779. cpu_reg.state = BNX2_TXP_CPU_STATE;
  2780. cpu_reg.state_value_clear = 0xffffff;
  2781. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  2782. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  2783. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  2784. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  2785. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  2786. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  2787. cpu_reg.mips_view_base = 0x8000000;
  2788. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2789. fw = &bnx2_txp_fw_09;
  2790. else
  2791. fw = &bnx2_txp_fw_06;
  2792. fw->text = text;
  2793. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2794. if (rc)
  2795. goto init_cpu_err;
  2796. /* Initialize the TX Patch-up Processor. */
  2797. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  2798. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  2799. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  2800. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  2801. cpu_reg.state_value_clear = 0xffffff;
  2802. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  2803. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  2804. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  2805. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  2806. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  2807. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  2808. cpu_reg.mips_view_base = 0x8000000;
  2809. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2810. fw = &bnx2_tpat_fw_09;
  2811. else
  2812. fw = &bnx2_tpat_fw_06;
  2813. fw->text = text;
  2814. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2815. if (rc)
  2816. goto init_cpu_err;
  2817. /* Initialize the Completion Processor. */
  2818. cpu_reg.mode = BNX2_COM_CPU_MODE;
  2819. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  2820. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  2821. cpu_reg.state = BNX2_COM_CPU_STATE;
  2822. cpu_reg.state_value_clear = 0xffffff;
  2823. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  2824. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  2825. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  2826. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  2827. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  2828. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  2829. cpu_reg.mips_view_base = 0x8000000;
  2830. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2831. fw = &bnx2_com_fw_09;
  2832. else
  2833. fw = &bnx2_com_fw_06;
  2834. fw->text = text;
  2835. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2836. if (rc)
  2837. goto init_cpu_err;
  2838. /* Initialize the Command Processor. */
  2839. cpu_reg.mode = BNX2_CP_CPU_MODE;
  2840. cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
  2841. cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
  2842. cpu_reg.state = BNX2_CP_CPU_STATE;
  2843. cpu_reg.state_value_clear = 0xffffff;
  2844. cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
  2845. cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
  2846. cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
  2847. cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
  2848. cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
  2849. cpu_reg.spad_base = BNX2_CP_SCRATCH;
  2850. cpu_reg.mips_view_base = 0x8000000;
  2851. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2852. fw = &bnx2_cp_fw_09;
  2853. else
  2854. fw = &bnx2_cp_fw_06;
  2855. fw->text = text;
  2856. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2857. init_cpu_err:
  2858. vfree(text);
  2859. return rc;
  2860. }
  2861. static int
  2862. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  2863. {
  2864. u16 pmcsr;
  2865. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  2866. switch (state) {
  2867. case PCI_D0: {
  2868. u32 val;
  2869. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2870. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  2871. PCI_PM_CTRL_PME_STATUS);
  2872. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  2873. /* delay required during transition out of D3hot */
  2874. msleep(20);
  2875. val = REG_RD(bp, BNX2_EMAC_MODE);
  2876. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  2877. val &= ~BNX2_EMAC_MODE_MPKT;
  2878. REG_WR(bp, BNX2_EMAC_MODE, val);
  2879. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2880. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2881. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2882. break;
  2883. }
  2884. case PCI_D3hot: {
  2885. int i;
  2886. u32 val, wol_msg;
  2887. if (bp->wol) {
  2888. u32 advertising;
  2889. u8 autoneg;
  2890. autoneg = bp->autoneg;
  2891. advertising = bp->advertising;
  2892. if (bp->phy_port == PORT_TP) {
  2893. bp->autoneg = AUTONEG_SPEED;
  2894. bp->advertising = ADVERTISED_10baseT_Half |
  2895. ADVERTISED_10baseT_Full |
  2896. ADVERTISED_100baseT_Half |
  2897. ADVERTISED_100baseT_Full |
  2898. ADVERTISED_Autoneg;
  2899. }
  2900. spin_lock_bh(&bp->phy_lock);
  2901. bnx2_setup_phy(bp, bp->phy_port);
  2902. spin_unlock_bh(&bp->phy_lock);
  2903. bp->autoneg = autoneg;
  2904. bp->advertising = advertising;
  2905. bnx2_set_mac_addr(bp);
  2906. val = REG_RD(bp, BNX2_EMAC_MODE);
  2907. /* Enable port mode. */
  2908. val &= ~BNX2_EMAC_MODE_PORT;
  2909. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  2910. BNX2_EMAC_MODE_ACPI_RCVD |
  2911. BNX2_EMAC_MODE_MPKT;
  2912. if (bp->phy_port == PORT_TP)
  2913. val |= BNX2_EMAC_MODE_PORT_MII;
  2914. else {
  2915. val |= BNX2_EMAC_MODE_PORT_GMII;
  2916. if (bp->line_speed == SPEED_2500)
  2917. val |= BNX2_EMAC_MODE_25G_MODE;
  2918. }
  2919. REG_WR(bp, BNX2_EMAC_MODE, val);
  2920. /* receive all multicast */
  2921. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2922. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2923. 0xffffffff);
  2924. }
  2925. REG_WR(bp, BNX2_EMAC_RX_MODE,
  2926. BNX2_EMAC_RX_MODE_SORT_MODE);
  2927. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  2928. BNX2_RPM_SORT_USER0_MC_EN;
  2929. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2930. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  2931. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  2932. BNX2_RPM_SORT_USER0_ENA);
  2933. /* Need to enable EMAC and RPM for WOL. */
  2934. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2935. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  2936. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  2937. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  2938. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2939. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2940. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2941. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  2942. }
  2943. else {
  2944. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  2945. }
  2946. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  2947. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
  2948. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2949. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2950. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2951. if (bp->wol)
  2952. pmcsr |= 3;
  2953. }
  2954. else {
  2955. pmcsr |= 3;
  2956. }
  2957. if (bp->wol) {
  2958. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  2959. }
  2960. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2961. pmcsr);
  2962. /* No more memory access after this point until
  2963. * device is brought back to D0.
  2964. */
  2965. udelay(50);
  2966. break;
  2967. }
  2968. default:
  2969. return -EINVAL;
  2970. }
  2971. return 0;
  2972. }
  2973. static int
  2974. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  2975. {
  2976. u32 val;
  2977. int j;
  2978. /* Request access to the flash interface. */
  2979. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  2980. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2981. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2982. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  2983. break;
  2984. udelay(5);
  2985. }
  2986. if (j >= NVRAM_TIMEOUT_COUNT)
  2987. return -EBUSY;
  2988. return 0;
  2989. }
  2990. static int
  2991. bnx2_release_nvram_lock(struct bnx2 *bp)
  2992. {
  2993. int j;
  2994. u32 val;
  2995. /* Relinquish nvram interface. */
  2996. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  2997. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2998. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2999. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3000. break;
  3001. udelay(5);
  3002. }
  3003. if (j >= NVRAM_TIMEOUT_COUNT)
  3004. return -EBUSY;
  3005. return 0;
  3006. }
  3007. static int
  3008. bnx2_enable_nvram_write(struct bnx2 *bp)
  3009. {
  3010. u32 val;
  3011. val = REG_RD(bp, BNX2_MISC_CFG);
  3012. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3013. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3014. int j;
  3015. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3016. REG_WR(bp, BNX2_NVM_COMMAND,
  3017. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3018. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3019. udelay(5);
  3020. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3021. if (val & BNX2_NVM_COMMAND_DONE)
  3022. break;
  3023. }
  3024. if (j >= NVRAM_TIMEOUT_COUNT)
  3025. return -EBUSY;
  3026. }
  3027. return 0;
  3028. }
  3029. static void
  3030. bnx2_disable_nvram_write(struct bnx2 *bp)
  3031. {
  3032. u32 val;
  3033. val = REG_RD(bp, BNX2_MISC_CFG);
  3034. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3035. }
  3036. static void
  3037. bnx2_enable_nvram_access(struct bnx2 *bp)
  3038. {
  3039. u32 val;
  3040. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3041. /* Enable both bits, even on read. */
  3042. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3043. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3044. }
  3045. static void
  3046. bnx2_disable_nvram_access(struct bnx2 *bp)
  3047. {
  3048. u32 val;
  3049. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3050. /* Disable both bits, even after read. */
  3051. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3052. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3053. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3054. }
  3055. static int
  3056. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3057. {
  3058. u32 cmd;
  3059. int j;
  3060. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3061. /* Buffered flash, no erase needed */
  3062. return 0;
  3063. /* Build an erase command */
  3064. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3065. BNX2_NVM_COMMAND_DOIT;
  3066. /* Need to clear DONE bit separately. */
  3067. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3068. /* Address of the NVRAM to read from. */
  3069. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3070. /* Issue an erase command. */
  3071. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3072. /* Wait for completion. */
  3073. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3074. u32 val;
  3075. udelay(5);
  3076. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3077. if (val & BNX2_NVM_COMMAND_DONE)
  3078. break;
  3079. }
  3080. if (j >= NVRAM_TIMEOUT_COUNT)
  3081. return -EBUSY;
  3082. return 0;
  3083. }
  3084. static int
  3085. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3086. {
  3087. u32 cmd;
  3088. int j;
  3089. /* Build the command word. */
  3090. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3091. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3092. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3093. offset = ((offset / bp->flash_info->page_size) <<
  3094. bp->flash_info->page_bits) +
  3095. (offset % bp->flash_info->page_size);
  3096. }
  3097. /* Need to clear DONE bit separately. */
  3098. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3099. /* Address of the NVRAM to read from. */
  3100. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3101. /* Issue a read command. */
  3102. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3103. /* Wait for completion. */
  3104. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3105. u32 val;
  3106. udelay(5);
  3107. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3108. if (val & BNX2_NVM_COMMAND_DONE) {
  3109. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3110. memcpy(ret_val, &v, 4);
  3111. break;
  3112. }
  3113. }
  3114. if (j >= NVRAM_TIMEOUT_COUNT)
  3115. return -EBUSY;
  3116. return 0;
  3117. }
  3118. static int
  3119. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3120. {
  3121. u32 cmd;
  3122. __be32 val32;
  3123. int j;
  3124. /* Build the command word. */
  3125. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3126. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3127. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3128. offset = ((offset / bp->flash_info->page_size) <<
  3129. bp->flash_info->page_bits) +
  3130. (offset % bp->flash_info->page_size);
  3131. }
  3132. /* Need to clear DONE bit separately. */
  3133. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3134. memcpy(&val32, val, 4);
  3135. /* Write the data. */
  3136. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3137. /* Address of the NVRAM to write to. */
  3138. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3139. /* Issue the write command. */
  3140. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3141. /* Wait for completion. */
  3142. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3143. udelay(5);
  3144. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3145. break;
  3146. }
  3147. if (j >= NVRAM_TIMEOUT_COUNT)
  3148. return -EBUSY;
  3149. return 0;
  3150. }
  3151. static int
  3152. bnx2_init_nvram(struct bnx2 *bp)
  3153. {
  3154. u32 val;
  3155. int j, entry_count, rc = 0;
  3156. struct flash_spec *flash;
  3157. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3158. bp->flash_info = &flash_5709;
  3159. goto get_flash_size;
  3160. }
  3161. /* Determine the selected interface. */
  3162. val = REG_RD(bp, BNX2_NVM_CFG1);
  3163. entry_count = ARRAY_SIZE(flash_table);
  3164. if (val & 0x40000000) {
  3165. /* Flash interface has been reconfigured */
  3166. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3167. j++, flash++) {
  3168. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3169. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3170. bp->flash_info = flash;
  3171. break;
  3172. }
  3173. }
  3174. }
  3175. else {
  3176. u32 mask;
  3177. /* Not yet been reconfigured */
  3178. if (val & (1 << 23))
  3179. mask = FLASH_BACKUP_STRAP_MASK;
  3180. else
  3181. mask = FLASH_STRAP_MASK;
  3182. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3183. j++, flash++) {
  3184. if ((val & mask) == (flash->strapping & mask)) {
  3185. bp->flash_info = flash;
  3186. /* Request access to the flash interface. */
  3187. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3188. return rc;
  3189. /* Enable access to flash interface */
  3190. bnx2_enable_nvram_access(bp);
  3191. /* Reconfigure the flash interface */
  3192. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3193. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3194. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3195. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3196. /* Disable access to flash interface */
  3197. bnx2_disable_nvram_access(bp);
  3198. bnx2_release_nvram_lock(bp);
  3199. break;
  3200. }
  3201. }
  3202. } /* if (val & 0x40000000) */
  3203. if (j == entry_count) {
  3204. bp->flash_info = NULL;
  3205. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3206. return -ENODEV;
  3207. }
  3208. get_flash_size:
  3209. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3210. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3211. if (val)
  3212. bp->flash_size = val;
  3213. else
  3214. bp->flash_size = bp->flash_info->total_size;
  3215. return rc;
  3216. }
  3217. static int
  3218. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3219. int buf_size)
  3220. {
  3221. int rc = 0;
  3222. u32 cmd_flags, offset32, len32, extra;
  3223. if (buf_size == 0)
  3224. return 0;
  3225. /* Request access to the flash interface. */
  3226. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3227. return rc;
  3228. /* Enable access to flash interface */
  3229. bnx2_enable_nvram_access(bp);
  3230. len32 = buf_size;
  3231. offset32 = offset;
  3232. extra = 0;
  3233. cmd_flags = 0;
  3234. if (offset32 & 3) {
  3235. u8 buf[4];
  3236. u32 pre_len;
  3237. offset32 &= ~3;
  3238. pre_len = 4 - (offset & 3);
  3239. if (pre_len >= len32) {
  3240. pre_len = len32;
  3241. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3242. BNX2_NVM_COMMAND_LAST;
  3243. }
  3244. else {
  3245. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3246. }
  3247. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3248. if (rc)
  3249. return rc;
  3250. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3251. offset32 += 4;
  3252. ret_buf += pre_len;
  3253. len32 -= pre_len;
  3254. }
  3255. if (len32 & 3) {
  3256. extra = 4 - (len32 & 3);
  3257. len32 = (len32 + 4) & ~3;
  3258. }
  3259. if (len32 == 4) {
  3260. u8 buf[4];
  3261. if (cmd_flags)
  3262. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3263. else
  3264. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3265. BNX2_NVM_COMMAND_LAST;
  3266. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3267. memcpy(ret_buf, buf, 4 - extra);
  3268. }
  3269. else if (len32 > 0) {
  3270. u8 buf[4];
  3271. /* Read the first word. */
  3272. if (cmd_flags)
  3273. cmd_flags = 0;
  3274. else
  3275. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3276. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3277. /* Advance to the next dword. */
  3278. offset32 += 4;
  3279. ret_buf += 4;
  3280. len32 -= 4;
  3281. while (len32 > 4 && rc == 0) {
  3282. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3283. /* Advance to the next dword. */
  3284. offset32 += 4;
  3285. ret_buf += 4;
  3286. len32 -= 4;
  3287. }
  3288. if (rc)
  3289. return rc;
  3290. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3291. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3292. memcpy(ret_buf, buf, 4 - extra);
  3293. }
  3294. /* Disable access to flash interface */
  3295. bnx2_disable_nvram_access(bp);
  3296. bnx2_release_nvram_lock(bp);
  3297. return rc;
  3298. }
  3299. static int
  3300. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3301. int buf_size)
  3302. {
  3303. u32 written, offset32, len32;
  3304. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3305. int rc = 0;
  3306. int align_start, align_end;
  3307. buf = data_buf;
  3308. offset32 = offset;
  3309. len32 = buf_size;
  3310. align_start = align_end = 0;
  3311. if ((align_start = (offset32 & 3))) {
  3312. offset32 &= ~3;
  3313. len32 += align_start;
  3314. if (len32 < 4)
  3315. len32 = 4;
  3316. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3317. return rc;
  3318. }
  3319. if (len32 & 3) {
  3320. align_end = 4 - (len32 & 3);
  3321. len32 += align_end;
  3322. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3323. return rc;
  3324. }
  3325. if (align_start || align_end) {
  3326. align_buf = kmalloc(len32, GFP_KERNEL);
  3327. if (align_buf == NULL)
  3328. return -ENOMEM;
  3329. if (align_start) {
  3330. memcpy(align_buf, start, 4);
  3331. }
  3332. if (align_end) {
  3333. memcpy(align_buf + len32 - 4, end, 4);
  3334. }
  3335. memcpy(align_buf + align_start, data_buf, buf_size);
  3336. buf = align_buf;
  3337. }
  3338. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3339. flash_buffer = kmalloc(264, GFP_KERNEL);
  3340. if (flash_buffer == NULL) {
  3341. rc = -ENOMEM;
  3342. goto nvram_write_end;
  3343. }
  3344. }
  3345. written = 0;
  3346. while ((written < len32) && (rc == 0)) {
  3347. u32 page_start, page_end, data_start, data_end;
  3348. u32 addr, cmd_flags;
  3349. int i;
  3350. /* Find the page_start addr */
  3351. page_start = offset32 + written;
  3352. page_start -= (page_start % bp->flash_info->page_size);
  3353. /* Find the page_end addr */
  3354. page_end = page_start + bp->flash_info->page_size;
  3355. /* Find the data_start addr */
  3356. data_start = (written == 0) ? offset32 : page_start;
  3357. /* Find the data_end addr */
  3358. data_end = (page_end > offset32 + len32) ?
