cfq-iosched.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "blk-cgroup.h"
  19. static struct blkio_policy_type blkio_policy_cfq;
  20. /*
  21. * tunables
  22. */
  23. /* max queue in one round of service */
  24. static const int cfq_quantum = 8;
  25. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26. /* maximum backwards seek, in KiB */
  27. static const int cfq_back_max = 16 * 1024;
  28. /* penalty of a backwards seek */
  29. static const int cfq_back_penalty = 2;
  30. static const int cfq_slice_sync = HZ / 10;
  31. static int cfq_slice_async = HZ / 25;
  32. static const int cfq_slice_async_rq = 2;
  33. static int cfq_slice_idle = HZ / 125;
  34. static int cfq_group_idle = HZ / 125;
  35. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36. static const int cfq_hist_divisor = 4;
  37. /*
  38. * offset from end of service tree
  39. */
  40. #define CFQ_IDLE_DELAY (HZ / 5)
  41. /*
  42. * below this threshold, we consider thinktime immediate
  43. */
  44. #define CFQ_MIN_TT (2)
  45. #define CFQ_SLICE_SCALE (5)
  46. #define CFQ_HW_QUEUE_MIN (5)
  47. #define CFQ_SERVICE_SHIFT 12
  48. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  49. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  50. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  51. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  52. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  55. static struct kmem_cache *cfq_pool;
  56. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  57. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  58. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  59. #define sample_valid(samples) ((samples) > 80)
  60. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  61. struct cfq_ttime {
  62. unsigned long last_end_request;
  63. unsigned long ttime_total;
  64. unsigned long ttime_samples;
  65. unsigned long ttime_mean;
  66. };
  67. /*
  68. * Most of our rbtree usage is for sorting with min extraction, so
  69. * if we cache the leftmost node we don't have to walk down the tree
  70. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  71. * move this into the elevator for the rq sorting as well.
  72. */
  73. struct cfq_rb_root {
  74. struct rb_root rb;
  75. struct rb_node *left;
  76. unsigned count;
  77. unsigned total_weight;
  78. u64 min_vdisktime;
  79. struct cfq_ttime ttime;
  80. };
  81. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  82. .ttime = {.last_end_request = jiffies,},}
  83. /*
  84. * Per process-grouping structure
  85. */
  86. struct cfq_queue {
  87. /* reference count */
  88. int ref;
  89. /* various state flags, see below */
  90. unsigned int flags;
  91. /* parent cfq_data */
  92. struct cfq_data *cfqd;
  93. /* service_tree member */
  94. struct rb_node rb_node;
  95. /* service_tree key */
  96. unsigned long rb_key;
  97. /* prio tree member */
  98. struct rb_node p_node;
  99. /* prio tree root we belong to, if any */
  100. struct rb_root *p_root;
  101. /* sorted list of pending requests */
  102. struct rb_root sort_list;
  103. /* if fifo isn't expired, next request to serve */
  104. struct request *next_rq;
  105. /* requests queued in sort_list */
  106. int queued[2];
  107. /* currently allocated requests */
  108. int allocated[2];
  109. /* fifo list of requests in sort_list */
  110. struct list_head fifo;
  111. /* time when queue got scheduled in to dispatch first request. */
  112. unsigned long dispatch_start;
  113. unsigned int allocated_slice;
  114. unsigned int slice_dispatch;
  115. /* time when first request from queue completed and slice started. */
  116. unsigned long slice_start;
  117. unsigned long slice_end;
  118. long slice_resid;
  119. /* pending priority requests */
  120. int prio_pending;
  121. /* number of requests that are on the dispatch list or inside driver */
  122. int dispatched;
  123. /* io prio of this group */
  124. unsigned short ioprio, org_ioprio;
  125. unsigned short ioprio_class;
  126. pid_t pid;
  127. u32 seek_history;
  128. sector_t last_request_pos;
  129. struct cfq_rb_root *service_tree;
  130. struct cfq_queue *new_cfqq;
  131. struct cfq_group *cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. CFQ_PRIO_NR,
  144. };
  145. /*
  146. * Second index in the service_trees.
  147. */
  148. enum wl_type_t {
  149. ASYNC_WORKLOAD = 0,
  150. SYNC_NOIDLE_WORKLOAD = 1,
  151. SYNC_WORKLOAD = 2
  152. };
  153. struct cfqg_stats {
  154. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  155. /* total bytes transferred */
  156. struct blkg_rwstat service_bytes;
  157. /* total IOs serviced, post merge */
  158. struct blkg_rwstat serviced;
  159. /* number of ios merged */
  160. struct blkg_rwstat merged;
  161. /* total time spent on device in ns, may not be accurate w/ queueing */
  162. struct blkg_rwstat service_time;
  163. /* total time spent waiting in scheduler queue in ns */
  164. struct blkg_rwstat wait_time;
  165. /* number of IOs queued up */
  166. struct blkg_rwstat queued;
  167. /* total sectors transferred */
  168. struct blkg_stat sectors;
  169. /* total disk time and nr sectors dispatched by this group */
  170. struct blkg_stat time;
  171. #ifdef CONFIG_DEBUG_BLK_CGROUP
  172. /* time not charged to this cgroup */
  173. struct blkg_stat unaccounted_time;
  174. /* sum of number of ios queued across all samples */
  175. struct blkg_stat avg_queue_size_sum;
  176. /* count of samples taken for average */
  177. struct blkg_stat avg_queue_size_samples;
  178. /* how many times this group has been removed from service tree */
  179. struct blkg_stat dequeue;
  180. /* total time spent waiting for it to be assigned a timeslice. */
  181. struct blkg_stat group_wait_time;
  182. /* time spent idling for this blkio_group */
  183. struct blkg_stat idle_time;
  184. /* total time with empty current active q with other requests queued */
  185. struct blkg_stat empty_time;
  186. /* fields after this shouldn't be cleared on stat reset */
  187. uint64_t start_group_wait_time;
  188. uint64_t start_idle_time;
  189. uint64_t start_empty_time;
  190. uint16_t flags;
  191. #endif /* CONFIG_DEBUG_BLK_CGROUP */
  192. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  193. };
  194. /* This is per cgroup per device grouping structure */
  195. struct cfq_group {
  196. /* group service_tree member */
  197. struct rb_node rb_node;
  198. /* group service_tree key */
  199. u64 vdisktime;
  200. unsigned int weight;
  201. unsigned int new_weight;
  202. bool needs_update;
  203. /* number of cfqq currently on this group */
  204. int nr_cfqq;
  205. /*
  206. * Per group busy queues average. Useful for workload slice calc. We
  207. * create the array for each prio class but at run time it is used
  208. * only for RT and BE class and slot for IDLE class remains unused.
  209. * This is primarily done to avoid confusion and a gcc warning.
  210. */
  211. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  212. /*
  213. * rr lists of queues with requests. We maintain service trees for
  214. * RT and BE classes. These trees are subdivided in subclasses
  215. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  216. * class there is no subclassification and all the cfq queues go on
  217. * a single tree service_tree_idle.
  218. * Counts are embedded in the cfq_rb_root
  219. */
  220. struct cfq_rb_root service_trees[2][3];
  221. struct cfq_rb_root service_tree_idle;
  222. unsigned long saved_workload_slice;
  223. enum wl_type_t saved_workload;
  224. enum wl_prio_t saved_serving_prio;
  225. /* number of requests that are on the dispatch list or inside driver */
  226. int dispatched;
  227. struct cfq_ttime ttime;
  228. struct cfqg_stats stats;
  229. };
  230. struct cfq_io_cq {
  231. struct io_cq icq; /* must be the first member */
  232. struct cfq_queue *cfqq[2];
  233. struct cfq_ttime ttime;
  234. int ioprio; /* the current ioprio */
  235. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  236. uint64_t blkcg_id; /* the current blkcg ID */
  237. #endif
  238. };
  239. /*
  240. * Per block device queue structure
  241. */
  242. struct cfq_data {
  243. struct request_queue *queue;
  244. /* Root service tree for cfq_groups */
  245. struct cfq_rb_root grp_service_tree;
  246. struct cfq_group *root_group;
  247. /*
  248. * The priority currently being served
  249. */
  250. enum wl_prio_t serving_prio;
  251. enum wl_type_t serving_type;
  252. unsigned long workload_expires;
  253. struct cfq_group *serving_group;
  254. /*
  255. * Each priority tree is sorted by next_request position. These
  256. * trees are used when determining if two or more queues are
  257. * interleaving requests (see cfq_close_cooperator).
  258. */
  259. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  260. unsigned int busy_queues;
  261. unsigned int busy_sync_queues;
  262. int rq_in_driver;
  263. int rq_in_flight[2];
  264. /*
  265. * queue-depth detection
  266. */
  267. int rq_queued;
  268. int hw_tag;
  269. /*
  270. * hw_tag can be
  271. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  272. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  273. * 0 => no NCQ
  274. */
  275. int hw_tag_est_depth;
  276. unsigned int hw_tag_samples;
  277. /*
  278. * idle window management
  279. */
  280. struct timer_list idle_slice_timer;
  281. struct work_struct unplug_work;
  282. struct cfq_queue *active_queue;
  283. struct cfq_io_cq *active_cic;
  284. /*
  285. * async queue for each priority case
  286. */
  287. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  288. struct cfq_queue *async_idle_cfqq;
  289. sector_t last_position;
  290. /*
  291. * tunables, see top of file
  292. */
  293. unsigned int cfq_quantum;
  294. unsigned int cfq_fifo_expire[2];
  295. unsigned int cfq_back_penalty;
  296. unsigned int cfq_back_max;
  297. unsigned int cfq_slice[2];
  298. unsigned int cfq_slice_async_rq;
  299. unsigned int cfq_slice_idle;
  300. unsigned int cfq_group_idle;
  301. unsigned int cfq_latency;
  302. /*
  303. * Fallback dummy cfqq for extreme OOM conditions
  304. */
  305. struct cfq_queue oom_cfqq;
  306. unsigned long last_delayed_sync;
  307. };
  308. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  309. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  310. enum wl_prio_t prio,
  311. enum wl_type_t type)
  312. {
  313. if (!cfqg)
  314. return NULL;
  315. if (prio == IDLE_WORKLOAD)
  316. return &cfqg->service_tree_idle;
  317. return &cfqg->service_trees[prio][type];
  318. }
  319. enum cfqq_state_flags {
  320. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  321. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  322. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  323. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  324. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  325. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  326. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  327. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  328. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  329. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  330. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  331. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  332. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  333. };
  334. #define CFQ_CFQQ_FNS(name) \
  335. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  336. { \
  337. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  338. } \
  339. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  340. { \
  341. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  342. } \
  343. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  344. { \
  345. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  346. }
  347. CFQ_CFQQ_FNS(on_rr);
  348. CFQ_CFQQ_FNS(wait_request);
  349. CFQ_CFQQ_FNS(must_dispatch);
  350. CFQ_CFQQ_FNS(must_alloc_slice);
  351. CFQ_CFQQ_FNS(fifo_expire);
  352. CFQ_CFQQ_FNS(idle_window);
  353. CFQ_CFQQ_FNS(prio_changed);
  354. CFQ_CFQQ_FNS(slice_new);
  355. CFQ_CFQQ_FNS(sync);
  356. CFQ_CFQQ_FNS(coop);
  357. CFQ_CFQQ_FNS(split_coop);
  358. CFQ_CFQQ_FNS(deep);
  359. CFQ_CFQQ_FNS(wait_busy);
  360. #undef CFQ_CFQQ_FNS
  361. #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
  362. /* cfqg stats flags */
  363. enum cfqg_stats_flags {
  364. CFQG_stats_waiting = 0,
  365. CFQG_stats_idling,
  366. CFQG_stats_empty,
  367. };
  368. #define CFQG_FLAG_FNS(name) \
  369. static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
  370. { \
  371. stats->flags |= (1 << CFQG_stats_##name); \
  372. } \
  373. static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
  374. { \
  375. stats->flags &= ~(1 << CFQG_stats_##name); \
  376. } \
  377. static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
  378. { \
  379. return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
  380. } \
  381. CFQG_FLAG_FNS(waiting)
  382. CFQG_FLAG_FNS(idling)
  383. CFQG_FLAG_FNS(empty)
  384. #undef CFQG_FLAG_FNS
  385. /* This should be called with the queue_lock held. */
  386. static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
  387. {
  388. unsigned long long now;
  389. if (!cfqg_stats_waiting(stats))
  390. return;
  391. now = sched_clock();
  392. if (time_after64(now, stats->start_group_wait_time))
  393. blkg_stat_add(&stats->group_wait_time,
  394. now - stats->start_group_wait_time);
  395. cfqg_stats_clear_waiting(stats);
  396. }
  397. /* This should be called with the queue_lock held. */
  398. static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
  399. struct cfq_group *curr_cfqg)
  400. {
  401. struct cfqg_stats *stats = &cfqg->stats;
  402. if (cfqg_stats_waiting(stats))
  403. return;
  404. if (cfqg == curr_cfqg)
  405. return;
  406. stats->start_group_wait_time = sched_clock();
  407. cfqg_stats_mark_waiting(stats);
  408. }
  409. /* This should be called with the queue_lock held. */
  410. static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
  411. {
  412. unsigned long long now;
  413. if (!cfqg_stats_empty(stats))
  414. return;
  415. now = sched_clock();
  416. if (time_after64(now, stats->start_empty_time))
  417. blkg_stat_add(&stats->empty_time,
  418. now - stats->start_empty_time);
  419. cfqg_stats_clear_empty(stats);
  420. }
  421. static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
  422. {
  423. blkg_stat_add(&cfqg->stats.dequeue, 1);
  424. }
  425. static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
  426. {
  427. struct cfqg_stats *stats = &cfqg->stats;
  428. if (blkg_rwstat_sum(&stats->queued))
  429. return;
  430. /*
  431. * group is already marked empty. This can happen if cfqq got new
  432. * request in parent group and moved to this group while being added
  433. * to service tree. Just ignore the event and move on.
