x86.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/msr.h>
  40. #include <asm/desc.h>
  41. #include <asm/mtrr.h>
  42. #define MAX_IO_MSRS 256
  43. #define CR0_RESERVED_BITS \
  44. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  45. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  46. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  47. #define CR4_RESERVED_BITS \
  48. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  49. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  50. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  51. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  52. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  53. /* EFER defaults:
  54. * - enable syscall per default because its emulated by KVM
  55. * - enable LME and LMA per default on 64 bit KVM
  56. */
  57. #ifdef CONFIG_X86_64
  58. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  59. #else
  60. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  61. #endif
  62. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  63. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  64. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  65. struct kvm_cpuid_entry2 __user *entries);
  66. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  67. u32 function, u32 index);
  68. struct kvm_x86_ops *kvm_x86_ops;
  69. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  70. struct kvm_stats_debugfs_item debugfs_entries[] = {
  71. { "pf_fixed", VCPU_STAT(pf_fixed) },
  72. { "pf_guest", VCPU_STAT(pf_guest) },
  73. { "tlb_flush", VCPU_STAT(tlb_flush) },
  74. { "invlpg", VCPU_STAT(invlpg) },
  75. { "exits", VCPU_STAT(exits) },
  76. { "io_exits", VCPU_STAT(io_exits) },
  77. { "mmio_exits", VCPU_STAT(mmio_exits) },
  78. { "signal_exits", VCPU_STAT(signal_exits) },
  79. { "irq_window", VCPU_STAT(irq_window_exits) },
  80. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  81. { "halt_exits", VCPU_STAT(halt_exits) },
  82. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  83. { "hypercalls", VCPU_STAT(hypercalls) },
  84. { "request_irq", VCPU_STAT(request_irq_exits) },
  85. { "irq_exits", VCPU_STAT(irq_exits) },
  86. { "host_state_reload", VCPU_STAT(host_state_reload) },
  87. { "efer_reload", VCPU_STAT(efer_reload) },
  88. { "fpu_reload", VCPU_STAT(fpu_reload) },
  89. { "insn_emulation", VCPU_STAT(insn_emulation) },
  90. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  91. { "irq_injections", VCPU_STAT(irq_injections) },
  92. { "nmi_injections", VCPU_STAT(nmi_injections) },
  93. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  94. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  95. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  96. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  97. { "mmu_flooded", VM_STAT(mmu_flooded) },
  98. { "mmu_recycled", VM_STAT(mmu_recycled) },
  99. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  100. { "mmu_unsync", VM_STAT(mmu_unsync) },
  101. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  102. { "largepages", VM_STAT(lpages) },
  103. { NULL }
  104. };
  105. unsigned long segment_base(u16 selector)
  106. {
  107. struct descriptor_table gdt;
  108. struct desc_struct *d;
  109. unsigned long table_base;
  110. unsigned long v;
  111. if (selector == 0)
  112. return 0;
  113. asm("sgdt %0" : "=m"(gdt));
  114. table_base = gdt.base;
  115. if (selector & 4) { /* from ldt */
  116. u16 ldt_selector;
  117. asm("sldt %0" : "=g"(ldt_selector));
  118. table_base = segment_base(ldt_selector);
  119. }
  120. d = (struct desc_struct *)(table_base + (selector & ~7));
  121. v = d->base0 | ((unsigned long)d->base1 << 16) |
  122. ((unsigned long)d->base2 << 24);
  123. #ifdef CONFIG_X86_64
  124. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  125. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  126. #endif
  127. return v;
  128. }
  129. EXPORT_SYMBOL_GPL(segment_base);
  130. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  131. {
  132. if (irqchip_in_kernel(vcpu->kvm))
  133. return vcpu->arch.apic_base;
  134. else
  135. return vcpu->arch.apic_base;
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  138. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  139. {
  140. /* TODO: reserve bits check */
  141. if (irqchip_in_kernel(vcpu->kvm))
  142. kvm_lapic_set_base(vcpu, data);
  143. else
  144. vcpu->arch.apic_base = data;
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  147. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  148. {
  149. WARN_ON(vcpu->arch.exception.pending);
  150. vcpu->arch.exception.pending = true;
  151. vcpu->arch.exception.has_error_code = false;
  152. vcpu->arch.exception.nr = nr;
  153. }
  154. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  155. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  156. u32 error_code)
  157. {
  158. ++vcpu->stat.pf_guest;
  159. if (vcpu->arch.exception.pending) {
  160. if (vcpu->arch.exception.nr == PF_VECTOR) {
  161. printk(KERN_DEBUG "kvm: inject_page_fault:"
  162. " double fault 0x%lx\n", addr);
  163. vcpu->arch.exception.nr = DF_VECTOR;
  164. vcpu->arch.exception.error_code = 0;
  165. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  166. /* triple fault -> shutdown */
  167. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  168. }
  169. return;
  170. }
  171. vcpu->arch.cr2 = addr;
  172. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  173. }
  174. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  175. {
  176. vcpu->arch.nmi_pending = 1;
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  179. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  180. {
  181. WARN_ON(vcpu->arch.exception.pending);
  182. vcpu->arch.exception.pending = true;
  183. vcpu->arch.exception.has_error_code = true;
  184. vcpu->arch.exception.nr = nr;
  185. vcpu->arch.exception.error_code = error_code;
  186. }
  187. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  188. static void __queue_exception(struct kvm_vcpu *vcpu)
  189. {
  190. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  191. vcpu->arch.exception.has_error_code,
  192. vcpu->arch.exception.error_code);
  193. }
  194. /*
  195. * Load the pae pdptrs. Return true is they are all valid.
  196. */
  197. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  198. {
  199. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  200. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  201. int i;
  202. int ret;
  203. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  204. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  205. offset * sizeof(u64), sizeof(pdpte));
  206. if (ret < 0) {
  207. ret = 0;
  208. goto out;
  209. }
  210. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  211. if (is_present_pte(pdpte[i]) &&
  212. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  213. ret = 0;
  214. goto out;
  215. }
  216. }
  217. ret = 1;
  218. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  219. out:
  220. return ret;
  221. }
  222. EXPORT_SYMBOL_GPL(load_pdptrs);
  223. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  224. {
  225. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  226. bool changed = true;
  227. int r;
  228. if (is_long_mode(vcpu) || !is_pae(vcpu))
  229. return false;
  230. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  231. if (r < 0)
  232. goto out;
  233. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  234. out:
  235. return changed;
  236. }
  237. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  238. {
  239. if (cr0 & CR0_RESERVED_BITS) {
  240. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  241. cr0, vcpu->arch.cr0);
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  246. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  247. kvm_inject_gp(vcpu, 0);
  248. return;
  249. }
  250. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  251. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  252. "and a clear PE flag\n");
  253. kvm_inject_gp(vcpu, 0);
  254. return;
  255. }
  256. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  257. #ifdef CONFIG_X86_64
  258. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  259. int cs_db, cs_l;
  260. if (!is_pae(vcpu)) {
  261. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  262. "in long mode while PAE is disabled\n");
  263. kvm_inject_gp(vcpu, 0);
  264. return;
  265. }
  266. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  267. if (cs_l) {
  268. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  269. "in long mode while CS.L == 1\n");
  270. kvm_inject_gp(vcpu, 0);
  271. return;
  272. }
  273. } else
  274. #endif
  275. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  277. "reserved bits\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. }
  282. kvm_x86_ops->set_cr0(vcpu, cr0);
  283. vcpu->arch.cr0 = cr0;
  284. kvm_mmu_reset_context(vcpu);
  285. return;
  286. }
  287. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  288. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  289. {
  290. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  291. KVMTRACE_1D(LMSW, vcpu,
  292. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  293. handler);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_lmsw);
  296. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  297. {
  298. unsigned long old_cr4 = vcpu->arch.cr4;
  299. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  300. if (cr4 & CR4_RESERVED_BITS) {
  301. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  302. kvm_inject_gp(vcpu, 0);
  303. return;
  304. }
  305. if (is_long_mode(vcpu)) {
  306. if (!(cr4 & X86_CR4_PAE)) {
  307. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  308. "in long mode\n");
  309. kvm_inject_gp(vcpu, 0);
  310. return;
  311. }
  312. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  313. && ((cr4 ^ old_cr4) & pdptr_bits)
  314. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  315. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  316. kvm_inject_gp(vcpu, 0);
  317. return;
  318. }
  319. if (cr4 & X86_CR4_VMXE) {
  320. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  321. kvm_inject_gp(vcpu, 0);
  322. return;
  323. }
  324. kvm_x86_ops->set_cr4(vcpu, cr4);
  325. vcpu->arch.cr4 = cr4;
  326. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  327. kvm_mmu_reset_context(vcpu);
  328. }
  329. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  330. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  331. {
  332. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  333. kvm_mmu_sync_roots(vcpu);
  334. kvm_mmu_flush_tlb(vcpu);
  335. return;
  336. }
  337. if (is_long_mode(vcpu)) {
  338. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  339. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  340. kvm_inject_gp(vcpu, 0);
  341. return;
  342. }
  343. } else {
  344. if (is_pae(vcpu)) {
  345. if (cr3 & CR3_PAE_RESERVED_BITS) {
  346. printk(KERN_DEBUG
  347. "set_cr3: #GP, reserved bits\n");
  348. kvm_inject_gp(vcpu, 0);
  349. return;
  350. }
  351. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  352. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  353. "reserved bits\n");
  354. kvm_inject_gp(vcpu, 0);
  355. return;
  356. }
  357. }
  358. /*
  359. * We don't check reserved bits in nonpae mode, because
  360. * this isn't enforced, and VMware depends on this.
  361. */
  362. }
  363. /*
  364. * Does the new cr3 value map to physical memory? (Note, we
  365. * catch an invalid cr3 even in real-mode, because it would
  366. * cause trouble later on when we turn on paging anyway.)
  367. *
  368. * A real CPU would silently accept an invalid cr3 and would
  369. * attempt to use it - with largely undefined (and often hard
  370. * to debug) behavior on the guest side.
  371. */
  372. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  373. kvm_inject_gp(vcpu, 0);
  374. else {
  375. vcpu->arch.cr3 = cr3;
  376. vcpu->arch.mmu.new_cr3(vcpu);
  377. }
  378. }
  379. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  380. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  381. {
  382. if (cr8 & CR8_RESERVED_BITS) {
  383. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  384. kvm_inject_gp(vcpu, 0);
  385. return;
  386. }
  387. if (irqchip_in_kernel(vcpu->kvm))
  388. kvm_lapic_set_tpr(vcpu, cr8);
  389. else
  390. vcpu->arch.cr8 = cr8;
  391. }
  392. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  393. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  394. {
  395. if (irqchip_in_kernel(vcpu->kvm))
  396. return kvm_lapic_get_cr8(vcpu);
  397. else
  398. return vcpu->arch.cr8;
  399. }
  400. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  401. static inline u32 bit(int bitno)
  402. {
  403. return 1 << (bitno & 31);
  404. }
  405. /*
  406. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  407. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  408. *
  409. * This list is modified at module load time to reflect the
  410. * capabilities of the host cpu.
  411. */
  412. static u32 msrs_to_save[] = {
  413. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  414. MSR_K6_STAR,
  415. #ifdef CONFIG_X86_64
  416. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  417. #endif
  418. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  419. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  420. };
  421. static unsigned num_msrs_to_save;
  422. static u32 emulated_msrs[] = {
  423. MSR_IA32_MISC_ENABLE,
  424. };
  425. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  426. {
  427. if (efer & efer_reserved_bits) {
  428. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  429. efer);
  430. kvm_inject_gp(vcpu, 0);
  431. return;
  432. }
  433. if (is_paging(vcpu)
  434. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  435. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  436. kvm_inject_gp(vcpu, 0);
  437. return;
  438. }
  439. if (efer & EFER_FFXSR) {
  440. struct kvm_cpuid_entry2 *feat;
  441. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  442. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  443. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  444. kvm_inject_gp(vcpu, 0);
  445. return;
  446. }
  447. }
  448. if (efer & EFER_SVME) {
  449. struct kvm_cpuid_entry2 *feat;
  450. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  451. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  452. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  453. kvm_inject_gp(vcpu, 0);
  454. return;
  455. }
  456. }
  457. kvm_x86_ops->set_efer(vcpu, efer);
  458. efer &= ~EFER_LMA;
  459. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  460. vcpu->arch.shadow_efer = efer;
  461. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  462. kvm_mmu_reset_context(vcpu);
  463. }
  464. void kvm_enable_efer_bits(u64 mask)
  465. {
  466. efer_reserved_bits &= ~mask;
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  469. /*
  470. * Writes msr value into into the appropriate "register".
  471. * Returns 0 on success, non-0 otherwise.
  472. * Assumes vcpu_load() was already called.
  473. */
  474. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  475. {
  476. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  477. }
  478. /*
  479. * Adapt set_msr() to msr_io()'s calling convention
  480. */
  481. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  482. {
  483. return kvm_set_msr(vcpu, index, *data);
  484. }
  485. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  486. {
  487. static int version;
  488. struct pvclock_wall_clock wc;
  489. struct timespec now, sys, boot;
  490. if (!wall_clock)
  491. return;
  492. version++;
  493. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  494. /*
  495. * The guest calculates current wall clock time by adding
  496. * system time (updated by kvm_write_guest_time below) to the
  497. * wall clock specified here. guest system time equals host
  498. * system time for us, thus we must fill in host boot time here.
  499. */
  500. now = current_kernel_time();
  501. ktime_get_ts(&sys);
  502. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  503. wc.sec = boot.tv_sec;
  504. wc.nsec = boot.tv_nsec;
  505. wc.version = version;
  506. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  507. version++;
  508. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  509. }
  510. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  511. {
  512. uint32_t quotient, remainder;
  513. /* Don't try to replace with do_div(), this one calculates
  514. * "(dividend << 32) / divisor" */
  515. __asm__ ( "divl %4"
  516. : "=a" (quotient), "=d" (remainder)
  517. : "0" (0), "1" (dividend), "r" (divisor) );
  518. return quotient;
  519. }
  520. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  521. {
  522. uint64_t nsecs = 1000000000LL;
  523. int32_t shift = 0;
  524. uint64_t tps64;
  525. uint32_t tps32;
  526. tps64 = tsc_khz * 1000LL;
  527. while (tps64 > nsecs*2) {
  528. tps64 >>= 1;
  529. shift--;
  530. }
  531. tps32 = (uint32_t)tps64;
  532. while (tps32 <= (uint32_t)nsecs) {
  533. tps32 <<= 1;
  534. shift++;
  535. }
  536. hv_clock->tsc_shift = shift;
  537. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  538. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  539. __func__, tsc_khz, hv_clock->tsc_shift,
  540. hv_clock->tsc_to_system_mul);
  541. }
  542. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  543. static void kvm_write_guest_time(struct kvm_vcpu *v)
  544. {
  545. struct timespec ts;
  546. unsigned long flags;
  547. struct kvm_vcpu_arch *vcpu = &v->arch;
  548. void *shared_kaddr;
  549. unsigned long this_tsc_khz;
  550. if ((!vcpu->time_page))
  551. return;
  552. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  553. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  554. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  555. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  556. }
  557. put_cpu_var(cpu_tsc_khz);
  558. /* Keep irq disabled to prevent changes to the clock */
  559. local_irq_save(flags);
  560. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  561. &vcpu->hv_clock.tsc_timestamp);
  562. ktime_get_ts(&ts);
  563. local_irq_restore(flags);
  564. /* With all the info we got, fill in the values */
  565. vcpu->hv_clock.system_time = ts.tv_nsec +
  566. (NSEC_PER_SEC * (u64)ts.tv_sec);
  567. /*
  568. * The interface expects us to write an even number signaling that the
  569. * update is finished. Since the guest won't see the intermediate
  570. * state, we just increase by 2 at the end.