  3359. (offset32 + len32) : page_end;
  3360. /* Request access to the flash interface. */
  3361. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3362. goto nvram_write_end;
  3363. /* Enable access to flash interface */
  3364. bnx2_enable_nvram_access(bp);
  3365. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3366. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3367. int j;
  3368. /* Read the whole page into the buffer
  3369. * (non-buffer flash only) */
  3370. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3371. if (j == (bp->flash_info->page_size - 4)) {
  3372. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3373. }
  3374. rc = bnx2_nvram_read_dword(bp,
  3375. page_start + j,
  3376. &flash_buffer[j],
  3377. cmd_flags);
  3378. if (rc)
  3379. goto nvram_write_end;
  3380. cmd_flags = 0;
  3381. }
  3382. }
  3383. /* Enable writes to flash interface (unlock write-protect) */
  3384. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3385. goto nvram_write_end;
  3386. /* Loop to write back the buffer data from page_start to
  3387. * data_start */
  3388. i = 0;
  3389. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3390. /* Erase the page */
  3391. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3392. goto nvram_write_end;
  3393. /* Re-enable the write again for the actual write */
  3394. bnx2_enable_nvram_write(bp);
  3395. for (addr = page_start; addr < data_start;
  3396. addr += 4, i += 4) {
  3397. rc = bnx2_nvram_write_dword(bp, addr,
  3398. &flash_buffer[i], cmd_flags);
  3399. if (rc != 0)
  3400. goto nvram_write_end;
  3401. cmd_flags = 0;
  3402. }
  3403. }
  3404. /* Loop to write the new data from data_start to data_end */
  3405. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3406. if ((addr == page_end - 4) ||
  3407. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3408. (addr == data_end - 4))) {
  3409. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3410. }
  3411. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3412. cmd_flags);
  3413. if (rc != 0)
  3414. goto nvram_write_end;
  3415. cmd_flags = 0;
  3416. buf += 4;
  3417. }
  3418. /* Loop to write back the buffer data from data_end
  3419. * to page_end */
  3420. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3421. for (addr = data_end; addr < page_end;
  3422. addr += 4, i += 4) {
  3423. if (addr == page_end-4) {
  3424. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3425. }
  3426. rc = bnx2_nvram_write_dword(bp, addr,
  3427. &flash_buffer[i], cmd_flags);
  3428. if (rc != 0)
  3429. goto nvram_write_end;
  3430. cmd_flags = 0;
  3431. }
  3432. }
  3433. /* Disable writes to flash interface (lock write-protect) */
  3434. bnx2_disable_nvram_write(bp);
  3435. /* Disable access to flash interface */
  3436. bnx2_disable_nvram_access(bp);
  3437. bnx2_release_nvram_lock(bp);
  3438. /* Increment written */
  3439. written += data_end - data_start;
  3440. }
  3441. nvram_write_end:
  3442. kfree(flash_buffer);
  3443. kfree(align_buf);
  3444. return rc;
  3445. }
  3446. static void
  3447. bnx2_init_remote_phy(struct bnx2 *bp)
  3448. {
  3449. u32 val;
  3450. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3451. if (!(bp->phy_flags & BNX2_PHY_FLAG_SERDES))
  3452. return;
  3453. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3454. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3455. return;
  3456. if (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE) {
  3457. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3458. val = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3459. if (val & BNX2_LINK_STATUS_SERDES_LINK)
  3460. bp->phy_port = PORT_FIBRE;
  3461. else
  3462. bp->phy_port = PORT_TP;
  3463. if (netif_running(bp->dev)) {
  3464. u32 sig;
  3465. sig = BNX2_DRV_ACK_CAP_SIGNATURE |
  3466. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3467. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3468. }
  3469. }
  3470. }
  3471. static void
  3472. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3473. {
  3474. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3475. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3476. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3477. }
  3478. static int
  3479. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3480. {
  3481. u32 val;
  3482. int i, rc = 0;
  3483. u8 old_port;
  3484. /* Wait for the current PCI transaction to complete before
  3485. * issuing a reset. */
  3486. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3487. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3488. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3489. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3490. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3491. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3492. udelay(5);
  3493. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3494. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
  3495. /* Deposit a driver reset signature so the firmware knows that
  3496. * this is a soft reset. */
  3497. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3498. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3499. /* Do a dummy read to force the chip to complete all current transaction
  3500. * before we issue a reset. */
  3501. val = REG_RD(bp, BNX2_MISC_ID);
  3502. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3503. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3504. REG_RD(bp, BNX2_MISC_COMMAND);
  3505. udelay(5);
  3506. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3507. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3508. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3509. } else {
  3510. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3511. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3512. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3513. /* Chip reset. */
  3514. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3515. /* Reading back any register after chip reset will hang the
  3516. * bus on 5706 A0 and A1. The msleep below provides plenty
  3517. * of margin for write posting.
  3518. */
  3519. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3520. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3521. msleep(20);
  3522. /* Reset takes approximate 30 usec */
  3523. for (i = 0; i < 10; i++) {
  3524. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3525. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3526. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3527. break;
  3528. udelay(10);
  3529. }
  3530. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3531. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3532. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3533. return -EBUSY;
  3534. }
  3535. }
  3536. /* Make sure byte swapping is properly configured. */
  3537. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3538. if (val != 0x01020304) {
  3539. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3540. return -ENODEV;
  3541. }
  3542. /* Wait for the firmware to finish its initialization. */
  3543. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
  3544. if (rc)
  3545. return rc;
  3546. spin_lock_bh(&bp->phy_lock);
  3547. old_port = bp->phy_port;
  3548. bnx2_init_remote_phy(bp);
  3549. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3550. old_port != bp->phy_port)
  3551. bnx2_set_default_remote_link(bp);
  3552. spin_unlock_bh(&bp->phy_lock);
  3553. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3554. /* Adjust the voltage regular to two steps lower. The default
  3555. * of this register is 0x0000000e. */
  3556. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3557. /* Remove bad rbuf memory from the free pool. */
  3558. rc = bnx2_alloc_bad_rbuf(bp);
  3559. }
  3560. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3561. bnx2_setup_msix_tbl(bp);
  3562. return rc;
  3563. }
  3564. static int
  3565. bnx2_init_chip(struct bnx2 *bp)
  3566. {
  3567. u32 val;
  3568. int rc, i;
  3569. /* Make sure the interrupt is not active. */
  3570. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3571. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3572. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3573. #ifdef __BIG_ENDIAN
  3574. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3575. #endif
  3576. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3577. DMA_READ_CHANS << 12 |
  3578. DMA_WRITE_CHANS << 16;
  3579. val |= (0x2 << 20) | (1 << 11);
  3580. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3581. val |= (1 << 23);
  3582. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3583. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3584. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3585. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3586. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3587. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3588. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3589. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3590. }
  3591. if (bp->flags & BNX2_FLAG_PCIX) {
  3592. u16 val16;
  3593. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3594. &val16);
  3595. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3596. val16 & ~PCI_X_CMD_ERO);
  3597. }
  3598. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3599. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3600. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3601. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3602. /* Initialize context mapping and zero out the quick contexts. The
  3603. * context block must have already been enabled. */
  3604. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3605. rc = bnx2_init_5709_context(bp);
  3606. if (rc)
  3607. return rc;
  3608. } else
  3609. bnx2_init_context(bp);
  3610. if ((rc = bnx2_init_cpus(bp)) != 0)
  3611. return rc;
  3612. bnx2_init_nvram(bp);
  3613. bnx2_set_mac_addr(bp);
  3614. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3615. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3616. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3617. if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
  3618. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3619. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3620. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3621. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3622. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3623. val = (BCM_PAGE_BITS - 8) << 24;
  3624. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3625. /* Configure page size. */
  3626. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3627. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3628. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3629. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3630. val = bp->mac_addr[0] +
  3631. (bp->mac_addr[1] << 8) +
  3632. (bp->mac_addr[2] << 16) +
  3633. bp->mac_addr[3] +
  3634. (bp->mac_addr[4] << 8) +
  3635. (bp->mac_addr[5] << 16);
  3636. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3637. /* Program the MTU. Also include 4 bytes for CRC32. */
  3638. val = bp->dev->mtu + ETH_HLEN + 4;
  3639. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3640. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3641. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3642. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  3643. bp->bnx2_napi[i].last_status_idx = 0;
  3644. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3645. /* Set up how to generate a link change interrupt. */
  3646. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3647. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3648. (u64) bp->status_blk_mapping & 0xffffffff);
  3649. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3650. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3651. (u64) bp->stats_blk_mapping & 0xffffffff);
  3652. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  3653. (u64) bp->stats_blk_mapping >> 32);
  3654. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  3655. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  3656. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  3657. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  3658. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  3659. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  3660. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  3661. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  3662. REG_WR(bp, BNX2_HC_COM_TICKS,
  3663. (bp->com_ticks_int << 16) | bp->com_ticks);
  3664. REG_WR(bp, BNX2_HC_CMD_TICKS,
  3665. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  3666. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  3667. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  3668. else
  3669. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  3670. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  3671. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  3672. val = BNX2_HC_CONFIG_COLLECT_STATS;
  3673. else {
  3674. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  3675. BNX2_HC_CONFIG_COLLECT_STATS;
  3676. }
  3677. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3678. u32 base = ((BNX2_TX_VEC - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  3679. BNX2_HC_SB_CONFIG_1;
  3680. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  3681. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  3682. REG_WR(bp, base,
  3683. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  3684. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  3685. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  3686. (bp->tx_quick_cons_trip_int << 16) |
  3687. bp->tx_quick_cons_trip);
  3688. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  3689. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  3690. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  3691. }
  3692. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  3693. val |= BNX2_HC_CONFIG_ONE_SHOT;
  3694. REG_WR(bp, BNX2_HC_CONFIG, val);
  3695. /* Clear internal stats counters. */
  3696. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  3697. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  3698. /* Initialize the receive filter. */
  3699. bnx2_set_rx_mode(bp->dev);
  3700. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3701. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3702. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3703. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3704. }
  3705. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  3706. 0);
  3707. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  3708. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  3709. udelay(20);
  3710. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  3711. return rc;
  3712. }
  3713. static void
  3714. bnx2_clear_ring_states(struct bnx2 *bp)
  3715. {
  3716. struct bnx2_napi *bnapi;
  3717. int i;
  3718. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  3719. bnapi = &bp->bnx2_napi[i];
  3720. bnapi->tx_cons = 0;
  3721. bnapi->hw_tx_cons = 0;
  3722. bnapi->rx_prod_bseq = 0;
  3723. bnapi->rx_prod = 0;
  3724. bnapi->rx_cons = 0;
  3725. bnapi->rx_pg_prod = 0;
  3726. bnapi->rx_pg_cons = 0;
  3727. }
  3728. }
  3729. static void
  3730. bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
  3731. {
  3732. u32 val, offset0, offset1, offset2, offset3;
  3733. u32 cid_addr = GET_CID_ADDR(cid);
  3734. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3735. offset0 = BNX2_L2CTX_TYPE_XI;
  3736. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  3737. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  3738. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  3739. } else {
  3740. offset0 = BNX2_L2CTX_TYPE;
  3741. offset1 = BNX2_L2CTX_CMD_TYPE;
  3742. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  3743. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  3744. }
  3745. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  3746. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  3747. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  3748. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  3749. val = (u64) bp->tx_desc_mapping >> 32;
  3750. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  3751. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  3752. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  3753. }
  3754. static void
  3755. bnx2_init_tx_ring(struct bnx2 *bp)
  3756. {
  3757. struct tx_bd *txbd;
  3758. u32 cid = TX_CID;
  3759. struct bnx2_napi *bnapi;
  3760. bp->tx_vec = 0;
  3761. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3762. cid = TX_TSS_CID;
  3763. bp->tx_vec = BNX2_TX_VEC;