  434. */
  435. if (cfqg_stats_empty(stats))
  436. return;
  437. stats->start_empty_time = sched_clock();
  438. cfqg_stats_mark_empty(stats);
  439. }
  440. static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
  441. {
  442. struct cfqg_stats *stats = &cfqg->stats;
  443. if (cfqg_stats_idling(stats)) {
  444. unsigned long long now = sched_clock();
  445. if (time_after64(now, stats->start_idle_time))
  446. blkg_stat_add(&stats->idle_time,
  447. now - stats->start_idle_time);
  448. cfqg_stats_clear_idling(stats);
  449. }
  450. }
  451. static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
  452. {
  453. struct cfqg_stats *stats = &cfqg->stats;
  454. BUG_ON(cfqg_stats_idling(stats));
  455. stats->start_idle_time = sched_clock();
  456. cfqg_stats_mark_idling(stats);
  457. }
  458. static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
  459. {
  460. struct cfqg_stats *stats = &cfqg->stats;
  461. blkg_stat_add(&stats->avg_queue_size_sum,
  462. blkg_rwstat_sum(&stats->queued));
  463. blkg_stat_add(&stats->avg_queue_size_samples, 1);
  464. cfqg_stats_update_group_wait_time(stats);
  465. }
  466. #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
  467. static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
  468. struct cfq_group *curr_cfqg) { }
  469. static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
  470. static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
  471. static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
  472. static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
  473. static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
  474. static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
  475. #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
  476. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  477. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
  478. {
  479. return blkg_to_pdata(blkg, &blkio_policy_cfq);
  480. }
  481. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
  482. {
  483. return pdata_to_blkg(cfqg);
  484. }
  485. static inline void cfqg_get(struct cfq_group *cfqg)
  486. {
  487. return blkg_get(cfqg_to_blkg(cfqg));
  488. }
  489. static inline void cfqg_put(struct cfq_group *cfqg)
  490. {
  491. return blkg_put(cfqg_to_blkg(cfqg));
  492. }
  493. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  494. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  495. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  496. blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
  497. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  498. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  499. blkg_path(cfqg_to_blkg((cfqg))), ##args) \
  500. static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
  501. struct cfq_group *curr_cfqg, int rw)
  502. {
  503. blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
  504. cfqg_stats_end_empty_time(&cfqg->stats);
  505. cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
  506. }
  507. static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
  508. unsigned long time, unsigned long unaccounted_time)
  509. {
  510. blkg_stat_add(&cfqg->stats.time, time);
  511. #ifdef CONFIG_DEBUG_BLK_CGROUP
  512. blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
  513. #endif
  514. }
  515. static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
  516. {
  517. blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
  518. }
  519. static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
  520. {
  521. blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
  522. }
  523. static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
  524. uint64_t bytes, int rw)
  525. {
  526. blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
  527. blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
  528. blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
  529. }
  530. static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
  531. uint64_t start_time, uint64_t io_start_time, int rw)
  532. {
  533. struct cfqg_stats *stats = &cfqg->stats;
  534. unsigned long long now = sched_clock();
  535. if (time_after64(now, io_start_time))
  536. blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
  537. if (time_after64(io_start_time, start_time))
  538. blkg_rwstat_add(&stats->wait_time, rw,
  539. io_start_time - start_time);
  540. }
  541. static void cfqg_stats_reset(struct blkio_group *blkg)
  542. {
  543. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  544. struct cfqg_stats *stats = &cfqg->stats;
  545. /* queued stats shouldn't be cleared */
  546. blkg_rwstat_reset(&stats->service_bytes);
  547. blkg_rwstat_reset(&stats->serviced);
  548. blkg_rwstat_reset(&stats->merged);
  549. blkg_rwstat_reset(&stats->service_time);
  550. blkg_rwstat_reset(&stats->wait_time);
  551. blkg_stat_reset(&stats->time);
  552. #ifdef CONFIG_DEBUG_BLK_CGROUP
  553. blkg_stat_reset(&stats->unaccounted_time);
  554. blkg_stat_reset(&stats->avg_queue_size_sum);
  555. blkg_stat_reset(&stats->avg_queue_size_samples);
  556. blkg_stat_reset(&stats->dequeue);
  557. blkg_stat_reset(&stats->group_wait_time);
  558. blkg_stat_reset(&stats->idle_time);
  559. blkg_stat_reset(&stats->empty_time);
  560. #endif
  561. }
  562. #else /* CONFIG_CFQ_GROUP_IOSCHED */
  563. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
  564. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
  565. static inline void cfqg_get(struct cfq_group *cfqg) { }
  566. static inline void cfqg_put(struct cfq_group *cfqg) { }
  567. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  568. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  569. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  570. static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
  571. struct cfq_group *curr_cfqg, int rw) { }
  572. static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
  573. unsigned long time, unsigned long unaccounted_time) { }
  574. static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
  575. static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
  576. static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
  577. uint64_t bytes, int rw) { }
  578. static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
  579. uint64_t start_time, uint64_t io_start_time, int rw) { }
  580. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  581. #define cfq_log(cfqd, fmt, args...) \
  582. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  583. /* Traverses through cfq group service trees */
  584. #define for_each_cfqg_st(cfqg, i, j, st) \
  585. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  586. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  587. : &cfqg->service_tree_idle; \
  588. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  589. (i == IDLE_WORKLOAD && j == 0); \
  590. j++, st = i < IDLE_WORKLOAD ? \
  591. &cfqg->service_trees[i][j]: NULL) \
  592. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  593. struct cfq_ttime *ttime, bool group_idle)
  594. {
  595. unsigned long slice;
  596. if (!sample_valid(ttime->ttime_samples))
  597. return false;
  598. if (group_idle)
  599. slice = cfqd->cfq_group_idle;
  600. else
  601. slice = cfqd->cfq_slice_idle;
  602. return ttime->ttime_mean > slice;
  603. }
  604. static inline bool iops_mode(struct cfq_data *cfqd)
  605. {
  606. /*
  607. * If we are not idling on queues and it is a NCQ drive, parallel
  608. * execution of requests is on and measuring time is not possible
  609. * in most of the cases until and unless we drive shallower queue
  610. * depths and that becomes a performance bottleneck. In such cases
  611. * switch to start providing fairness in terms of number of IOs.
  612. */
  613. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  614. return true;
  615. else
  616. return false;
  617. }
  618. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  619. {
  620. if (cfq_class_idle(cfqq))
  621. return IDLE_WORKLOAD;
  622. if (cfq_class_rt(cfqq))
  623. return RT_WORKLOAD;
  624. return BE_WORKLOAD;
  625. }
  626. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  627. {
  628. if (!cfq_cfqq_sync(cfqq))
  629. return ASYNC_WORKLOAD;
  630. if (!cfq_cfqq_idle_window(cfqq))
  631. return SYNC_NOIDLE_WORKLOAD;
  632. return SYNC_WORKLOAD;
  633. }
  634. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  635. struct cfq_data *cfqd,
  636. struct cfq_group *cfqg)
  637. {
  638. if (wl == IDLE_WORKLOAD)
  639. return cfqg->service_tree_idle.count;
  640. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  641. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  642. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  643. }
  644. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  645. struct cfq_group *cfqg)
  646. {
  647. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  648. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  649. }
  650. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  651. static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
  652. struct cfq_io_cq *cic, struct bio *bio,
  653. gfp_t gfp_mask);
  654. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  655. {
  656. /* cic->icq is the first member, %NULL will convert to %NULL */
  657. return container_of(icq, struct cfq_io_cq, icq);
  658. }
  659. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  660. struct io_context *ioc)
  661. {
  662. if (ioc)
  663. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  664. return NULL;
  665. }
  666. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  667. {
  668. return cic->cfqq[is_sync];
  669. }
  670. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  671. bool is_sync)
  672. {
  673. cic->cfqq[is_sync] = cfqq;
  674. }
  675. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  676. {
  677. return cic->icq.q->elevator->elevator_data;
  678. }
  679. /*
  680. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  681. * set (in which case it could also be direct WRITE).
  682. */
  683. static inline bool cfq_bio_sync(struct bio *bio)
  684. {
  685. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  686. }
  687. /*
  688. * scheduler run of queue, if there are requests pending and no one in the
  689. * driver that will restart queueing
  690. */
  691. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  692. {
  693. if (cfqd->busy_queues) {
  694. cfq_log(cfqd, "schedule dispatch");
  695. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  696. }
  697. }
  698. /*
  699. * Scale schedule slice based on io priority. Use the sync time slice only
  700. * if a queue is marked sync and has sync io queued. A sync queue with async
  701. * io only, should not get full sync slice length.
  702. */
  703. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  704. unsigned short prio)
  705. {
  706. const int base_slice = cfqd->cfq_slice[sync];
  707. WARN_ON(prio >= IOPRIO_BE_NR);
  708. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  709. }
  710. static inline int
  711. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  712. {
  713. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  714. }
  715. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  716. {
  717. u64 d = delta << CFQ_SERVICE_SHIFT;
  718. d = d * BLKIO_WEIGHT_DEFAULT;
  719. do_div(d, cfqg->weight);
  720. return d;
  721. }
  722. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  723. {
  724. s64 delta = (s64)(vdisktime - min_vdisktime);
  725. if (delta > 0)
  726. min_vdisktime = vdisktime;
  727. return min_vdisktime;
  728. }
  729. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  730. {
  731. s64 delta = (s64)(vdisktime - min_vdisktime);
  732. if (delta < 0)
  733. min_vdisktime = vdisktime;
  734. return min_vdisktime;
  735. }
  736. static void update_min_vdisktime(struct cfq_rb_root *st)
  737. {
  738. struct cfq_group *cfqg;
  739. if (st->left) {
  740. cfqg = rb_entry_cfqg(st->left);
  741. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  742. cfqg->vdisktime);
  743. }
  744. }
  745. /*
  746. * get averaged number of queues of RT/BE priority.
  747. * average is updated, with a formula that gives more weight to higher numbers,
  748. * to quickly follows sudden increases and decrease slowly
  749. */
  750. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  751. struct cfq_group *cfqg, bool rt)
  752. {
  753. unsigned min_q, max_q;
  754. unsigned mult = cfq_hist_divisor - 1;
  755. unsigned round = cfq_hist_divisor / 2;
  756. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  757. min_q = min(cfqg->busy_queues_avg[rt], busy);
  758. max_q = max(cfqg->busy_queues_avg[rt], busy);
  759. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  760. cfq_hist_divisor;
  761. return cfqg->busy_queues_avg[rt];
  762. }
  763. static inline unsigned
  764. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  765. {
  766. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  767. return cfq_target_latency * cfqg->weight / st->total_weight;
  768. }
  769. static inline unsigned
  770. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  771. {
  772. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  773. if (cfqd->cfq_latency) {
  774. /*
  775. * interested queues (we consider only the ones with the same
  776. * priority class in the cfq group)
  777. */
  778. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  779. cfq_class_rt(cfqq));
  780. unsigned sync_slice = cfqd->cfq_slice[1];
  781. unsigned expect_latency = sync_slice * iq;
  782. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  783. if (expect_latency > group_slice) {
  784. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  785. /* scale low_slice according to IO priority
  786. * and sync vs async */
  787. unsigned low_slice =
  788. min(slice, base_low_slice * slice / sync_slice);
  789. /* the adapted slice value is scaled to fit all iqs
  790. * into the target latency */
  791. slice = max(slice * group_slice / expect_latency,
  792. low_slice);
  793. }
  794. }
  795. return slice;
  796. }
  797. static inline void
  798. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  799. {
  800. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  801. cfqq->slice_start = jiffies;
  802. cfqq->slice_end = jiffies + slice;
  803. cfqq->allocated_slice = slice;
  804. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  805. }
  806. /*
  807. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  808. * isn't valid until the first request from the dispatch is activated
  809. * and the slice time set.
  810. */
  811. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  812. {
  813. if (cfq_cfqq_slice_new(cfqq))
  814. return false;
  815. if (time_before(jiffies, cfqq->slice_end))
  816. return false;
  817. return true;
  818. }
  819. /*
  820. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  821. * We choose the request that is closest to the head right now. Distance
  822. * behind the head is penalized and only allowed to a certain extent.
  823. */
  824. static struct request *
  825. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  826. {
  827. sector_t s1, s2, d1 = 0, d2 = 0;
  828. unsigned long back_max;
  829. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  830. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  831. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  832. if (rq1 == NULL || rq1 == rq2)
  833. return rq2;
  834. if (rq2 == NULL)
  835. return rq1;
  836. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  837. return rq_is_sync(rq1) ? rq1 : rq2;
  838. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  839. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  840. s1 = blk_rq_pos(rq1);
  841. s2 = blk_rq_pos(rq2);
  842. /*
  843. * by definition, 1KiB is 2 sectors
  844. */
  845. back_max = cfqd->cfq_back_max * 2;
  846. /*
  847. * Strict one way elevator _except_ in the case where we allow
  848. * short backward seeks which are biased as twice the cost of a
  849. * similar forward seek.
  850. */
  851. if (s1 >= last)
  852. d1 = s1 - last;
  853. else if (s1 + back_max >= last)
  854. d1 = (last - s1) * cfqd->cfq_back_penalty;
  855. else
  856. wrap |= CFQ_RQ1_WRAP;
  857. if (s2 >= last)
  858. d2 = s2 - last;
  859. else if (s2 + back_max >= last)
  860. d2 = (last - s2) * cfqd->cfq_back_penalty;
  861. else
  862. wrap |= CFQ_RQ2_WRAP;
  863. /* Found required data */
  864. /*
  865. * By doing switch() on the bit mask "wrap" we avoid having to
  866. * check two variables for all permutations: --> faster!
  867. */
  868. switch (wrap) {
  869. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  870. if (d1 < d2)
  871. return rq1;
  872. else if (d2 < d1)
  873. return rq2;
  874. else {
  875. if (s1 >= s2)
  876. return rq1;
  877. else
  878. return rq2;
  879. }
  880. case CFQ_RQ2_WRAP:
  881. return rq1;
  882. case CFQ_RQ1_WRAP:
  883. return rq2;
  884. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  885. default:
  886. /*
  887. * Since both rqs are wrapped,
  888. * start with the one that's further behind head
  889. * (--> only *one* back seek required),
  890. * since back seek takes more time than forward.