  571. */
  572. vcpu->hv_clock.version += 2;
  573. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  574. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  575. sizeof(vcpu->hv_clock));
  576. kunmap_atomic(shared_kaddr, KM_USER0);
  577. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  578. }
  579. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  580. {
  581. struct kvm_vcpu_arch *vcpu = &v->arch;
  582. if (!vcpu->time_page)
  583. return 0;
  584. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  585. return 1;
  586. }
  587. static bool msr_mtrr_valid(unsigned msr)
  588. {
  589. switch (msr) {
  590. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  591. case MSR_MTRRfix64K_00000:
  592. case MSR_MTRRfix16K_80000:
  593. case MSR_MTRRfix16K_A0000:
  594. case MSR_MTRRfix4K_C0000:
  595. case MSR_MTRRfix4K_C8000:
  596. case MSR_MTRRfix4K_D0000:
  597. case MSR_MTRRfix4K_D8000:
  598. case MSR_MTRRfix4K_E0000:
  599. case MSR_MTRRfix4K_E8000:
  600. case MSR_MTRRfix4K_F0000:
  601. case MSR_MTRRfix4K_F8000:
  602. case MSR_MTRRdefType:
  603. case MSR_IA32_CR_PAT:
  604. return true;
  605. case 0x2f8:
  606. return true;
  607. }
  608. return false;
  609. }
  610. static bool valid_pat_type(unsigned t)
  611. {
  612. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  613. }
  614. static bool valid_mtrr_type(unsigned t)
  615. {
  616. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  617. }
  618. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  619. {
  620. int i;
  621. if (!msr_mtrr_valid(msr))
  622. return false;
  623. if (msr == MSR_IA32_CR_PAT) {
  624. for (i = 0; i < 8; i++)
  625. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  626. return false;
  627. return true;
  628. } else if (msr == MSR_MTRRdefType) {
  629. if (data & ~0xcff)
  630. return false;
  631. return valid_mtrr_type(data & 0xff);
  632. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  633. for (i = 0; i < 8 ; i++)
  634. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  635. return false;
  636. return true;
  637. }
  638. /* variable MTRRs */
  639. return valid_mtrr_type(data & 0xff);
  640. }
  641. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  642. {
  643. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  644. if (!mtrr_valid(vcpu, msr, data))
  645. return 1;
  646. if (msr == MSR_MTRRdefType) {
  647. vcpu->arch.mtrr_state.def_type = data;
  648. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  649. } else if (msr == MSR_MTRRfix64K_00000)
  650. p[0] = data;
  651. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  652. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  653. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  654. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  655. else if (msr == MSR_IA32_CR_PAT)
  656. vcpu->arch.pat = data;
  657. else { /* Variable MTRRs */
  658. int idx, is_mtrr_mask;
  659. u64 *pt;
  660. idx = (msr - 0x200) / 2;
  661. is_mtrr_mask = msr - 0x200 - 2 * idx;
  662. if (!is_mtrr_mask)
  663. pt =
  664. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  665. else
  666. pt =
  667. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  668. *pt = data;
  669. }
  670. kvm_mmu_reset_context(vcpu);
  671. return 0;
  672. }
  673. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  674. {
  675. switch (msr) {
  676. case MSR_EFER:
  677. set_efer(vcpu, data);
  678. break;
  679. case MSR_IA32_MC0_STATUS:
  680. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  681. __func__, data);
  682. break;
  683. case MSR_IA32_MCG_STATUS:
  684. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  685. __func__, data);
  686. break;
  687. case MSR_IA32_MCG_CTL:
  688. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  689. __func__, data);
  690. break;
  691. case MSR_IA32_DEBUGCTLMSR:
  692. if (!data) {
  693. /* We support the non-activated case already */
  694. break;
  695. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  696. /* Values other than LBR and BTF are vendor-specific,
  697. thus reserved and should throw a #GP */
  698. return 1;
  699. }
  700. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  701. __func__, data);
  702. break;
  703. case MSR_IA32_UCODE_REV:
  704. case MSR_IA32_UCODE_WRITE:
  705. case MSR_VM_HSAVE_PA:
  706. break;
  707. case 0x200 ... 0x2ff:
  708. return set_msr_mtrr(vcpu, msr, data);
  709. case MSR_IA32_APICBASE:
  710. kvm_set_apic_base(vcpu, data);
  711. break;
  712. case MSR_IA32_MISC_ENABLE:
  713. vcpu->arch.ia32_misc_enable_msr = data;
  714. break;
  715. case MSR_KVM_WALL_CLOCK:
  716. vcpu->kvm->arch.wall_clock = data;
  717. kvm_write_wall_clock(vcpu->kvm, data);
  718. break;
  719. case MSR_KVM_SYSTEM_TIME: {
  720. if (vcpu->arch.time_page) {
  721. kvm_release_page_dirty(vcpu->arch.time_page);
  722. vcpu->arch.time_page = NULL;
  723. }
  724. vcpu->arch.time = data;
  725. /* we verify if the enable bit is set... */
  726. if (!(data & 1))
  727. break;
  728. /* ...but clean it before doing the actual write */
  729. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  730. vcpu->arch.time_page =
  731. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  732. if (is_error_page(vcpu->arch.time_page)) {
  733. kvm_release_page_clean(vcpu->arch.time_page);
  734. vcpu->arch.time_page = NULL;
  735. }
  736. kvm_request_guest_time_update(vcpu);
  737. break;
  738. }
  739. default:
  740. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  741. return 1;
  742. }
  743. return 0;
  744. }
  745. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  746. /*
  747. * Reads an msr value (of 'msr_index') into 'pdata'.
  748. * Returns 0 on success, non-0 otherwise.
  749. * Assumes vcpu_load() was already called.
  750. */
  751. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  752. {
  753. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  754. }
  755. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  756. {
  757. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  758. if (!msr_mtrr_valid(msr))
  759. return 1;
  760. if (msr == MSR_MTRRdefType)
  761. *pdata = vcpu->arch.mtrr_state.def_type +
  762. (vcpu->arch.mtrr_state.enabled << 10);
  763. else if (msr == MSR_MTRRfix64K_00000)
  764. *pdata = p[0];
  765. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  766. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  767. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  768. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  769. else if (msr == MSR_IA32_CR_PAT)
  770. *pdata = vcpu->arch.pat;
  771. else { /* Variable MTRRs */
  772. int idx, is_mtrr_mask;
  773. u64 *pt;
  774. idx = (msr - 0x200) / 2;
  775. is_mtrr_mask = msr - 0x200 - 2 * idx;
  776. if (!is_mtrr_mask)
  777. pt =
  778. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  779. else
  780. pt =
  781. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  782. *pdata = *pt;
  783. }
  784. return 0;
  785. }
  786. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  787. {
  788. u64 data;
  789. switch (msr) {
  790. case 0xc0010010: /* SYSCFG */
  791. case 0xc0010015: /* HWCR */
  792. case MSR_IA32_PLATFORM_ID:
  793. case MSR_IA32_P5_MC_ADDR:
  794. case MSR_IA32_P5_MC_TYPE:
  795. case MSR_IA32_MC0_CTL:
  796. case MSR_IA32_MCG_STATUS:
  797. case MSR_IA32_MCG_CAP:
  798. case MSR_IA32_MCG_CTL:
  799. case MSR_IA32_MC0_MISC:
  800. case MSR_IA32_MC0_MISC+4:
  801. case MSR_IA32_MC0_MISC+8:
  802. case MSR_IA32_MC0_MISC+12:
  803. case MSR_IA32_MC0_MISC+16:
  804. case MSR_IA32_MC0_MISC+20:
  805. case MSR_IA32_UCODE_REV:
  806. case MSR_IA32_EBL_CR_POWERON:
  807. case MSR_IA32_DEBUGCTLMSR:
  808. case MSR_IA32_LASTBRANCHFROMIP:
  809. case MSR_IA32_LASTBRANCHTOIP:
  810. case MSR_IA32_LASTINTFROMIP:
  811. case MSR_IA32_LASTINTTOIP:
  812. case MSR_VM_HSAVE_PA:
  813. case MSR_P6_EVNTSEL0:
  814. case MSR_P6_EVNTSEL1:
  815. case MSR_K7_EVNTSEL0:
  816. data = 0;
  817. break;
  818. case MSR_MTRRcap:
  819. data = 0x500 | KVM_NR_VAR_MTRR;
  820. break;
  821. case 0x200 ... 0x2ff:
  822. return get_msr_mtrr(vcpu, msr, pdata);
  823. case 0xcd: /* fsb frequency */
  824. data = 3;
  825. break;
  826. case MSR_IA32_APICBASE:
  827. data = kvm_get_apic_base(vcpu);
  828. break;
  829. case MSR_IA32_MISC_ENABLE:
  830. data = vcpu->arch.ia32_misc_enable_msr;
  831. break;
  832. case MSR_IA32_PERF_STATUS:
  833. /* TSC increment by tick */
  834. data = 1000ULL;
  835. /* CPU multiplier */
  836. data |= (((uint64_t)4ULL) << 40);
  837. break;
  838. case MSR_EFER:
  839. data = vcpu->arch.shadow_efer;
  840. break;
  841. case MSR_KVM_WALL_CLOCK:
  842. data = vcpu->kvm->arch.wall_clock;
  843. break;
  844. case MSR_KVM_SYSTEM_TIME:
  845. data = vcpu->arch.time;
  846. break;
  847. default:
  848. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  849. return 1;
  850. }
  851. *pdata = data;
  852. return 0;
  853. }
  854. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  855. /*
  856. * Read or write a bunch of msrs. All parameters are kernel addresses.
  857. *
  858. * @return number of msrs set successfully.
  859. */
  860. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  861. struct kvm_msr_entry *entries,
  862. int (*do_msr)(struct kvm_vcpu *vcpu,
  863. unsigned index, u64 *data))
  864. {
  865. int i;
  866. vcpu_load(vcpu);
  867. down_read(&vcpu->kvm->slots_lock);
  868. for (i = 0; i < msrs->nmsrs; ++i)
  869. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  870. break;
  871. up_read(&vcpu->kvm->slots_lock);
  872. vcpu_put(vcpu);
  873. return i;
  874. }
  875. /*
  876. * Read or write a bunch of msrs. Parameters are user addresses.
  877. *
  878. * @return number of msrs set successfully.