  3764. REG_WR(bp, BNX2_TSCH_TSS_CFG, BNX2_TX_INT_NUM |
  3765. (TX_TSS_CID << 7));
  3766. }
  3767. bnapi = &bp->bnx2_napi[bp->tx_vec];
  3768. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  3769. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  3770. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  3771. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  3772. bp->tx_prod = 0;
  3773. bp->tx_prod_bseq = 0;
  3774. bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  3775. bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  3776. bnx2_init_tx_context(bp, cid);
  3777. }
  3778. static void
  3779. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  3780. int num_rings)
  3781. {
  3782. int i;
  3783. struct rx_bd *rxbd;
  3784. for (i = 0; i < num_rings; i++) {
  3785. int j;
  3786. rxbd = &rx_ring[i][0];
  3787. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  3788. rxbd->rx_bd_len = buf_size;
  3789. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  3790. }
  3791. if (i == (num_rings - 1))
  3792. j = 0;
  3793. else
  3794. j = i + 1;
  3795. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  3796. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  3797. }
  3798. }
  3799. static void
  3800. bnx2_init_rx_ring(struct bnx2 *bp)
  3801. {
  3802. int i;
  3803. u16 prod, ring_prod;
  3804. u32 val, rx_cid_addr = GET_CID_ADDR(RX_CID);
  3805. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  3806. bnx2_init_rxbd_rings(bp->rx_desc_ring, bp->rx_desc_mapping,
  3807. bp->rx_buf_use_size, bp->rx_max_ring);
  3808. bnx2_init_rx_context0(bp);
  3809. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3810. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  3811. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  3812. }
  3813. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  3814. if (bp->rx_pg_ring_size) {
  3815. bnx2_init_rxbd_rings(bp->rx_pg_desc_ring,
  3816. bp->rx_pg_desc_mapping,
  3817. PAGE_SIZE, bp->rx_max_pg_ring);
  3818. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  3819. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  3820. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  3821. BNX2_L2CTX_RBDC_JUMBO_KEY);
  3822. val = (u64) bp->rx_pg_desc_mapping[0] >> 32;
  3823. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  3824. val = (u64) bp->rx_pg_desc_mapping[0] & 0xffffffff;
  3825. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  3826. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3827. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  3828. }
  3829. val = (u64) bp->rx_desc_mapping[0] >> 32;
  3830. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  3831. val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
  3832. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  3833. ring_prod = prod = bnapi->rx_pg_prod;
  3834. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  3835. if (bnx2_alloc_rx_page(bp, ring_prod) < 0)
  3836. break;
  3837. prod = NEXT_RX_BD(prod);
  3838. ring_prod = RX_PG_RING_IDX(prod);
  3839. }
  3840. bnapi->rx_pg_prod = prod;
  3841. ring_prod = prod = bnapi->rx_prod;
  3842. for (i = 0; i < bp->rx_ring_size; i++) {
  3843. if (bnx2_alloc_rx_skb(bp, bnapi, ring_prod) < 0) {
  3844. break;
  3845. }
  3846. prod = NEXT_RX_BD(prod);
  3847. ring_prod = RX_RING_IDX(prod);
  3848. }
  3849. bnapi->rx_prod = prod;
  3850. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_PG_BDIDX,
  3851. bnapi->rx_pg_prod);
  3852. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  3853. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bnapi->rx_prod_bseq);
  3854. }
  3855. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  3856. {
  3857. u32 max, num_rings = 1;
  3858. while (ring_size > MAX_RX_DESC_CNT) {
  3859. ring_size -= MAX_RX_DESC_CNT;
  3860. num_rings++;
  3861. }
  3862. /* round to next power of 2 */
  3863. max = max_size;
  3864. while ((max & num_rings) == 0)
  3865. max >>= 1;
  3866. if (num_rings != max)
  3867. max <<= 1;
  3868. return max;
  3869. }
  3870. static void
  3871. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  3872. {
  3873. u32 rx_size, rx_space, jumbo_size;
  3874. /* 8 for CRC and VLAN */
  3875. rx_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  3876. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  3877. sizeof(struct skb_shared_info);
  3878. bp->rx_copy_thresh = RX_COPY_THRESH;
  3879. bp->rx_pg_ring_size = 0;
  3880. bp->rx_max_pg_ring = 0;
  3881. bp->rx_max_pg_ring_idx = 0;
  3882. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  3883. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  3884. jumbo_size = size * pages;
  3885. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  3886. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  3887. bp->rx_pg_ring_size = jumbo_size;
  3888. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  3889. MAX_RX_PG_RINGS);
  3890. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  3891. rx_size = RX_COPY_THRESH + bp->rx_offset;
  3892. bp->rx_copy_thresh = 0;
  3893. }
  3894. bp->rx_buf_use_size = rx_size;
  3895. /* hw alignment */
  3896. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  3897. bp->rx_jumbo_thresh = rx_size - bp->rx_offset;
  3898. bp->rx_ring_size = size;
  3899. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  3900. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  3901. }
  3902. static void
  3903. bnx2_free_tx_skbs(struct bnx2 *bp)
  3904. {
  3905. int i;
  3906. if (bp->tx_buf_ring == NULL)
  3907. return;
  3908. for (i = 0; i < TX_DESC_CNT; ) {
  3909. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  3910. struct sk_buff *skb = tx_buf->skb;
  3911. int j, last;
  3912. if (skb == NULL) {
  3913. i++;
  3914. continue;
  3915. }
  3916. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  3917. skb_headlen(skb), PCI_DMA_TODEVICE);
  3918. tx_buf->skb = NULL;
  3919. last = skb_shinfo(skb)->nr_frags;
  3920. for (j = 0; j < last; j++) {
  3921. tx_buf = &bp->tx_buf_ring[i + j + 1];
  3922. pci_unmap_page(bp->pdev,
  3923. pci_unmap_addr(tx_buf, mapping),
  3924. skb_shinfo(skb)->frags[j].size,
  3925. PCI_DMA_TODEVICE);
  3926. }
  3927. dev_kfree_skb(skb);
  3928. i += j + 1;
  3929. }
  3930. }
  3931. static void
  3932. bnx2_free_rx_skbs(struct bnx2 *bp)
  3933. {
  3934. int i;
  3935. if (bp->rx_buf_ring == NULL)
  3936. return;
  3937. for (i = 0; i < bp->rx_max_ring_idx; i++) {
  3938. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  3939. struct sk_buff *skb = rx_buf->skb;
  3940. if (skb == NULL)
  3941. continue;
  3942. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  3943. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  3944. rx_buf->skb = NULL;
  3945. dev_kfree_skb(skb);
  3946. }
  3947. for (i = 0; i < bp->rx_max_pg_ring_idx; i++)
  3948. bnx2_free_rx_page(bp, i);
  3949. }
  3950. static void
  3951. bnx2_free_skbs(struct bnx2 *bp)
  3952. {
  3953. bnx2_free_tx_skbs(bp);
  3954. bnx2_free_rx_skbs(bp);
  3955. }
  3956. static int
  3957. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  3958. {
  3959. int rc;
  3960. rc = bnx2_reset_chip(bp, reset_code);
  3961. bnx2_free_skbs(bp);
  3962. if (rc)
  3963. return rc;
  3964. if ((rc = bnx2_init_chip(bp)) != 0)
  3965. return rc;
  3966. bnx2_clear_ring_states(bp);
  3967. bnx2_init_tx_ring(bp);
  3968. bnx2_init_rx_ring(bp);
  3969. return 0;
  3970. }
  3971. static int
  3972. bnx2_init_nic(struct bnx2 *bp)
  3973. {
  3974. int rc;
  3975. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  3976. return rc;
  3977. spin_lock_bh(&bp->phy_lock);
  3978. bnx2_init_phy(bp);
  3979. bnx2_set_link(bp);
  3980. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  3981. bnx2_remote_phy_event(bp);
  3982. spin_unlock_bh(&bp->phy_lock);
  3983. return 0;
  3984. }
  3985. static int
  3986. bnx2_test_registers(struct bnx2 *bp)
  3987. {
  3988. int ret;
  3989. int i, is_5709;
  3990. static const struct {
  3991. u16 offset;
  3992. u16 flags;
  3993. #define BNX2_FL_NOT_5709 1
  3994. u32 rw_mask;
  3995. u32 ro_mask;
  3996. } reg_tbl[] = {
  3997. { 0x006c, 0, 0x00000000, 0x0000003f },
  3998. { 0x0090, 0, 0xffffffff, 0x00000000 },
  3999. { 0x0094, 0, 0x00000000, 0x00000000 },
  4000. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4001. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4002. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4003. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4004. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4005. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4006. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4007. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4008. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4009. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4010. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4011. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4012. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4013. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4014. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4015. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4016. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4017. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4018. { 0x1000, 0, 0x00000000, 0x00000001 },
  4019. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4020. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4021. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4022. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4023. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4024. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4025. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4026. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4027. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4028. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4029. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4030. { 0x1800, 0, 0x00000000, 0x00000001 },
  4031. { 0x1804, 0, 0x00000000, 0x00000003 },
  4032. { 0x2800, 0, 0x00000000, 0x00000001 },
  4033. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4034. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4035. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4036. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4037. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4038. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4039. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4040. { 0x2840, 0, 0x00000000, 0xffffffff },
  4041. { 0x2844, 0, 0x00000000, 0xffffffff },
  4042. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4043. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4044. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4045. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4046. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4047. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4048. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4049. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4050. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4051. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4052. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4053. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4054. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4055. { 0x5004, 0, 0x00000000, 0x0000007f },
  4056. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4057. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4058. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4059. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4060. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4061. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4062. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4063. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4064. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4065. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4066. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4067. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4068. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4069. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4070. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4071. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4072. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4073. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4074. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4075. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4076. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4077. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4078. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4079. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4080. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4081. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4082. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4083. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4084. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4085. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4086. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4087. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4088. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4089. { 0xffff, 0, 0x00000000, 0x00000000 },
  4090. };
  4091. ret = 0;
  4092. is_5709 = 0;
  4093. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4094. is_5709 = 1;
  4095. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4096. u32 offset, rw_mask, ro_mask, save_val, val;
  4097. u16 flags = reg_tbl[i].flags;
  4098. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4099. continue;
  4100. offset = (u32) reg_tbl[i].offset;
  4101. rw_mask = reg_tbl[i].rw_mask;
  4102. ro_mask = reg_tbl[i].ro_mask;
  4103. save_val = readl(bp->regview + offset);
  4104. writel(0, bp->regview + offset);
  4105. val = readl(bp->regview + offset);
  4106. if ((val & rw_mask) != 0) {
  4107. goto reg_test_err;
  4108. }
  4109. if ((val & ro_mask) != (save_val & ro_mask)) {
  4110. goto reg_test_err;
  4111. }
  4112. writel(0xffffffff, bp->regview + offset);
  4113. val = readl(bp->regview + offset);
  4114. if ((val & rw_mask) != rw_mask) {
  4115. goto reg_test_err;
  4116. }
  4117. if ((val & ro_mask) != (save_val & ro_mask)) {
  4118. goto reg_test_err;
  4119. }
  4120. writel(save_val, bp->regview + offset);
  4121. continue;
  4122. reg_test_err:
  4123. writel(save_val, bp->regview + offset);
  4124. ret = -ENODEV;
  4125. break;
  4126. }
  4127. return ret;
  4128. }
  4129. static int
  4130. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4131. {
  4132. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4133. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4134. int i;
  4135. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4136. u32 offset;
  4137. for (offset = 0; offset < size; offset += 4) {
  4138. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4139. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4140. test_pattern[i]) {
  4141. return -ENODEV;
  4142. }
  4143. }
  4144. }
  4145. return 0;
  4146. }
  4147. static int
  4148. bnx2_test_memory(struct bnx2 *bp)
  4149. {
  4150. int ret = 0;
  4151. int i;
  4152. static struct mem_entry {
  4153. u32 offset;
  4154. u32 len;
  4155. } mem_tbl_5706[] = {
  4156. { 0x60000, 0x4000 },
  4157. { 0xa0000, 0x3000 },
  4158. { 0xe0000, 0x4000 },
  4159. { 0x120000, 0x4000 },
  4160. { 0x1a0000, 0x4000 },
  4161. { 0x160000, 0x4000 },
  4162. { 0xffffffff, 0 },
  4163. },
  4164. mem_tbl_5709[] = {
  4165. { 0x60000, 0x4000 },
  4166. { 0xa0000, 0x3000 },
  4167. { 0xe0000, 0x4000 },
  4168. { 0x120000, 0x4000 },
  4169. { 0x1a0000, 0x4000 },
  4170. { 0xffffffff, 0 },
  4171. };
  4172. struct mem_entry *mem_tbl;
  4173. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4174. mem_tbl = mem_tbl_5709;
  4175. else
  4176. mem_tbl = mem_tbl_5706;
  4177. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4178. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4179. mem_tbl[i].len)) != 0) {
  4180. return ret;
  4181. }
  4182. }
  4183. return ret;
  4184. }
  4185. #define BNX2_MAC_LOOPBACK 0
  4186. #define BNX2_PHY_LOOPBACK 1
  4187. static int
  4188. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4189. {
  4190. unsigned int pkt_size, num_pkts, i;
  4191. struct sk_buff *skb, *rx_skb;
  4192. unsigned char *packet;
  4193. u16 rx_start_idx, rx_idx;
  4194. dma_addr_t map;
  4195. struct tx_bd *txbd;
  4196. struct sw_bd *rx_buf;
  4197. struct l2_fhdr *rx_hdr;
  4198. int ret = -ENODEV;
  4199. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4200. tx_napi = bnapi;
  4201. if (bp->flags & BNX2_FLAG_USING_MSIX)