  891. */
  892. if (s1 <= s2)
  893. return rq1;
  894. else
  895. return rq2;
  896. }
  897. }
  898. /*
  899. * The below is leftmost cache rbtree addon
  900. */
  901. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  902. {
  903. /* Service tree is empty */
  904. if (!root->count)
  905. return NULL;
  906. if (!root->left)
  907. root->left = rb_first(&root->rb);
  908. if (root->left)
  909. return rb_entry(root->left, struct cfq_queue, rb_node);
  910. return NULL;
  911. }
  912. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  913. {
  914. if (!root->left)
  915. root->left = rb_first(&root->rb);
  916. if (root->left)
  917. return rb_entry_cfqg(root->left);
  918. return NULL;
  919. }
  920. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  921. {
  922. rb_erase(n, root);
  923. RB_CLEAR_NODE(n);
  924. }
  925. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  926. {
  927. if (root->left == n)
  928. root->left = NULL;
  929. rb_erase_init(n, &root->rb);
  930. --root->count;
  931. }
  932. /*
  933. * would be nice to take fifo expire time into account as well
  934. */
  935. static struct request *
  936. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  937. struct request *last)
  938. {
  939. struct rb_node *rbnext = rb_next(&last->rb_node);
  940. struct rb_node *rbprev = rb_prev(&last->rb_node);
  941. struct request *next = NULL, *prev = NULL;
  942. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  943. if (rbprev)
  944. prev = rb_entry_rq(rbprev);
  945. if (rbnext)
  946. next = rb_entry_rq(rbnext);
  947. else {
  948. rbnext = rb_first(&cfqq->sort_list);
  949. if (rbnext && rbnext != &last->rb_node)
  950. next = rb_entry_rq(rbnext);
  951. }
  952. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  953. }
  954. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  955. struct cfq_queue *cfqq)
  956. {
  957. /*
  958. * just an approximation, should be ok.
  959. */
  960. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  961. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  962. }
  963. static inline s64
  964. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  965. {
  966. return cfqg->vdisktime - st->min_vdisktime;
  967. }
  968. static void
  969. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  970. {
  971. struct rb_node **node = &st->rb.rb_node;
  972. struct rb_node *parent = NULL;
  973. struct cfq_group *__cfqg;
  974. s64 key = cfqg_key(st, cfqg);
  975. int left = 1;
  976. while (*node != NULL) {
  977. parent = *node;
  978. __cfqg = rb_entry_cfqg(parent);
  979. if (key < cfqg_key(st, __cfqg))
  980. node = &parent->rb_left;
  981. else {
  982. node = &parent->rb_right;
  983. left = 0;
  984. }
  985. }
  986. if (left)
  987. st->left = &cfqg->rb_node;
  988. rb_link_node(&cfqg->rb_node, parent, node);
  989. rb_insert_color(&cfqg->rb_node, &st->rb);
  990. }
  991. static void
  992. cfq_update_group_weight(struct cfq_group *cfqg)
  993. {
  994. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  995. if (cfqg->needs_update) {
  996. cfqg->weight = cfqg->new_weight;
  997. cfqg->needs_update = false;
  998. }
  999. }
  1000. static void
  1001. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  1002. {
  1003. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  1004. cfq_update_group_weight(cfqg);
  1005. __cfq_group_service_tree_add(st, cfqg);
  1006. st->total_weight += cfqg->weight;
  1007. }
  1008. static void
  1009. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1010. {
  1011. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1012. struct cfq_group *__cfqg;
  1013. struct rb_node *n;
  1014. cfqg->nr_cfqq++;
  1015. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  1016. return;
  1017. /*
  1018. * Currently put the group at the end. Later implement something
  1019. * so that groups get lesser vtime based on their weights, so that
  1020. * if group does not loose all if it was not continuously backlogged.
  1021. */
  1022. n = rb_last(&st->rb);
  1023. if (n) {
  1024. __cfqg = rb_entry_cfqg(n);
  1025. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  1026. } else
  1027. cfqg->vdisktime = st->min_vdisktime;
  1028. cfq_group_service_tree_add(st, cfqg);
  1029. }
  1030. static void
  1031. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  1032. {
  1033. st->total_weight -= cfqg->weight;
  1034. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  1035. cfq_rb_erase(&cfqg->rb_node, st);
  1036. }
  1037. static void
  1038. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1039. {
  1040. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1041. BUG_ON(cfqg->nr_cfqq < 1);
  1042. cfqg->nr_cfqq--;
  1043. /* If there are other cfq queues under this group, don't delete it */
  1044. if (cfqg->nr_cfqq)
  1045. return;
  1046. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  1047. cfq_group_service_tree_del(st, cfqg);
  1048. cfqg->saved_workload_slice = 0;
  1049. cfqg_stats_update_dequeue(cfqg);
  1050. }
  1051. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  1052. unsigned int *unaccounted_time)
  1053. {
  1054. unsigned int slice_used;
  1055. /*
  1056. * Queue got expired before even a single request completed or
  1057. * got expired immediately after first request completion.
  1058. */
  1059. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  1060. /*
  1061. * Also charge the seek time incurred to the group, otherwise
  1062. * if there are mutiple queues in the group, each can dispatch
  1063. * a single request on seeky media and cause lots of seek time
  1064. * and group will never know it.
  1065. */
  1066. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  1067. 1);
  1068. } else {
  1069. slice_used = jiffies - cfqq->slice_start;
  1070. if (slice_used > cfqq->allocated_slice) {
  1071. *unaccounted_time = slice_used - cfqq->allocated_slice;
  1072. slice_used = cfqq->allocated_slice;
  1073. }
  1074. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  1075. *unaccounted_time += cfqq->slice_start -
  1076. cfqq->dispatch_start;
  1077. }
  1078. return slice_used;
  1079. }
  1080. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  1081. struct cfq_queue *cfqq)
  1082. {
  1083. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1084. unsigned int used_sl, charge, unaccounted_sl = 0;
  1085. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  1086. - cfqg->service_tree_idle.count;
  1087. BUG_ON(nr_sync < 0);
  1088. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  1089. if (iops_mode(cfqd))
  1090. charge = cfqq->slice_dispatch;
  1091. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  1092. charge = cfqq->allocated_slice;
  1093. /* Can't update vdisktime while group is on service tree */
  1094. cfq_group_service_tree_del(st, cfqg);
  1095. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  1096. /* If a new weight was requested, update now, off tree */
  1097. cfq_group_service_tree_add(st, cfqg);
  1098. /* This group is being expired. Save the context */
  1099. if (time_after(cfqd->workload_expires, jiffies)) {
  1100. cfqg->saved_workload_slice = cfqd->workload_expires
  1101. - jiffies;
  1102. cfqg->saved_workload = cfqd->serving_type;
  1103. cfqg->saved_serving_prio = cfqd->serving_prio;
  1104. } else
  1105. cfqg->saved_workload_slice = 0;
  1106. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  1107. st->min_vdisktime);
  1108. cfq_log_cfqq(cfqq->cfqd, cfqq,
  1109. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  1110. used_sl, cfqq->slice_dispatch, charge,
  1111. iops_mode(cfqd), cfqq->nr_sectors);
  1112. cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
  1113. cfqg_stats_set_start_empty_time(cfqg);
  1114. }
  1115. /**
  1116. * cfq_init_cfqg_base - initialize base part of a cfq_group
  1117. * @cfqg: cfq_group to initialize
  1118. *
  1119. * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
  1120. * is enabled or not.
  1121. */
  1122. static void cfq_init_cfqg_base(struct cfq_group *cfqg)
  1123. {
  1124. struct cfq_rb_root *st;
  1125. int i, j;
  1126. for_each_cfqg_st(cfqg, i, j, st)
  1127. *st = CFQ_RB_ROOT;
  1128. RB_CLEAR_NODE(&cfqg->rb_node);
  1129. cfqg->ttime.last_end_request = jiffies;
  1130. }
  1131. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1132. static void cfq_update_blkio_group_weight(struct blkio_group *blkg,
  1133. unsigned int weight)
  1134. {
  1135. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  1136. cfqg->new_weight = weight;
  1137. cfqg->needs_update = true;
  1138. }
  1139. static void cfq_init_blkio_group(struct blkio_group *blkg)
  1140. {
  1141. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  1142. cfq_init_cfqg_base(cfqg);
  1143. cfqg->weight = blkg->blkcg->weight;
  1144. }
  1145. /*
  1146. * Search for the cfq group current task belongs to. request_queue lock must
  1147. * be held.
  1148. */
  1149. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  1150. struct blkio_cgroup *blkcg)
  1151. {
  1152. struct request_queue *q = cfqd->queue;
  1153. struct cfq_group *cfqg = NULL;
  1154. /* avoid lookup for the common case where there's no blkio cgroup */
  1155. if (blkcg == &blkio_root_cgroup) {
  1156. cfqg = cfqd->root_group;
  1157. } else {
  1158. struct blkio_group *blkg;
  1159. blkg = blkg_lookup_create(blkcg, q, false);
  1160. if (!IS_ERR(blkg))
  1161. cfqg = blkg_to_cfqg(blkg);
  1162. }
  1163. return cfqg;
  1164. }
  1165. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  1166. {
  1167. /* Currently, all async queues are mapped to root group */
  1168. if (!cfq_cfqq_sync(cfqq))
  1169. cfqg = cfqq->cfqd->root_group;
  1170. cfqq->cfqg = cfqg;
  1171. /* cfqq reference on cfqg */
  1172. cfqg_get(cfqg);
  1173. }
  1174. static u64 blkg_prfill_weight_device(struct seq_file *sf,
  1175. struct blkg_policy_data *pd, int off)
  1176. {
  1177. if (!pd->conf.weight)
  1178. return 0;
  1179. return __blkg_prfill_u64(sf, pd, pd->conf.weight);
  1180. }
  1181. static int blkcg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
  1182. struct seq_file *sf)
  1183. {
  1184. blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp),
  1185. blkg_prfill_weight_device, BLKIO_POLICY_PROP, 0,
  1186. false);
  1187. return 0;
  1188. }
  1189. static int blkcg_print_weight(struct cgroup *cgrp, struct cftype *cft,
  1190. struct seq_file *sf)
  1191. {
  1192. seq_printf(sf, "%u\n", cgroup_to_blkio_cgroup(cgrp)->weight);
  1193. return 0;
  1194. }
  1195. static int blkcg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
  1196. const char *buf)
  1197. {
  1198. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
  1199. struct blkg_policy_data *pd;
  1200. struct blkg_conf_ctx ctx;
  1201. int ret;
  1202. ret = blkg_conf_prep(blkcg, buf, &ctx);
  1203. if (ret)
  1204. return ret;
  1205. ret = -EINVAL;
  1206. pd = ctx.blkg->pd[BLKIO_POLICY_PROP];
  1207. if (pd && (!ctx.v || (ctx.v >= BLKIO_WEIGHT_MIN &&
  1208. ctx.v <= BLKIO_WEIGHT_MAX))) {
  1209. pd->conf.weight = ctx.v;
  1210. cfq_update_blkio_group_weight(ctx.blkg, ctx.v ?: blkcg->weight);
  1211. ret = 0;
  1212. }
  1213. blkg_conf_finish(&ctx);
  1214. return ret;
  1215. }
  1216. static int blkcg_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1217. {
  1218. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
  1219. struct blkio_group *blkg;
  1220. struct hlist_node *n;
  1221. if (val < BLKIO_WEIGHT_MIN || val > BLKIO_WEIGHT_MAX)
  1222. return -EINVAL;
  1223. spin_lock_irq(&blkcg->lock);
  1224. blkcg->weight = (unsigned int)val;
  1225. hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
  1226. struct blkg_policy_data *pd = blkg->pd[BLKIO_POLICY_PROP];
  1227. if (pd && !pd->conf.weight)
  1228. cfq_update_blkio_group_weight(blkg, blkcg->weight);
  1229. }
  1230. spin_unlock_irq(&blkcg->lock);
  1231. return 0;
  1232. }
  1233. #ifdef CONFIG_DEBUG_BLK_CGROUP
  1234. static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
  1235. struct blkg_policy_data *pd, int off)
  1236. {
  1237. struct cfq_group *cfqg = (void *)pd->pdata;
  1238. u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
  1239. u64 v = 0;
  1240. if (samples) {
  1241. v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
  1242. do_div(v, samples);
  1243. }
  1244. __blkg_prfill_u64(sf, pd, v);
  1245. return 0;
  1246. }
  1247. /* print avg_queue_size */
  1248. static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
  1249. struct seq_file *sf)
  1250. {
  1251. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
  1252. blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
  1253. BLKIO_POLICY_PROP, 0, false);
  1254. return 0;
  1255. }
  1256. #endif /* CONFIG_DEBUG_BLK_CGROUP */
  1257. static struct cftype cfq_blkcg_files[] = {
  1258. {
  1259. .name = "weight_device",
  1260. .read_seq_string = blkcg_print_weight_device,
  1261. .write_string = blkcg_set_weight_device,
  1262. .max_write_len = 256,
  1263. },
  1264. {
  1265. .name = "weight",
  1266. .read_seq_string = blkcg_print_weight,
  1267. .write_u64 = blkcg_set_weight,
  1268. },
  1269. {
  1270. .name = "time",
  1271. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1272. offsetof(struct cfq_group, stats.time)),
  1273. .read_seq_string = blkcg_print_stat,
  1274. },
  1275. {
  1276. .name = "sectors",
  1277. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1278. offsetof(struct cfq_group, stats.sectors)),
  1279. .read_seq_string = blkcg_print_stat,
  1280. },
  1281. {
  1282. .name = "io_service_bytes",
  1283. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1284. offsetof(struct cfq_group, stats.service_bytes)),
  1285. .read_seq_string = blkcg_print_rwstat,
  1286. },
  1287. {
  1288. .name = "io_serviced",
  1289. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1290. offsetof(struct cfq_group, stats.serviced)),
  1291. .read_seq_string = blkcg_print_rwstat,
  1292. },
  1293. {
  1294. .name = "io_service_time",
  1295. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1296. offsetof(struct cfq_group, stats.service_time)),
  1297. .read_seq_string = blkcg_print_rwstat,
  1298. },
  1299. {
  1300. .name = "io_wait_time",
  1301. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1302. offsetof(struct cfq_group, stats.wait_time)),
  1303. .read_seq_string = blkcg_print_rwstat,
  1304. },
  1305. {
  1306. .name = "io_merged",
  1307. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1308. offsetof(struct cfq_group, stats.merged)),
  1309. .read_seq_string = blkcg_print_rwstat,
  1310. },
  1311. {
  1312. .name = "io_queued",
  1313. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1314. offsetof(struct cfq_group, stats.queued)),
  1315. .read_seq_string = blkcg_print_rwstat,
  1316. },
  1317. #ifdef CONFIG_DEBUG_BLK_CGROUP
  1318. {
  1319. .name = "avg_queue_size",
  1320. .read_seq_string = cfqg_print_avg_queue_size,
  1321. },
  1322. {
  1323. .name = "group_wait_time",
  1324. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1325. offsetof(struct cfq_group, stats.group_wait_time)),
  1326. .read_seq_string = blkcg_print_stat,
  1327. },
  1328. {
  1329. .name = "idle_time",
  1330. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1331. offsetof(struct cfq_group, stats.idle_time)),
  1332. .read_seq_string = blkcg_print_stat,
  1333. },
  1334. {
  1335. .name = "empty_time",
  1336. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1337. offsetof(struct cfq_group, stats.empty_time)),
  1338. .read_seq_string = blkcg_print_stat,
  1339. },
  1340. {
  1341. .name = "dequeue",
  1342. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1343. offsetof(struct cfq_group, stats.dequeue)),
  1344. .read_seq_string = blkcg_print_stat,
  1345. },
  1346. {
  1347. .name = "unaccounted_time",
  1348. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1349. offsetof(struct cfq_group, stats.unaccounted_time)),
  1350. .read_seq_string = blkcg_print_stat,
  1351. },
  1352. #endif /* CONFIG_DEBUG_BLK_CGROUP */
  1353. { } /* terminate */
  1354. };
  1355. #else /* GROUP_IOSCHED */
  1356. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  1357. struct blkio_cgroup *blkcg)
  1358. {
  1359. return cfqd->root_group;
  1360. }
  1361. static inline void
  1362. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1363. cfqq->cfqg = cfqg;
  1364. }
  1365. #endif /* GROUP_IOSCHED */
  1366. /*
  1367. * The cfqd->service_trees holds all pending cfq_queue's that have
  1368. * requests waiting to be processed. It is sorted in the order that
  1369. * we will service the queues.