  879. */
  880. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  881. int (*do_msr)(struct kvm_vcpu *vcpu,
  882. unsigned index, u64 *data),
  883. int writeback)
  884. {
  885. struct kvm_msrs msrs;
  886. struct kvm_msr_entry *entries;
  887. int r, n;
  888. unsigned size;
  889. r = -EFAULT;
  890. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  891. goto out;
  892. r = -E2BIG;
  893. if (msrs.nmsrs >= MAX_IO_MSRS)
  894. goto out;
  895. r = -ENOMEM;
  896. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  897. entries = vmalloc(size);
  898. if (!entries)
  899. goto out;
  900. r = -EFAULT;
  901. if (copy_from_user(entries, user_msrs->entries, size))
  902. goto out_free;
  903. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  904. if (r < 0)
  905. goto out_free;
  906. r = -EFAULT;
  907. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  908. goto out_free;
  909. r = n;
  910. out_free:
  911. vfree(entries);
  912. out:
  913. return r;
  914. }
  915. int kvm_dev_ioctl_check_extension(long ext)
  916. {
  917. int r;
  918. switch (ext) {
  919. case KVM_CAP_IRQCHIP:
  920. case KVM_CAP_HLT:
  921. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  922. case KVM_CAP_SET_TSS_ADDR:
  923. case KVM_CAP_EXT_CPUID:
  924. case KVM_CAP_CLOCKSOURCE:
  925. case KVM_CAP_PIT:
  926. case KVM_CAP_NOP_IO_DELAY:
  927. case KVM_CAP_MP_STATE:
  928. case KVM_CAP_SYNC_MMU:
  929. case KVM_CAP_REINJECT_CONTROL:
  930. case KVM_CAP_IRQ_INJECT_STATUS:
  931. case KVM_CAP_ASSIGN_DEV_IRQ:
  932. r = 1;
  933. break;
  934. case KVM_CAP_COALESCED_MMIO:
  935. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  936. break;
  937. case KVM_CAP_VAPIC:
  938. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  939. break;
  940. case KVM_CAP_NR_VCPUS:
  941. r = KVM_MAX_VCPUS;
  942. break;
  943. case KVM_CAP_NR_MEMSLOTS:
  944. r = KVM_MEMORY_SLOTS;
  945. break;
  946. case KVM_CAP_PV_MMU:
  947. r = !tdp_enabled;
  948. break;
  949. case KVM_CAP_IOMMU:
  950. r = iommu_found();
  951. break;
  952. default:
  953. r = 0;
  954. break;
  955. }
  956. return r;
  957. }
  958. long kvm_arch_dev_ioctl(struct file *filp,
  959. unsigned int ioctl, unsigned long arg)
  960. {
  961. void __user *argp = (void __user *)arg;
  962. long r;
  963. switch (ioctl) {
  964. case KVM_GET_MSR_INDEX_LIST: {
  965. struct kvm_msr_list __user *user_msr_list = argp;
  966. struct kvm_msr_list msr_list;
  967. unsigned n;
  968. r = -EFAULT;
  969. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  970. goto out;
  971. n = msr_list.nmsrs;
  972. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  973. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  974. goto out;
  975. r = -E2BIG;
  976. if (n < msr_list.nmsrs)
  977. goto out;
  978. r = -EFAULT;
  979. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  980. num_msrs_to_save * sizeof(u32)))
  981. goto out;
  982. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  983. &emulated_msrs,
  984. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  985. goto out;
  986. r = 0;
  987. break;
  988. }
  989. case KVM_GET_SUPPORTED_CPUID: {
  990. struct kvm_cpuid2 __user *cpuid_arg = argp;
  991. struct kvm_cpuid2 cpuid;
  992. r = -EFAULT;
  993. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  994. goto out;
  995. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  996. cpuid_arg->entries);
  997. if (r)
  998. goto out;
  999. r = -EFAULT;
  1000. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1001. goto out;
  1002. r = 0;
  1003. break;
  1004. }
  1005. default:
  1006. r = -EINVAL;
  1007. }
  1008. out:
  1009. return r;
  1010. }
  1011. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1012. {
  1013. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1014. kvm_request_guest_time_update(vcpu);
  1015. }
  1016. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1017. {
  1018. kvm_x86_ops->vcpu_put(vcpu);
  1019. kvm_put_guest_fpu(vcpu);
  1020. }
  1021. static int is_efer_nx(void)
  1022. {
  1023. unsigned long long efer = 0;
  1024. rdmsrl_safe(MSR_EFER, &efer);
  1025. return efer & EFER_NX;
  1026. }
  1027. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1028. {
  1029. int i;
  1030. struct kvm_cpuid_entry2 *e, *entry;
  1031. entry = NULL;
  1032. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1033. e = &vcpu->arch.cpuid_entries[i];
  1034. if (e->function == 0x80000001) {
  1035. entry = e;
  1036. break;
  1037. }
  1038. }
  1039. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1040. entry->edx &= ~(1 << 20);
  1041. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1042. }
  1043. }
  1044. /* when an old userspace process fills a new kernel module */
  1045. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1046. struct kvm_cpuid *cpuid,
  1047. struct kvm_cpuid_entry __user *entries)
  1048. {
  1049. int r, i;
  1050. struct kvm_cpuid_entry *cpuid_entries;
  1051. r = -E2BIG;
  1052. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1053. goto out;
  1054. r = -ENOMEM;
  1055. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1056. if (!cpuid_entries)
  1057. goto out;
  1058. r = -EFAULT;
  1059. if (copy_from_user(cpuid_entries, entries,
  1060. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1061. goto out_free;
  1062. for (i = 0; i < cpuid->nent; i++) {
  1063. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1064. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1065. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1066. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1067. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1068. vcpu->arch.cpuid_entries[i].index = 0;
  1069. vcpu->arch.cpuid_entries[i].flags = 0;
  1070. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1071. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1072. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1073. }
  1074. vcpu->arch.cpuid_nent = cpuid->nent;
  1075. cpuid_fix_nx_cap(vcpu);
  1076. r = 0;
  1077. out_free:
  1078. vfree(cpuid_entries);
  1079. out:
  1080. return r;
  1081. }
  1082. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1083. struct kvm_cpuid2 *cpuid,
  1084. struct kvm_cpuid_entry2 __user *entries)
  1085. {
  1086. int r;
  1087. r = -E2BIG;
  1088. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1089. goto out;
  1090. r = -EFAULT;
  1091. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1092. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1093. goto out;
  1094. vcpu->arch.cpuid_nent = cpuid->nent;
  1095. return 0;
  1096. out:
  1097. return r;
  1098. }
  1099. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1100. struct kvm_cpuid2 *cpuid,
  1101. struct kvm_cpuid_entry2 __user *entries)
  1102. {
  1103. int r;
  1104. r = -E2BIG;
  1105. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1106. goto out;
  1107. r = -EFAULT;
  1108. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1109. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1110. goto out;
  1111. return 0;
  1112. out:
  1113. cpuid->nent = vcpu->arch.cpuid_nent;
  1114. return r;
  1115. }
  1116. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1117. u32 index)
  1118. {
  1119. entry->function = function;
  1120. entry->index = index;
  1121. cpuid_count(entry->function, entry->index,
  1122. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1123. entry->flags = 0;
  1124. }
  1125. #define F(x) bit(X86_FEATURE_##x)
  1126. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1127. u32 index, int *nent, int maxnent)
  1128. {
  1129. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1130. #ifdef CONFIG_X86_64
  1131. unsigned f_lm = F(LM);
  1132. #else
  1133. unsigned f_lm = 0;
  1134. #endif
  1135. /* cpuid 1.edx */
  1136. const u32 kvm_supported_word0_x86_features =
  1137. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1138. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1139. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1140. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1141. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1142. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1143. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1144. 0 /* HTT, TM, Reserved, PBE */;
  1145. /* cpuid 0x80000001.edx */
  1146. const u32 kvm_supported_word1_x86_features =
  1147. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1148. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1149. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1150. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1151. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1152. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1153. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1154. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1155. /* cpuid 1.ecx */
  1156. const u32 kvm_supported_word4_x86_features =
  1157. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1158. 0 /* DS-CPL, VMX, SMX, EST */ |
  1159. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1160. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1161. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1162. F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
  1163. 0 /* Reserved, XSAVE, OSXSAVE */;
  1164. /* cpuid 0x80000001.ecx */
  1165. const u32 kvm_supported_word6_x86_features =
  1166. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1167. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1168. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1169. 0 /* SKINIT */ | 0 /* WDT */;
  1170. /* all calls to cpuid_count() should be made on the same cpu */
  1171. get_cpu();
  1172. do_cpuid_1_ent(entry, function, index);
  1173. ++*nent;
  1174. switch (function) {
  1175. case 0:
  1176. entry->eax = min(entry->eax, (u32)0xb);
  1177. break;
  1178. case 1:
  1179. entry->edx &= kvm_supported_word0_x86_features;
  1180. entry->ecx &= kvm_supported_word4_x86_features;
  1181. break;
  1182. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1183. * may return different values. This forces us to get_cpu() before
  1184. * issuing the first command, and also to emulate this annoying behavior
  1185. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1186. case 2: {
  1187. int t, times = entry->eax & 0xff;
  1188. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1189. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1190. for (t = 1; t < times && *nent < maxnent; ++t) {
  1191. do_cpuid_1_ent(&entry[t], function, 0);
  1192. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1193. ++*nent;
  1194. }
  1195. break;
  1196. }
  1197. /* function 4 and 0xb have additional index. */
  1198. case 4: {
  1199. int i, cache_type;
  1200. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1201. /* read more entries until cache_type is zero */
  1202. for (i = 1; *nent < maxnent; ++i) {
  1203. cache_type = entry[i - 1].eax & 0x1f;
  1204. if (!cache_type)
  1205. break;
  1206. do_cpuid_1_ent(&entry[i], function, i);
  1207. entry[i].flags |=
  1208. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1209. ++*nent;
  1210. }
  1211. break;
  1212. }
  1213. case 0xb: {
  1214. int i, level_type;
  1215. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1216. /* read more entries until level_type is zero */
  1217. for (i = 1; *nent < maxnent; ++i) {
  1218. level_type = entry[i - 1].ecx & 0xff00;
  1219. if (!level_type)
  1220. break;
  1221. do_cpuid_1_ent(&entry[i], function, i);
  1222. entry[i].flags |=
  1223. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1224. ++*nent;
  1225. }
  1226. break;
  1227. }
  1228. case 0x80000000:
  1229. entry->eax = min(entry->eax, 0x8000001a);
  1230. break;
  1231. case 0x80000001:
  1232. entry->edx &= kvm_supported_word1_x86_features;
  1233. entry->ecx &= kvm_supported_word6_x86_features;
  1234. break;
  1235. }
  1236. put_cpu();
  1237. }
  1238. #undef F
  1239. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1240. struct kvm_cpuid_entry2 __user *entries)
  1241. {
  1242. struct kvm_cpuid_entry2 *cpuid_entries;
  1243. int limit, nent = 0, r = -E2BIG;
  1244. u32 func;
  1245. if (cpuid->nent < 1)
  1246. goto out;
  1247. r = -ENOMEM;
  1248. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1249. if (!cpuid_entries)
  1250. goto out;
  1251. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1252. limit = cpuid_entries[0].eax;
  1253. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1254. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1255. &nent, cpuid->nent);
  1256. r = -E2BIG;
  1257. if (nent >= cpuid->nent)
  1258. goto out_free;
  1259. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1260. limit = cpuid_entries[nent - 1].eax;
  1261. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1262. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1263. &nent, cpuid->nent);
  1264. r = -EFAULT;
  1265. if (copy_to_user(entries, cpuid_entries,
  1266. nent * sizeof(struct kvm_cpuid_entry2)))
  1267. goto out_free;
  1268. cpuid->nent = nent;
  1269. r = 0;
  1270. out_free:
  1271. vfree(cpuid_entries);
  1272. out:
  1273. return r;
  1274. }
  1275. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1276. struct kvm_lapic_state *s)
  1277. {
  1278. vcpu_load(vcpu);
  1279. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1280. vcpu_put(vcpu);
  1281. return 0;
  1282. }
  1283. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1284. struct kvm_lapic_state *s)
  1285. {
  1286. vcpu_load(vcpu);
  1287. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1288. kvm_apic_post_state_restore(vcpu);
  1289. vcpu_put(vcpu);
  1290. return 0;
  1291. }
  1292. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1293. struct kvm_interrupt *irq)
  1294. {
  1295. if (irq->irq < 0 || irq->irq >= 256)
  1296. return -EINVAL;
  1297. if (irqchip_in_kernel(vcpu->kvm))
  1298. return -ENXIO;
  1299. vcpu_load(vcpu);
  1300. kvm_queue_interrupt(vcpu, irq->irq, false);
  1301. vcpu_put(vcpu);
  1302. return 0;
  1303. }
  1304. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1305. {
  1306. vcpu_load(vcpu);
  1307. kvm_inject_nmi(vcpu);
  1308. vcpu_put(vcpu);
  1309. return 0;
  1310. }
  1311. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1312. struct kvm_tpr_access_ctl *tac)
  1313. {
  1314. if (tac->flags)
  1315. return -EINVAL;
  1316. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1317. return 0;
  1318. }
  1319. long kvm_arch_vcpu_ioctl(struct file *filp,
  1320. unsigned int ioctl, unsigned long arg)
  1321. {
  1322. struct kvm_vcpu *vcpu = filp->private_data;
  1323. void __user *argp = (void __user *)arg;
  1324. int r;
  1325. struct kvm_lapic_state *lapic = NULL;
  1326. switch (ioctl) {
  1327. case KVM_GET_LAPIC: {
  1328. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1329. r = -ENOMEM;
  1330. if (!lapic)
  1331. goto out;
  1332. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1333. if (r)
  1334. goto out;
  1335. r = -EFAULT;
  1336. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1337. goto out;
  1338. r = 0;
  1339. break;
  1340. }
  1341. case KVM_SET_LAPIC: {
  1342. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1343. r = -ENOMEM;
  1344. if (!lapic)
  1345. goto out;
  1346. r = -EFAULT;
  1347. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1348. goto out;
  1349. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1350. if (r)
  1351. goto out;
  1352. r = 0;
  1353. break;
  1354. }
  1355. case KVM_INTERRUPT: {
  1356. struct kvm_interrupt irq;
  1357. r = -EFAULT;
  1358. if (copy_from_user(&irq, argp, sizeof irq))
  1359. goto out;
  1360. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1361. if (r)
  1362. goto out;
  1363. r = 0;
  1364. break;
  1365. }
  1366. case KVM_NMI: {
  1367. r = kvm_vcpu_ioctl_nmi(vcpu);
  1368. if (r)
  1369. goto out;
  1370. r = 0;
  1371. break;
  1372. }
  1373. case KVM_SET_CPUID: {
  1374. struct kvm_cpuid __user *cpuid_arg = argp;
  1375. struct kvm_cpuid cpuid;
  1376. r = -EFAULT;
  1377. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1378. goto out;
  1379. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1380. if (r)
  1381. goto out;
  1382. break;
  1383. }
  1384. case KVM_SET_CPUID2: {
  1385. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1386. struct kvm_cpuid2 cpuid;
  1387. r = -EFAULT;
  1388. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1389. goto out;
  1390. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1391. cpuid_arg->entries);
  1392. if (r)
  1393. goto out;
  1394. break;
  1395. }
  1396. case KVM_GET_CPUID2: {
  1397. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1398. struct kvm_cpuid2 cpuid;
  1399. r = -EFAULT;
  1400. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1401. goto out;
  1402. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1403. cpuid_arg->entries);
  1404. if (r)
  1405. goto out;
  1406. r = -EFAULT;
  1407. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1408. goto out;
  1409. r = 0;
  1410. break;
  1411. }
  1412. case KVM_GET_MSRS:
  1413. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1414. break;
  1415. case KVM_SET_MSRS:
  1416. r = msr_io(vcpu, argp, do_set_msr, 0);
  1417. break;
  1418. case KVM_TPR_ACCESS_REPORTING: {
  1419. struct kvm_tpr_access_ctl tac;
  1420. r = -EFAULT;
  1421. if (copy_from_user(&tac, argp, sizeof tac))
  1422. goto out;
  1423. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1424. if (r)
  1425. goto out;
  1426. r = -EFAULT;
  1427. if (copy_to_user(argp, &tac, sizeof tac))
  1428. goto out;
  1429. r = 0;
  1430. break;
  1431. };
  1432. case KVM_SET_VAPIC_ADDR: {
  1433. struct kvm_vapic_addr va;
  1434. r = -EINVAL;
  1435. if (!irqchip_in_kernel(vcpu->kvm))
  1436. goto out;
  1437. r = -EFAULT;
  1438. if (copy_from_user(&va, argp, sizeof va))
  1439. goto out;
  1440. r = 0;
  1441. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1442. break;
  1443. }
  1444. default:
  1445. r = -EINVAL;
  1446. }
  1447. out:
  1448. kfree(lapic);
  1449. return r;
  1450. }
  1451. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1452. {
  1453. int ret;
  1454. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1455. return -1;
  1456. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1457. return ret;
  1458. }
  1459. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1460. u32 kvm_nr_mmu_pages)
  1461. {
  1462. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1463. return -EINVAL;
  1464. down_write(&kvm->slots_lock);
  1465. spin_lock(&kvm->mmu_lock);
  1466. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1467. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1468. spin_unlock(&kvm->mmu_lock);
  1469. up_write(&kvm->slots_lock);
  1470. return 0;
  1471. }
  1472. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1473. {
  1474. return kvm->arch.n_alloc_mmu_pages;
  1475. }
  1476. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1477. {
  1478. int i;
  1479. struct kvm_mem_alias *alias;
  1480. for (i = 0; i < kvm->arch.naliases; ++i) {
  1481. alias = &kvm->arch.aliases[i];
  1482. if (gfn >= alias->base_gfn
  1483. && gfn < alias->base_gfn + alias->npages)
  1484. return alias->target_gfn + gfn - alias->base_gfn;
  1485. }
  1486. return gfn;
  1487. }
  1488. /*
  1489. * Set a new alias region. Aliases map a portion of physical memory into
  1490. * another portion. This is useful for memory windows, for example the PC
  1491. * VGA region.