  4202. tx_napi = &bp->bnx2_napi[BNX2_TX_VEC];
  4203. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4204. bp->loopback = MAC_LOOPBACK;
  4205. bnx2_set_mac_loopback(bp);
  4206. }
  4207. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4208. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4209. return 0;
  4210. bp->loopback = PHY_LOOPBACK;
  4211. bnx2_set_phy_loopback(bp);
  4212. }
  4213. else
  4214. return -EINVAL;
  4215. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4216. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4217. if (!skb)
  4218. return -ENOMEM;
  4219. packet = skb_put(skb, pkt_size);
  4220. memcpy(packet, bp->dev->dev_addr, 6);
  4221. memset(packet + 6, 0x0, 8);
  4222. for (i = 14; i < pkt_size; i++)
  4223. packet[i] = (unsigned char) (i & 0xff);
  4224. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  4225. PCI_DMA_TODEVICE);
  4226. REG_WR(bp, BNX2_HC_COMMAND,
  4227. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4228. REG_RD(bp, BNX2_HC_COMMAND);
  4229. udelay(5);
  4230. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4231. num_pkts = 0;
  4232. txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
  4233. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4234. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4235. txbd->tx_bd_mss_nbytes = pkt_size;
  4236. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4237. num_pkts++;
  4238. bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
  4239. bp->tx_prod_bseq += pkt_size;
  4240. REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
  4241. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  4242. udelay(100);
  4243. REG_WR(bp, BNX2_HC_COMMAND,
  4244. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4245. REG_RD(bp, BNX2_HC_COMMAND);
  4246. udelay(5);
  4247. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  4248. dev_kfree_skb(skb);
  4249. if (bnx2_get_hw_tx_cons(tx_napi) != bp->tx_prod)
  4250. goto loopback_test_done;
  4251. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4252. if (rx_idx != rx_start_idx + num_pkts) {
  4253. goto loopback_test_done;
  4254. }
  4255. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  4256. rx_skb = rx_buf->skb;
  4257. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4258. skb_reserve(rx_skb, bp->rx_offset);
  4259. pci_dma_sync_single_for_cpu(bp->pdev,
  4260. pci_unmap_addr(rx_buf, mapping),
  4261. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4262. if (rx_hdr->l2_fhdr_status &
  4263. (L2_FHDR_ERRORS_BAD_CRC |
  4264. L2_FHDR_ERRORS_PHY_DECODE |
  4265. L2_FHDR_ERRORS_ALIGNMENT |
  4266. L2_FHDR_ERRORS_TOO_SHORT |
  4267. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4268. goto loopback_test_done;
  4269. }
  4270. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4271. goto loopback_test_done;
  4272. }
  4273. for (i = 14; i < pkt_size; i++) {
  4274. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4275. goto loopback_test_done;
  4276. }
  4277. }
  4278. ret = 0;
  4279. loopback_test_done:
  4280. bp->loopback = 0;
  4281. return ret;
  4282. }
  4283. #define BNX2_MAC_LOOPBACK_FAILED 1
  4284. #define BNX2_PHY_LOOPBACK_FAILED 2
  4285. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4286. BNX2_PHY_LOOPBACK_FAILED)
  4287. static int
  4288. bnx2_test_loopback(struct bnx2 *bp)
  4289. {
  4290. int rc = 0;
  4291. if (!netif_running(bp->dev))
  4292. return BNX2_LOOPBACK_FAILED;
  4293. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4294. spin_lock_bh(&bp->phy_lock);
  4295. bnx2_init_phy(bp);
  4296. spin_unlock_bh(&bp->phy_lock);
  4297. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4298. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4299. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4300. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4301. return rc;
  4302. }
  4303. #define NVRAM_SIZE 0x200
  4304. #define CRC32_RESIDUAL 0xdebb20e3
  4305. static int
  4306. bnx2_test_nvram(struct bnx2 *bp)
  4307. {
  4308. __be32 buf[NVRAM_SIZE / 4];
  4309. u8 *data = (u8 *) buf;
  4310. int rc = 0;
  4311. u32 magic, csum;
  4312. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4313. goto test_nvram_done;
  4314. magic = be32_to_cpu(buf[0]);
  4315. if (magic != 0x669955aa) {
  4316. rc = -ENODEV;
  4317. goto test_nvram_done;
  4318. }
  4319. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4320. goto test_nvram_done;
  4321. csum = ether_crc_le(0x100, data);
  4322. if (csum != CRC32_RESIDUAL) {
  4323. rc = -ENODEV;
  4324. goto test_nvram_done;
  4325. }
  4326. csum = ether_crc_le(0x100, data + 0x100);
  4327. if (csum != CRC32_RESIDUAL) {
  4328. rc = -ENODEV;
  4329. }
  4330. test_nvram_done:
  4331. return rc;
  4332. }
  4333. static int
  4334. bnx2_test_link(struct bnx2 *bp)
  4335. {
  4336. u32 bmsr;
  4337. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4338. if (bp->link_up)
  4339. return 0;
  4340. return -ENODEV;
  4341. }
  4342. spin_lock_bh(&bp->phy_lock);
  4343. bnx2_enable_bmsr1(bp);
  4344. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4345. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4346. bnx2_disable_bmsr1(bp);
  4347. spin_unlock_bh(&bp->phy_lock);
  4348. if (bmsr & BMSR_LSTATUS) {
  4349. return 0;
  4350. }
  4351. return -ENODEV;
  4352. }
  4353. static int
  4354. bnx2_test_intr(struct bnx2 *bp)
  4355. {
  4356. int i;
  4357. u16 status_idx;
  4358. if (!netif_running(bp->dev))
  4359. return -ENODEV;
  4360. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4361. /* This register is not touched during run-time. */
  4362. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4363. REG_RD(bp, BNX2_HC_COMMAND);
  4364. for (i = 0; i < 10; i++) {
  4365. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4366. status_idx) {
  4367. break;
  4368. }
  4369. msleep_interruptible(10);
  4370. }
  4371. if (i < 10)
  4372. return 0;
  4373. return -ENODEV;
  4374. }
  4375. /* Determining link for parallel detection. */
  4376. static int
  4377. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4378. {
  4379. u32 mode_ctl, an_dbg, exp;
  4380. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4381. return 0;
  4382. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4383. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4384. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4385. return 0;
  4386. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4387. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4388. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4389. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4390. return 0;
  4391. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4392. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4393. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4394. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4395. return 0;
  4396. return 1;
  4397. }
  4398. static void
  4399. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4400. {
  4401. int check_link = 1;
  4402. spin_lock(&bp->phy_lock);
  4403. if (bp->serdes_an_pending) {
  4404. bp->serdes_an_pending--;
  4405. check_link = 0;
  4406. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4407. u32 bmcr;
  4408. bp->current_interval = bp->timer_interval;
  4409. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4410. if (bmcr & BMCR_ANENABLE) {
  4411. if (bnx2_5706_serdes_has_link(bp)) {
  4412. bmcr &= ~BMCR_ANENABLE;
  4413. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4414. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4415. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4416. }
  4417. }
  4418. }
  4419. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4420. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4421. u32 phy2;
  4422. bnx2_write_phy(bp, 0x17, 0x0f01);
  4423. bnx2_read_phy(bp, 0x15, &phy2);
  4424. if (phy2 & 0x20) {
  4425. u32 bmcr;
  4426. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4427. bmcr |= BMCR_ANENABLE;
  4428. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4429. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4430. }
  4431. } else
  4432. bp->current_interval = bp->timer_interval;
  4433. if (check_link) {
  4434. u32 val;
  4435. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4436. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4437. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4438. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4439. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4440. bnx2_5706s_force_link_dn(bp, 1);
  4441. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4442. } else
  4443. bnx2_set_link(bp);
  4444. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4445. bnx2_set_link(bp);
  4446. }
  4447. spin_unlock(&bp->phy_lock);
  4448. }
  4449. static void
  4450. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4451. {
  4452. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4453. return;
  4454. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4455. bp->serdes_an_pending = 0;
  4456. return;
  4457. }
  4458. spin_lock(&bp->phy_lock);
  4459. if (bp->serdes_an_pending)
  4460. bp->serdes_an_pending--;
  4461. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4462. u32 bmcr;
  4463. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4464. if (bmcr & BMCR_ANENABLE) {
  4465. bnx2_enable_forced_2g5(bp);
  4466. bp->current_interval = SERDES_FORCED_TIMEOUT;
  4467. } else {
  4468. bnx2_disable_forced_2g5(bp);
  4469. bp->serdes_an_pending = 2;
  4470. bp->current_interval = bp->timer_interval;
  4471. }
  4472. } else
  4473. bp->current_interval = bp->timer_interval;
  4474. spin_unlock(&bp->phy_lock);
  4475. }
  4476. static void
  4477. bnx2_timer(unsigned long data)
  4478. {
  4479. struct bnx2 *bp = (struct bnx2 *) data;
  4480. if (!netif_running(bp->dev))
  4481. return;
  4482. if (atomic_read(&bp->intr_sem) != 0)
  4483. goto bnx2_restart_timer;
  4484. bnx2_send_heart_beat(bp);
  4485. bp->stats_blk->stat_FwRxDrop =
  4486. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4487. /* workaround occasional corrupted counters */
  4488. if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
  4489. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4490. BNX2_HC_COMMAND_STATS_NOW);
  4491. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4492. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4493. bnx2_5706_serdes_timer(bp);
  4494. else
  4495. bnx2_5708_serdes_timer(bp);
  4496. }
  4497. bnx2_restart_timer:
  4498. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4499. }
  4500. static int
  4501. bnx2_request_irq(struct bnx2 *bp)
  4502. {
  4503. struct net_device *dev = bp->dev;
  4504. unsigned long flags;
  4505. struct bnx2_irq *irq;
  4506. int rc = 0, i;
  4507. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4508. flags = 0;
  4509. else
  4510. flags = IRQF_SHARED;
  4511. for (i = 0; i < bp->irq_nvecs; i++) {
  4512. irq = &bp->irq_tbl[i];
  4513. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4514. dev);
  4515. if (rc)
  4516. break;
  4517. irq->requested = 1;
  4518. }
  4519. return rc;
  4520. }
  4521. static void
  4522. bnx2_free_irq(struct bnx2 *bp)
  4523. {
  4524. struct net_device *dev = bp->dev;
  4525. struct bnx2_irq *irq;
  4526. int i;
  4527. for (i = 0; i < bp->irq_nvecs; i++) {
  4528. irq = &bp->irq_tbl[i];
  4529. if (irq->requested)
  4530. free_irq(irq->vector, dev);
  4531. irq->requested = 0;
  4532. }
  4533. if (bp->flags & BNX2_FLAG_USING_MSI)
  4534. pci_disable_msi(bp->pdev);
  4535. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4536. pci_disable_msix(bp->pdev);
  4537. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4538. }
  4539. static void
  4540. bnx2_enable_msix(struct bnx2 *bp)
  4541. {
  4542. int i, rc;
  4543. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4544. bnx2_setup_msix_tbl(bp);
  4545. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4546. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4547. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  4548. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4549. msix_ent[i].entry = i;
  4550. msix_ent[i].vector = 0;
  4551. }
  4552. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  4553. if (rc != 0)
  4554. return;
  4555. bp->irq_tbl[BNX2_BASE_VEC].handler = bnx2_msi_1shot;
  4556. bp->irq_tbl[BNX2_TX_VEC].handler = bnx2_tx_msix;
  4557. strcpy(bp->irq_tbl[BNX2_BASE_VEC].name, bp->dev->name);
  4558. strcat(bp->irq_tbl[BNX2_BASE_VEC].name, "-base");
  4559. strcpy(bp->irq_tbl[BNX2_TX_VEC].name, bp->dev->name);
  4560. strcat(bp->irq_tbl[BNX2_TX_VEC].name, "-tx");
  4561. bp->irq_nvecs = BNX2_MAX_MSIX_VEC;
  4562. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  4563. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4564. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4565. }
  4566. static void
  4567. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  4568. {
  4569. bp->irq_tbl[0].handler = bnx2_interrupt;
  4570. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  4571. bp->irq_nvecs = 1;
  4572. bp->irq_tbl[0].vector = bp->pdev->irq;
  4573. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  4574. bnx2_enable_msix(bp);
  4575. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  4576. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  4577. if (pci_enable_msi(bp->pdev) == 0) {
  4578. bp->flags |= BNX2_FLAG_USING_MSI;
  4579. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4580. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  4581. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  4582. } else
  4583. bp->irq_tbl[0].handler = bnx2_msi;
  4584. bp->irq_tbl[0].vector = bp->pdev->irq;
  4585. }
  4586. }
  4587. }
  4588. /* Called with rtnl_lock */
  4589. static int
  4590. bnx2_open(struct net_device *dev)
  4591. {
  4592. struct bnx2 *bp = netdev_priv(dev);
  4593. int rc;
  4594. netif_carrier_off(dev);
  4595. bnx2_set_power_state(bp, PCI_D0);
  4596. bnx2_disable_int(bp);
  4597. rc = bnx2_alloc_mem(bp);
  4598. if (rc)
  4599. return rc;
  4600. bnx2_setup_int_mode(bp, disable_msi);
  4601. bnx2_napi_enable(bp);
  4602. rc = bnx2_request_irq(bp);
  4603. if (rc) {
  4604. bnx2_napi_disable(bp);
  4605. bnx2_free_mem(bp);
  4606. return rc;
  4607. }
  4608. rc = bnx2_init_nic(bp);
  4609. if (rc) {
  4610. bnx2_napi_disable(bp);
  4611. bnx2_free_irq(bp);
  4612. bnx2_free_skbs(bp);
  4613. bnx2_free_mem(bp);
  4614. return rc;
  4615. }
  4616. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4617. atomic_set(&bp->intr_sem, 0);
  4618. bnx2_enable_int(bp);
  4619. if (bp->flags & BNX2_FLAG_USING_MSI) {
  4620. /* Test MSI to make sure it is working
  4621. * If MSI test fails, go back to INTx mode
  4622. */
  4623. if (bnx2_test_intr(bp) != 0) {
  4624. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  4625. " using MSI, switching to INTx mode. Please"
  4626. " report this failure to the PCI maintainer"
  4627. " and include system chipset information.\n",
  4628. bp->dev->name);
  4629. bnx2_disable_int(bp);
  4630. bnx2_free_irq(bp);
  4631. bnx2_setup_int_mode(bp, 1);
  4632. rc = bnx2_init_nic(bp);
  4633. if (!rc)
  4634. rc = bnx2_request_irq(bp);
  4635. if (rc) {
  4636. bnx2_napi_disable(bp);
  4637. bnx2_free_skbs(bp);
  4638. bnx2_free_mem(bp);
  4639. del_timer_sync(&bp->timer);
  4640. return rc;
  4641. }
  4642. bnx2_enable_int(bp);
  4643. }
  4644. }
  4645. if (bp->flags & BNX2_FLAG_USING_MSI)
  4646. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  4647. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4648. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  4649. netif_start_queue(dev);
  4650. return 0;
  4651. }
  4652. static void
  4653. bnx2_reset_task(struct work_struct *work)
  4654. {
  4655. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  4656. if (!netif_running(bp->dev))
  4657. return;
  4658. bp->in_reset_task = 1;
  4659. bnx2_netif_stop(bp);
  4660. bnx2_init_nic(bp);
  4661. atomic_set(&bp->intr_sem, 1);
  4662. bnx2_netif_start(bp);
  4663. bp->in_reset_task = 0;
  4664. }
  4665. static void
  4666. bnx2_tx_timeout(struct net_device *dev)
  4667. {
  4668. struct bnx2 *bp = netdev_priv(dev);
  4669. /* This allows the netif to be shutdown gracefully before resetting */
  4670. schedule_work(&bp->reset_task);
  4671. }
  4672. #ifdef BCM_VLAN
  4673. /* Called with rtnl_lock */
  4674. static void
  4675. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  4676. {
  4677. struct bnx2 *bp = netdev_priv(dev);
  4678. bnx2_netif_stop(bp);
  4679. bp->vlgrp = vlgrp;
  4680. bnx2_set_rx_mode(dev);
  4681. bnx2_netif_start(bp);
  4682. }
  4683. #endif
  4684. /* Called with netif_tx_lock.