  1370. */
  1371. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1372. bool add_front)
  1373. {
  1374. struct rb_node **p, *parent;
  1375. struct cfq_queue *__cfqq;
  1376. unsigned long rb_key;
  1377. struct cfq_rb_root *service_tree;
  1378. int left;
  1379. int new_cfqq = 1;
  1380. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1381. cfqq_type(cfqq));
  1382. if (cfq_class_idle(cfqq)) {
  1383. rb_key = CFQ_IDLE_DELAY;
  1384. parent = rb_last(&service_tree->rb);
  1385. if (parent && parent != &cfqq->rb_node) {
  1386. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1387. rb_key += __cfqq->rb_key;
  1388. } else
  1389. rb_key += jiffies;
  1390. } else if (!add_front) {
  1391. /*
  1392. * Get our rb key offset. Subtract any residual slice
  1393. * value carried from last service. A negative resid
  1394. * count indicates slice overrun, and this should position
  1395. * the next service time further away in the tree.
  1396. */
  1397. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1398. rb_key -= cfqq->slice_resid;
  1399. cfqq->slice_resid = 0;
  1400. } else {
  1401. rb_key = -HZ;
  1402. __cfqq = cfq_rb_first(service_tree);
  1403. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1404. }
  1405. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1406. new_cfqq = 0;
  1407. /*
  1408. * same position, nothing more to do
  1409. */
  1410. if (rb_key == cfqq->rb_key &&
  1411. cfqq->service_tree == service_tree)
  1412. return;
  1413. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1414. cfqq->service_tree = NULL;
  1415. }
  1416. left = 1;
  1417. parent = NULL;
  1418. cfqq->service_tree = service_tree;
  1419. p = &service_tree->rb.rb_node;
  1420. while (*p) {
  1421. struct rb_node **n;
  1422. parent = *p;
  1423. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1424. /*
  1425. * sort by key, that represents service time.
  1426. */
  1427. if (time_before(rb_key, __cfqq->rb_key))
  1428. n = &(*p)->rb_left;
  1429. else {
  1430. n = &(*p)->rb_right;
  1431. left = 0;
  1432. }
  1433. p = n;
  1434. }
  1435. if (left)
  1436. service_tree->left = &cfqq->rb_node;
  1437. cfqq->rb_key = rb_key;
  1438. rb_link_node(&cfqq->rb_node, parent, p);
  1439. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1440. service_tree->count++;
  1441. if (add_front || !new_cfqq)
  1442. return;
  1443. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1444. }
  1445. static struct cfq_queue *
  1446. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1447. sector_t sector, struct rb_node **ret_parent,
  1448. struct rb_node ***rb_link)
  1449. {
  1450. struct rb_node **p, *parent;
  1451. struct cfq_queue *cfqq = NULL;
  1452. parent = NULL;
  1453. p = &root->rb_node;
  1454. while (*p) {
  1455. struct rb_node **n;
  1456. parent = *p;
  1457. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1458. /*
  1459. * Sort strictly based on sector. Smallest to the left,
  1460. * largest to the right.
  1461. */
  1462. if (sector > blk_rq_pos(cfqq->next_rq))
  1463. n = &(*p)->rb_right;
  1464. else if (sector < blk_rq_pos(cfqq->next_rq))
  1465. n = &(*p)->rb_left;
  1466. else
  1467. break;
  1468. p = n;
  1469. cfqq = NULL;
  1470. }
  1471. *ret_parent = parent;
  1472. if (rb_link)
  1473. *rb_link = p;
  1474. return cfqq;
  1475. }
  1476. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1477. {
  1478. struct rb_node **p, *parent;
  1479. struct cfq_queue *__cfqq;
  1480. if (cfqq->p_root) {
  1481. rb_erase(&cfqq->p_node, cfqq->p_root);
  1482. cfqq->p_root = NULL;
  1483. }
  1484. if (cfq_class_idle(cfqq))
  1485. return;
  1486. if (!cfqq->next_rq)
  1487. return;
  1488. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1489. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1490. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1491. if (!__cfqq) {
  1492. rb_link_node(&cfqq->p_node, parent, p);
  1493. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1494. } else
  1495. cfqq->p_root = NULL;
  1496. }
  1497. /*
  1498. * Update cfqq's position in the service tree.
  1499. */
  1500. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1501. {
  1502. /*
  1503. * Resorting requires the cfqq to be on the RR list already.
  1504. */
  1505. if (cfq_cfqq_on_rr(cfqq)) {
  1506. cfq_service_tree_add(cfqd, cfqq, 0);
  1507. cfq_prio_tree_add(cfqd, cfqq);
  1508. }
  1509. }
  1510. /*
  1511. * add to busy list of queues for service, trying to be fair in ordering
  1512. * the pending list according to last request service
  1513. */
  1514. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1515. {
  1516. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1517. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1518. cfq_mark_cfqq_on_rr(cfqq);
  1519. cfqd->busy_queues++;
  1520. if (cfq_cfqq_sync(cfqq))
  1521. cfqd->busy_sync_queues++;
  1522. cfq_resort_rr_list(cfqd, cfqq);
  1523. }
  1524. /*
  1525. * Called when the cfqq no longer has requests pending, remove it from
  1526. * the service tree.
  1527. */
  1528. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1529. {
  1530. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1531. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1532. cfq_clear_cfqq_on_rr(cfqq);
  1533. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1534. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1535. cfqq->service_tree = NULL;
  1536. }
  1537. if (cfqq->p_root) {
  1538. rb_erase(&cfqq->p_node, cfqq->p_root);
  1539. cfqq->p_root = NULL;
  1540. }
  1541. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1542. BUG_ON(!cfqd->busy_queues);
  1543. cfqd->busy_queues--;
  1544. if (cfq_cfqq_sync(cfqq))
  1545. cfqd->busy_sync_queues--;
  1546. }
  1547. /*
  1548. * rb tree support functions
  1549. */
  1550. static void cfq_del_rq_rb(struct request *rq)
  1551. {
  1552. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1553. const int sync = rq_is_sync(rq);
  1554. BUG_ON(!cfqq->queued[sync]);
  1555. cfqq->queued[sync]--;
  1556. elv_rb_del(&cfqq->sort_list, rq);
  1557. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1558. /*
  1559. * Queue will be deleted from service tree when we actually
  1560. * expire it later. Right now just remove it from prio tree
  1561. * as it is empty.
  1562. */
  1563. if (cfqq->p_root) {
  1564. rb_erase(&cfqq->p_node, cfqq->p_root);
  1565. cfqq->p_root = NULL;
  1566. }
  1567. }
  1568. }
  1569. static void cfq_add_rq_rb(struct request *rq)
  1570. {
  1571. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1572. struct cfq_data *cfqd = cfqq->cfqd;
  1573. struct request *prev;
  1574. cfqq->queued[rq_is_sync(rq)]++;
  1575. elv_rb_add(&cfqq->sort_list, rq);
  1576. if (!cfq_cfqq_on_rr(cfqq))
  1577. cfq_add_cfqq_rr(cfqd, cfqq);
  1578. /*
  1579. * check if this request is a better next-serve candidate
  1580. */
  1581. prev = cfqq->next_rq;
  1582. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1583. /*
  1584. * adjust priority tree position, if ->next_rq changes
  1585. */
  1586. if (prev != cfqq->next_rq)
  1587. cfq_prio_tree_add(cfqd, cfqq);
  1588. BUG_ON(!cfqq->next_rq);
  1589. }
  1590. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1591. {
  1592. elv_rb_del(&cfqq->sort_list, rq);
  1593. cfqq->queued[rq_is_sync(rq)]--;
  1594. cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
  1595. cfq_add_rq_rb(rq);
  1596. cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
  1597. rq->cmd_flags);
  1598. }
  1599. static struct request *
  1600. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1601. {
  1602. struct task_struct *tsk = current;
  1603. struct cfq_io_cq *cic;
  1604. struct cfq_queue *cfqq;
  1605. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1606. if (!cic)
  1607. return NULL;
  1608. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1609. if (cfqq) {
  1610. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1611. return elv_rb_find(&cfqq->sort_list, sector);
  1612. }
  1613. return NULL;
  1614. }
  1615. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1616. {
  1617. struct cfq_data *cfqd = q->elevator->elevator_data;
  1618. cfqd->rq_in_driver++;
  1619. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1620. cfqd->rq_in_driver);
  1621. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1622. }
  1623. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1624. {
  1625. struct cfq_data *cfqd = q->elevator->elevator_data;
  1626. WARN_ON(!cfqd->rq_in_driver);
  1627. cfqd->rq_in_driver--;
  1628. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1629. cfqd->rq_in_driver);
  1630. }
  1631. static void cfq_remove_request(struct request *rq)
  1632. {
  1633. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1634. if (cfqq->next_rq == rq)
  1635. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1636. list_del_init(&rq->queuelist);
  1637. cfq_del_rq_rb(rq);
  1638. cfqq->cfqd->rq_queued--;
  1639. cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
  1640. if (rq->cmd_flags & REQ_PRIO) {
  1641. WARN_ON(!cfqq->prio_pending);
  1642. cfqq->prio_pending--;
  1643. }
  1644. }
  1645. static int cfq_merge(struct request_queue *q, struct request **req,
  1646. struct bio *bio)
  1647. {
  1648. struct cfq_data *cfqd = q->elevator->elevator_data;
  1649. struct request *__rq;
  1650. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1651. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1652. *req = __rq;
  1653. return ELEVATOR_FRONT_MERGE;
  1654. }
  1655. return ELEVATOR_NO_MERGE;
  1656. }
  1657. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1658. int type)
  1659. {
  1660. if (type == ELEVATOR_FRONT_MERGE) {
  1661. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1662. cfq_reposition_rq_rb(cfqq, req);
  1663. }
  1664. }
  1665. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1666. struct bio *bio)
  1667. {
  1668. cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
  1669. }
  1670. static void
  1671. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1672. struct request *next)
  1673. {
  1674. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1675. struct cfq_data *cfqd = q->elevator->elevator_data;
  1676. /*
  1677. * reposition in fifo if next is older than rq
  1678. */
  1679. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1680. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1681. list_move(&rq->queuelist, &next->queuelist);
  1682. rq_set_fifo_time(rq, rq_fifo_time(next));
  1683. }
  1684. if (cfqq->next_rq == next)
  1685. cfqq->next_rq = rq;
  1686. cfq_remove_request(next);
  1687. cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
  1688. cfqq = RQ_CFQQ(next);
  1689. /*
  1690. * all requests of this queue are merged to other queues, delete it
  1691. * from the service tree. If it's the active_queue,
  1692. * cfq_dispatch_requests() will choose to expire it or do idle
  1693. */
  1694. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  1695. cfqq != cfqd->active_queue)
  1696. cfq_del_cfqq_rr(cfqd, cfqq);
  1697. }
  1698. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1699. struct bio *bio)
  1700. {
  1701. struct cfq_data *cfqd = q->elevator->elevator_data;
  1702. struct cfq_io_cq *cic;
  1703. struct cfq_queue *cfqq;
  1704. /*
  1705. * Disallow merge of a sync bio into an async request.
  1706. */
  1707. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1708. return false;
  1709. /*
  1710. * Lookup the cfqq that this bio will be queued with and allow
  1711. * merge only if rq is queued there.