  1492. */
  1493. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1494. struct kvm_memory_alias *alias)
  1495. {
  1496. int r, n;
  1497. struct kvm_mem_alias *p;
  1498. r = -EINVAL;
  1499. /* General sanity checks */
  1500. if (alias->memory_size & (PAGE_SIZE - 1))
  1501. goto out;
  1502. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1503. goto out;
  1504. if (alias->slot >= KVM_ALIAS_SLOTS)
  1505. goto out;
  1506. if (alias->guest_phys_addr + alias->memory_size
  1507. < alias->guest_phys_addr)
  1508. goto out;
  1509. if (alias->target_phys_addr + alias->memory_size
  1510. < alias->target_phys_addr)
  1511. goto out;
  1512. down_write(&kvm->slots_lock);
  1513. spin_lock(&kvm->mmu_lock);
  1514. p = &kvm->arch.aliases[alias->slot];
  1515. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1516. p->npages = alias->memory_size >> PAGE_SHIFT;
  1517. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1518. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1519. if (kvm->arch.aliases[n - 1].npages)
  1520. break;
  1521. kvm->arch.naliases = n;
  1522. spin_unlock(&kvm->mmu_lock);
  1523. kvm_mmu_zap_all(kvm);
  1524. up_write(&kvm->slots_lock);
  1525. return 0;
  1526. out:
  1527. return r;
  1528. }
  1529. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1530. {
  1531. int r;
  1532. r = 0;
  1533. switch (chip->chip_id) {
  1534. case KVM_IRQCHIP_PIC_MASTER:
  1535. memcpy(&chip->chip.pic,
  1536. &pic_irqchip(kvm)->pics[0],
  1537. sizeof(struct kvm_pic_state));
  1538. break;
  1539. case KVM_IRQCHIP_PIC_SLAVE:
  1540. memcpy(&chip->chip.pic,
  1541. &pic_irqchip(kvm)->pics[1],
  1542. sizeof(struct kvm_pic_state));
  1543. break;
  1544. case KVM_IRQCHIP_IOAPIC:
  1545. memcpy(&chip->chip.ioapic,
  1546. ioapic_irqchip(kvm),
  1547. sizeof(struct kvm_ioapic_state));
  1548. break;
  1549. default:
  1550. r = -EINVAL;
  1551. break;
  1552. }
  1553. return r;
  1554. }
  1555. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1556. {
  1557. int r;
  1558. r = 0;
  1559. switch (chip->chip_id) {
  1560. case KVM_IRQCHIP_PIC_MASTER:
  1561. memcpy(&pic_irqchip(kvm)->pics[0],
  1562. &chip->chip.pic,
  1563. sizeof(struct kvm_pic_state));
  1564. break;
  1565. case KVM_IRQCHIP_PIC_SLAVE:
  1566. memcpy(&pic_irqchip(kvm)->pics[1],
  1567. &chip->chip.pic,
  1568. sizeof(struct kvm_pic_state));
  1569. break;
  1570. case KVM_IRQCHIP_IOAPIC:
  1571. memcpy(ioapic_irqchip(kvm),
  1572. &chip->chip.ioapic,
  1573. sizeof(struct kvm_ioapic_state));
  1574. break;
  1575. default:
  1576. r = -EINVAL;
  1577. break;
  1578. }
  1579. kvm_pic_update_irq(pic_irqchip(kvm));
  1580. return r;
  1581. }
  1582. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1583. {
  1584. int r = 0;
  1585. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1586. return r;
  1587. }
  1588. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1589. {
  1590. int r = 0;
  1591. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1592. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1593. return r;
  1594. }
  1595. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1596. struct kvm_reinject_control *control)
  1597. {
  1598. if (!kvm->arch.vpit)
  1599. return -ENXIO;
  1600. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1601. return 0;
  1602. }
  1603. /*
  1604. * Get (and clear) the dirty memory log for a memory slot.
  1605. */
  1606. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1607. struct kvm_dirty_log *log)
  1608. {
  1609. int r;
  1610. int n;
  1611. struct kvm_memory_slot *memslot;
  1612. int is_dirty = 0;
  1613. down_write(&kvm->slots_lock);
  1614. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1615. if (r)
  1616. goto out;
  1617. /* If nothing is dirty, don't bother messing with page tables. */
  1618. if (is_dirty) {
  1619. spin_lock(&kvm->mmu_lock);
  1620. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1621. spin_unlock(&kvm->mmu_lock);
  1622. kvm_flush_remote_tlbs(kvm);
  1623. memslot = &kvm->memslots[log->slot];
  1624. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1625. memset(memslot->dirty_bitmap, 0, n);
  1626. }
  1627. r = 0;
  1628. out:
  1629. up_write(&kvm->slots_lock);
  1630. return r;
  1631. }
  1632. long kvm_arch_vm_ioctl(struct file *filp,
  1633. unsigned int ioctl, unsigned long arg)
  1634. {
  1635. struct kvm *kvm = filp->private_data;
  1636. void __user *argp = (void __user *)arg;
  1637. int r = -EINVAL;
  1638. /*
  1639. * This union makes it completely explicit to gcc-3.x
  1640. * that these two variables' stack usage should be
  1641. * combined, not added together.
  1642. */
  1643. union {
  1644. struct kvm_pit_state ps;
  1645. struct kvm_memory_alias alias;
  1646. } u;
  1647. switch (ioctl) {
  1648. case KVM_SET_TSS_ADDR:
  1649. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1650. if (r < 0)
  1651. goto out;
  1652. break;
  1653. case KVM_SET_MEMORY_REGION: {
  1654. struct kvm_memory_region kvm_mem;
  1655. struct kvm_userspace_memory_region kvm_userspace_mem;
  1656. r = -EFAULT;
  1657. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1658. goto out;
  1659. kvm_userspace_mem.slot = kvm_mem.slot;
  1660. kvm_userspace_mem.flags = kvm_mem.flags;
  1661. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1662. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1663. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1664. if (r)
  1665. goto out;
  1666. break;
  1667. }
  1668. case KVM_SET_NR_MMU_PAGES:
  1669. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1670. if (r)
  1671. goto out;
  1672. break;
  1673. case KVM_GET_NR_MMU_PAGES:
  1674. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1675. break;
  1676. case KVM_SET_MEMORY_ALIAS:
  1677. r = -EFAULT;
  1678. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1679. goto out;
  1680. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1681. if (r)
  1682. goto out;
  1683. break;
  1684. case KVM_CREATE_IRQCHIP:
  1685. r = -ENOMEM;
  1686. kvm->arch.vpic = kvm_create_pic(kvm);
  1687. if (kvm->arch.vpic) {
  1688. r = kvm_ioapic_init(kvm);
  1689. if (r) {
  1690. kfree(kvm->arch.vpic);
  1691. kvm->arch.vpic = NULL;
  1692. goto out;
  1693. }
  1694. } else
  1695. goto out;
  1696. r = kvm_setup_default_irq_routing(kvm);
  1697. if (r) {
  1698. kfree(kvm->arch.vpic);
  1699. kfree(kvm->arch.vioapic);
  1700. goto out;
  1701. }
  1702. break;
  1703. case KVM_CREATE_PIT:
  1704. mutex_lock(&kvm->lock);
  1705. r = -EEXIST;
  1706. if (kvm->arch.vpit)
  1707. goto create_pit_unlock;
  1708. r = -ENOMEM;
  1709. kvm->arch.vpit = kvm_create_pit(kvm);
  1710. if (kvm->arch.vpit)
  1711. r = 0;
  1712. create_pit_unlock:
  1713. mutex_unlock(&kvm->lock);
  1714. break;
  1715. case KVM_IRQ_LINE_STATUS:
  1716. case KVM_IRQ_LINE: {
  1717. struct kvm_irq_level irq_event;
  1718. r = -EFAULT;
  1719. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1720. goto out;
  1721. if (irqchip_in_kernel(kvm)) {
  1722. __s32 status;
  1723. mutex_lock(&kvm->lock);
  1724. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1725. irq_event.irq, irq_event.level);
  1726. mutex_unlock(&kvm->lock);
  1727. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1728. irq_event.status = status;
  1729. if (copy_to_user(argp, &irq_event,
  1730. sizeof irq_event))
  1731. goto out;
  1732. }
  1733. r = 0;
  1734. }
  1735. break;
  1736. }
  1737. case KVM_GET_IRQCHIP: {
  1738. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1739. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1740. r = -ENOMEM;
  1741. if (!chip)
  1742. goto out;
  1743. r = -EFAULT;
  1744. if (copy_from_user(chip, argp, sizeof *chip))
  1745. goto get_irqchip_out;
  1746. r = -ENXIO;
  1747. if (!irqchip_in_kernel(kvm))
  1748. goto get_irqchip_out;
  1749. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1750. if (r)
  1751. goto get_irqchip_out;
  1752. r = -EFAULT;
  1753. if (copy_to_user(argp, chip, sizeof *chip))
  1754. goto get_irqchip_out;
  1755. r = 0;
  1756. get_irqchip_out:
  1757. kfree(chip);
  1758. if (r)
  1759. goto out;
  1760. break;
  1761. }
  1762. case KVM_SET_IRQCHIP: {
  1763. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1764. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1765. r = -ENOMEM;
  1766. if (!chip)
  1767. goto out;
  1768. r = -EFAULT;
  1769. if (copy_from_user(chip, argp, sizeof *chip))
  1770. goto set_irqchip_out;
  1771. r = -ENXIO;
  1772. if (!irqchip_in_kernel(kvm))
  1773. goto set_irqchip_out;
  1774. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1775. if (r)
  1776. goto set_irqchip_out;
  1777. r = 0;
  1778. set_irqchip_out:
  1779. kfree(chip);
  1780. if (r)
  1781. goto out;
  1782. break;
  1783. }
  1784. case KVM_GET_PIT: {
  1785. r = -EFAULT;
  1786. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1787. goto out;
  1788. r = -ENXIO;
  1789. if (!kvm->arch.vpit)
  1790. goto out;
  1791. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1792. if (r)
  1793. goto out;
  1794. r = -EFAULT;
  1795. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1796. goto out;
  1797. r = 0;
  1798. break;
  1799. }
  1800. case KVM_SET_PIT: {
  1801. r = -EFAULT;
  1802. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1803. goto out;
  1804. r = -ENXIO;
  1805. if (!kvm->arch.vpit)
  1806. goto out;
  1807. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1808. if (r)
  1809. goto out;
  1810. r = 0;
  1811. break;
  1812. }
  1813. case KVM_REINJECT_CONTROL: {
  1814. struct kvm_reinject_control control;
  1815. r = -EFAULT;
  1816. if (copy_from_user(&control, argp, sizeof(control)))
  1817. goto out;
  1818. r = kvm_vm_ioctl_reinject(kvm, &control);
  1819. if (r)
  1820. goto out;
  1821. r = 0;
  1822. break;
  1823. }
  1824. default:
  1825. ;
  1826. }
  1827. out:
  1828. return r;
  1829. }
  1830. static void kvm_init_msr_list(void)
  1831. {
  1832. u32 dummy[2];
  1833. unsigned i, j;
  1834. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1835. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1836. continue;
  1837. if (j < i)
  1838. msrs_to_save[j] = msrs_to_save[i];
  1839. j++;
  1840. }
  1841. num_msrs_to_save = j;
  1842. }
  1843. /*
  1844. * Only apic need an MMIO device hook, so shortcut now..
  1845. */
  1846. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1847. gpa_t addr, int len,
  1848. int is_write)
  1849. {
  1850. struct kvm_io_device *dev;
  1851. if (vcpu->arch.apic) {
  1852. dev = &vcpu->arch.apic->dev;
  1853. if (dev->in_range(dev, addr, len, is_write))
  1854. return dev;
  1855. }
  1856. return NULL;
  1857. }
  1858. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1859. gpa_t addr, int len,
  1860. int is_write)
  1861. {
  1862. struct kvm_io_device *dev;
  1863. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1864. if (dev == NULL)
  1865. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1866. is_write);
  1867. return dev;
  1868. }
  1869. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1870. struct kvm_vcpu *vcpu)
  1871. {
  1872. void *data = val;
  1873. int r = X86EMUL_CONTINUE;
  1874. while (bytes) {
  1875. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1876. unsigned offset = addr & (PAGE_SIZE-1);
  1877. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  1878. int ret;
  1879. if (gpa == UNMAPPED_GVA) {
  1880. r = X86EMUL_PROPAGATE_FAULT;
  1881. goto out;
  1882. }
  1883. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  1884. if (ret < 0) {
  1885. r = X86EMUL_UNHANDLEABLE;
  1886. goto out;
  1887. }
  1888. bytes -= toread;
  1889. data += toread;
  1890. addr += toread;
  1891. }
  1892. out:
  1893. return r;
  1894. }
  1895. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1896. struct kvm_vcpu *vcpu)
  1897. {
  1898. void *data = val;
  1899. int r = X86EMUL_CONTINUE;
  1900. while (bytes) {
  1901. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1902. unsigned offset = addr & (PAGE_SIZE-1);
  1903. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  1904. int ret;
  1905. if (gpa == UNMAPPED_GVA) {
  1906. r = X86EMUL_PROPAGATE_FAULT;
  1907. goto out;
  1908. }
  1909. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  1910. if (ret < 0) {
  1911. r = X86EMUL_UNHANDLEABLE;
  1912. goto out;
  1913. }
  1914. bytes -= towrite;
  1915. data += towrite;
  1916. addr += towrite;
  1917. }
  1918. out:
  1919. return r;
  1920. }
  1921. static int emulator_read_emulated(unsigned long addr,
  1922. void *val,
  1923. unsigned int bytes,
  1924. struct kvm_vcpu *vcpu)
  1925. {
  1926. struct kvm_io_device *mmio_dev;
  1927. gpa_t gpa;
  1928. if (vcpu->mmio_read_completed) {
  1929. memcpy(val, vcpu->mmio_data, bytes);
  1930. vcpu->mmio_read_completed = 0;
  1931. return X86EMUL_CONTINUE;
  1932. }
  1933. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1934. /* For APIC access vmexit */
  1935. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1936. goto mmio;
  1937. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  1938. == X86EMUL_CONTINUE)
  1939. return X86EMUL_CONTINUE;
  1940. if (gpa == UNMAPPED_GVA)
  1941. return X86EMUL_PROPAGATE_FAULT;
  1942. mmio:
  1943. /*
  1944. * Is this MMIO handled locally?
  1945. */
  1946. mutex_lock(&vcpu->kvm->lock);
  1947. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1948. if (mmio_dev) {
  1949. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1950. mutex_unlock(&vcpu->kvm->lock);
  1951. return X86EMUL_CONTINUE;
  1952. }
  1953. mutex_unlock(&vcpu->kvm->lock);
  1954. vcpu->mmio_needed = 1;
  1955. vcpu->mmio_phys_addr = gpa;
  1956. vcpu->mmio_size = bytes;
  1957. vcpu->mmio_is_write = 0;
  1958. return X86EMUL_UNHANDLEABLE;
  1959. }
  1960. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1961. const void *val, int bytes)
  1962. {
  1963. int ret;
  1964. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1965. if (ret < 0)
  1966. return 0;
  1967. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1968. return 1;
  1969. }
  1970. static int emulator_write_emulated_onepage(unsigned long addr,
  1971. const void *val,
  1972. unsigned int bytes,
  1973. struct kvm_vcpu *vcpu)
  1974. {
  1975. struct kvm_io_device *mmio_dev;
  1976. gpa_t gpa;
  1977. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1978. if (gpa == UNMAPPED_GVA) {
  1979. kvm_inject_page_fault(vcpu, addr, 2);
  1980. return X86EMUL_PROPAGATE_FAULT;
  1981. }
  1982. /* For APIC access vmexit */
  1983. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1984. goto mmio;
  1985. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1986. return X86EMUL_CONTINUE;
  1987. mmio:
  1988. /*
  1989. * Is this MMIO handled locally?