  4685. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  4686. * netif_wake_queue().
  4687. */
  4688. static int
  4689. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4690. {
  4691. struct bnx2 *bp = netdev_priv(dev);
  4692. dma_addr_t mapping;
  4693. struct tx_bd *txbd;
  4694. struct sw_bd *tx_buf;
  4695. u32 len, vlan_tag_flags, last_frag, mss;
  4696. u16 prod, ring_prod;
  4697. int i;
  4698. struct bnx2_napi *bnapi = &bp->bnx2_napi[bp->tx_vec];
  4699. if (unlikely(bnx2_tx_avail(bp, bnapi) <
  4700. (skb_shinfo(skb)->nr_frags + 1))) {
  4701. netif_stop_queue(dev);
  4702. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  4703. dev->name);
  4704. return NETDEV_TX_BUSY;
  4705. }
  4706. len = skb_headlen(skb);
  4707. prod = bp->tx_prod;
  4708. ring_prod = TX_RING_IDX(prod);
  4709. vlan_tag_flags = 0;
  4710. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4711. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  4712. }
  4713. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  4714. vlan_tag_flags |=
  4715. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  4716. }
  4717. if ((mss = skb_shinfo(skb)->gso_size)) {
  4718. u32 tcp_opt_len, ip_tcp_len;
  4719. struct iphdr *iph;
  4720. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  4721. tcp_opt_len = tcp_optlen(skb);
  4722. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  4723. u32 tcp_off = skb_transport_offset(skb) -
  4724. sizeof(struct ipv6hdr) - ETH_HLEN;
  4725. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  4726. TX_BD_FLAGS_SW_FLAGS;
  4727. if (likely(tcp_off == 0))
  4728. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  4729. else {
  4730. tcp_off >>= 3;
  4731. vlan_tag_flags |= ((tcp_off & 0x3) <<
  4732. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  4733. ((tcp_off & 0x10) <<
  4734. TX_BD_FLAGS_TCP6_OFF4_SHL);
  4735. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  4736. }
  4737. } else {
  4738. if (skb_header_cloned(skb) &&
  4739. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  4740. dev_kfree_skb(skb);
  4741. return NETDEV_TX_OK;
  4742. }
  4743. ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
  4744. iph = ip_hdr(skb);
  4745. iph->check = 0;
  4746. iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
  4747. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  4748. iph->daddr, 0,
  4749. IPPROTO_TCP,
  4750. 0);
  4751. if (tcp_opt_len || (iph->ihl > 5)) {
  4752. vlan_tag_flags |= ((iph->ihl - 5) +
  4753. (tcp_opt_len >> 2)) << 8;
  4754. }
  4755. }
  4756. } else
  4757. mss = 0;
  4758. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  4759. tx_buf = &bp->tx_buf_ring[ring_prod];
  4760. tx_buf->skb = skb;
  4761. pci_unmap_addr_set(tx_buf, mapping, mapping);
  4762. txbd = &bp->tx_desc_ring[ring_prod];
  4763. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  4764. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  4765. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  4766. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  4767. last_frag = skb_shinfo(skb)->nr_frags;
  4768. for (i = 0; i < last_frag; i++) {
  4769. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4770. prod = NEXT_TX_BD(prod);
  4771. ring_prod = TX_RING_IDX(prod);
  4772. txbd = &bp->tx_desc_ring[ring_prod];
  4773. len = frag->size;
  4774. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  4775. len, PCI_DMA_TODEVICE);
  4776. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  4777. mapping, mapping);
  4778. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  4779. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  4780. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  4781. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  4782. }
  4783. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  4784. prod = NEXT_TX_BD(prod);
  4785. bp->tx_prod_bseq += skb->len;
  4786. REG_WR16(bp, bp->tx_bidx_addr, prod);
  4787. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  4788. mmiowb();
  4789. bp->tx_prod = prod;
  4790. dev->trans_start = jiffies;
  4791. if (unlikely(bnx2_tx_avail(bp, bnapi) <= MAX_SKB_FRAGS)) {
  4792. netif_stop_queue(dev);
  4793. if (bnx2_tx_avail(bp, bnapi) > bp->tx_wake_thresh)
  4794. netif_wake_queue(dev);
  4795. }
  4796. return NETDEV_TX_OK;
  4797. }
  4798. /* Called with rtnl_lock */
  4799. static int
  4800. bnx2_close(struct net_device *dev)
  4801. {
  4802. struct bnx2 *bp = netdev_priv(dev);
  4803. u32 reset_code;
  4804. /* Calling flush_scheduled_work() may deadlock because
  4805. * linkwatch_event() may be on the workqueue and it will try to get
  4806. * the rtnl_lock which we are holding.
  4807. */
  4808. while (bp->in_reset_task)
  4809. msleep(1);
  4810. bnx2_disable_int_sync(bp);
  4811. bnx2_napi_disable(bp);
  4812. del_timer_sync(&bp->timer);
  4813. if (bp->flags & BNX2_FLAG_NO_WOL)
  4814. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4815. else if (bp->wol)
  4816. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4817. else
  4818. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4819. bnx2_reset_chip(bp, reset_code);
  4820. bnx2_free_irq(bp);
  4821. bnx2_free_skbs(bp);
  4822. bnx2_free_mem(bp);
  4823. bp->link_up = 0;
  4824. netif_carrier_off(bp->dev);
  4825. bnx2_set_power_state(bp, PCI_D3hot);
  4826. return 0;
  4827. }
  4828. #define GET_NET_STATS64(ctr) \
  4829. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  4830. (unsigned long) (ctr##_lo)
  4831. #define GET_NET_STATS32(ctr) \
  4832. (ctr##_lo)
  4833. #if (BITS_PER_LONG == 64)
  4834. #define GET_NET_STATS GET_NET_STATS64
  4835. #else
  4836. #define GET_NET_STATS GET_NET_STATS32
  4837. #endif
  4838. static struct net_device_stats *
  4839. bnx2_get_stats(struct net_device *dev)
  4840. {
  4841. struct bnx2 *bp = netdev_priv(dev);
  4842. struct statistics_block *stats_blk = bp->stats_blk;
  4843. struct net_device_stats *net_stats = &bp->net_stats;
  4844. if (bp->stats_blk == NULL) {
  4845. return net_stats;
  4846. }
  4847. net_stats->rx_packets =
  4848. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  4849. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  4850. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  4851. net_stats->tx_packets =
  4852. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  4853. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  4854. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  4855. net_stats->rx_bytes =
  4856. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  4857. net_stats->tx_bytes =
  4858. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  4859. net_stats->multicast =
  4860. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  4861. net_stats->collisions =
  4862. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  4863. net_stats->rx_length_errors =
  4864. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  4865. stats_blk->stat_EtherStatsOverrsizePkts);
  4866. net_stats->rx_over_errors =
  4867. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  4868. net_stats->rx_frame_errors =
  4869. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  4870. net_stats->rx_crc_errors =
  4871. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  4872. net_stats->rx_errors = net_stats->rx_length_errors +
  4873. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  4874. net_stats->rx_crc_errors;
  4875. net_stats->tx_aborted_errors =
  4876. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  4877. stats_blk->stat_Dot3StatsLateCollisions);
  4878. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  4879. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4880. net_stats->tx_carrier_errors = 0;
  4881. else {
  4882. net_stats->tx_carrier_errors =
  4883. (unsigned long)
  4884. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  4885. }
  4886. net_stats->tx_errors =
  4887. (unsigned long)
  4888. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  4889. +
  4890. net_stats->tx_aborted_errors +
  4891. net_stats->tx_carrier_errors;
  4892. net_stats->rx_missed_errors =
  4893. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  4894. stats_blk->stat_FwRxDrop);
  4895. return net_stats;
  4896. }
  4897. /* All ethtool functions called with rtnl_lock */
  4898. static int
  4899. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4900. {
  4901. struct bnx2 *bp = netdev_priv(dev);
  4902. int support_serdes = 0, support_copper = 0;
  4903. cmd->supported = SUPPORTED_Autoneg;
  4904. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4905. support_serdes = 1;
  4906. support_copper = 1;
  4907. } else if (bp->phy_port == PORT_FIBRE)
  4908. support_serdes = 1;
  4909. else
  4910. support_copper = 1;
  4911. if (support_serdes) {
  4912. cmd->supported |= SUPPORTED_1000baseT_Full |
  4913. SUPPORTED_FIBRE;
  4914. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  4915. cmd->supported |= SUPPORTED_2500baseX_Full;
  4916. }
  4917. if (support_copper) {
  4918. cmd->supported |= SUPPORTED_10baseT_Half |
  4919. SUPPORTED_10baseT_Full |
  4920. SUPPORTED_100baseT_Half |
  4921. SUPPORTED_100baseT_Full |
  4922. SUPPORTED_1000baseT_Full |
  4923. SUPPORTED_TP;
  4924. }
  4925. spin_lock_bh(&bp->phy_lock);
  4926. cmd->port = bp->phy_port;
  4927. cmd->advertising = bp->advertising;
  4928. if (bp->autoneg & AUTONEG_SPEED) {
  4929. cmd->autoneg = AUTONEG_ENABLE;
  4930. }
  4931. else {
  4932. cmd->autoneg = AUTONEG_DISABLE;
  4933. }
  4934. if (netif_carrier_ok(dev)) {
  4935. cmd->speed = bp->line_speed;
  4936. cmd->duplex = bp->duplex;
  4937. }
  4938. else {
  4939. cmd->speed = -1;
  4940. cmd->duplex = -1;
  4941. }
  4942. spin_unlock_bh(&bp->phy_lock);
  4943. cmd->transceiver = XCVR_INTERNAL;
  4944. cmd->phy_address = bp->phy_addr;
  4945. return 0;
  4946. }
  4947. static int
  4948. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4949. {
  4950. struct bnx2 *bp = netdev_priv(dev);
  4951. u8 autoneg = bp->autoneg;
  4952. u8 req_duplex = bp->req_duplex;
  4953. u16 req_line_speed = bp->req_line_speed;
  4954. u32 advertising = bp->advertising;
  4955. int err = -EINVAL;
  4956. spin_lock_bh(&bp->phy_lock);
  4957. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  4958. goto err_out_unlock;
  4959. if (cmd->port != bp->phy_port &&
  4960. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  4961. goto err_out_unlock;
  4962. if (cmd->autoneg == AUTONEG_ENABLE) {
  4963. autoneg |= AUTONEG_SPEED;
  4964. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  4965. /* allow advertising 1 speed */
  4966. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  4967. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  4968. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  4969. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  4970. if (cmd->port == PORT_FIBRE)
  4971. goto err_out_unlock;
  4972. advertising = cmd->advertising;
  4973. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  4974. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  4975. (cmd->port == PORT_TP))
  4976. goto err_out_unlock;
  4977. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  4978. advertising = cmd->advertising;
  4979. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  4980. goto err_out_unlock;
  4981. else {
  4982. if (cmd->port == PORT_FIBRE)
  4983. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  4984. else
  4985. advertising = ETHTOOL_ALL_COPPER_SPEED;
  4986. }
  4987. advertising |= ADVERTISED_Autoneg;
  4988. }
  4989. else {
  4990. if (cmd->port == PORT_FIBRE) {
  4991. if ((cmd->speed != SPEED_1000 &&
  4992. cmd->speed != SPEED_2500) ||
  4993. (cmd->duplex != DUPLEX_FULL))
  4994. goto err_out_unlock;
  4995. if (cmd->speed == SPEED_2500 &&
  4996. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  4997. goto err_out_unlock;
  4998. }
  4999. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5000. goto err_out_unlock;
  5001. autoneg &= ~AUTONEG_SPEED;
  5002. req_line_speed = cmd->speed;
  5003. req_duplex = cmd->duplex;
  5004. advertising = 0;
  5005. }
  5006. bp->autoneg = autoneg;
  5007. bp->advertising = advertising;
  5008. bp->req_line_speed = req_line_speed;
  5009. bp->req_duplex = req_duplex;
  5010. err = bnx2_setup_phy(bp, cmd->port);
  5011. err_out_unlock:
  5012. spin_unlock_bh(&bp->phy_lock);
  5013. return err;
  5014. }
  5015. static void
  5016. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5017. {
  5018. struct bnx2 *bp = netdev_priv(dev);
  5019. strcpy(info->driver, DRV_MODULE_NAME);
  5020. strcpy(info->version, DRV_MODULE_VERSION);
  5021. strcpy(info->bus_info, pci_name(bp->pdev));
  5022. strcpy(info->fw_version, bp->fw_version);
  5023. }
  5024. #define BNX2_REGDUMP_LEN (32 * 1024)
  5025. static int
  5026. bnx2_get_regs_len(struct net_device *dev)
  5027. {
  5028. return BNX2_REGDUMP_LEN;
  5029. }
  5030. static void
  5031. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5032. {
  5033. u32 *p = _p, i, offset;
  5034. u8 *orig_p = _p;
  5035. struct bnx2 *bp = netdev_priv(dev);
  5036. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5037. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5038. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5039. 0x1040, 0x1048, 0x1080, 0x10a4,
  5040. 0x1400, 0x1490, 0x1498, 0x14f0,
  5041. 0x1500, 0x155c, 0x1580, 0x15dc,
  5042. 0x1600, 0x1658, 0x1680, 0x16d8,
  5043. 0x1800, 0x1820, 0x1840, 0x1854,
  5044. 0x1880, 0x1894, 0x1900, 0x1984,
  5045. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5046. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5047. 0x2000, 0x2030, 0x23c0, 0x2400,
  5048. 0x2800, 0x2820, 0x2830, 0x2850,
  5049. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5050. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5051. 0x4080, 0x4090, 0x43c0, 0x4458,
