ialloc.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. /*
  2. * ialloc.c
  3. *
  4. * PURPOSE
  5. * Inode allocation handling routines for the OSTA-UDF(tm) filesystem.
  6. *
  7. * COPYRIGHT
  8. * This file is distributed under the terms of the GNU General Public
  9. * License (GPL). Copies of the GPL can be obtained from:
  10. * ftp://prep.ai.mit.edu/pub/gnu/GPL
  11. * Each contributing author retains all rights to their own work.
  12. *
  13. * (C) 1998-2001 Ben Fennema
  14. *
  15. * HISTORY
  16. *
  17. * 02/24/99 blf Created.
  18. *
  19. */
  20. #include "udfdecl.h"
  21. #include <linux/fs.h>
  22. #include <linux/quotaops.h>
  23. #include <linux/sched.h>
  24. #include <linux/slab.h>
  25. #include "udf_i.h"
  26. #include "udf_sb.h"
  27. void udf_free_inode(struct inode *inode)
  28. {
  29. struct super_block *sb = inode->i_sb;
  30. struct udf_sb_info *sbi = UDF_SB(sb);
  31. /*
  32. * Note: we must free any quota before locking the superblock,
  33. * as writing the quota to disk may need the lock as well.
  34. */
  35. DQUOT_FREE_INODE(inode);
  36. DQUOT_DROP(inode);
  37. clear_inode(inode);
  38. mutex_lock(&sbi->s_alloc_mutex);
  39. if (sbi->s_lvid_bh) {
  40. struct logicalVolIntegrityDescImpUse *lvidiu =
  41. udf_sb_lvidiu(sbi);
  42. if (S_ISDIR(inode->i_mode))
  43. lvidiu->numDirs =
  44. cpu_to_le32(le32_to_cpu(lvidiu->numDirs) - 1);
  45. else
  46. lvidiu->numFiles =
  47. cpu_to_le32(le32_to_cpu(lvidiu->numFiles) - 1);
  48. mark_buffer_dirty(sbi->s_lvid_bh);
  49. }
  50. mutex_unlock(&sbi->s_alloc_mutex);
  51. udf_free_blocks(sb, NULL, UDF_I(inode)->i_location, 0, 1);
  52. }
  53. struct inode *udf_new_inode(struct inode *dir, int mode, int *err)
  54. {
  55. struct super_block *sb = dir->i_sb;
  56. struct udf_sb_info *sbi = UDF_SB(sb);
  57. struct inode *inode;
  58. int block;
  59. uint32_t start = UDF_I(dir)->i_location.logicalBlockNum;
  60. struct udf_inode_info *iinfo;
  61. struct udf_inode_info *dinfo = UDF_I(dir);
  62. inode = new_inode(sb);
  63. if (!inode) {
  64. *err = -ENOMEM;
  65. return NULL;
  66. }
  67. *err = -ENOSPC;
  68. iinfo = UDF_I(inode);
  69. iinfo->i_unique = 0;
  70. iinfo->i_lenExtents = 0;
  71. iinfo->i_next_alloc_block = 0;
  72. iinfo->i_next_alloc_goal = 0;
  73. iinfo->i_strat4096 = 0;
  74. block = udf_new_block(dir->i_sb, NULL,
  75. dinfo->i_location.partitionReferenceNum,
  76. start, err);
  77. if (*err) {
  78. iput(inode);
  79. return NULL;
  80. }
  81. mutex_lock(&sbi->s_alloc_mutex);
  82. if (sbi->s_lvid_bh) {
  83. struct logicalVolIntegrityDesc *lvid =
  84. (struct logicalVolIntegrityDesc *)
  85. sbi->s_lvid_bh->b_data;
  86. struct logicalVolIntegrityDescImpUse *lvidiu =
  87. udf_sb_lvidiu(sbi);
  88. struct logicalVolHeaderDesc *lvhd;
  89. uint64_t uniqueID;
  90. lvhd = (struct logicalVolHeaderDesc *)
  91. (lvid->logicalVolContentsUse);
  92. if (S_ISDIR(mode))
  93. lvidiu->numDirs =
  94. cpu_to_le32(le32_to_cpu(lvidiu->numDirs) + 1);
  95. else
  96. lvidiu->numFiles =
  97. cpu_to_le32(le32_to_cpu(lvidiu->numFiles) + 1);
  98. iinfo->i_unique = uniqueID = le64_to_cpu(lvhd->uniqueID);
  99. if (!(++uniqueID & 0x00000000FFFFFFFFUL))
  100. uniqueID += 16;
  101. lvhd->uniqueID = cpu_to_le64(uniqueID);
  102. mark_buffer_dirty(sbi->s_lvid_bh);
  103. }
  104. inode->i_mode = mode;
  105. inode->i_uid = current->fsuid;
  106. if (dir->i_mode & S_ISGID) {
  107. inode->i_gid = dir->i_gid;
  108. if (S_ISDIR(mode))
  109. mode |= S_ISGID;
  110. } else {
  111. inode->i_gid = current->fsgid;
  112. }
  113. iinfo->i_location.logicalBlockNum = block;
  114. iinfo->i_location.partitionReferenceNum =
  115. dinfo->i_location.partitionReferenceNum;
  116. inode->i_ino = udf_get_lb_pblock(sb, iinfo->i_location, 0);
  117. inode->i_blocks = 0;
  118. iinfo->i_lenEAttr = 0;
  119. iinfo->i_lenAlloc = 0;
  120. iinfo->i_use = 0;
  121. if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_EXTENDED_FE)) {
  122. iinfo->i_efe = 1;
  123. if (UDF_VERS_USE_EXTENDED_FE > sbi->s_udfrev)
  124. sbi->s_udfrev = UDF_VERS_USE_EXTENDED_FE;
  125. iinfo->i_ext.i_data = kzalloc(inode->i_sb->s_blocksize -
  126. sizeof(struct extendedFileEntry),
  127. GFP_KERNEL);
  128. } else {
  129. iinfo->i_efe = 0;
  130. iinfo->i_ext.i_data = kzalloc(inode->i_sb->s_blocksize -
  131. sizeof(struct fileEntry),
  132. GFP_KERNEL);
  133. }
  134. if (!iinfo->i_ext.i_data) {
  135. iput(inode);
  136. *err = -ENOMEM;
  137. mutex_unlock(&sbi->s_alloc_mutex);
  138. return NULL;
  139. }
  140. if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_AD_IN_ICB))
  141. iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
  142. else if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
  143. iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
  144. else
  145. iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
  146. inode->i_mtime = inode->i_atime = inode->i_ctime =
  147. iinfo->i_crtime = current_fs_time(inode->i_sb);
  148. insert_inode_hash(inode);
  149. mark_inode_dirty(inode);
  150. mutex_unlock(&sbi->s_alloc_mutex);
  151. if (DQUOT_ALLOC_INODE(inode)) {
  152. DQUOT_DROP(inode);
  153. inode->i_flags |= S_NOQUOTA;
  154. inode->i_nlink = 0;
  155. iput(inode);
  156. *err = -EDQUOT;
  157. return NULL;
  158. }
  159. *err = 0;
  160. return inode;
  161. }