  1990. */
  1991. mutex_lock(&vcpu->kvm->lock);
  1992. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1993. if (mmio_dev) {
  1994. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1995. mutex_unlock(&vcpu->kvm->lock);
  1996. return X86EMUL_CONTINUE;
  1997. }
  1998. mutex_unlock(&vcpu->kvm->lock);
  1999. vcpu->mmio_needed = 1;
  2000. vcpu->mmio_phys_addr = gpa;
  2001. vcpu->mmio_size = bytes;
  2002. vcpu->mmio_is_write = 1;
  2003. memcpy(vcpu->mmio_data, val, bytes);
  2004. return X86EMUL_CONTINUE;
  2005. }
  2006. int emulator_write_emulated(unsigned long addr,
  2007. const void *val,
  2008. unsigned int bytes,
  2009. struct kvm_vcpu *vcpu)
  2010. {
  2011. /* Crossing a page boundary? */
  2012. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2013. int rc, now;
  2014. now = -addr & ~PAGE_MASK;
  2015. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2016. if (rc != X86EMUL_CONTINUE)
  2017. return rc;
  2018. addr += now;
  2019. val += now;
  2020. bytes -= now;
  2021. }
  2022. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2023. }
  2024. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2025. static int emulator_cmpxchg_emulated(unsigned long addr,
  2026. const void *old,
  2027. const void *new,
  2028. unsigned int bytes,
  2029. struct kvm_vcpu *vcpu)
  2030. {
  2031. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2032. #ifndef CONFIG_X86_64
  2033. /* guests cmpxchg8b have to be emulated atomically */
  2034. if (bytes == 8) {
  2035. gpa_t gpa;
  2036. struct page *page;
  2037. char *kaddr;
  2038. u64 val;
  2039. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2040. if (gpa == UNMAPPED_GVA ||
  2041. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2042. goto emul_write;
  2043. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2044. goto emul_write;
  2045. val = *(u64 *)new;
  2046. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2047. kaddr = kmap_atomic(page, KM_USER0);
  2048. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2049. kunmap_atomic(kaddr, KM_USER0);
  2050. kvm_release_page_dirty(page);
  2051. }
  2052. emul_write:
  2053. #endif
  2054. return emulator_write_emulated(addr, new, bytes, vcpu);
  2055. }
  2056. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2057. {
  2058. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2059. }
  2060. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2061. {
  2062. kvm_mmu_invlpg(vcpu, address);
  2063. return X86EMUL_CONTINUE;
  2064. }
  2065. int emulate_clts(struct kvm_vcpu *vcpu)
  2066. {
  2067. KVMTRACE_0D(CLTS, vcpu, handler);
  2068. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2069. return X86EMUL_CONTINUE;
  2070. }
  2071. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2072. {
  2073. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2074. switch (dr) {
  2075. case 0 ... 3:
  2076. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2077. return X86EMUL_CONTINUE;
  2078. default:
  2079. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2080. return X86EMUL_UNHANDLEABLE;
  2081. }
  2082. }
  2083. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2084. {
  2085. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2086. int exception;
  2087. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2088. if (exception) {
  2089. /* FIXME: better handling */
  2090. return X86EMUL_UNHANDLEABLE;
  2091. }
  2092. return X86EMUL_CONTINUE;
  2093. }
  2094. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2095. {
  2096. u8 opcodes[4];
  2097. unsigned long rip = kvm_rip_read(vcpu);
  2098. unsigned long rip_linear;
  2099. if (!printk_ratelimit())
  2100. return;
  2101. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2102. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2103. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2104. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2105. }
  2106. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2107. static struct x86_emulate_ops emulate_ops = {
  2108. .read_std = kvm_read_guest_virt,
  2109. .read_emulated = emulator_read_emulated,
  2110. .write_emulated = emulator_write_emulated,
  2111. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2112. };
  2113. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2114. {
  2115. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2116. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2117. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2118. vcpu->arch.regs_dirty = ~0;
  2119. }
  2120. int emulate_instruction(struct kvm_vcpu *vcpu,
  2121. struct kvm_run *run,
  2122. unsigned long cr2,
  2123. u16 error_code,
  2124. int emulation_type)
  2125. {
  2126. int r, shadow_mask;
  2127. struct decode_cache *c;
  2128. kvm_clear_exception_queue(vcpu);
  2129. vcpu->arch.mmio_fault_cr2 = cr2;
  2130. /*
  2131. * TODO: fix x86_emulate.c to use guest_read/write_register
  2132. * instead of direct ->regs accesses, can save hundred cycles
  2133. * on Intel for instructions that don't read/change RSP, for
  2134. * for example.
  2135. */
  2136. cache_all_regs(vcpu);
  2137. vcpu->mmio_is_write = 0;
  2138. vcpu->arch.pio.string = 0;
  2139. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2140. int cs_db, cs_l;
  2141. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2142. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2143. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2144. vcpu->arch.emulate_ctxt.mode =
  2145. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2146. ? X86EMUL_MODE_REAL : cs_l
  2147. ? X86EMUL_MODE_PROT64 : cs_db
  2148. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2149. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2150. /* Reject the instructions other than VMCALL/VMMCALL when
  2151. * try to emulate invalid opcode */
  2152. c = &vcpu->arch.emulate_ctxt.decode;
  2153. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2154. (!(c->twobyte && c->b == 0x01 &&
  2155. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2156. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2157. return EMULATE_FAIL;
  2158. ++vcpu->stat.insn_emulation;
  2159. if (r) {
  2160. ++vcpu->stat.insn_emulation_fail;
  2161. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2162. return EMULATE_DONE;
  2163. return EMULATE_FAIL;
  2164. }
  2165. }
  2166. if (emulation_type & EMULTYPE_SKIP) {
  2167. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2168. return EMULATE_DONE;
  2169. }
  2170. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2171. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2172. if (r == 0)
  2173. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2174. if (vcpu->arch.pio.string)
  2175. return EMULATE_DO_MMIO;
  2176. if ((r || vcpu->mmio_is_write) && run) {
  2177. run->exit_reason = KVM_EXIT_MMIO;
  2178. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2179. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2180. run->mmio.len = vcpu->mmio_size;
  2181. run->mmio.is_write = vcpu->mmio_is_write;
  2182. }
  2183. if (r) {
  2184. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2185. return EMULATE_DONE;
  2186. if (!vcpu->mmio_needed) {
  2187. kvm_report_emulation_failure(vcpu, "mmio");
  2188. return EMULATE_FAIL;
  2189. }
  2190. return EMULATE_DO_MMIO;
  2191. }
  2192. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2193. if (vcpu->mmio_is_write) {
  2194. vcpu->mmio_needed = 0;
  2195. return EMULATE_DO_MMIO;
  2196. }
  2197. return EMULATE_DONE;
  2198. }
  2199. EXPORT_SYMBOL_GPL(emulate_instruction);
  2200. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2201. {
  2202. void *p = vcpu->arch.pio_data;
  2203. gva_t q = vcpu->arch.pio.guest_gva;
  2204. unsigned bytes;
  2205. int ret;
  2206. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2207. if (vcpu->arch.pio.in)
  2208. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2209. else
  2210. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2211. return ret;
  2212. }
  2213. int complete_pio(struct kvm_vcpu *vcpu)
  2214. {
  2215. struct kvm_pio_request *io = &vcpu->arch.pio;
  2216. long delta;
  2217. int r;
  2218. unsigned long val;
  2219. if (!io->string) {
  2220. if (io->in) {
  2221. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2222. memcpy(&val, vcpu->arch.pio_data, io->size);
  2223. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2224. }
  2225. } else {
  2226. if (io->in) {
  2227. r = pio_copy_data(vcpu);
  2228. if (r)
  2229. return r;
  2230. }
  2231. delta = 1;
  2232. if (io->rep) {
  2233. delta *= io->cur_count;
  2234. /*
  2235. * The size of the register should really depend on
  2236. * current address size.
  2237. */
  2238. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2239. val -= delta;
  2240. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2241. }
  2242. if (io->down)
  2243. delta = -delta;
  2244. delta *= io->size;
  2245. if (io->in) {
  2246. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2247. val += delta;
  2248. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2249. } else {
  2250. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2251. val += delta;
  2252. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2253. }
  2254. }
  2255. io->count -= io->cur_count;
  2256. io->cur_count = 0;
  2257. return 0;
  2258. }
  2259. static void kernel_pio(struct kvm_io_device *pio_dev,
  2260. struct kvm_vcpu *vcpu,
  2261. void *pd)
  2262. {
  2263. /* TODO: String I/O for in kernel device */
  2264. mutex_lock(&vcpu->kvm->lock);
  2265. if (vcpu->arch.pio.in)
  2266. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2267. vcpu->arch.pio.size,
  2268. pd);
  2269. else
  2270. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2271. vcpu->arch.pio.size,
  2272. pd);
  2273. mutex_unlock(&vcpu->kvm->lock);
  2274. }
  2275. static void pio_string_write(struct kvm_io_device *pio_dev,
  2276. struct kvm_vcpu *vcpu)
  2277. {
  2278. struct kvm_pio_request *io = &vcpu->arch.pio;
  2279. void *pd = vcpu->arch.pio_data;
  2280. int i;
  2281. mutex_lock(&vcpu->kvm->lock);
  2282. for (i = 0; i < io->cur_count; i++) {
  2283. kvm_iodevice_write(pio_dev, io->port,
  2284. io->size,
  2285. pd);
  2286. pd += io->size;
  2287. }
  2288. mutex_unlock(&vcpu->kvm->lock);
  2289. }
  2290. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2291. gpa_t addr, int len,
  2292. int is_write)
  2293. {
  2294. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2295. }
  2296. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2297. int size, unsigned port)
  2298. {
  2299. struct kvm_io_device *pio_dev;
  2300. unsigned long val;
  2301. vcpu->run->exit_reason = KVM_EXIT_IO;
  2302. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2303. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2304. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2305. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2306. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2307. vcpu->arch.pio.in = in;
  2308. vcpu->arch.pio.string = 0;
  2309. vcpu->arch.pio.down = 0;
  2310. vcpu->arch.pio.rep = 0;
  2311. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2312. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2313. handler);
  2314. else
  2315. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2316. handler);
  2317. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2318. memcpy(vcpu->arch.pio_data, &val, 4);
  2319. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2320. if (pio_dev) {
  2321. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2322. complete_pio(vcpu);
  2323. return 1;
  2324. }
  2325. return 0;
  2326. }
  2327. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2328. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2329. int size, unsigned long count, int down,
  2330. gva_t address, int rep, unsigned port)
  2331. {
  2332. unsigned now, in_page;
  2333. int ret = 0;
  2334. struct kvm_io_device *pio_dev;
  2335. vcpu->run->exit_reason = KVM_EXIT_IO;
  2336. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2337. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2338. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2339. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2340. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2341. vcpu->arch.pio.in = in;
  2342. vcpu->arch.pio.string = 1;
  2343. vcpu->arch.pio.down = down;
  2344. vcpu->arch.pio.rep = rep;
  2345. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2346. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2347. handler);
  2348. else
  2349. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2350. handler);
  2351. if (!count) {
  2352. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2353. return 1;
  2354. }
  2355. if (!down)
  2356. in_page = PAGE_SIZE - offset_in_page(address);
  2357. else
  2358. in_page = offset_in_page(address) + size;
  2359. now = min(count, (unsigned long)in_page / size);
  2360. if (!now)
  2361. now = 1;
  2362. if (down) {
  2363. /*
  2364. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2365. */
  2366. pr_unimpl(vcpu, "guest string pio down\n");
  2367. kvm_inject_gp(vcpu, 0);
  2368. return 1;
  2369. }
  2370. vcpu->run->io.count = now;
  2371. vcpu->arch.pio.cur_count = now;
  2372. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2373. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2374. vcpu->arch.pio.guest_gva = address;
  2375. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2376. vcpu->arch.pio.cur_count,
  2377. !vcpu->arch.pio.in);
  2378. if (!vcpu->arch.pio.in) {
  2379. /* string PIO write */
  2380. ret = pio_copy_data(vcpu);
  2381. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2382. kvm_inject_gp(vcpu, 0);
  2383. return 1;
  2384. }
  2385. if (ret == 0 && pio_dev) {
  2386. pio_string_write(pio_dev, vcpu);
  2387. complete_pio(vcpu);
  2388. if (vcpu->arch.pio.count == 0)
  2389. ret = 1;
  2390. }
  2391. } else if (pio_dev)
  2392. pr_unimpl(vcpu, "no string pio read support yet, "
  2393. "port %x size %d count %ld\n",
  2394. port, size, count);
  2395. return ret;
  2396. }
  2397. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2398. static void bounce_off(void *info)
  2399. {
  2400. /* nothing */
  2401. }
  2402. static unsigned int ref_freq;
  2403. static unsigned long tsc_khz_ref;
  2404. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2405. void *data)
  2406. {
  2407. struct cpufreq_freqs *freq = data;
  2408. struct kvm *kvm;
  2409. struct kvm_vcpu *vcpu;
  2410. int i, send_ipi = 0;
  2411. if (!ref_freq)
  2412. ref_freq = freq->old;
  2413. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2414. return 0;
  2415. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2416. return 0;
  2417. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2418. spin_lock(&kvm_lock);
  2419. list_for_each_entry(kvm, &vm_list, vm_list) {
  2420. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2421. vcpu = kvm->vcpus[i];
  2422. if (!vcpu)
  2423. continue;
  2424. if (vcpu->cpu != freq->cpu)
  2425. continue;
  2426. if (!kvm_request_guest_time_update(vcpu))
  2427. continue;
  2428. if (vcpu->cpu != smp_processor_id())
  2429. send_ipi++;
  2430. }
  2431. }
  2432. spin_unlock(&kvm_lock);
  2433. if (freq->old < freq->new && send_ipi) {
  2434. /*
  2435. * We upscale the frequency. Must make the guest
  2436. * doesn't see old kvmclock values while running with
  2437. * the new frequency, otherwise we risk the guest sees
  2438. * time go backwards.
  2439. *
  2440. * In case we update the frequency for another cpu
  2441. * (which might be in guest context) send an interrupt
  2442. * to kick the cpu out of guest context. Next time
  2443. * guest context is entered kvmclock will be updated,
  2444. * so the guest will not see stale values.