  5052. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5053. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5054. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5055. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5056. 0x6800, 0x6848, 0x684c, 0x6860,
  5057. 0x6888, 0x6910, 0x8000 };
  5058. regs->version = 0;
  5059. memset(p, 0, BNX2_REGDUMP_LEN);
  5060. if (!netif_running(bp->dev))
  5061. return;
  5062. i = 0;
  5063. offset = reg_boundaries[0];
  5064. p += offset;
  5065. while (offset < BNX2_REGDUMP_LEN) {
  5066. *p++ = REG_RD(bp, offset);
  5067. offset += 4;
  5068. if (offset == reg_boundaries[i + 1]) {
  5069. offset = reg_boundaries[i + 2];
  5070. p = (u32 *) (orig_p + offset);
  5071. i += 2;
  5072. }
  5073. }
  5074. }
  5075. static void
  5076. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5077. {
  5078. struct bnx2 *bp = netdev_priv(dev);
  5079. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5080. wol->supported = 0;
  5081. wol->wolopts = 0;
  5082. }
  5083. else {
  5084. wol->supported = WAKE_MAGIC;
  5085. if (bp->wol)
  5086. wol->wolopts = WAKE_MAGIC;
  5087. else
  5088. wol->wolopts = 0;
  5089. }
  5090. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5091. }
  5092. static int
  5093. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5094. {
  5095. struct bnx2 *bp = netdev_priv(dev);
  5096. if (wol->wolopts & ~WAKE_MAGIC)
  5097. return -EINVAL;
  5098. if (wol->wolopts & WAKE_MAGIC) {
  5099. if (bp->flags & BNX2_FLAG_NO_WOL)
  5100. return -EINVAL;
  5101. bp->wol = 1;
  5102. }
  5103. else {
  5104. bp->wol = 0;
  5105. }
  5106. return 0;
  5107. }
  5108. static int
  5109. bnx2_nway_reset(struct net_device *dev)
  5110. {
  5111. struct bnx2 *bp = netdev_priv(dev);
  5112. u32 bmcr;
  5113. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5114. return -EINVAL;
  5115. }
  5116. spin_lock_bh(&bp->phy_lock);
  5117. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5118. int rc;
  5119. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5120. spin_unlock_bh(&bp->phy_lock);
  5121. return rc;
  5122. }
  5123. /* Force a link down visible on the other side */
  5124. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5125. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5126. spin_unlock_bh(&bp->phy_lock);
  5127. msleep(20);
  5128. spin_lock_bh(&bp->phy_lock);
  5129. bp->current_interval = SERDES_AN_TIMEOUT;
  5130. bp->serdes_an_pending = 1;
  5131. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5132. }
  5133. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5134. bmcr &= ~BMCR_LOOPBACK;
  5135. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5136. spin_unlock_bh(&bp->phy_lock);
  5137. return 0;
  5138. }
  5139. static int
  5140. bnx2_get_eeprom_len(struct net_device *dev)
  5141. {
  5142. struct bnx2 *bp = netdev_priv(dev);
  5143. if (bp->flash_info == NULL)
  5144. return 0;
  5145. return (int) bp->flash_size;
  5146. }
  5147. static int
  5148. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5149. u8 *eebuf)
  5150. {
  5151. struct bnx2 *bp = netdev_priv(dev);
  5152. int rc;
  5153. /* parameters already validated in ethtool_get_eeprom */
  5154. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5155. return rc;
  5156. }
  5157. static int
  5158. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5159. u8 *eebuf)
  5160. {
  5161. struct bnx2 *bp = netdev_priv(dev);
  5162. int rc;
  5163. /* parameters already validated in ethtool_set_eeprom */
  5164. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5165. return rc;
  5166. }
  5167. static int
  5168. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5169. {
  5170. struct bnx2 *bp = netdev_priv(dev);
  5171. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5172. coal->rx_coalesce_usecs = bp->rx_ticks;
  5173. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5174. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5175. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5176. coal->tx_coalesce_usecs = bp->tx_ticks;
  5177. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5178. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5179. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5180. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5181. return 0;
  5182. }
  5183. static int
  5184. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5185. {
  5186. struct bnx2 *bp = netdev_priv(dev);
  5187. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5188. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5189. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5190. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5191. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5192. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5193. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5194. if (bp->rx_quick_cons_trip_int > 0xff)
  5195. bp->rx_quick_cons_trip_int = 0xff;
  5196. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5197. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5198. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5199. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5200. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5201. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5202. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5203. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5204. 0xff;
  5205. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5206. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  5207. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5208. bp->stats_ticks = USEC_PER_SEC;
  5209. }
  5210. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5211. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5212. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5213. if (netif_running(bp->dev)) {
  5214. bnx2_netif_stop(bp);
  5215. bnx2_init_nic(bp);
  5216. bnx2_netif_start(bp);
  5217. }
  5218. return 0;
  5219. }
  5220. static void
  5221. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5222. {
  5223. struct bnx2 *bp = netdev_priv(dev);
  5224. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5225. ering->rx_mini_max_pending = 0;
  5226. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5227. ering->rx_pending = bp->rx_ring_size;
  5228. ering->rx_mini_pending = 0;
  5229. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5230. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5231. ering->tx_pending = bp->tx_ring_size;
  5232. }
  5233. static int
  5234. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5235. {
  5236. if (netif_running(bp->dev)) {
  5237. bnx2_netif_stop(bp);
  5238. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5239. bnx2_free_skbs(bp);
  5240. bnx2_free_mem(bp);
  5241. }
  5242. bnx2_set_rx_ring_size(bp, rx);
  5243. bp->tx_ring_size = tx;
  5244. if (netif_running(bp->dev)) {
  5245. int rc;
  5246. rc = bnx2_alloc_mem(bp);
  5247. if (rc)
  5248. return rc;
  5249. bnx2_init_nic(bp);
  5250. bnx2_netif_start(bp);
  5251. }
  5252. return 0;
  5253. }
  5254. static int
  5255. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5256. {
  5257. struct bnx2 *bp = netdev_priv(dev);
  5258. int rc;
  5259. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5260. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5261. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5262. return -EINVAL;
  5263. }
  5264. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5265. return rc;
  5266. }
  5267. static void
  5268. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5269. {
  5270. struct bnx2 *bp = netdev_priv(dev);
  5271. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5272. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5273. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5274. }
  5275. static int
  5276. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5277. {
  5278. struct bnx2 *bp = netdev_priv(dev);
  5279. bp->req_flow_ctrl = 0;
  5280. if (epause->rx_pause)
  5281. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5282. if (epause->tx_pause)
  5283. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5284. if (epause->autoneg) {
  5285. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5286. }
  5287. else {
  5288. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5289. }
  5290. spin_lock_bh(&bp->phy_lock);
  5291. bnx2_setup_phy(bp, bp->phy_port);
  5292. spin_unlock_bh(&bp->phy_lock);
  5293. return 0;
  5294. }
  5295. static u32
  5296. bnx2_get_rx_csum(struct net_device *dev)
  5297. {
  5298. struct bnx2 *bp = netdev_priv(dev);
  5299. return bp->rx_csum;
  5300. }
  5301. static int
  5302. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5303. {
  5304. struct bnx2 *bp = netdev_priv(dev);
  5305. bp->rx_csum = data;
  5306. return 0;
  5307. }
  5308. static int
  5309. bnx2_set_tso(struct net_device *dev, u32 data)
  5310. {
  5311. struct bnx2 *bp = netdev_priv(dev);
  5312. if (data) {
  5313. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5314. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5315. dev->features |= NETIF_F_TSO6;
  5316. } else
  5317. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5318. NETIF_F_TSO_ECN);
  5319. return 0;
  5320. }
  5321. #define BNX2_NUM_STATS 46
  5322. static struct {
  5323. char string[ETH_GSTRING_LEN];
  5324. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  5325. { "rx_bytes" },
  5326. { "rx_error_bytes" },
  5327. { "tx_bytes" },
  5328. { "tx_error_bytes" },
  5329. { "rx_ucast_packets" },
  5330. { "rx_mcast_packets" },
  5331. { "rx_bcast_packets" },
  5332. { "tx_ucast_packets" },
  5333. { "tx_mcast_packets" },
  5334. { "tx_bcast_packets" },
  5335. { "tx_mac_errors" },
  5336. { "tx_carrier_errors" },
  5337. { "rx_crc_errors" },
  5338. { "rx_align_errors" },
  5339. { "tx_single_collisions" },
  5340. { "tx_multi_collisions" },
  5341. { "tx_deferred" },
  5342. { "tx_excess_collisions" },
  5343. { "tx_late_collisions" },
  5344. { "tx_total_collisions" },
  5345. { "rx_fragments" },
  5346. { "rx_jabbers" },
  5347. { "rx_undersize_packets" },
  5348. { "rx_oversize_packets" },
  5349. { "rx_64_byte_packets" },
  5350. { "rx_65_to_127_byte_packets" },
  5351. { "rx_128_to_255_byte_packets" },
  5352. { "rx_256_to_511_byte_packets" },
  5353. { "rx_512_to_1023_byte_packets" },
  5354. { "rx_1024_to_1522_byte_packets" },
  5355. { "rx_1523_to_9022_byte_packets" },
  5356. { "tx_64_byte_packets" },
  5357. { "tx_65_to_127_byte_packets" },
  5358. { "tx_128_to_255_byte_packets" },
  5359. { "tx_256_to_511_byte_packets" },
  5360. { "tx_512_to_1023_byte_packets" },
  5361. { "tx_1024_to_1522_byte_packets" },
  5362. { "tx_1523_to_9022_byte_packets" },
  5363. { "rx_xon_frames" },
  5364. { "rx_xoff_frames" },
  5365. { "tx_xon_frames" },
  5366. { "tx_xoff_frames" },
  5367. { "rx_mac_ctrl_frames" },
  5368. { "rx_filtered_packets" },
  5369. { "rx_discards" },
  5370. { "rx_fw_discards" },
  5371. };
  5372. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5373. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5374. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5375. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5376. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5377. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5378. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5379. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5380. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5381. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5382. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5383. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5384. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5385. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5386. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5387. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5388. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5389. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5390. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5391. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5392. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5393. STATS_OFFSET32(stat_EtherStatsCollisions),
  5394. STATS_OFFSET32(stat_EtherStatsFragments),
  5395. STATS_OFFSET32(stat_EtherStatsJabbers),
  5396. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5397. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5398. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5399. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5400. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5401. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5402. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5403. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5404. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5405. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5406. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5407. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5408. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5409. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5410. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5411. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5412. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5413. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5414. STATS_OFFSET32(stat_OutXonSent),
  5415. STATS_OFFSET32(stat_OutXoffSent),
  5416. STATS_OFFSET32(stat_MacControlFramesReceived),
  5417. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5418. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5419. STATS_OFFSET32(stat_FwRxDrop),
  5420. };
  5421. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5422. * skipped because of errata.