  1712. */
  1713. cic = cfq_cic_lookup(cfqd, current->io_context);
  1714. if (!cic)
  1715. return false;
  1716. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1717. return cfqq == RQ_CFQQ(rq);
  1718. }
  1719. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1720. {
  1721. del_timer(&cfqd->idle_slice_timer);
  1722. cfqg_stats_update_idle_time(cfqq->cfqg);
  1723. }
  1724. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1725. struct cfq_queue *cfqq)
  1726. {
  1727. if (cfqq) {
  1728. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1729. cfqd->serving_prio, cfqd->serving_type);
  1730. cfqg_stats_update_avg_queue_size(cfqq->cfqg);
  1731. cfqq->slice_start = 0;
  1732. cfqq->dispatch_start = jiffies;
  1733. cfqq->allocated_slice = 0;
  1734. cfqq->slice_end = 0;
  1735. cfqq->slice_dispatch = 0;
  1736. cfqq->nr_sectors = 0;
  1737. cfq_clear_cfqq_wait_request(cfqq);
  1738. cfq_clear_cfqq_must_dispatch(cfqq);
  1739. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1740. cfq_clear_cfqq_fifo_expire(cfqq);
  1741. cfq_mark_cfqq_slice_new(cfqq);
  1742. cfq_del_timer(cfqd, cfqq);
  1743. }
  1744. cfqd->active_queue = cfqq;
  1745. }
  1746. /*
  1747. * current cfqq expired its slice (or was too idle), select new one
  1748. */
  1749. static void
  1750. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1751. bool timed_out)
  1752. {
  1753. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1754. if (cfq_cfqq_wait_request(cfqq))
  1755. cfq_del_timer(cfqd, cfqq);
  1756. cfq_clear_cfqq_wait_request(cfqq);
  1757. cfq_clear_cfqq_wait_busy(cfqq);
  1758. /*
  1759. * If this cfqq is shared between multiple processes, check to
  1760. * make sure that those processes are still issuing I/Os within
  1761. * the mean seek distance. If not, it may be time to break the
  1762. * queues apart again.
  1763. */
  1764. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1765. cfq_mark_cfqq_split_coop(cfqq);
  1766. /*
  1767. * store what was left of this slice, if the queue idled/timed out
  1768. */
  1769. if (timed_out) {
  1770. if (cfq_cfqq_slice_new(cfqq))
  1771. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1772. else
  1773. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1774. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1775. }
  1776. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1777. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1778. cfq_del_cfqq_rr(cfqd, cfqq);
  1779. cfq_resort_rr_list(cfqd, cfqq);
  1780. if (cfqq == cfqd->active_queue)
  1781. cfqd->active_queue = NULL;
  1782. if (cfqd->active_cic) {
  1783. put_io_context(cfqd->active_cic->icq.ioc);
  1784. cfqd->active_cic = NULL;
  1785. }
  1786. }
  1787. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1788. {
  1789. struct cfq_queue *cfqq = cfqd->active_queue;
  1790. if (cfqq)
  1791. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1792. }
  1793. /*
  1794. * Get next queue for service. Unless we have a queue preemption,
  1795. * we'll simply select the first cfqq in the service tree.
  1796. */
  1797. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1798. {
  1799. struct cfq_rb_root *service_tree =
  1800. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1801. cfqd->serving_type);
  1802. if (!cfqd->rq_queued)
  1803. return NULL;
  1804. /* There is nothing to dispatch */
  1805. if (!service_tree)
  1806. return NULL;
  1807. if (RB_EMPTY_ROOT(&service_tree->rb))
  1808. return NULL;
  1809. return cfq_rb_first(service_tree);
  1810. }
  1811. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1812. {
  1813. struct cfq_group *cfqg;
  1814. struct cfq_queue *cfqq;
  1815. int i, j;
  1816. struct cfq_rb_root *st;
  1817. if (!cfqd->rq_queued)
  1818. return NULL;
  1819. cfqg = cfq_get_next_cfqg(cfqd);
  1820. if (!cfqg)
  1821. return NULL;
  1822. for_each_cfqg_st(cfqg, i, j, st)
  1823. if ((cfqq = cfq_rb_first(st)) != NULL)
  1824. return cfqq;
  1825. return NULL;
  1826. }
  1827. /*
  1828. * Get and set a new active queue for service.
  1829. */
  1830. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1831. struct cfq_queue *cfqq)
  1832. {
  1833. if (!cfqq)
  1834. cfqq = cfq_get_next_queue(cfqd);
  1835. __cfq_set_active_queue(cfqd, cfqq);
  1836. return cfqq;
  1837. }
  1838. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1839. struct request *rq)
  1840. {
  1841. if (blk_rq_pos(rq) >= cfqd->last_position)
  1842. return blk_rq_pos(rq) - cfqd->last_position;
  1843. else
  1844. return cfqd->last_position - blk_rq_pos(rq);
  1845. }
  1846. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1847. struct request *rq)
  1848. {
  1849. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1850. }
  1851. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1852. struct cfq_queue *cur_cfqq)
  1853. {
  1854. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1855. struct rb_node *parent, *node;
  1856. struct cfq_queue *__cfqq;
  1857. sector_t sector = cfqd->last_position;
  1858. if (RB_EMPTY_ROOT(root))
  1859. return NULL;
  1860. /*
  1861. * First, if we find a request starting at the end of the last
  1862. * request, choose it.
  1863. */
  1864. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1865. if (__cfqq)
  1866. return __cfqq;
  1867. /*
  1868. * If the exact sector wasn't found, the parent of the NULL leaf
  1869. * will contain the closest sector.
  1870. */
  1871. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1872. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1873. return __cfqq;
  1874. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1875. node = rb_next(&__cfqq->p_node);
  1876. else
  1877. node = rb_prev(&__cfqq->p_node);
  1878. if (!node)
  1879. return NULL;
  1880. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1881. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1882. return __cfqq;
  1883. return NULL;
  1884. }
  1885. /*
  1886. * cfqd - obvious
  1887. * cur_cfqq - passed in so that we don't decide that the current queue is
  1888. * closely cooperating with itself.
  1889. *
  1890. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1891. * one request, and that cfqd->last_position reflects a position on the disk
  1892. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1893. * assumption.
  1894. */
  1895. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1896. struct cfq_queue *cur_cfqq)
  1897. {
  1898. struct cfq_queue *cfqq;
  1899. if (cfq_class_idle(cur_cfqq))
  1900. return NULL;
  1901. if (!cfq_cfqq_sync(cur_cfqq))
  1902. return NULL;
  1903. if (CFQQ_SEEKY(cur_cfqq))
  1904. return NULL;
  1905. /*
  1906. * Don't search priority tree if it's the only queue in the group.
  1907. */
  1908. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1909. return NULL;
  1910. /*
  1911. * We should notice if some of the queues are cooperating, eg
  1912. * working closely on the same area of the disk. In that case,
  1913. * we can group them together and don't waste time idling.
  1914. */
  1915. cfqq = cfqq_close(cfqd, cur_cfqq);
  1916. if (!cfqq)
  1917. return NULL;
  1918. /* If new queue belongs to different cfq_group, don't choose it */
  1919. if (cur_cfqq->cfqg != cfqq->cfqg)
  1920. return NULL;
  1921. /*
  1922. * It only makes sense to merge sync queues.
  1923. */
  1924. if (!cfq_cfqq_sync(cfqq))
  1925. return NULL;
  1926. if (CFQQ_SEEKY(cfqq))
  1927. return NULL;
  1928. /*
  1929. * Do not merge queues of different priority classes
  1930. */
  1931. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1932. return NULL;
  1933. return cfqq;
  1934. }
  1935. /*
  1936. * Determine whether we should enforce idle window for this queue.
  1937. */
  1938. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1939. {
  1940. enum wl_prio_t prio = cfqq_prio(cfqq);
  1941. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1942. BUG_ON(!service_tree);
  1943. BUG_ON(!service_tree->count);
  1944. if (!cfqd->cfq_slice_idle)
  1945. return false;
  1946. /* We never do for idle class queues. */
  1947. if (prio == IDLE_WORKLOAD)
  1948. return false;
  1949. /* We do for queues that were marked with idle window flag. */
  1950. if (cfq_cfqq_idle_window(cfqq) &&
  1951. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1952. return true;
  1953. /*
  1954. * Otherwise, we do only if they are the last ones
  1955. * in their service tree.
  1956. */
  1957. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1958. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1959. return true;
  1960. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1961. service_tree->count);
  1962. return false;
  1963. }
  1964. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1965. {
  1966. struct cfq_queue *cfqq = cfqd->active_queue;
  1967. struct cfq_io_cq *cic;
  1968. unsigned long sl, group_idle = 0;
  1969. /*
  1970. * SSD device without seek penalty, disable idling. But only do so
  1971. * for devices that support queuing, otherwise we still have a problem
  1972. * with sync vs async workloads.
  1973. */
  1974. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1975. return;
  1976. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1977. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1978. /*
  1979. * idle is disabled, either manually or by past process history
  1980. */
  1981. if (!cfq_should_idle(cfqd, cfqq)) {
  1982. /* no queue idling. Check for group idling */
  1983. if (cfqd->cfq_group_idle)
  1984. group_idle = cfqd->cfq_group_idle;
  1985. else
  1986. return;
  1987. }
  1988. /*
  1989. * still active requests from this queue, don't idle
  1990. */
  1991. if (cfqq->dispatched)
  1992. return;
  1993. /*
  1994. * task has exited, don't wait
  1995. */
  1996. cic = cfqd->active_cic;
  1997. if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
  1998. return;
  1999. /*
  2000. * If our average think time is larger than the remaining time
  2001. * slice, then don't idle. This avoids overrunning the allotted
  2002. * time slice.
  2003. */
  2004. if (sample_valid(cic->ttime.ttime_samples) &&
  2005. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  2006. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  2007. cic->ttime.ttime_mean);
  2008. return;
  2009. }
  2010. /* There are other queues in the group, don't do group idle */
  2011. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  2012. return;
  2013. cfq_mark_cfqq_wait_request(cfqq);
  2014. if (group_idle)
  2015. sl = cfqd->cfq_group_idle;
  2016. else
  2017. sl = cfqd->cfq_slice_idle;
  2018. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  2019. cfqg_stats_set_start_idle_time(cfqq->cfqg);
  2020. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  2021. group_idle ? 1 : 0);
  2022. }
  2023. /*
  2024. * Move request from internal lists to the request queue dispatch list.
  2025. */
  2026. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  2027. {
  2028. struct cfq_data *cfqd = q->elevator->elevator_data;
  2029. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2030. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  2031. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  2032. cfq_remove_request(rq);
  2033. cfqq->dispatched++;
  2034. (RQ_CFQG(rq))->dispatched++;
  2035. elv_dispatch_sort(q, rq);
  2036. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  2037. cfqq->nr_sectors += blk_rq_sectors(rq);
  2038. cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
  2039. }
  2040. /*
  2041. * return expired entry, or NULL to just start from scratch in rbtree
  2042. */
  2043. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  2044. {
  2045. struct request *rq = NULL;
  2046. if (cfq_cfqq_fifo_expire(cfqq))
  2047. return NULL;
  2048. cfq_mark_cfqq_fifo_expire(cfqq);
  2049. if (list_empty(&cfqq->fifo))
  2050. return NULL;
  2051. rq = rq_entry_fifo(cfqq->fifo.next);
  2052. if (time_before(jiffies, rq_fifo_time(rq)))
  2053. rq = NULL;
  2054. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  2055. return rq;
  2056. }
  2057. static inline int
  2058. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2059. {
  2060. const int base_rq = cfqd->cfq_slice_async_rq;
  2061. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  2062. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  2063. }
  2064. /*
  2065. * Must be called with the queue_lock held.
  2066. */
  2067. static int cfqq_process_refs(struct cfq_queue *cfqq)
  2068. {
  2069. int process_refs, io_refs;
  2070. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  2071. process_refs = cfqq->ref - io_refs;
  2072. BUG_ON(process_refs < 0);
  2073. return process_refs;
  2074. }
  2075. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  2076. {
  2077. int process_refs, new_process_refs;
  2078. struct cfq_queue *__cfqq;
  2079. /*
  2080. * If there are no process references on the new_cfqq, then it is
  2081. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  2082. * chain may have dropped their last reference (not just their
  2083. * last process reference).
  2084. */
  2085. if (!cfqq_process_refs(new_cfqq))
  2086. return;
  2087. /* Avoid a circular list and skip interim queue merges */
  2088. while ((__cfqq = new_cfqq->new_cfqq)) {
  2089. if (__cfqq == cfqq)
  2090. return;
  2091. new_cfqq = __cfqq;
  2092. }
  2093. process_refs = cfqq_process_refs(cfqq);
  2094. new_process_refs = cfqq_process_refs(new_cfqq);
  2095. /*
  2096. * If the process for the cfqq has gone away, there is no
  2097. * sense in merging the queues.
  2098. */
  2099. if (process_refs == 0 || new_process_refs == 0)
  2100. return;
  2101. /*
  2102. * Merge in the direction of the lesser amount of work.