  2445. */
  2446. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2447. }
  2448. return 0;
  2449. }
  2450. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2451. .notifier_call = kvmclock_cpufreq_notifier
  2452. };
  2453. int kvm_arch_init(void *opaque)
  2454. {
  2455. int r, cpu;
  2456. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2457. if (kvm_x86_ops) {
  2458. printk(KERN_ERR "kvm: already loaded the other module\n");
  2459. r = -EEXIST;
  2460. goto out;
  2461. }
  2462. if (!ops->cpu_has_kvm_support()) {
  2463. printk(KERN_ERR "kvm: no hardware support\n");
  2464. r = -EOPNOTSUPP;
  2465. goto out;
  2466. }
  2467. if (ops->disabled_by_bios()) {
  2468. printk(KERN_ERR "kvm: disabled by bios\n");
  2469. r = -EOPNOTSUPP;
  2470. goto out;
  2471. }
  2472. r = kvm_mmu_module_init();
  2473. if (r)
  2474. goto out;
  2475. kvm_init_msr_list();
  2476. kvm_x86_ops = ops;
  2477. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2478. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2479. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2480. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2481. for_each_possible_cpu(cpu)
  2482. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2483. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2484. tsc_khz_ref = tsc_khz;
  2485. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2486. CPUFREQ_TRANSITION_NOTIFIER);
  2487. }
  2488. return 0;
  2489. out:
  2490. return r;
  2491. }
  2492. void kvm_arch_exit(void)
  2493. {
  2494. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2495. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2496. CPUFREQ_TRANSITION_NOTIFIER);
  2497. kvm_x86_ops = NULL;
  2498. kvm_mmu_module_exit();
  2499. }
  2500. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2501. {
  2502. ++vcpu->stat.halt_exits;
  2503. KVMTRACE_0D(HLT, vcpu, handler);
  2504. if (irqchip_in_kernel(vcpu->kvm)) {
  2505. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2506. return 1;
  2507. } else {
  2508. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2509. return 0;
  2510. }
  2511. }
  2512. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2513. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2514. unsigned long a1)
  2515. {
  2516. if (is_long_mode(vcpu))
  2517. return a0;
  2518. else
  2519. return a0 | ((gpa_t)a1 << 32);
  2520. }
  2521. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2522. {
  2523. unsigned long nr, a0, a1, a2, a3, ret;
  2524. int r = 1;
  2525. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2526. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2527. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2528. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2529. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2530. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2531. if (!is_long_mode(vcpu)) {
  2532. nr &= 0xFFFFFFFF;
  2533. a0 &= 0xFFFFFFFF;
  2534. a1 &= 0xFFFFFFFF;
  2535. a2 &= 0xFFFFFFFF;
  2536. a3 &= 0xFFFFFFFF;
  2537. }
  2538. switch (nr) {
  2539. case KVM_HC_VAPIC_POLL_IRQ:
  2540. ret = 0;
  2541. break;
  2542. case KVM_HC_MMU_OP:
  2543. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2544. break;
  2545. default:
  2546. ret = -KVM_ENOSYS;
  2547. break;
  2548. }
  2549. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2550. ++vcpu->stat.hypercalls;
  2551. return r;
  2552. }
  2553. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2554. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2555. {
  2556. char instruction[3];
  2557. int ret = 0;
  2558. unsigned long rip = kvm_rip_read(vcpu);
  2559. /*
  2560. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2561. * to ensure that the updated hypercall appears atomically across all
  2562. * VCPUs.
  2563. */
  2564. kvm_mmu_zap_all(vcpu->kvm);
  2565. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2566. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2567. != X86EMUL_CONTINUE)
  2568. ret = -EFAULT;
  2569. return ret;
  2570. }
  2571. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2572. {
  2573. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2574. }
  2575. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2576. {
  2577. struct descriptor_table dt = { limit, base };
  2578. kvm_x86_ops->set_gdt(vcpu, &dt);
  2579. }
  2580. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2581. {
  2582. struct descriptor_table dt = { limit, base };
  2583. kvm_x86_ops->set_idt(vcpu, &dt);
  2584. }
  2585. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2586. unsigned long *rflags)
  2587. {
  2588. kvm_lmsw(vcpu, msw);
  2589. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2590. }
  2591. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2592. {
  2593. unsigned long value;
  2594. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2595. switch (cr) {
  2596. case 0:
  2597. value = vcpu->arch.cr0;
  2598. break;
  2599. case 2:
  2600. value = vcpu->arch.cr2;
  2601. break;
  2602. case 3:
  2603. value = vcpu->arch.cr3;
  2604. break;
  2605. case 4:
  2606. value = vcpu->arch.cr4;
  2607. break;
  2608. case 8:
  2609. value = kvm_get_cr8(vcpu);
  2610. break;
  2611. default:
  2612. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2613. return 0;
  2614. }
  2615. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2616. (u32)((u64)value >> 32), handler);
  2617. return value;
  2618. }
  2619. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2620. unsigned long *rflags)
  2621. {
  2622. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2623. (u32)((u64)val >> 32), handler);
  2624. switch (cr) {
  2625. case 0:
  2626. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2627. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2628. break;
  2629. case 2:
  2630. vcpu->arch.cr2 = val;
  2631. break;
  2632. case 3:
  2633. kvm_set_cr3(vcpu, val);
  2634. break;
  2635. case 4:
  2636. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2637. break;
  2638. case 8:
  2639. kvm_set_cr8(vcpu, val & 0xfUL);
  2640. break;
  2641. default:
  2642. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2643. }
  2644. }
  2645. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2646. {
  2647. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2648. int j, nent = vcpu->arch.cpuid_nent;
  2649. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2650. /* when no next entry is found, the current entry[i] is reselected */
  2651. for (j = i + 1; ; j = (j + 1) % nent) {
  2652. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2653. if (ej->function == e->function) {
  2654. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2655. return j;
  2656. }
  2657. }
  2658. return 0; /* silence gcc, even though control never reaches here */
  2659. }
  2660. /* find an entry with matching function, matching index (if needed), and that
  2661. * should be read next (if it's stateful) */
  2662. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2663. u32 function, u32 index)
  2664. {
  2665. if (e->function != function)
  2666. return 0;
  2667. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2668. return 0;
  2669. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2670. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2671. return 0;
  2672. return 1;
  2673. }
  2674. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2675. u32 function, u32 index)
  2676. {
  2677. int i;
  2678. struct kvm_cpuid_entry2 *best = NULL;
  2679. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2680. struct kvm_cpuid_entry2 *e;
  2681. e = &vcpu->arch.cpuid_entries[i];
  2682. if (is_matching_cpuid_entry(e, function, index)) {
  2683. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2684. move_to_next_stateful_cpuid_entry(vcpu, i);
  2685. best = e;
  2686. break;
  2687. }
  2688. /*
  2689. * Both basic or both extended?
  2690. */
  2691. if (((e->function ^ function) & 0x80000000) == 0)
  2692. if (!best || e->function > best->function)
  2693. best = e;
  2694. }
  2695. return best;
  2696. }
  2697. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2698. {
  2699. struct kvm_cpuid_entry2 *best;
  2700. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2701. if (best)
  2702. return best->eax & 0xff;
  2703. return 36;
  2704. }
  2705. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2706. {
  2707. u32 function, index;
  2708. struct kvm_cpuid_entry2 *best;
  2709. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2710. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2711. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2712. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2713. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2714. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2715. best = kvm_find_cpuid_entry(vcpu, function, index);
  2716. if (best) {
  2717. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2718. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2719. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2720. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2721. }
  2722. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2723. KVMTRACE_5D(CPUID, vcpu, function,
  2724. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2725. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2726. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2727. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2728. }
  2729. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2730. /*
  2731. * Check if userspace requested an interrupt window, and that the
  2732. * interrupt window is open.
  2733. *
  2734. * No need to exit to userspace if we already have an interrupt queued.
  2735. */
  2736. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2737. struct kvm_run *kvm_run)
  2738. {
  2739. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2740. kvm_run->request_interrupt_window &&
  2741. kvm_arch_interrupt_allowed(vcpu));
  2742. }
  2743. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2744. struct kvm_run *kvm_run)
  2745. {
  2746. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2747. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2748. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2749. if (irqchip_in_kernel(vcpu->kvm))
  2750. kvm_run->ready_for_interrupt_injection = 1;
  2751. else
  2752. kvm_run->ready_for_interrupt_injection =
  2753. kvm_arch_interrupt_allowed(vcpu) &&
  2754. !kvm_cpu_has_interrupt(vcpu) &&
  2755. !kvm_event_needs_reinjection(vcpu);
  2756. }
  2757. static void vapic_enter(struct kvm_vcpu *vcpu)
  2758. {
  2759. struct kvm_lapic *apic = vcpu->arch.apic;
  2760. struct page *page;
  2761. if (!apic || !apic->vapic_addr)
  2762. return;
  2763. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2764. vcpu->arch.apic->vapic_page = page;
  2765. }
  2766. static void vapic_exit(struct kvm_vcpu *vcpu)
  2767. {
  2768. struct kvm_lapic *apic = vcpu->arch.apic;
  2769. if (!apic || !apic->vapic_addr)
  2770. return;
  2771. down_read(&vcpu->kvm->slots_lock);
  2772. kvm_release_page_dirty(apic->vapic_page);
  2773. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2774. up_read(&vcpu->kvm->slots_lock);
  2775. }
  2776. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2777. {
  2778. int max_irr, tpr;
  2779. if (!kvm_x86_ops->update_cr8_intercept)
  2780. return;
  2781. if (!vcpu->arch.apic->vapic_addr)
  2782. max_irr = kvm_lapic_find_highest_irr(vcpu);
  2783. else
  2784. max_irr = -1;
  2785. if (max_irr != -1)
  2786. max_irr >>= 4;
  2787. tpr = kvm_lapic_get_cr8(vcpu);
  2788. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  2789. }
  2790. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2791. {
  2792. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2793. kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
  2794. /* try to reinject previous events if any */
  2795. if (vcpu->arch.nmi_injected) {
  2796. kvm_x86_ops->set_nmi(vcpu);
  2797. return;
  2798. }
  2799. if (vcpu->arch.interrupt.pending) {
  2800. kvm_x86_ops->set_irq(vcpu);
  2801. return;
  2802. }
  2803. /* try to inject new event if pending */
  2804. if (vcpu->arch.nmi_pending) {
  2805. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  2806. vcpu->arch.nmi_pending = false;
  2807. vcpu->arch.nmi_injected = true;
  2808. kvm_x86_ops->set_nmi(vcpu);
  2809. }
  2810. } else if (kvm_cpu_has_interrupt(vcpu)) {
  2811. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  2812. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  2813. false);
  2814. kvm_x86_ops->set_irq(vcpu);
  2815. }
  2816. }
  2817. }
  2818. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2819. {
  2820. int r;
  2821. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  2822. kvm_run->request_interrupt_window;
  2823. if (vcpu->requests)
  2824. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2825. kvm_mmu_unload(vcpu);
  2826. r = kvm_mmu_reload(vcpu);
  2827. if (unlikely(r))
  2828. goto out;
  2829. if (vcpu->requests) {
  2830. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2831. __kvm_migrate_timers(vcpu);
  2832. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  2833. kvm_write_guest_time(vcpu);
  2834. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2835. kvm_mmu_sync_roots(vcpu);
  2836. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2837. kvm_x86_ops->tlb_flush(vcpu);
  2838. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2839. &vcpu->requests)) {
  2840. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2841. r = 0;
  2842. goto out;
  2843. }
  2844. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2845. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2846. r = 0;
  2847. goto out;
  2848. }
  2849. }
  2850. preempt_disable();
  2851. kvm_x86_ops->prepare_guest_switch(vcpu);
  2852. kvm_load_guest_fpu(vcpu);
  2853. local_irq_disable();
  2854. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  2855. smp_mb__after_clear_bit();
  2856. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2857. local_irq_enable();
  2858. preempt_enable();
  2859. r = 1;
  2860. goto out;
  2861. }
  2862. if (vcpu->arch.exception.pending)
  2863. __queue_exception(vcpu);
  2864. else
  2865. inject_pending_irq(vcpu, kvm_run);
  2866. /* enable NMI/IRQ window open exits if needed */
  2867. if (vcpu->arch.nmi_pending)
  2868. kvm_x86_ops->enable_nmi_window(vcpu);
  2869. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  2870. kvm_x86_ops->enable_irq_window(vcpu);
  2871. if (kvm_lapic_enabled(vcpu)) {
  2872. update_cr8_intercept(vcpu);
  2873. kvm_lapic_sync_to_vapic(vcpu);
  2874. }
  2875. up_read(&vcpu->kvm->slots_lock);
  2876. kvm_guest_enter();
  2877. get_debugreg(vcpu->arch.host_dr6, 6);
  2878. get_debugreg(vcpu->arch.host_dr7, 7);
  2879. if (unlikely(vcpu->arch.switch_db_regs)) {
  2880. get_debugreg(vcpu->arch.host_db[0], 0);
  2881. get_debugreg(vcpu->arch.host_db[1], 1);
  2882. get_debugreg(vcpu->arch.host_db[2], 2);
  2883. get_debugreg(vcpu->arch.host_db[3], 3);
  2884. set_debugreg(0, 7);
  2885. set_debugreg(vcpu->arch.eff_db[0], 0);
  2886. set_debugreg(vcpu->arch.eff_db[1], 1);
  2887. set_debugreg(vcpu->arch.eff_db[2], 2);
  2888. set_debugreg(vcpu->arch.eff_db[3], 3);
  2889. }
  2890. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2891. kvm_x86_ops->run(vcpu, kvm_run);
  2892. if (unlikely(vcpu->arch.switch_db_regs)) {
  2893. set_debugreg(0, 7);
  2894. set_debugreg(vcpu->arch.host_db[0], 0);
  2895. set_debugreg(vcpu->arch.host_db[1], 1);
  2896. set_debugreg(vcpu->arch.host_db[2], 2);
  2897. set_debugreg(vcpu->arch.host_db[3], 3);
  2898. }
  2899. set_debugreg(vcpu->arch.host_dr6, 6);
  2900. set_debugreg(vcpu->arch.host_dr7, 7);
  2901. set_bit(KVM_REQ_KICK, &vcpu->requests);
  2902. local_irq_enable();
  2903. ++vcpu->stat.exits;
  2904. /*
  2905. * We must have an instruction between local_irq_enable() and
  2906. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2907. * the interrupt shadow. The stat.exits increment will do nicely.
  2908. * But we need to prevent reordering, hence this barrier():
  2909. */
  2910. barrier();
  2911. kvm_guest_exit();
  2912. preempt_enable();
  2913. down_read(&vcpu->kvm->slots_lock);
  2914. /*
  2915. * Profile KVM exit RIPs:
  2916. */
  2917. if (unlikely(prof_on == KVM_PROFILING)) {
  2918. unsigned long rip = kvm_rip_read(vcpu);
  2919. profile_hit(KVM_PROFILING, (void *)rip);
  2920. }
  2921. kvm_lapic_sync_from_vapic(vcpu);
  2922. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2923. out:
  2924. return r;
  2925. }
  2926. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2927. {
  2928. int r;
  2929. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2930. pr_debug("vcpu %d received sipi with vector # %x\n",
  2931. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2932. kvm_lapic_reset(vcpu);
  2933. r = kvm_arch_vcpu_reset(vcpu);
  2934. if (r)
  2935. return r;
  2936. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2937. }
  2938. down_read(&vcpu->kvm->slots_lock);
  2939. vapic_enter(vcpu);
  2940. r = 1;
  2941. while (r > 0) {
  2942. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2943. r = vcpu_enter_guest(vcpu, kvm_run);
  2944. else {
  2945. up_read(&vcpu->kvm->slots_lock);
  2946. kvm_vcpu_block(vcpu);
  2947. down_read(&vcpu->kvm->slots_lock);
  2948. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2949. {
  2950. switch(vcpu->arch.mp_state) {
  2951. case KVM_MP_STATE_HALTED:
  2952. vcpu->arch.mp_state =
  2953. KVM_MP_STATE_RUNNABLE;
  2954. case KVM_MP_STATE_RUNNABLE:
  2955. break;
  2956. case KVM_MP_STATE_SIPI_RECEIVED:
  2957. default:
  2958. r = -EINTR;
  2959. break;
  2960. }
  2961. }
  2962. }
  2963. if (r <= 0)
  2964. break;
  2965. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2966. if (kvm_cpu_has_pending_timer(vcpu))
  2967. kvm_inject_pending_timer_irqs(vcpu);
  2968. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2969. r = -EINTR;
  2970. kvm_run->exit_reason = KVM_EXIT_INTR;
  2971. ++vcpu->stat.request_irq_exits;
  2972. }
  2973. if (signal_pending(current)) {
  2974. r = -EINTR;
  2975. kvm_run->exit_reason = KVM_EXIT_INTR;
  2976. ++vcpu->stat.signal_exits;
  2977. }
  2978. if (need_resched()) {
  2979. up_read(&vcpu->kvm->slots_lock);
  2980. kvm_resched(vcpu);
  2981. down_read(&vcpu->kvm->slots_lock);
  2982. }
  2983. }
  2984. up_read(&vcpu->kvm->slots_lock);
  2985. post_kvm_run_save(vcpu, kvm_run);
  2986. vapic_exit(vcpu);
  2987. return r;
  2988. }
  2989. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2990. {
  2991. int r;
  2992. sigset_t sigsaved;
  2993. vcpu_load(vcpu);
  2994. if (vcpu->sigset_active)
  2995. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2996. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2997. kvm_vcpu_block(vcpu);
  2998. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2999. r = -EAGAIN;
  3000. goto out;
  3001. }
  3002. /* re-sync apic's tpr */
  3003. if (!irqchip_in_kernel(vcpu->kvm))
  3004. kvm_set_cr8(vcpu, kvm_run->cr8);
  3005. if (vcpu->arch.pio.cur_count) {
  3006. r = complete_pio(vcpu);
  3007. if (r)
  3008. goto out;
  3009. }
  3010. #if CONFIG_HAS_IOMEM
  3011. if (vcpu->mmio_needed) {
  3012. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3013. vcpu->mmio_read_completed = 1;
  3014. vcpu->mmio_needed = 0;
  3015. down_read(&vcpu->kvm->slots_lock);
  3016. r = emulate_instruction(vcpu, kvm_run,
  3017. vcpu->arch.mmio_fault_cr2, 0,
  3018. EMULTYPE_NO_DECODE);
  3019. up_read(&vcpu->kvm->slots_lock);
  3020. if (r == EMULATE_DO_MMIO) {
  3021. /*
  3022. * Read-modify-write. Back to userspace.