  5423. */
  5424. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5425. 8,0,8,8,8,8,8,8,8,8,
  5426. 4,0,4,4,4,4,4,4,4,4,
  5427. 4,4,4,4,4,4,4,4,4,4,
  5428. 4,4,4,4,4,4,4,4,4,4,
  5429. 4,4,4,4,4,4,
  5430. };
  5431. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5432. 8,0,8,8,8,8,8,8,8,8,
  5433. 4,4,4,4,4,4,4,4,4,4,
  5434. 4,4,4,4,4,4,4,4,4,4,
  5435. 4,4,4,4,4,4,4,4,4,4,
  5436. 4,4,4,4,4,4,
  5437. };
  5438. #define BNX2_NUM_TESTS 6
  5439. static struct {
  5440. char string[ETH_GSTRING_LEN];
  5441. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5442. { "register_test (offline)" },
  5443. { "memory_test (offline)" },
  5444. { "loopback_test (offline)" },
  5445. { "nvram_test (online)" },
  5446. { "interrupt_test (online)" },
  5447. { "link_test (online)" },
  5448. };
  5449. static int
  5450. bnx2_get_sset_count(struct net_device *dev, int sset)
  5451. {
  5452. switch (sset) {
  5453. case ETH_SS_TEST:
  5454. return BNX2_NUM_TESTS;
  5455. case ETH_SS_STATS:
  5456. return BNX2_NUM_STATS;
  5457. default:
  5458. return -EOPNOTSUPP;
  5459. }
  5460. }
  5461. static void
  5462. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5463. {
  5464. struct bnx2 *bp = netdev_priv(dev);
  5465. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  5466. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  5467. int i;
  5468. bnx2_netif_stop(bp);
  5469. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  5470. bnx2_free_skbs(bp);
  5471. if (bnx2_test_registers(bp) != 0) {
  5472. buf[0] = 1;
  5473. etest->flags |= ETH_TEST_FL_FAILED;
  5474. }
  5475. if (bnx2_test_memory(bp) != 0) {
  5476. buf[1] = 1;
  5477. etest->flags |= ETH_TEST_FL_FAILED;
  5478. }
  5479. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  5480. etest->flags |= ETH_TEST_FL_FAILED;
  5481. if (!netif_running(bp->dev)) {
  5482. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5483. }
  5484. else {
  5485. bnx2_init_nic(bp);
  5486. bnx2_netif_start(bp);
  5487. }
  5488. /* wait for link up */
  5489. for (i = 0; i < 7; i++) {
  5490. if (bp->link_up)
  5491. break;
  5492. msleep_interruptible(1000);
  5493. }
  5494. }
  5495. if (bnx2_test_nvram(bp) != 0) {
  5496. buf[3] = 1;
  5497. etest->flags |= ETH_TEST_FL_FAILED;
  5498. }
  5499. if (bnx2_test_intr(bp) != 0) {
  5500. buf[4] = 1;
  5501. etest->flags |= ETH_TEST_FL_FAILED;
  5502. }
  5503. if (bnx2_test_link(bp) != 0) {
  5504. buf[5] = 1;
  5505. etest->flags |= ETH_TEST_FL_FAILED;
  5506. }
  5507. }
  5508. static void
  5509. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  5510. {
  5511. switch (stringset) {
  5512. case ETH_SS_STATS:
  5513. memcpy(buf, bnx2_stats_str_arr,
  5514. sizeof(bnx2_stats_str_arr));
  5515. break;
  5516. case ETH_SS_TEST:
  5517. memcpy(buf, bnx2_tests_str_arr,
  5518. sizeof(bnx2_tests_str_arr));
  5519. break;
  5520. }
  5521. }
  5522. static void
  5523. bnx2_get_ethtool_stats(struct net_device *dev,
  5524. struct ethtool_stats *stats, u64 *buf)
  5525. {
  5526. struct bnx2 *bp = netdev_priv(dev);
  5527. int i;
  5528. u32 *hw_stats = (u32 *) bp->stats_blk;
  5529. u8 *stats_len_arr = NULL;
  5530. if (hw_stats == NULL) {
  5531. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  5532. return;
  5533. }
  5534. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  5535. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  5536. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  5537. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5538. stats_len_arr = bnx2_5706_stats_len_arr;
  5539. else
  5540. stats_len_arr = bnx2_5708_stats_len_arr;
  5541. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5542. if (stats_len_arr[i] == 0) {
  5543. /* skip this counter */
  5544. buf[i] = 0;
  5545. continue;
  5546. }
  5547. if (stats_len_arr[i] == 4) {
  5548. /* 4-byte counter */
  5549. buf[i] = (u64)
  5550. *(hw_stats + bnx2_stats_offset_arr[i]);
  5551. continue;
  5552. }
  5553. /* 8-byte counter */
  5554. buf[i] = (((u64) *(hw_stats +
  5555. bnx2_stats_offset_arr[i])) << 32) +
  5556. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  5557. }
  5558. }
  5559. static int
  5560. bnx2_phys_id(struct net_device *dev, u32 data)
  5561. {
  5562. struct bnx2 *bp = netdev_priv(dev);
  5563. int i;
  5564. u32 save;
  5565. if (data == 0)
  5566. data = 2;
  5567. save = REG_RD(bp, BNX2_MISC_CFG);
  5568. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  5569. for (i = 0; i < (data * 2); i++) {
  5570. if ((i % 2) == 0) {
  5571. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  5572. }
  5573. else {
  5574. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  5575. BNX2_EMAC_LED_1000MB_OVERRIDE |
  5576. BNX2_EMAC_LED_100MB_OVERRIDE |
  5577. BNX2_EMAC_LED_10MB_OVERRIDE |
  5578. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  5579. BNX2_EMAC_LED_TRAFFIC);
  5580. }
  5581. msleep_interruptible(500);
  5582. if (signal_pending(current))
  5583. break;
  5584. }
  5585. REG_WR(bp, BNX2_EMAC_LED, 0);
  5586. REG_WR(bp, BNX2_MISC_CFG, save);
  5587. return 0;
  5588. }
  5589. static int
  5590. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  5591. {
  5592. struct bnx2 *bp = netdev_priv(dev);
  5593. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5594. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  5595. else
  5596. return (ethtool_op_set_tx_csum(dev, data));
  5597. }
  5598. static const struct ethtool_ops bnx2_ethtool_ops = {
  5599. .get_settings = bnx2_get_settings,
  5600. .set_settings = bnx2_set_settings,
  5601. .get_drvinfo = bnx2_get_drvinfo,
  5602. .get_regs_len = bnx2_get_regs_len,
  5603. .get_regs = bnx2_get_regs,
  5604. .get_wol = bnx2_get_wol,
  5605. .set_wol = bnx2_set_wol,
  5606. .nway_reset = bnx2_nway_reset,
  5607. .get_link = ethtool_op_get_link,
  5608. .get_eeprom_len = bnx2_get_eeprom_len,
  5609. .get_eeprom = bnx2_get_eeprom,
  5610. .set_eeprom = bnx2_set_eeprom,
  5611. .get_coalesce = bnx2_get_coalesce,
  5612. .set_coalesce = bnx2_set_coalesce,
  5613. .get_ringparam = bnx2_get_ringparam,
  5614. .set_ringparam = bnx2_set_ringparam,
  5615. .get_pauseparam = bnx2_get_pauseparam,
  5616. .set_pauseparam = bnx2_set_pauseparam,
  5617. .get_rx_csum = bnx2_get_rx_csum,
  5618. .set_rx_csum = bnx2_set_rx_csum,
  5619. .set_tx_csum = bnx2_set_tx_csum,
  5620. .set_sg = ethtool_op_set_sg,
  5621. .set_tso = bnx2_set_tso,
  5622. .self_test = bnx2_self_test,
  5623. .get_strings = bnx2_get_strings,
  5624. .phys_id = bnx2_phys_id,
  5625. .get_ethtool_stats = bnx2_get_ethtool_stats,
  5626. .get_sset_count = bnx2_get_sset_count,
  5627. };
  5628. /* Called with rtnl_lock */
  5629. static int
  5630. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5631. {
  5632. struct mii_ioctl_data *data = if_mii(ifr);
  5633. struct bnx2 *bp = netdev_priv(dev);
  5634. int err;
  5635. switch(cmd) {
  5636. case SIOCGMIIPHY:
  5637. data->phy_id = bp->phy_addr;
  5638. /* fallthru */
  5639. case SIOCGMIIREG: {
  5640. u32 mii_regval;
  5641. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5642. return -EOPNOTSUPP;
  5643. if (!netif_running(dev))
  5644. return -EAGAIN;
  5645. spin_lock_bh(&bp->phy_lock);
  5646. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  5647. spin_unlock_bh(&bp->phy_lock);
  5648. data->val_out = mii_regval;
  5649. return err;
  5650. }
  5651. case SIOCSMIIREG:
  5652. if (!capable(CAP_NET_ADMIN))
  5653. return -EPERM;
  5654. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5655. return -EOPNOTSUPP;
  5656. if (!netif_running(dev))
  5657. return -EAGAIN;
  5658. spin_lock_bh(&bp->phy_lock);
  5659. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  5660. spin_unlock_bh(&bp->phy_lock);
  5661. return err;
  5662. default:
  5663. /* do nothing */
  5664. break;
  5665. }
  5666. return -EOPNOTSUPP;
  5667. }
  5668. /* Called with rtnl_lock */
  5669. static int
  5670. bnx2_change_mac_addr(struct net_device *dev, void *p)
  5671. {
  5672. struct sockaddr *addr = p;
  5673. struct bnx2 *bp = netdev_priv(dev);
  5674. if (!is_valid_ether_addr(addr->sa_data))
  5675. return -EINVAL;
  5676. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  5677. if (netif_running(dev))
  5678. bnx2_set_mac_addr(bp);
  5679. return 0;
  5680. }
  5681. /* Called with rtnl_lock */
  5682. static int
  5683. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  5684. {
  5685. struct bnx2 *bp = netdev_priv(dev);
  5686. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  5687. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  5688. return -EINVAL;
  5689. dev->mtu = new_mtu;
  5690. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  5691. }
  5692. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5693. static void
  5694. poll_bnx2(struct net_device *dev)
  5695. {
  5696. struct bnx2 *bp = netdev_priv(dev);
  5697. disable_irq(bp->pdev->irq);
  5698. bnx2_interrupt(bp->pdev->irq, dev);
  5699. enable_irq(bp->pdev->irq);
  5700. }
  5701. #endif
  5702. static void __devinit
  5703. bnx2_get_5709_media(struct bnx2 *bp)
  5704. {
  5705. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  5706. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  5707. u32 strap;
  5708. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  5709. return;
  5710. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  5711. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  5712. return;
  5713. }
  5714. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  5715. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  5716. else
  5717. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  5718. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  5719. switch (strap) {
  5720. case 0x4:
  5721. case 0x5:
  5722. case 0x6:
  5723. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  5724. return;
  5725. }
  5726. } else {
  5727. switch (strap) {
  5728. case 0x1:
  5729. case 0x2:
  5730. case 0x4:
  5731. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  5732. return;
  5733. }
  5734. }
  5735. }
  5736. static void __devinit
  5737. bnx2_get_pci_speed(struct bnx2 *bp)
  5738. {
  5739. u32 reg;
  5740. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  5741. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  5742. u32 clkreg;
  5743. bp->flags |= BNX2_FLAG_PCIX;
  5744. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  5745. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  5746. switch (clkreg) {
  5747. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  5748. bp->bus_speed_mhz = 133;
  5749. break;
  5750. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  5751. bp->bus_speed_mhz = 100;
  5752. break;
  5753. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  5754. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  5755. bp->bus_speed_mhz = 66;
  5756. break;
  5757. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  5758. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  5759. bp->bus_speed_mhz = 50;
  5760. break;
  5761. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  5762. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  5763. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  5764. bp->bus_speed_mhz = 33;
  5765. break;
  5766. }
  5767. }
  5768. else {
  5769. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  5770. bp->bus_speed_mhz = 66;
  5771. else
  5772. bp->bus_speed_mhz = 33;
  5773. }
  5774. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  5775. bp->flags |= BNX2_FLAG_PCI_32BIT;
  5776. }
  5777. static int __devinit
  5778. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  5779. {
  5780. struct bnx2 *bp;
  5781. unsigned long mem_len;
  5782. int rc, i, j;
  5783. u32 reg;
  5784. u64 dma_mask, persist_dma_mask;
  5785. SET_NETDEV_DEV(dev, &pdev->dev);
  5786. bp = netdev_priv(dev);
  5787. bp->flags = 0;
  5788. bp->phy_flags = 0;
  5789. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  5790. rc = pci_enable_device(pdev);
  5791. if (rc) {
  5792. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  5793. goto err_out;
  5794. }
  5795. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  5796. dev_err(&pdev->dev,
  5797. "Cannot find PCI device base address, aborting.\n");
  5798. rc = -ENODEV;
  5799. goto err_out_disable;
  5800. }
  5801. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  5802. if (rc) {
  5803. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  5804. goto err_out_disable;
  5805. }
  5806. pci_set_master(pdev);
  5807. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  5808. if (bp->pm_cap == 0) {
  5809. dev_err(&pdev->dev,
  5810. "Cannot find power management capability, aborting.\n");
  5811. rc = -EIO;
  5812. goto err_out_release;
  5813. }
  5814. bp->dev = dev;
  5815. bp->pdev = pdev;
  5816. spin_lock_init(&bp->phy_lock);
  5817. spin_lock_init(&bp->indirect_lock);
  5818. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  5819. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  5820. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
  5821. dev->mem_end = dev->mem_start + mem_len;
  5822. dev->irq = pdev->irq;
  5823. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  5824. if (!bp->regview) {
  5825. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  5826. rc = -ENOMEM;
  5827. goto err_out_release;
  5828. }
  5829. /* Configure byte swap and enable write to the reg_window registers.