  2103. */
  2104. if (new_process_refs >= process_refs) {
  2105. cfqq->new_cfqq = new_cfqq;
  2106. new_cfqq->ref += process_refs;
  2107. } else {
  2108. new_cfqq->new_cfqq = cfqq;
  2109. cfqq->ref += new_process_refs;
  2110. }
  2111. }
  2112. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  2113. struct cfq_group *cfqg, enum wl_prio_t prio)
  2114. {
  2115. struct cfq_queue *queue;
  2116. int i;
  2117. bool key_valid = false;
  2118. unsigned long lowest_key = 0;
  2119. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  2120. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  2121. /* select the one with lowest rb_key */
  2122. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  2123. if (queue &&
  2124. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  2125. lowest_key = queue->rb_key;
  2126. cur_best = i;
  2127. key_valid = true;
  2128. }
  2129. }
  2130. return cur_best;
  2131. }
  2132. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  2133. {
  2134. unsigned slice;
  2135. unsigned count;
  2136. struct cfq_rb_root *st;
  2137. unsigned group_slice;
  2138. enum wl_prio_t original_prio = cfqd->serving_prio;
  2139. /* Choose next priority. RT > BE > IDLE */
  2140. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  2141. cfqd->serving_prio = RT_WORKLOAD;
  2142. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  2143. cfqd->serving_prio = BE_WORKLOAD;
  2144. else {
  2145. cfqd->serving_prio = IDLE_WORKLOAD;
  2146. cfqd->workload_expires = jiffies + 1;
  2147. return;
  2148. }
  2149. if (original_prio != cfqd->serving_prio)
  2150. goto new_workload;
  2151. /*
  2152. * For RT and BE, we have to choose also the type
  2153. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  2154. * expiration time
  2155. */
  2156. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  2157. count = st->count;
  2158. /*
  2159. * check workload expiration, and that we still have other queues ready
  2160. */
  2161. if (count && !time_after(jiffies, cfqd->workload_expires))
  2162. return;
  2163. new_workload:
  2164. /* otherwise select new workload type */
  2165. cfqd->serving_type =
  2166. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  2167. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  2168. count = st->count;
  2169. /*
  2170. * the workload slice is computed as a fraction of target latency
  2171. * proportional to the number of queues in that workload, over
  2172. * all the queues in the same priority class
  2173. */
  2174. group_slice = cfq_group_slice(cfqd, cfqg);
  2175. slice = group_slice * count /
  2176. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  2177. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  2178. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  2179. unsigned int tmp;
  2180. /*
  2181. * Async queues are currently system wide. Just taking
  2182. * proportion of queues with-in same group will lead to higher
  2183. * async ratio system wide as generally root group is going
  2184. * to have higher weight. A more accurate thing would be to
  2185. * calculate system wide asnc/sync ratio.
  2186. */
  2187. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  2188. tmp = tmp/cfqd->busy_queues;
  2189. slice = min_t(unsigned, slice, tmp);
  2190. /* async workload slice is scaled down according to
  2191. * the sync/async slice ratio. */
  2192. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  2193. } else
  2194. /* sync workload slice is at least 2 * cfq_slice_idle */
  2195. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  2196. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  2197. cfq_log(cfqd, "workload slice:%d", slice);
  2198. cfqd->workload_expires = jiffies + slice;
  2199. }
  2200. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  2201. {
  2202. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  2203. struct cfq_group *cfqg;
  2204. if (RB_EMPTY_ROOT(&st->rb))
  2205. return NULL;
  2206. cfqg = cfq_rb_first_group(st);
  2207. update_min_vdisktime(st);
  2208. return cfqg;
  2209. }
  2210. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  2211. {
  2212. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  2213. cfqd->serving_group = cfqg;
  2214. /* Restore the workload type data */
  2215. if (cfqg->saved_workload_slice) {
  2216. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  2217. cfqd->serving_type = cfqg->saved_workload;
  2218. cfqd->serving_prio = cfqg->saved_serving_prio;
  2219. } else
  2220. cfqd->workload_expires = jiffies - 1;
  2221. choose_service_tree(cfqd, cfqg);
  2222. }
  2223. /*
  2224. * Select a queue for service. If we have a current active queue,
  2225. * check whether to continue servicing it, or retrieve and set a new one.
  2226. */
  2227. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  2228. {
  2229. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2230. cfqq = cfqd->active_queue;
  2231. if (!cfqq)
  2232. goto new_queue;
  2233. if (!cfqd->rq_queued)
  2234. return NULL;
  2235. /*
  2236. * We were waiting for group to get backlogged. Expire the queue
  2237. */
  2238. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  2239. goto expire;
  2240. /*
  2241. * The active queue has run out of time, expire it and select new.
  2242. */
  2243. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  2244. /*
  2245. * If slice had not expired at the completion of last request
  2246. * we might not have turned on wait_busy flag. Don't expire
  2247. * the queue yet. Allow the group to get backlogged.
  2248. *
  2249. * The very fact that we have used the slice, that means we
  2250. * have been idling all along on this queue and it should be
  2251. * ok to wait for this request to complete.
  2252. */
  2253. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  2254. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2255. cfqq = NULL;
  2256. goto keep_queue;
  2257. } else
  2258. goto check_group_idle;
  2259. }
  2260. /*
  2261. * The active queue has requests and isn't expired, allow it to
  2262. * dispatch.
  2263. */
  2264. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2265. goto keep_queue;
  2266. /*
  2267. * If another queue has a request waiting within our mean seek
  2268. * distance, let it run. The expire code will check for close
  2269. * cooperators and put the close queue at the front of the service
  2270. * tree. If possible, merge the expiring queue with the new cfqq.
  2271. */
  2272. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  2273. if (new_cfqq) {
  2274. if (!cfqq->new_cfqq)
  2275. cfq_setup_merge(cfqq, new_cfqq);
  2276. goto expire;
  2277. }
  2278. /*
  2279. * No requests pending. If the active queue still has requests in
  2280. * flight or is idling for a new request, allow either of these
  2281. * conditions to happen (or time out) before selecting a new queue.
  2282. */
  2283. if (timer_pending(&cfqd->idle_slice_timer)) {
  2284. cfqq = NULL;
  2285. goto keep_queue;
  2286. }
  2287. /*
  2288. * This is a deep seek queue, but the device is much faster than
  2289. * the queue can deliver, don't idle
  2290. **/
  2291. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2292. (cfq_cfqq_slice_new(cfqq) ||
  2293. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2294. cfq_clear_cfqq_deep(cfqq);
  2295. cfq_clear_cfqq_idle_window(cfqq);
  2296. }
  2297. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2298. cfqq = NULL;
  2299. goto keep_queue;
  2300. }
  2301. /*
  2302. * If group idle is enabled and there are requests dispatched from
  2303. * this group, wait for requests to complete.
  2304. */
  2305. check_group_idle:
  2306. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  2307. cfqq->cfqg->dispatched &&
  2308. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  2309. cfqq = NULL;
  2310. goto keep_queue;
  2311. }
  2312. expire:
  2313. cfq_slice_expired(cfqd, 0);
  2314. new_queue:
  2315. /*
  2316. * Current queue expired. Check if we have to switch to a new
  2317. * service tree
  2318. */
  2319. if (!new_cfqq)
  2320. cfq_choose_cfqg(cfqd);
  2321. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2322. keep_queue:
  2323. return cfqq;
  2324. }
  2325. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2326. {
  2327. int dispatched = 0;
  2328. while (cfqq->next_rq) {
  2329. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2330. dispatched++;
  2331. }
  2332. BUG_ON(!list_empty(&cfqq->fifo));
  2333. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2334. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2335. return dispatched;
  2336. }
  2337. /*
  2338. * Drain our current requests. Used for barriers and when switching
  2339. * io schedulers on-the-fly.
  2340. */
  2341. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2342. {
  2343. struct cfq_queue *cfqq;
  2344. int dispatched = 0;
  2345. /* Expire the timeslice of the current active queue first */
  2346. cfq_slice_expired(cfqd, 0);
  2347. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2348. __cfq_set_active_queue(cfqd, cfqq);
  2349. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2350. }
  2351. BUG_ON(cfqd->busy_queues);
  2352. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2353. return dispatched;
  2354. }
  2355. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2356. struct cfq_queue *cfqq)
  2357. {
  2358. /* the queue hasn't finished any request, can't estimate */
  2359. if (cfq_cfqq_slice_new(cfqq))
  2360. return true;
  2361. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2362. cfqq->slice_end))
  2363. return true;
  2364. return false;
  2365. }
  2366. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2367. {
  2368. unsigned int max_dispatch;
  2369. /*
  2370. * Drain async requests before we start sync IO
  2371. */
  2372. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2373. return false;
  2374. /*
  2375. * If this is an async queue and we have sync IO in flight, let it wait
  2376. */
  2377. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2378. return false;
  2379. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2380. if (cfq_class_idle(cfqq))
  2381. max_dispatch = 1;
  2382. /*
  2383. * Does this cfqq already have too much IO in flight?
  2384. */
  2385. if (cfqq->dispatched >= max_dispatch) {
  2386. bool promote_sync = false;
  2387. /*
  2388. * idle queue must always only have a single IO in flight
  2389. */
  2390. if (cfq_class_idle(cfqq))
  2391. return false;
  2392. /*
  2393. * If there is only one sync queue
  2394. * we can ignore async queue here and give the sync
  2395. * queue no dispatch limit. The reason is a sync queue can
  2396. * preempt async queue, limiting the sync queue doesn't make
  2397. * sense. This is useful for aiostress test.
  2398. */
  2399. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2400. promote_sync = true;
  2401. /*
  2402. * We have other queues, don't allow more IO from this one
  2403. */
  2404. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2405. !promote_sync)
  2406. return false;
  2407. /*
  2408. * Sole queue user, no limit
  2409. */
  2410. if (cfqd->busy_queues == 1 || promote_sync)
  2411. max_dispatch = -1;
  2412. else
  2413. /*
  2414. * Normally we start throttling cfqq when cfq_quantum/2
  2415. * requests have been dispatched. But we can drive
  2416. * deeper queue depths at the beginning of slice
  2417. * subjected to upper limit of cfq_quantum.
  2418. * */
  2419. max_dispatch = cfqd->cfq_quantum;
  2420. }
  2421. /*
  2422. * Async queues must wait a bit before being allowed dispatch.
  2423. * We also ramp up the dispatch depth gradually for async IO,
  2424. * based on the last sync IO we serviced
  2425. */
  2426. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2427. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2428. unsigned int depth;
  2429. depth = last_sync / cfqd->cfq_slice[1];
  2430. if (!depth && !cfqq->dispatched)
  2431. depth = 1;
  2432. if (depth < max_dispatch)
  2433. max_dispatch = depth;
  2434. }
  2435. /*
  2436. * If we're below the current max, allow a dispatch
  2437. */
  2438. return cfqq->dispatched < max_dispatch;
  2439. }
  2440. /*
  2441. * Dispatch a request from cfqq, moving them to the request queue
  2442. * dispatch list.
  2443. */
  2444. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2445. {
  2446. struct request *rq;
  2447. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2448. if (!cfq_may_dispatch(cfqd, cfqq))
  2449. return false;
  2450. /*
  2451. * follow expired path, else get first next available
  2452. */
  2453. rq = cfq_check_fifo(cfqq);
  2454. if (!rq)
  2455. rq = cfqq->next_rq;
  2456. /*
  2457. * insert request into driver dispatch list
  2458. */
  2459. cfq_dispatch_insert(cfqd->queue, rq);
  2460. if (!cfqd->active_cic) {
  2461. struct cfq_io_cq *cic = RQ_CIC(rq);
  2462. atomic_long_inc(&cic->icq.ioc->refcount);
  2463. cfqd->active_cic = cic;
  2464. }
  2465. return true;
  2466. }
  2467. /*
  2468. * Find the cfqq that we need to service and move a request from that to the
  2469. * dispatch list
  2470. */
  2471. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2472. {
  2473. struct cfq_data *cfqd = q->elevator->elevator_data;
  2474. struct cfq_queue *cfqq;
  2475. if (!cfqd->busy_queues)
  2476. return 0;
  2477. if (unlikely(force))
  2478. return cfq_forced_dispatch(cfqd);
  2479. cfqq = cfq_select_queue(cfqd);
  2480. if (!cfqq)
  2481. return 0;
  2482. /*
  2483. * Dispatch a request from this cfqq, if it is allowed
  2484. */
  2485. if (!cfq_dispatch_request(cfqd, cfqq))
  2486. return 0;
  2487. cfqq->slice_dispatch++;
  2488. cfq_clear_cfqq_must_dispatch(cfqq);
  2489. /*
  2490. * expire an async queue immediately if it has used up its slice. idle
  2491. * queue always expire after 1 dispatch round.
  2492. */
  2493. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2494. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2495. cfq_class_idle(cfqq))) {
  2496. cfqq->slice_end = jiffies + 1;
  2497. cfq_slice_expired(cfqd, 0);
  2498. }
  2499. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2500. return 1;
  2501. }
  2502. /*
  2503. * task holds one reference to the queue, dropped when task exits. each rq
  2504. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2505. *
  2506. * Each cfq queue took a reference on the parent group. Drop it now.
  2507. * queue lock must be held here.