  3023. */
  3024. r = 0;
  3025. goto out;
  3026. }
  3027. }
  3028. #endif
  3029. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3030. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3031. kvm_run->hypercall.ret);
  3032. r = __vcpu_run(vcpu, kvm_run);
  3033. out:
  3034. if (vcpu->sigset_active)
  3035. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3036. vcpu_put(vcpu);
  3037. return r;
  3038. }
  3039. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3040. {
  3041. vcpu_load(vcpu);
  3042. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3043. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3044. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3045. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3046. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3047. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3048. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3049. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3050. #ifdef CONFIG_X86_64
  3051. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3052. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3053. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3054. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3055. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3056. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3057. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3058. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3059. #endif
  3060. regs->rip = kvm_rip_read(vcpu);
  3061. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3062. /*
  3063. * Don't leak debug flags in case they were set for guest debugging
  3064. */
  3065. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3066. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3067. vcpu_put(vcpu);
  3068. return 0;
  3069. }
  3070. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3071. {
  3072. vcpu_load(vcpu);
  3073. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3074. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3075. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3076. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3077. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3078. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3079. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3080. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3081. #ifdef CONFIG_X86_64
  3082. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3083. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3084. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3085. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3086. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3087. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3088. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3089. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3090. #endif
  3091. kvm_rip_write(vcpu, regs->rip);
  3092. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3093. vcpu->arch.exception.pending = false;
  3094. vcpu_put(vcpu);
  3095. return 0;
  3096. }
  3097. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3098. struct kvm_segment *var, int seg)
  3099. {
  3100. kvm_x86_ops->get_segment(vcpu, var, seg);
  3101. }
  3102. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3103. {
  3104. struct kvm_segment cs;
  3105. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3106. *db = cs.db;
  3107. *l = cs.l;
  3108. }
  3109. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3110. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3111. struct kvm_sregs *sregs)
  3112. {
  3113. struct descriptor_table dt;
  3114. vcpu_load(vcpu);
  3115. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3116. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3117. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3118. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3119. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3120. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3121. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3122. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3123. kvm_x86_ops->get_idt(vcpu, &dt);
  3124. sregs->idt.limit = dt.limit;
  3125. sregs->idt.base = dt.base;
  3126. kvm_x86_ops->get_gdt(vcpu, &dt);
  3127. sregs->gdt.limit = dt.limit;
  3128. sregs->gdt.base = dt.base;
  3129. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3130. sregs->cr0 = vcpu->arch.cr0;
  3131. sregs->cr2 = vcpu->arch.cr2;
  3132. sregs->cr3 = vcpu->arch.cr3;
  3133. sregs->cr4 = vcpu->arch.cr4;
  3134. sregs->cr8 = kvm_get_cr8(vcpu);
  3135. sregs->efer = vcpu->arch.shadow_efer;
  3136. sregs->apic_base = kvm_get_apic_base(vcpu);
  3137. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3138. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3139. set_bit(vcpu->arch.interrupt.nr,
  3140. (unsigned long *)sregs->interrupt_bitmap);
  3141. vcpu_put(vcpu);
  3142. return 0;
  3143. }
  3144. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3145. struct kvm_mp_state *mp_state)
  3146. {
  3147. vcpu_load(vcpu);
  3148. mp_state->mp_state = vcpu->arch.mp_state;
  3149. vcpu_put(vcpu);
  3150. return 0;
  3151. }
  3152. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3153. struct kvm_mp_state *mp_state)
  3154. {
  3155. vcpu_load(vcpu);
  3156. vcpu->arch.mp_state = mp_state->mp_state;
  3157. vcpu_put(vcpu);
  3158. return 0;
  3159. }
  3160. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3161. struct kvm_segment *var, int seg)
  3162. {
  3163. kvm_x86_ops->set_segment(vcpu, var, seg);
  3164. }
  3165. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3166. struct kvm_segment *kvm_desct)
  3167. {
  3168. kvm_desct->base = seg_desc->base0;
  3169. kvm_desct->base |= seg_desc->base1 << 16;
  3170. kvm_desct->base |= seg_desc->base2 << 24;
  3171. kvm_desct->limit = seg_desc->limit0;
  3172. kvm_desct->limit |= seg_desc->limit << 16;
  3173. if (seg_desc->g) {
  3174. kvm_desct->limit <<= 12;
  3175. kvm_desct->limit |= 0xfff;
  3176. }
  3177. kvm_desct->selector = selector;
  3178. kvm_desct->type = seg_desc->type;
  3179. kvm_desct->present = seg_desc->p;
  3180. kvm_desct->dpl = seg_desc->dpl;
  3181. kvm_desct->db = seg_desc->d;
  3182. kvm_desct->s = seg_desc->s;
  3183. kvm_desct->l = seg_desc->l;
  3184. kvm_desct->g = seg_desc->g;
  3185. kvm_desct->avl = seg_desc->avl;
  3186. if (!selector)
  3187. kvm_desct->unusable = 1;
  3188. else
  3189. kvm_desct->unusable = 0;
  3190. kvm_desct->padding = 0;
  3191. }
  3192. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3193. u16 selector,
  3194. struct descriptor_table *dtable)
  3195. {
  3196. if (selector & 1 << 2) {
  3197. struct kvm_segment kvm_seg;
  3198. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3199. if (kvm_seg.unusable)
  3200. dtable->limit = 0;
  3201. else
  3202. dtable->limit = kvm_seg.limit;
  3203. dtable->base = kvm_seg.base;
  3204. }
  3205. else
  3206. kvm_x86_ops->get_gdt(vcpu, dtable);
  3207. }
  3208. /* allowed just for 8 bytes segments */
  3209. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3210. struct desc_struct *seg_desc)
  3211. {
  3212. gpa_t gpa;
  3213. struct descriptor_table dtable;
  3214. u16 index = selector >> 3;
  3215. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3216. if (dtable.limit < index * 8 + 7) {
  3217. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3218. return 1;
  3219. }
  3220. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3221. gpa += index * 8;
  3222. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3223. }
  3224. /* allowed just for 8 bytes segments */
  3225. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3226. struct desc_struct *seg_desc)
  3227. {
  3228. gpa_t gpa;
  3229. struct descriptor_table dtable;
  3230. u16 index = selector >> 3;
  3231. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3232. if (dtable.limit < index * 8 + 7)
  3233. return 1;
  3234. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3235. gpa += index * 8;
  3236. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3237. }
  3238. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3239. struct desc_struct *seg_desc)
  3240. {
  3241. u32 base_addr;
  3242. base_addr = seg_desc->base0;
  3243. base_addr |= (seg_desc->base1 << 16);
  3244. base_addr |= (seg_desc->base2 << 24);
  3245. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3246. }
  3247. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3248. {
  3249. struct kvm_segment kvm_seg;
  3250. kvm_get_segment(vcpu, &kvm_seg, seg);
  3251. return kvm_seg.selector;
  3252. }
  3253. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3254. u16 selector,
  3255. struct kvm_segment *kvm_seg)
  3256. {
  3257. struct desc_struct seg_desc;
  3258. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3259. return 1;
  3260. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3261. return 0;
  3262. }
  3263. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3264. {
  3265. struct kvm_segment segvar = {
  3266. .base = selector << 4,
  3267. .limit = 0xffff,
  3268. .selector = selector,
  3269. .type = 3,
  3270. .present = 1,
  3271. .dpl = 3,
  3272. .db = 0,
  3273. .s = 1,
  3274. .l = 0,
  3275. .g = 0,
  3276. .avl = 0,
  3277. .unusable = 0,
  3278. };
  3279. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3280. return 0;
  3281. }
  3282. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3283. int type_bits, int seg)
  3284. {
  3285. struct kvm_segment kvm_seg;
  3286. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3287. return kvm_load_realmode_segment(vcpu, selector, seg);
  3288. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3289. return 1;
  3290. kvm_seg.type |= type_bits;
  3291. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3292. seg != VCPU_SREG_LDTR)
  3293. if (!kvm_seg.s)
  3294. kvm_seg.unusable = 1;
  3295. kvm_set_segment(vcpu, &kvm_seg, seg);
  3296. return 0;
  3297. }
  3298. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3299. struct tss_segment_32 *tss)
  3300. {
  3301. tss->cr3 = vcpu->arch.cr3;
  3302. tss->eip = kvm_rip_read(vcpu);
  3303. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3304. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3305. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3306. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3307. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3308. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3309. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3310. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3311. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3312. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3313. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3314. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3315. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3316. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3317. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3318. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3319. }
  3320. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3321. struct tss_segment_32 *tss)
  3322. {
  3323. kvm_set_cr3(vcpu, tss->cr3);
  3324. kvm_rip_write(vcpu, tss->eip);
  3325. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3326. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3327. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3328. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3329. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3330. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3331. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3332. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3333. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3334. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3335. return 1;
  3336. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3337. return 1;
  3338. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3339. return 1;
  3340. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3341. return 1;
  3342. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3343. return 1;
  3344. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3345. return 1;
  3346. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3347. return 1;
  3348. return 0;
  3349. }
  3350. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3351. struct tss_segment_16 *tss)
  3352. {
  3353. tss->ip = kvm_rip_read(vcpu);
  3354. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3355. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3356. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3357. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3358. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3359. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3360. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3361. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3362. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3363. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3364. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3365. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3366. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3367. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3368. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3369. }
  3370. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3371. struct tss_segment_16 *tss)
  3372. {
  3373. kvm_rip_write(vcpu, tss->ip);
  3374. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3375. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3376. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3377. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3378. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3379. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3380. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3381. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3382. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3383. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3384. return 1;
  3385. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3386. return 1;
  3387. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3388. return 1;
  3389. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3390. return 1;
  3391. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3392. return 1;
  3393. return 0;
  3394. }
  3395. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3396. u16 old_tss_sel, u32 old_tss_base,
  3397. struct desc_struct *nseg_desc)
  3398. {
  3399. struct tss_segment_16 tss_segment_16;
  3400. int ret = 0;
  3401. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3402. sizeof tss_segment_16))
  3403. goto out;
  3404. save_state_to_tss16(vcpu, &tss_segment_16);
  3405. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3406. sizeof tss_segment_16))
  3407. goto out;
  3408. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3409. &tss_segment_16, sizeof tss_segment_16))
  3410. goto out;
  3411. if (old_tss_sel != 0xffff) {
  3412. tss_segment_16.prev_task_link = old_tss_sel;
  3413. if (kvm_write_guest(vcpu->kvm,
  3414. get_tss_base_addr(vcpu, nseg_desc),
  3415. &tss_segment_16.prev_task_link,
  3416. sizeof tss_segment_16.prev_task_link))
  3417. goto out;
  3418. }
  3419. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3420. goto out;
  3421. ret = 1;
  3422. out:
  3423. return ret;
  3424. }
  3425. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3426. u16 old_tss_sel, u32 old_tss_base,
  3427. struct desc_struct *nseg_desc)
  3428. {
  3429. struct tss_segment_32 tss_segment_32;
  3430. int ret = 0;
  3431. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3432. sizeof tss_segment_32))
  3433. goto out;
  3434. save_state_to_tss32(vcpu, &tss_segment_32);
  3435. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3436. sizeof tss_segment_32))
  3437. goto out;
  3438. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3439. &tss_segment_32, sizeof tss_segment_32))
  3440. goto out;
  3441. if (old_tss_sel != 0xffff) {
  3442. tss_segment_32.prev_task_link = old_tss_sel;
  3443. if (kvm_write_guest(vcpu->kvm,
  3444. get_tss_base_addr(vcpu, nseg_desc),
  3445. &tss_segment_32.prev_task_link,
  3446. sizeof tss_segment_32.prev_task_link))
  3447. goto out;
  3448. }
  3449. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3450. goto out;
  3451. ret = 1;
  3452. out:
  3453. return ret;
  3454. }
  3455. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3456. {
  3457. struct kvm_segment tr_seg;
  3458. struct desc_struct cseg_desc;
  3459. struct desc_struct nseg_desc;
  3460. int ret = 0;
  3461. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3462. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3463. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3464. /* FIXME: Handle errors. Failure to read either TSS or their
  3465. * descriptors should generate a pagefault.