  5830. * Rely on CPU to do target byte swapping on big endian systems
  5831. * The chip's target access swapping will not swap all accesses
  5832. */
  5833. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  5834. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  5835. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  5836. bnx2_set_power_state(bp, PCI_D0);
  5837. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  5838. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5839. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  5840. dev_err(&pdev->dev,
  5841. "Cannot find PCIE capability, aborting.\n");
  5842. rc = -EIO;
  5843. goto err_out_unmap;
  5844. }
  5845. bp->flags |= BNX2_FLAG_PCIE;
  5846. if (CHIP_REV(bp) == CHIP_REV_Ax)
  5847. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  5848. } else {
  5849. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  5850. if (bp->pcix_cap == 0) {
  5851. dev_err(&pdev->dev,
  5852. "Cannot find PCIX capability, aborting.\n");
  5853. rc = -EIO;
  5854. goto err_out_unmap;
  5855. }
  5856. }
  5857. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  5858. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  5859. bp->flags |= BNX2_FLAG_MSIX_CAP;
  5860. }
  5861. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  5862. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  5863. bp->flags |= BNX2_FLAG_MSI_CAP;
  5864. }
  5865. /* 5708 cannot support DMA addresses > 40-bit. */
  5866. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  5867. persist_dma_mask = dma_mask = DMA_40BIT_MASK;
  5868. else
  5869. persist_dma_mask = dma_mask = DMA_64BIT_MASK;
  5870. /* Configure DMA attributes. */
  5871. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  5872. dev->features |= NETIF_F_HIGHDMA;
  5873. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  5874. if (rc) {
  5875. dev_err(&pdev->dev,
  5876. "pci_set_consistent_dma_mask failed, aborting.\n");
  5877. goto err_out_unmap;
  5878. }
  5879. } else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
  5880. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  5881. goto err_out_unmap;
  5882. }
  5883. if (!(bp->flags & BNX2_FLAG_PCIE))
  5884. bnx2_get_pci_speed(bp);
  5885. /* 5706A0 may falsely detect SERR and PERR. */
  5886. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5887. reg = REG_RD(bp, PCI_COMMAND);
  5888. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  5889. REG_WR(bp, PCI_COMMAND, reg);
  5890. }
  5891. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  5892. !(bp->flags & BNX2_FLAG_PCIX)) {
  5893. dev_err(&pdev->dev,
  5894. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  5895. goto err_out_unmap;
  5896. }
  5897. bnx2_init_nvram(bp);
  5898. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  5899. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  5900. BNX2_SHM_HDR_SIGNATURE_SIG) {
  5901. u32 off = PCI_FUNC(pdev->devfn) << 2;
  5902. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  5903. } else
  5904. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  5905. /* Get the permanent MAC address. First we need to make sure the
  5906. * firmware is actually running.
  5907. */
  5908. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  5909. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  5910. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  5911. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  5912. rc = -ENODEV;
  5913. goto err_out_unmap;
  5914. }
  5915. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  5916. for (i = 0, j = 0; i < 3; i++) {
  5917. u8 num, k, skip0;
  5918. num = (u8) (reg >> (24 - (i * 8)));
  5919. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  5920. if (num >= k || !skip0 || k == 1) {
  5921. bp->fw_version[j++] = (num / k) + '0';
  5922. skip0 = 0;
  5923. }
  5924. }
  5925. if (i != 2)
  5926. bp->fw_version[j++] = '.';
  5927. }
  5928. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  5929. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  5930. bp->wol = 1;
  5931. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  5932. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  5933. for (i = 0; i < 30; i++) {
  5934. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  5935. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  5936. break;
  5937. msleep(10);
  5938. }
  5939. }
  5940. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  5941. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  5942. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  5943. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  5944. int i;
  5945. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  5946. bp->fw_version[j++] = ' ';
  5947. for (i = 0; i < 3; i++) {
  5948. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  5949. reg = swab32(reg);
  5950. memcpy(&bp->fw_version[j], &reg, 4);
  5951. j += 4;
  5952. }
  5953. }
  5954. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  5955. bp->mac_addr[0] = (u8) (reg >> 8);
  5956. bp->mac_addr[1] = (u8) reg;
  5957. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  5958. bp->mac_addr[2] = (u8) (reg >> 24);
  5959. bp->mac_addr[3] = (u8) (reg >> 16);
  5960. bp->mac_addr[4] = (u8) (reg >> 8);
  5961. bp->mac_addr[5] = (u8) reg;
  5962. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  5963. bp->tx_ring_size = MAX_TX_DESC_CNT;
  5964. bnx2_set_rx_ring_size(bp, 255);
  5965. bp->rx_csum = 1;
  5966. bp->tx_quick_cons_trip_int = 20;
  5967. bp->tx_quick_cons_trip = 20;
  5968. bp->tx_ticks_int = 80;
  5969. bp->tx_ticks = 80;
  5970. bp->rx_quick_cons_trip_int = 6;
  5971. bp->rx_quick_cons_trip = 6;
  5972. bp->rx_ticks_int = 18;
  5973. bp->rx_ticks = 18;
  5974. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5975. bp->timer_interval = HZ;
  5976. bp->current_interval = HZ;
  5977. bp->phy_addr = 1;
  5978. /* Disable WOL support if we are running on a SERDES chip. */
  5979. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5980. bnx2_get_5709_media(bp);
  5981. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  5982. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  5983. bp->phy_port = PORT_TP;
  5984. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5985. bp->phy_port = PORT_FIBRE;
  5986. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  5987. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  5988. bp->flags |= BNX2_FLAG_NO_WOL;
  5989. bp->wol = 0;
  5990. }
  5991. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  5992. /* Don't do parallel detect on this board because of
  5993. * some board problems. The link will not go down
  5994. * if we do parallel detect.
  5995. */
  5996. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  5997. pdev->subsystem_device == 0x310c)
  5998. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  5999. } else {
  6000. bp->phy_addr = 2;
  6001. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6002. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6003. }
  6004. bnx2_init_remote_phy(bp);
  6005. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6006. CHIP_NUM(bp) == CHIP_NUM_5708)
  6007. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6008. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6009. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6010. CHIP_REV(bp) == CHIP_REV_Bx))
  6011. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6012. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6013. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6014. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  6015. bp->flags |= BNX2_FLAG_NO_WOL;
  6016. bp->wol = 0;
  6017. }
  6018. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6019. bp->tx_quick_cons_trip_int =
  6020. bp->tx_quick_cons_trip;
  6021. bp->tx_ticks_int = bp->tx_ticks;
  6022. bp->rx_quick_cons_trip_int =
  6023. bp->rx_quick_cons_trip;
  6024. bp->rx_ticks_int = bp->rx_ticks;
  6025. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6026. bp->com_ticks_int = bp->com_ticks;
  6027. bp->cmd_ticks_int = bp->cmd_ticks;
  6028. }
  6029. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6030. *
  6031. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6032. * with byte enables disabled on the unused 32-bit word. This is legal
  6033. * but causes problems on the AMD 8132 which will eventually stop
  6034. * responding after a while.
  6035. *
  6036. * AMD believes this incompatibility is unique to the 5706, and
  6037. * prefers to locally disable MSI rather than globally disabling it.
  6038. */
  6039. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6040. struct pci_dev *amd_8132 = NULL;
  6041. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6042. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6043. amd_8132))) {
  6044. if (amd_8132->revision >= 0x10 &&
  6045. amd_8132->revision <= 0x13) {
  6046. disable_msi = 1;
  6047. pci_dev_put(amd_8132);
  6048. break;
  6049. }
  6050. }
  6051. }
  6052. bnx2_set_default_link(bp);
  6053. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6054. init_timer(&bp->timer);
  6055. bp->timer.expires = RUN_AT(bp->timer_interval);
  6056. bp->timer.data = (unsigned long) bp;
  6057. bp->timer.function = bnx2_timer;
  6058. return 0;
  6059. err_out_unmap:
  6060. if (bp->regview) {
  6061. iounmap(bp->regview);
  6062. bp->regview = NULL;
  6063. }
  6064. err_out_release:
  6065. pci_release_regions(pdev);
  6066. err_out_disable:
  6067. pci_disable_device(pdev);
  6068. pci_set_drvdata(pdev, NULL);
  6069. err_out:
  6070. return rc;
  6071. }
  6072. static char * __devinit
  6073. bnx2_bus_string(struct bnx2 *bp, char *str)
  6074. {
  6075. char *s = str;
  6076. if (bp->flags & BNX2_FLAG_PCIE) {
  6077. s += sprintf(s, "PCI Express");
  6078. } else {
  6079. s += sprintf(s, "PCI");
  6080. if (bp->flags & BNX2_FLAG_PCIX)
  6081. s += sprintf(s, "-X");
  6082. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6083. s += sprintf(s, " 32-bit");
  6084. else
  6085. s += sprintf(s, " 64-bit");
  6086. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6087. }
  6088. return str;
  6089. }
  6090. static void __devinit
  6091. bnx2_init_napi(struct bnx2 *bp)
  6092. {
  6093. int i;
  6094. struct bnx2_napi *bnapi;
  6095. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6096. bnapi = &bp->bnx2_napi[i];
  6097. bnapi->bp = bp;
  6098. }
  6099. netif_napi_add(bp->dev, &bp->bnx2_napi[0].napi, bnx2_poll, 64);
  6100. netif_napi_add(bp->dev, &bp->bnx2_napi[BNX2_TX_VEC].napi, bnx2_tx_poll,
  6101. 64);
  6102. }
  6103. static int __devinit
  6104. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6105. {
  6106. static int version_printed = 0;
  6107. struct net_device *dev = NULL;
  6108. struct bnx2 *bp;
  6109. int rc;
  6110. char str[40];
  6111. DECLARE_MAC_BUF(mac);
  6112. if (version_printed++ == 0)
  6113. printk(KERN_INFO "%s", version);
  6114. /* dev zeroed in init_etherdev */
  6115. dev = alloc_etherdev(sizeof(*bp));
  6116. if (!dev)
  6117. return -ENOMEM;
  6118. rc = bnx2_init_board(pdev, dev);
  6119. if (rc < 0) {
  6120. free_netdev(dev);
  6121. return rc;
  6122. }
  6123. dev->open = bnx2_open;
  6124. dev->hard_start_xmit = bnx2_start_xmit;
  6125. dev->stop = bnx2_close;
  6126. dev->get_stats = bnx2_get_stats;
  6127. dev->set_multicast_list = bnx2_set_rx_mode;
  6128. dev->do_ioctl = bnx2_ioctl;
  6129. dev->set_mac_address = bnx2_change_mac_addr;
  6130. dev->change_mtu = bnx2_change_mtu;
  6131. dev->tx_timeout = bnx2_tx_timeout;
  6132. dev->watchdog_timeo = TX_TIMEOUT;
  6133. #ifdef BCM_VLAN
  6134. dev->vlan_rx_register = bnx2_vlan_rx_register;
  6135. #endif
  6136. dev->ethtool_ops = &bnx2_ethtool_ops;
  6137. bp = netdev_priv(dev);
  6138. bnx2_init_napi(bp);
  6139. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6140. dev->poll_controller = poll_bnx2;
  6141. #endif
  6142. pci_set_drvdata(pdev, dev);
  6143. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6144. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6145. bp->name = board_info[ent->driver_data].name;
  6146. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6147. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6148. dev->features |= NETIF_F_IPV6_CSUM;
  6149. #ifdef BCM_VLAN
  6150. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6151. #endif
  6152. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6153. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6154. dev->features |= NETIF_F_TSO6;
  6155. if ((rc = register_netdev(dev))) {
  6156. dev_err(&pdev->dev, "Cannot register net device\n");
  6157. if (bp->regview)
  6158. iounmap(bp->regview);
  6159. pci_release_regions(pdev);
  6160. pci_disable_device(pdev);
  6161. pci_set_drvdata(pdev, NULL);
  6162. free_netdev(dev);
  6163. return rc;
  6164. }
  6165. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6166. "IRQ %d, node addr %s\n",
  6167. dev->name,
  6168. bp->name,
  6169. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6170. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6171. bnx2_bus_string(bp, str),
  6172. dev->base_addr,
  6173. bp->pdev->irq, print_mac(mac, dev->dev_addr));
  6174. return 0;
  6175. }
  6176. static void __devexit
  6177. bnx2_remove_one(struct pci_dev *pdev)
  6178. {
  6179. struct net_device *dev = pci_get_drvdata(pdev);
  6180. struct bnx2 *bp = netdev_priv(dev);
  6181. flush_scheduled_work();
  6182. unregister_netdev(dev);
  6183. if (bp->regview)
  6184. iounmap(bp->regview);
  6185. free_netdev(dev);
  6186. pci_release_regions(pdev);
  6187. pci_disable_device(pdev);
  6188. pci_set_drvdata(pdev, NULL);
  6189. }
  6190. static int
  6191. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6192. {
  6193. struct net_device *dev = pci_get_drvdata(pdev);
  6194. struct bnx2 *bp = netdev_priv(dev);
  6195. u32 reset_code;
  6196. /* PCI register 4 needs to be saved whether netif_running() or not.
  6197. * MSI address and data need to be saved if using MSI and
  6198. * netif_running().
  6199. */
  6200. pci_save_state(pdev);
  6201. if (!netif_running(dev))
  6202. return 0;
  6203. flush_scheduled_work();
  6204. bnx2_netif_stop(bp);
  6205. netif_device_detach(dev);
  6206. del_timer_sync(&bp->timer);
  6207. if (bp->flags & BNX2_FLAG_NO_WOL)
  6208. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  6209. else if (bp->wol)
  6210. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  6211. else
  6212. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  6213. bnx2_reset_chip(bp, reset_code);
  6214. bnx2_free_skbs(bp);
  6215. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6216. return 0;
  6217. }
  6218. static int
  6219. bnx2_resume(struct pci_dev *pdev)
  6220. {
  6221. struct net_device *dev = pci_get_drvdata(pdev);
  6222. struct bnx2 *bp = netdev_priv(dev);
  6223. pci_restore_state(pdev);
  6224. if (!netif_running(dev))
  6225. return 0;
  6226. bnx2_set_power_state(bp, PCI_D0);
  6227. netif_device_attach(dev);
  6228. bnx2_init_nic(bp);
  6229. bnx2_netif_start(bp);
  6230. return 0;
  6231. }
  6232. static struct pci_driver bnx2_pci_driver = {
  6233. .name = DRV_MODULE_NAME,
  6234. .id_table = bnx2_pci_tbl,
  6235. .probe = bnx2_init_one,
  6236. .remove = __devexit_p(bnx2_remove_one),
  6237. .suspend = bnx2_suspend,
  6238. .resume = bnx2_resume,
  6239. };
  6240. static int __init bnx2_init(void)
  6241. {
  6242. return pci_register_driver(&bnx2_pci_driver);
  6243. }
  6244. static void __exit bnx2_cleanup(void)
  6245. {
  6246. pci_unregister_driver(&bnx2_pci_driver);
  6247. }
  6248. module_init(bnx2_init);
  6249. module_exit(bnx2_cleanup);