  2508. */
  2509. static void cfq_put_queue(struct cfq_queue *cfqq)
  2510. {
  2511. struct cfq_data *cfqd = cfqq->cfqd;
  2512. struct cfq_group *cfqg;
  2513. BUG_ON(cfqq->ref <= 0);
  2514. cfqq->ref--;
  2515. if (cfqq->ref)
  2516. return;
  2517. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2518. BUG_ON(rb_first(&cfqq->sort_list));
  2519. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2520. cfqg = cfqq->cfqg;
  2521. if (unlikely(cfqd->active_queue == cfqq)) {
  2522. __cfq_slice_expired(cfqd, cfqq, 0);
  2523. cfq_schedule_dispatch(cfqd);
  2524. }
  2525. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2526. kmem_cache_free(cfq_pool, cfqq);
  2527. cfqg_put(cfqg);
  2528. }
  2529. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2530. {
  2531. struct cfq_queue *__cfqq, *next;
  2532. /*
  2533. * If this queue was scheduled to merge with another queue, be
  2534. * sure to drop the reference taken on that queue (and others in
  2535. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2536. */
  2537. __cfqq = cfqq->new_cfqq;
  2538. while (__cfqq) {
  2539. if (__cfqq == cfqq) {
  2540. WARN(1, "cfqq->new_cfqq loop detected\n");
  2541. break;
  2542. }
  2543. next = __cfqq->new_cfqq;
  2544. cfq_put_queue(__cfqq);
  2545. __cfqq = next;
  2546. }
  2547. }
  2548. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2549. {
  2550. if (unlikely(cfqq == cfqd->active_queue)) {
  2551. __cfq_slice_expired(cfqd, cfqq, 0);
  2552. cfq_schedule_dispatch(cfqd);
  2553. }
  2554. cfq_put_cooperator(cfqq);
  2555. cfq_put_queue(cfqq);
  2556. }
  2557. static void cfq_init_icq(struct io_cq *icq)
  2558. {
  2559. struct cfq_io_cq *cic = icq_to_cic(icq);
  2560. cic->ttime.last_end_request = jiffies;
  2561. }
  2562. static void cfq_exit_icq(struct io_cq *icq)
  2563. {
  2564. struct cfq_io_cq *cic = icq_to_cic(icq);
  2565. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2566. if (cic->cfqq[BLK_RW_ASYNC]) {
  2567. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2568. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2569. }
  2570. if (cic->cfqq[BLK_RW_SYNC]) {
  2571. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2572. cic->cfqq[BLK_RW_SYNC] = NULL;
  2573. }
  2574. }
  2575. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
  2576. {
  2577. struct task_struct *tsk = current;
  2578. int ioprio_class;
  2579. if (!cfq_cfqq_prio_changed(cfqq))
  2580. return;
  2581. ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2582. switch (ioprio_class) {
  2583. default:
  2584. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2585. case IOPRIO_CLASS_NONE:
  2586. /*
  2587. * no prio set, inherit CPU scheduling settings
  2588. */
  2589. cfqq->ioprio = task_nice_ioprio(tsk);
  2590. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2591. break;
  2592. case IOPRIO_CLASS_RT:
  2593. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2594. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2595. break;
  2596. case IOPRIO_CLASS_BE:
  2597. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2598. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2599. break;
  2600. case IOPRIO_CLASS_IDLE:
  2601. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2602. cfqq->ioprio = 7;
  2603. cfq_clear_cfqq_idle_window(cfqq);
  2604. break;
  2605. }
  2606. /*
  2607. * keep track of original prio settings in case we have to temporarily
  2608. * elevate the priority of this queue
  2609. */
  2610. cfqq->org_ioprio = cfqq->ioprio;
  2611. cfq_clear_cfqq_prio_changed(cfqq);
  2612. }
  2613. static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
  2614. {
  2615. int ioprio = cic->icq.ioc->ioprio;
  2616. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2617. struct cfq_queue *cfqq;
  2618. /*
  2619. * Check whether ioprio has changed. The condition may trigger
  2620. * spuriously on a newly created cic but there's no harm.
  2621. */
  2622. if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
  2623. return;
  2624. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2625. if (cfqq) {
  2626. struct cfq_queue *new_cfqq;
  2627. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
  2628. GFP_ATOMIC);
  2629. if (new_cfqq) {
  2630. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2631. cfq_put_queue(cfqq);
  2632. }
  2633. }
  2634. cfqq = cic->cfqq[BLK_RW_SYNC];
  2635. if (cfqq)
  2636. cfq_mark_cfqq_prio_changed(cfqq);
  2637. cic->ioprio = ioprio;
  2638. }
  2639. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2640. pid_t pid, bool is_sync)
  2641. {
  2642. RB_CLEAR_NODE(&cfqq->rb_node);
  2643. RB_CLEAR_NODE(&cfqq->p_node);
  2644. INIT_LIST_HEAD(&cfqq->fifo);
  2645. cfqq->ref = 0;
  2646. cfqq->cfqd = cfqd;
  2647. cfq_mark_cfqq_prio_changed(cfqq);
  2648. if (is_sync) {
  2649. if (!cfq_class_idle(cfqq))
  2650. cfq_mark_cfqq_idle_window(cfqq);
  2651. cfq_mark_cfqq_sync(cfqq);
  2652. }
  2653. cfqq->pid = pid;
  2654. }
  2655. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2656. static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
  2657. {
  2658. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2659. struct cfq_queue *sync_cfqq;
  2660. uint64_t id;
  2661. rcu_read_lock();
  2662. id = bio_blkio_cgroup(bio)->id;
  2663. rcu_read_unlock();
  2664. /*
  2665. * Check whether blkcg has changed. The condition may trigger
  2666. * spuriously on a newly created cic but there's no harm.
  2667. */
  2668. if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
  2669. return;
  2670. sync_cfqq = cic_to_cfqq(cic, 1);
  2671. if (sync_cfqq) {
  2672. /*
  2673. * Drop reference to sync queue. A new sync queue will be
  2674. * assigned in new group upon arrival of a fresh request.
  2675. */
  2676. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2677. cic_set_cfqq(cic, NULL, 1);
  2678. cfq_put_queue(sync_cfqq);
  2679. }
  2680. cic->blkcg_id = id;
  2681. }
  2682. #else
  2683. static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
  2684. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2685. static struct cfq_queue *
  2686. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  2687. struct bio *bio, gfp_t gfp_mask)
  2688. {
  2689. struct blkio_cgroup *blkcg;
  2690. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2691. struct cfq_group *cfqg;
  2692. retry:
  2693. rcu_read_lock();
  2694. blkcg = bio_blkio_cgroup(bio);
  2695. cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
  2696. cfqq = cic_to_cfqq(cic, is_sync);
  2697. /*
  2698. * Always try a new alloc if we fell back to the OOM cfqq
  2699. * originally, since it should just be a temporary situation.
  2700. */
  2701. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2702. cfqq = NULL;
  2703. if (new_cfqq) {
  2704. cfqq = new_cfqq;
  2705. new_cfqq = NULL;
  2706. } else if (gfp_mask & __GFP_WAIT) {
  2707. rcu_read_unlock();
  2708. spin_unlock_irq(cfqd->queue->queue_lock);
  2709. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2710. gfp_mask | __GFP_ZERO,
  2711. cfqd->queue->node);
  2712. spin_lock_irq(cfqd->queue->queue_lock);
  2713. if (new_cfqq)
  2714. goto retry;
  2715. } else {
  2716. cfqq = kmem_cache_alloc_node(cfq_pool,
  2717. gfp_mask | __GFP_ZERO,
  2718. cfqd->queue->node);
  2719. }
  2720. if (cfqq) {
  2721. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2722. cfq_init_prio_data(cfqq, cic);
  2723. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2724. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2725. } else
  2726. cfqq = &cfqd->oom_cfqq;
  2727. }
  2728. if (new_cfqq)
  2729. kmem_cache_free(cfq_pool, new_cfqq);
  2730. rcu_read_unlock();
  2731. return cfqq;
  2732. }
  2733. static struct cfq_queue **
  2734. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2735. {
  2736. switch (ioprio_class) {
  2737. case IOPRIO_CLASS_RT:
  2738. return &cfqd->async_cfqq[0][ioprio];
  2739. case IOPRIO_CLASS_NONE:
  2740. ioprio = IOPRIO_NORM;
  2741. /* fall through */
  2742. case IOPRIO_CLASS_BE:
  2743. return &cfqd->async_cfqq[1][ioprio];
  2744. case IOPRIO_CLASS_IDLE:
  2745. return &cfqd->async_idle_cfqq;
  2746. default:
  2747. BUG();
  2748. }
  2749. }
  2750. static struct cfq_queue *
  2751. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  2752. struct bio *bio, gfp_t gfp_mask)
  2753. {
  2754. const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2755. const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2756. struct cfq_queue **async_cfqq = NULL;
  2757. struct cfq_queue *cfqq = NULL;
  2758. if (!is_sync) {
  2759. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2760. cfqq = *async_cfqq;
  2761. }
  2762. if (!cfqq)
  2763. cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
  2764. /*
  2765. * pin the queue now that it's allocated, scheduler exit will prune it
  2766. */
  2767. if (!is_sync && !(*async_cfqq)) {
  2768. cfqq->ref++;
  2769. *async_cfqq = cfqq;
  2770. }
  2771. cfqq->ref++;
  2772. return cfqq;
  2773. }
  2774. static void
  2775. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2776. {
  2777. unsigned long elapsed = jiffies - ttime->last_end_request;
  2778. elapsed = min(elapsed, 2UL * slice_idle);
  2779. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2780. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2781. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2782. }
  2783. static void
  2784. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2785. struct cfq_io_cq *cic)
  2786. {
  2787. if (cfq_cfqq_sync(cfqq)) {
  2788. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2789. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2790. cfqd->cfq_slice_idle);
  2791. }
  2792. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2793. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2794. #endif
  2795. }
  2796. static void
  2797. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2798. struct request *rq)
  2799. {
  2800. sector_t sdist = 0;
  2801. sector_t n_sec = blk_rq_sectors(rq);
  2802. if (cfqq->last_request_pos) {
  2803. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2804. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2805. else
  2806. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2807. }
  2808. cfqq->seek_history <<= 1;
  2809. if (blk_queue_nonrot(cfqd->queue))
  2810. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2811. else
  2812. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2813. }
  2814. /*
  2815. * Disable idle window if the process thinks too long or seeks so much that
  2816. * it doesn't matter
  2817. */
  2818. static void
  2819. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2820. struct cfq_io_cq *cic)
  2821. {
  2822. int old_idle, enable_idle;
  2823. /*
  2824. * Don't idle for async or idle io prio class
  2825. */
  2826. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2827. return;
  2828. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2829. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2830. cfq_mark_cfqq_deep(cfqq);
  2831. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2832. enable_idle = 0;
  2833. else if (!atomic_read(&cic->icq.ioc->active_ref) ||
  2834. !cfqd->cfq_slice_idle ||
  2835. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2836. enable_idle = 0;
  2837. else if (sample_valid(cic->ttime.ttime_samples)) {
  2838. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2839. enable_idle = 0;
  2840. else
  2841. enable_idle = 1;
  2842. }
  2843. if (old_idle != enable_idle) {
  2844. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2845. if (enable_idle)
  2846. cfq_mark_cfqq_idle_window(cfqq);
  2847. else
  2848. cfq_clear_cfqq_idle_window(cfqq);
  2849. }
  2850. }
  2851. /*
  2852. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2853. * no or if we aren't sure, a 1 will cause a preempt.
  2854. */
  2855. static bool
  2856. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2857. struct request *rq)
  2858. {
  2859. struct cfq_queue *cfqq;
  2860. cfqq = cfqd->active_queue;
  2861. if (!cfqq)
  2862. return false;
  2863. if (cfq_class_idle(new_cfqq))
  2864. return false;
  2865. if (cfq_class_idle(cfqq))
  2866. return true;
  2867. /*
  2868. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2869. */
  2870. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2871. return false;
  2872. /*
  2873. * if the new request is sync, but the currently running queue is
  2874. * not, let the sync request have priority.
  2875. */
  2876. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2877. return true;
  2878. if (new_cfqq->cfqg != cfqq->cfqg)
  2879. return false;
  2880. if (cfq_slice_used(cfqq))
  2881. return true;
  2882. /* Allow preemption only if we are idling on sync-noidle tree */
  2883. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2884. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2885. new_cfqq->service_tree->count == 2 &&
  2886. RB_EMPTY_ROOT(&cfqq->sort_list))
  2887. return true;
  2888. /*
  2889. * So both queues are sync. Let the new request get disk time if
  2890. * it's a metadata request and the current queue is doing regular IO.
  2891. */
  2892. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2893. return true;
  2894. /*
  2895. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2896. */
  2897. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2898. return true;
  2899. /* An idle queue should not be idle now for some reason */
  2900. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2901. return true;
  2902. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2903. return false;
  2904. /*
  2905. * if this request is as-good as one we would expect from the
  2906. * current cfqq, let it preempt
  2907. */
  2908. if (cfq_rq_close(cfqd, cfqq, rq))
  2909. return true;
  2910. return false;
  2911. }
  2912. /*
  2913. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2914. * let it have half of its nominal slice.
  2915. */
  2916. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2917. {
  2918. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  2919. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2920. cfq_slice_expired(cfqd, 1);
  2921. /*
  2922. * workload type is changed, don't save slice, otherwise preempt
  2923. * doesn't happen
  2924. */
  2925. if (old_type != cfqq_type(cfqq))
  2926. cfqq->cfqg->saved_workload_slice = 0;
  2927. /*
  2928. * Put the new queue at the front of the of the current list,
  2929. * so we know that it will be selected next.
  2930. */
  2931. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2932. cfq_service_tree_add(cfqd, cfqq, 1);
  2933. cfqq->slice_end = 0;
  2934. cfq_mark_cfqq_slice_new(cfqq);
  2935. }
  2936. /*
  2937. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2938. * something we should do about it
  2939. */
  2940. static void
  2941. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2942. struct request *rq)
  2943. {
  2944. struct cfq_io_cq *cic = RQ_CIC(rq);
  2945. cfqd->rq_queued++;
  2946. if (rq->cmd_flags & REQ_PRIO)
  2947. cfqq->prio_pending++;
  2948. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2949. cfq_update_io_seektime(cfqd, cfqq, rq);
  2950. cfq_update_idle_window(cfqd, cfqq, cic);
  2951. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2952. if (cfqq == cfqd->active_queue) {
  2953. /*
  2954. * Remember that we saw a request from this process, but
  2955. * don't start queuing just yet. Otherwise we risk seeing lots
  2956. * of tiny requests, because we disrupt the normal plugging
  2957. * and merging. If the request is already larger than a single
  2958. * page, let it rip immediately. For that case we assume that
  2959. * merging is already done. Ditto for a busy system that
  2960. * has other work pending, don't risk delaying until the
  2961. * idle timer unplug to continue working.
  2962. */
  2963. if (cfq_cfqq_wait_request(cfqq)) {
  2964. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2965. cfqd->busy_queues > 1) {
  2966. cfq_del_timer(cfqd, cfqq);
  2967. cfq_clear_cfqq_wait_request(cfqq);
  2968. __blk_run_queue(cfqd->queue);
  2969. } else {
  2970. cfqg_stats_update_idle_time(cfqq->cfqg);
  2971. cfq_mark_cfqq_must_dispatch(cfqq);
  2972. }
  2973. }
  2974. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2975. /*
  2976. * not the active queue - expire current slice if it is
  2977. * idle and has expired it's mean thinktime or this new queue
  2978. * has some old slice time left and is of higher priority or
  2979. * this new queue is RT and the current one is BE
  2980. */
  2981. cfq_preempt_queue(cfqd, cfqq);
  2982. __blk_run_queue(cfqd->queue);
  2983. }
  2984. }
  2985. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2986. {
  2987. struct cfq_data *cfqd = q->elevator->elevator_data;
  2988. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2989. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2990. cfq_init_prio_data(cfqq, RQ_CIC(rq));
  2991. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2992. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2993. cfq_add_rq_rb(rq);
  2994. cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
  2995. rq->cmd_flags);
  2996. cfq_rq_enqueued(cfqd, cfqq, rq);
  2997. }
  2998. /*
  2999. * Update hw_tag based on peak queue depth over 50 samples under
  3000. * sufficient load.