  3466. */
  3467. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3468. goto out;
  3469. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3470. goto out;
  3471. if (reason != TASK_SWITCH_IRET) {
  3472. int cpl;
  3473. cpl = kvm_x86_ops->get_cpl(vcpu);
  3474. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3475. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3476. return 1;
  3477. }
  3478. }
  3479. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3480. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3481. return 1;
  3482. }
  3483. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3484. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3485. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3486. }
  3487. if (reason == TASK_SWITCH_IRET) {
  3488. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3489. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3490. }
  3491. /* set back link to prev task only if NT bit is set in eflags
  3492. note that old_tss_sel is not used afetr this point */
  3493. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3494. old_tss_sel = 0xffff;
  3495. /* set back link to prev task only if NT bit is set in eflags
  3496. note that old_tss_sel is not used afetr this point */
  3497. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3498. old_tss_sel = 0xffff;
  3499. if (nseg_desc.type & 8)
  3500. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3501. old_tss_base, &nseg_desc);
  3502. else
  3503. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3504. old_tss_base, &nseg_desc);
  3505. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3506. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3507. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3508. }
  3509. if (reason != TASK_SWITCH_IRET) {
  3510. nseg_desc.type |= (1 << 1);
  3511. save_guest_segment_descriptor(vcpu, tss_selector,
  3512. &nseg_desc);
  3513. }
  3514. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3515. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3516. tr_seg.type = 11;
  3517. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3518. out:
  3519. return ret;
  3520. }
  3521. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3522. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3523. struct kvm_sregs *sregs)
  3524. {
  3525. int mmu_reset_needed = 0;
  3526. int pending_vec, max_bits;
  3527. struct descriptor_table dt;
  3528. vcpu_load(vcpu);
  3529. dt.limit = sregs->idt.limit;
  3530. dt.base = sregs->idt.base;
  3531. kvm_x86_ops->set_idt(vcpu, &dt);
  3532. dt.limit = sregs->gdt.limit;
  3533. dt.base = sregs->gdt.base;
  3534. kvm_x86_ops->set_gdt(vcpu, &dt);
  3535. vcpu->arch.cr2 = sregs->cr2;
  3536. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3537. down_read(&vcpu->kvm->slots_lock);
  3538. if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
  3539. vcpu->arch.cr3 = sregs->cr3;
  3540. else
  3541. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  3542. up_read(&vcpu->kvm->slots_lock);
  3543. kvm_set_cr8(vcpu, sregs->cr8);
  3544. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3545. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3546. kvm_set_apic_base(vcpu, sregs->apic_base);
  3547. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3548. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3549. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3550. vcpu->arch.cr0 = sregs->cr0;
  3551. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3552. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3553. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3554. load_pdptrs(vcpu, vcpu->arch.cr3);
  3555. if (mmu_reset_needed)
  3556. kvm_mmu_reset_context(vcpu);
  3557. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3558. pending_vec = find_first_bit(
  3559. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3560. if (pending_vec < max_bits) {
  3561. kvm_queue_interrupt(vcpu, pending_vec, false);
  3562. pr_debug("Set back pending irq %d\n", pending_vec);
  3563. if (irqchip_in_kernel(vcpu->kvm))
  3564. kvm_pic_clear_isr_ack(vcpu->kvm);
  3565. }
  3566. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3567. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3568. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3569. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3570. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3571. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3572. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3573. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3574. /* Older userspace won't unhalt the vcpu on reset. */
  3575. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3576. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3577. !(vcpu->arch.cr0 & X86_CR0_PE))
  3578. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3579. vcpu_put(vcpu);
  3580. return 0;
  3581. }
  3582. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3583. struct kvm_guest_debug *dbg)
  3584. {
  3585. int i, r;
  3586. vcpu_load(vcpu);
  3587. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3588. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3589. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3590. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3591. vcpu->arch.switch_db_regs =
  3592. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3593. } else {
  3594. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3595. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3596. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3597. }
  3598. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3599. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3600. kvm_queue_exception(vcpu, DB_VECTOR);
  3601. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3602. kvm_queue_exception(vcpu, BP_VECTOR);
  3603. vcpu_put(vcpu);
  3604. return r;
  3605. }
  3606. /*
  3607. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3608. * we have asm/x86/processor.h
  3609. */
  3610. struct fxsave {
  3611. u16 cwd;
  3612. u16 swd;
  3613. u16 twd;
  3614. u16 fop;
  3615. u64 rip;
  3616. u64 rdp;
  3617. u32 mxcsr;
  3618. u32 mxcsr_mask;
  3619. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3620. #ifdef CONFIG_X86_64
  3621. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3622. #else
  3623. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3624. #endif
  3625. };
  3626. /*
  3627. * Translate a guest virtual address to a guest physical address.
  3628. */
  3629. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3630. struct kvm_translation *tr)
  3631. {
  3632. unsigned long vaddr = tr->linear_address;
  3633. gpa_t gpa;
  3634. vcpu_load(vcpu);
  3635. down_read(&vcpu->kvm->slots_lock);
  3636. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3637. up_read(&vcpu->kvm->slots_lock);
  3638. tr->physical_address = gpa;
  3639. tr->valid = gpa != UNMAPPED_GVA;
  3640. tr->writeable = 1;
  3641. tr->usermode = 0;
  3642. vcpu_put(vcpu);
  3643. return 0;
  3644. }
  3645. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3646. {
  3647. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3648. vcpu_load(vcpu);
  3649. memcpy(fpu->fpr, fxsave->st_space, 128);
  3650. fpu->fcw = fxsave->cwd;
  3651. fpu->fsw = fxsave->swd;
  3652. fpu->ftwx = fxsave->twd;
  3653. fpu->last_opcode = fxsave->fop;
  3654. fpu->last_ip = fxsave->rip;
  3655. fpu->last_dp = fxsave->rdp;
  3656. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3657. vcpu_put(vcpu);
  3658. return 0;
  3659. }
  3660. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3661. {
  3662. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3663. vcpu_load(vcpu);
  3664. memcpy(fxsave->st_space, fpu->fpr, 128);
  3665. fxsave->cwd = fpu->fcw;
  3666. fxsave->swd = fpu->fsw;
  3667. fxsave->twd = fpu->ftwx;
  3668. fxsave->fop = fpu->last_opcode;
  3669. fxsave->rip = fpu->last_ip;
  3670. fxsave->rdp = fpu->last_dp;
  3671. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3672. vcpu_put(vcpu);
  3673. return 0;
  3674. }
  3675. void fx_init(struct kvm_vcpu *vcpu)
  3676. {
  3677. unsigned after_mxcsr_mask;
  3678. /*
  3679. * Touch the fpu the first time in non atomic context as if
  3680. * this is the first fpu instruction the exception handler
  3681. * will fire before the instruction returns and it'll have to
  3682. * allocate ram with GFP_KERNEL.
  3683. */
  3684. if (!used_math())
  3685. kvm_fx_save(&vcpu->arch.host_fx_image);
  3686. /* Initialize guest FPU by resetting ours and saving into guest's */
  3687. preempt_disable();
  3688. kvm_fx_save(&vcpu->arch.host_fx_image);
  3689. kvm_fx_finit();
  3690. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3691. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3692. preempt_enable();
  3693. vcpu->arch.cr0 |= X86_CR0_ET;
  3694. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3695. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3696. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3697. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3698. }
  3699. EXPORT_SYMBOL_GPL(fx_init);
  3700. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3701. {
  3702. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3703. return;
  3704. vcpu->guest_fpu_loaded = 1;
  3705. kvm_fx_save(&vcpu->arch.host_fx_image);
  3706. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3707. }
  3708. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3709. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3710. {
  3711. if (!vcpu->guest_fpu_loaded)
  3712. return;
  3713. vcpu->guest_fpu_loaded = 0;
  3714. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3715. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3716. ++vcpu->stat.fpu_reload;
  3717. }
  3718. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3719. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3720. {
  3721. if (vcpu->arch.time_page) {
  3722. kvm_release_page_dirty(vcpu->arch.time_page);
  3723. vcpu->arch.time_page = NULL;
  3724. }
  3725. kvm_x86_ops->vcpu_free(vcpu);
  3726. }
  3727. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3728. unsigned int id)
  3729. {
  3730. return kvm_x86_ops->vcpu_create(kvm, id);
  3731. }
  3732. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3733. {
  3734. int r;
  3735. /* We do fxsave: this must be aligned. */
  3736. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3737. vcpu->arch.mtrr_state.have_fixed = 1;
  3738. vcpu_load(vcpu);
  3739. r = kvm_arch_vcpu_reset(vcpu);
  3740. if (r == 0)
  3741. r = kvm_mmu_setup(vcpu);
  3742. vcpu_put(vcpu);
  3743. if (r < 0)
  3744. goto free_vcpu;
  3745. return 0;
  3746. free_vcpu:
  3747. kvm_x86_ops->vcpu_free(vcpu);
  3748. return r;
  3749. }
  3750. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3751. {
  3752. vcpu_load(vcpu);
  3753. kvm_mmu_unload(vcpu);
  3754. vcpu_put(vcpu);
  3755. kvm_x86_ops->vcpu_free(vcpu);
  3756. }
  3757. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3758. {
  3759. vcpu->arch.nmi_pending = false;
  3760. vcpu->arch.nmi_injected = false;
  3761. vcpu->arch.switch_db_regs = 0;
  3762. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3763. vcpu->arch.dr6 = DR6_FIXED_1;
  3764. vcpu->arch.dr7 = DR7_FIXED_1;
  3765. return kvm_x86_ops->vcpu_reset(vcpu);
  3766. }
  3767. void kvm_arch_hardware_enable(void *garbage)
  3768. {
  3769. kvm_x86_ops->hardware_enable(garbage);
  3770. }
  3771. void kvm_arch_hardware_disable(void *garbage)
  3772. {
  3773. kvm_x86_ops->hardware_disable(garbage);
  3774. }
  3775. int kvm_arch_hardware_setup(void)
  3776. {
  3777. return kvm_x86_ops->hardware_setup();
  3778. }
  3779. void kvm_arch_hardware_unsetup(void)
  3780. {
  3781. kvm_x86_ops->hardware_unsetup();
  3782. }
  3783. void kvm_arch_check_processor_compat(void *rtn)
  3784. {
  3785. kvm_x86_ops->check_processor_compatibility(rtn);
  3786. }
  3787. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3788. {
  3789. struct page *page;
  3790. struct kvm *kvm;
  3791. int r;
  3792. BUG_ON(vcpu->kvm == NULL);
  3793. kvm = vcpu->kvm;
  3794. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3795. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3796. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3797. else
  3798. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3799. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3800. if (!page) {
  3801. r = -ENOMEM;
  3802. goto fail;
  3803. }
  3804. vcpu->arch.pio_data = page_address(page);
  3805. r = kvm_mmu_create(vcpu);
  3806. if (r < 0)
  3807. goto fail_free_pio_data;
  3808. if (irqchip_in_kernel(kvm)) {
  3809. r = kvm_create_lapic(vcpu);
  3810. if (r < 0)
  3811. goto fail_mmu_destroy;
  3812. }
  3813. return 0;
  3814. fail_mmu_destroy:
  3815. kvm_mmu_destroy(vcpu);
  3816. fail_free_pio_data:
  3817. free_page((unsigned long)vcpu->arch.pio_data);
  3818. fail:
  3819. return r;
  3820. }
  3821. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3822. {
  3823. kvm_free_lapic(vcpu);
  3824. down_read(&vcpu->kvm->slots_lock);
  3825. kvm_mmu_destroy(vcpu);
  3826. up_read(&vcpu->kvm->slots_lock);
  3827. free_page((unsigned long)vcpu->arch.pio_data);
  3828. }
  3829. struct kvm *kvm_arch_create_vm(void)
  3830. {
  3831. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3832. if (!kvm)
  3833. return ERR_PTR(-ENOMEM);
  3834. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3835. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3836. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3837. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3838. rdtscll(kvm->arch.vm_init_tsc);
  3839. return kvm;
  3840. }
  3841. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3842. {
  3843. vcpu_load(vcpu);
  3844. kvm_mmu_unload(vcpu);
  3845. vcpu_put(vcpu);
  3846. }
  3847. static void kvm_free_vcpus(struct kvm *kvm)
  3848. {
  3849. unsigned int i;
  3850. /*
  3851. * Unpin any mmu pages first.
  3852. */
  3853. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3854. if (kvm->vcpus[i])
  3855. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3856. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3857. if (kvm->vcpus[i]) {
  3858. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3859. kvm->vcpus[i] = NULL;
  3860. }
  3861. }
  3862. }
  3863. void kvm_arch_sync_events(struct kvm *kvm)
  3864. {
  3865. kvm_free_all_assigned_devices(kvm);
  3866. }
  3867. void kvm_arch_destroy_vm(struct kvm *kvm)
  3868. {
  3869. kvm_iommu_unmap_guest(kvm);
  3870. kvm_free_pit(kvm);
  3871. kfree(kvm->arch.vpic);
  3872. kfree(kvm->arch.vioapic);
  3873. kvm_free_vcpus(kvm);
  3874. kvm_free_physmem(kvm);
  3875. if (kvm->arch.apic_access_page)
  3876. put_page(kvm->arch.apic_access_page);
  3877. if (kvm->arch.ept_identity_pagetable)
  3878. put_page(kvm->arch.ept_identity_pagetable);
  3879. kfree(kvm);
  3880. }
  3881. int kvm_arch_set_memory_region(struct kvm *kvm,
  3882. struct kvm_userspace_memory_region *mem,
  3883. struct kvm_memory_slot old,
  3884. int user_alloc)
  3885. {
  3886. int npages = mem->memory_size >> PAGE_SHIFT;
  3887. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3888. /*To keep backward compatibility with older userspace,
  3889. *x86 needs to hanlde !user_alloc case.
  3890. */
  3891. if (!user_alloc) {
  3892. if (npages && !old.rmap) {
  3893. unsigned long userspace_addr;
  3894. down_write(&current->mm->mmap_sem);
  3895. userspace_addr = do_mmap(NULL, 0,
  3896. npages * PAGE_SIZE,
  3897. PROT_READ | PROT_WRITE,
  3898. MAP_PRIVATE | MAP_ANONYMOUS,
  3899. 0);
  3900. up_write(&current->mm->mmap_sem);
  3901. if (IS_ERR((void *)userspace_addr))
  3902. return PTR_ERR((void *)userspace_addr);
  3903. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3904. spin_lock(&kvm->mmu_lock);
  3905. memslot->userspace_addr = userspace_addr;
  3906. spin_unlock(&kvm->mmu_lock);
  3907. } else {
  3908. if (!old.user_alloc && old.rmap) {
  3909. int ret;
  3910. down_write(&current->mm->mmap_sem);
  3911. ret = do_munmap(current->mm, old.userspace_addr,
  3912. old.npages * PAGE_SIZE);
  3913. up_write(&current->mm->mmap_sem);
  3914. if (ret < 0)
  3915. printk(KERN_WARNING
  3916. "kvm_vm_ioctl_set_memory_region: "
  3917. "failed to munmap memory\n");
  3918. }
  3919. }
  3920. }
  3921. spin_lock(&kvm->mmu_lock);
  3922. if (!kvm->arch.n_requested_mmu_pages) {
  3923. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3924. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3925. }
  3926. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3927. spin_unlock(&kvm->mmu_lock);
  3928. kvm_flush_remote_tlbs(kvm);
  3929. return 0;
  3930. }
  3931. void kvm_arch_flush_shadow(struct kvm *kvm)
  3932. {
  3933. kvm_mmu_zap_all(kvm);
  3934. kvm_reload_remote_mmus(kvm);
  3935. }
  3936. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3937. {
  3938. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3939. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3940. || vcpu->arch.nmi_pending;
  3941. }
  3942. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3943. {
  3944. int me;
  3945. int cpu = vcpu->cpu;
  3946. if (waitqueue_active(&vcpu->wq)) {
  3947. wake_up_interruptible(&vcpu->wq);
  3948. ++vcpu->stat.halt_wakeup;
  3949. }
  3950. me = get_cpu();
  3951. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  3952. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  3953. smp_send_reschedule(cpu);
  3954. put_cpu();
  3955. }
  3956. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  3957. {
  3958. return kvm_x86_ops->interrupt_allowed(vcpu);
  3959. }