  3001. */
  3002. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  3003. {
  3004. struct cfq_queue *cfqq = cfqd->active_queue;
  3005. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  3006. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  3007. if (cfqd->hw_tag == 1)
  3008. return;
  3009. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  3010. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  3011. return;
  3012. /*
  3013. * If active queue hasn't enough requests and can idle, cfq might not
  3014. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  3015. * case
  3016. */
  3017. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  3018. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  3019. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  3020. return;
  3021. if (cfqd->hw_tag_samples++ < 50)
  3022. return;
  3023. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  3024. cfqd->hw_tag = 1;
  3025. else
  3026. cfqd->hw_tag = 0;
  3027. }
  3028. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  3029. {
  3030. struct cfq_io_cq *cic = cfqd->active_cic;
  3031. /* If the queue already has requests, don't wait */
  3032. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3033. return false;
  3034. /* If there are other queues in the group, don't wait */
  3035. if (cfqq->cfqg->nr_cfqq > 1)
  3036. return false;
  3037. /* the only queue in the group, but think time is big */
  3038. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  3039. return false;
  3040. if (cfq_slice_used(cfqq))
  3041. return true;
  3042. /* if slice left is less than think time, wait busy */
  3043. if (cic && sample_valid(cic->ttime.ttime_samples)
  3044. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  3045. return true;
  3046. /*
  3047. * If think times is less than a jiffy than ttime_mean=0 and above
  3048. * will not be true. It might happen that slice has not expired yet
  3049. * but will expire soon (4-5 ns) during select_queue(). To cover the
  3050. * case where think time is less than a jiffy, mark the queue wait
  3051. * busy if only 1 jiffy is left in the slice.
  3052. */
  3053. if (cfqq->slice_end - jiffies == 1)
  3054. return true;
  3055. return false;
  3056. }
  3057. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  3058. {
  3059. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3060. struct cfq_data *cfqd = cfqq->cfqd;
  3061. const int sync = rq_is_sync(rq);
  3062. unsigned long now;
  3063. now = jiffies;
  3064. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  3065. !!(rq->cmd_flags & REQ_NOIDLE));
  3066. cfq_update_hw_tag(cfqd);
  3067. WARN_ON(!cfqd->rq_in_driver);
  3068. WARN_ON(!cfqq->dispatched);
  3069. cfqd->rq_in_driver--;
  3070. cfqq->dispatched--;
  3071. (RQ_CFQG(rq))->dispatched--;
  3072. cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
  3073. rq_io_start_time_ns(rq), rq->cmd_flags);
  3074. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  3075. if (sync) {
  3076. struct cfq_rb_root *service_tree;
  3077. RQ_CIC(rq)->ttime.last_end_request = now;
  3078. if (cfq_cfqq_on_rr(cfqq))
  3079. service_tree = cfqq->service_tree;
  3080. else
  3081. service_tree = service_tree_for(cfqq->cfqg,
  3082. cfqq_prio(cfqq), cfqq_type(cfqq));
  3083. service_tree->ttime.last_end_request = now;
  3084. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3085. cfqd->last_delayed_sync = now;
  3086. }
  3087. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3088. cfqq->cfqg->ttime.last_end_request = now;
  3089. #endif
  3090. /*
  3091. * If this is the active queue, check if it needs to be expired,
  3092. * or if we want to idle in case it has no pending requests.
  3093. */
  3094. if (cfqd->active_queue == cfqq) {
  3095. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3096. if (cfq_cfqq_slice_new(cfqq)) {
  3097. cfq_set_prio_slice(cfqd, cfqq);
  3098. cfq_clear_cfqq_slice_new(cfqq);
  3099. }
  3100. /*
  3101. * Should we wait for next request to come in before we expire
  3102. * the queue.
  3103. */
  3104. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3105. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3106. if (!cfqd->cfq_slice_idle)
  3107. extend_sl = cfqd->cfq_group_idle;
  3108. cfqq->slice_end = jiffies + extend_sl;
  3109. cfq_mark_cfqq_wait_busy(cfqq);
  3110. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3111. }
  3112. /*
  3113. * Idling is not enabled on:
  3114. * - expired queues
  3115. * - idle-priority queues
  3116. * - async queues
  3117. * - queues with still some requests queued
  3118. * - when there is a close cooperator
  3119. */
  3120. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3121. cfq_slice_expired(cfqd, 1);
  3122. else if (sync && cfqq_empty &&
  3123. !cfq_close_cooperator(cfqd, cfqq)) {
  3124. cfq_arm_slice_timer(cfqd);
  3125. }
  3126. }
  3127. if (!cfqd->rq_in_driver)
  3128. cfq_schedule_dispatch(cfqd);
  3129. }
  3130. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3131. {
  3132. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3133. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3134. return ELV_MQUEUE_MUST;
  3135. }
  3136. return ELV_MQUEUE_MAY;
  3137. }
  3138. static int cfq_may_queue(struct request_queue *q, int rw)
  3139. {
  3140. struct cfq_data *cfqd = q->elevator->elevator_data;
  3141. struct task_struct *tsk = current;
  3142. struct cfq_io_cq *cic;
  3143. struct cfq_queue *cfqq;
  3144. /*
  3145. * don't force setup of a queue from here, as a call to may_queue
  3146. * does not necessarily imply that a request actually will be queued.
  3147. * so just lookup a possibly existing queue, or return 'may queue'
  3148. * if that fails
  3149. */
  3150. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3151. if (!cic)
  3152. return ELV_MQUEUE_MAY;
  3153. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3154. if (cfqq) {
  3155. cfq_init_prio_data(cfqq, cic);
  3156. return __cfq_may_queue(cfqq);
  3157. }
  3158. return ELV_MQUEUE_MAY;
  3159. }
  3160. /*
  3161. * queue lock held here
  3162. */
  3163. static void cfq_put_request(struct request *rq)
  3164. {
  3165. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3166. if (cfqq) {
  3167. const int rw = rq_data_dir(rq);
  3168. BUG_ON(!cfqq->allocated[rw]);
  3169. cfqq->allocated[rw]--;
  3170. /* Put down rq reference on cfqg */
  3171. cfqg_put(RQ_CFQG(rq));
  3172. rq->elv.priv[0] = NULL;
  3173. rq->elv.priv[1] = NULL;
  3174. cfq_put_queue(cfqq);
  3175. }
  3176. }
  3177. static struct cfq_queue *
  3178. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  3179. struct cfq_queue *cfqq)
  3180. {
  3181. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3182. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3183. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3184. cfq_put_queue(cfqq);
  3185. return cic_to_cfqq(cic, 1);
  3186. }
  3187. /*
  3188. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3189. * was the last process referring to said cfqq.
  3190. */
  3191. static struct cfq_queue *
  3192. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  3193. {
  3194. if (cfqq_process_refs(cfqq) == 1) {
  3195. cfqq->pid = current->pid;
  3196. cfq_clear_cfqq_coop(cfqq);
  3197. cfq_clear_cfqq_split_coop(cfqq);
  3198. return cfqq;
  3199. }
  3200. cic_set_cfqq(cic, NULL, 1);
  3201. cfq_put_cooperator(cfqq);
  3202. cfq_put_queue(cfqq);
  3203. return NULL;
  3204. }
  3205. /*
  3206. * Allocate cfq data structures associated with this request.
  3207. */
  3208. static int
  3209. cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
  3210. gfp_t gfp_mask)
  3211. {
  3212. struct cfq_data *cfqd = q->elevator->elevator_data;
  3213. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  3214. const int rw = rq_data_dir(rq);
  3215. const bool is_sync = rq_is_sync(rq);
  3216. struct cfq_queue *cfqq;
  3217. might_sleep_if(gfp_mask & __GFP_WAIT);
  3218. spin_lock_irq(q->queue_lock);
  3219. check_ioprio_changed(cic, bio);
  3220. check_blkcg_changed(cic, bio);
  3221. new_queue:
  3222. cfqq = cic_to_cfqq(cic, is_sync);
  3223. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3224. cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
  3225. cic_set_cfqq(cic, cfqq, is_sync);
  3226. } else {
  3227. /*
  3228. * If the queue was seeky for too long, break it apart.
  3229. */
  3230. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3231. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3232. cfqq = split_cfqq(cic, cfqq);
  3233. if (!cfqq)
  3234. goto new_queue;
  3235. }
  3236. /*
  3237. * Check to see if this queue is scheduled to merge with
  3238. * another, closely cooperating queue. The merging of
  3239. * queues happens here as it must be done in process context.
  3240. * The reference on new_cfqq was taken in merge_cfqqs.
  3241. */
  3242. if (cfqq->new_cfqq)
  3243. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3244. }
  3245. cfqq->allocated[rw]++;
  3246. cfqq->ref++;
  3247. cfqg_get(cfqq->cfqg);
  3248. rq->elv.priv[0] = cfqq;
  3249. rq->elv.priv[1] = cfqq->cfqg;
  3250. spin_unlock_irq(q->queue_lock);
  3251. return 0;
  3252. }
  3253. static void cfq_kick_queue(struct work_struct *work)
  3254. {
  3255. struct cfq_data *cfqd =
  3256. container_of(work, struct cfq_data, unplug_work);
  3257. struct request_queue *q = cfqd->queue;
  3258. spin_lock_irq(q->queue_lock);
  3259. __blk_run_queue(cfqd->queue);
  3260. spin_unlock_irq(q->queue_lock);
  3261. }
  3262. /*
  3263. * Timer running if the active_queue is currently idling inside its time slice
  3264. */
  3265. static void cfq_idle_slice_timer(unsigned long data)
  3266. {
  3267. struct cfq_data *cfqd = (struct cfq_data *) data;
  3268. struct cfq_queue *cfqq;
  3269. unsigned long flags;
  3270. int timed_out = 1;
  3271. cfq_log(cfqd, "idle timer fired");
  3272. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3273. cfqq = cfqd->active_queue;
  3274. if (cfqq) {
  3275. timed_out = 0;
  3276. /*
  3277. * We saw a request before the queue expired, let it through
  3278. */
  3279. if (cfq_cfqq_must_dispatch(cfqq))
  3280. goto out_kick;
  3281. /*
  3282. * expired
  3283. */
  3284. if (cfq_slice_used(cfqq))
  3285. goto expire;
  3286. /*
  3287. * only expire and reinvoke request handler, if there are
  3288. * other queues with pending requests
  3289. */
  3290. if (!cfqd->busy_queues)
  3291. goto out_cont;
  3292. /*
  3293. * not expired and it has a request pending, let it dispatch
  3294. */
  3295. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3296. goto out_kick;
  3297. /*
  3298. * Queue depth flag is reset only when the idle didn't succeed
  3299. */
  3300. cfq_clear_cfqq_deep(cfqq);
  3301. }
  3302. expire:
  3303. cfq_slice_expired(cfqd, timed_out);
  3304. out_kick:
  3305. cfq_schedule_dispatch(cfqd);
  3306. out_cont:
  3307. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3308. }
  3309. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3310. {
  3311. del_timer_sync(&cfqd->idle_slice_timer);
  3312. cancel_work_sync(&cfqd->unplug_work);
  3313. }
  3314. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3315. {
  3316. int i;
  3317. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3318. if (cfqd->async_cfqq[0][i])
  3319. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3320. if (cfqd->async_cfqq[1][i])
  3321. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3322. }
  3323. if (cfqd->async_idle_cfqq)
  3324. cfq_put_queue(cfqd->async_idle_cfqq);
  3325. }
  3326. static void cfq_exit_queue(struct elevator_queue *e)
  3327. {
  3328. struct cfq_data *cfqd = e->elevator_data;
  3329. struct request_queue *q = cfqd->queue;
  3330. cfq_shutdown_timer_wq(cfqd);
  3331. spin_lock_irq(q->queue_lock);
  3332. if (cfqd->active_queue)
  3333. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3334. cfq_put_async_queues(cfqd);
  3335. spin_unlock_irq(q->queue_lock);
  3336. cfq_shutdown_timer_wq(cfqd);
  3337. #ifndef CONFIG_CFQ_GROUP_IOSCHED
  3338. kfree(cfqd->root_group);
  3339. #endif
  3340. update_root_blkg_pd(q, BLKIO_POLICY_PROP);
  3341. kfree(cfqd);
  3342. }
  3343. static int cfq_init_queue(struct request_queue *q)
  3344. {
  3345. struct cfq_data *cfqd;
  3346. struct blkio_group *blkg __maybe_unused;
  3347. int i;
  3348. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3349. if (!cfqd)
  3350. return -ENOMEM;
  3351. cfqd->queue = q;
  3352. q->elevator->elevator_data = cfqd;
  3353. /* Init root service tree */
  3354. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3355. /* Init root group and prefer root group over other groups by default */
  3356. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3357. rcu_read_lock();
  3358. spin_lock_irq(q->queue_lock);
  3359. blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
  3360. if (!IS_ERR(blkg))
  3361. cfqd->root_group = blkg_to_cfqg(blkg);
  3362. spin_unlock_irq(q->queue_lock);
  3363. rcu_read_unlock();
  3364. #else
  3365. cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
  3366. GFP_KERNEL, cfqd->queue->node);
  3367. if (cfqd->root_group)
  3368. cfq_init_cfqg_base(cfqd->root_group);
  3369. #endif
  3370. if (!cfqd->root_group) {
  3371. kfree(cfqd);
  3372. return -ENOMEM;
  3373. }
  3374. cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3375. /*
  3376. * Not strictly needed (since RB_ROOT just clears the node and we
  3377. * zeroed cfqd on alloc), but better be safe in case someone decides
  3378. * to add magic to the rb code
  3379. */
  3380. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3381. cfqd->prio_trees[i] = RB_ROOT;
  3382. /*
  3383. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3384. * Grab a permanent reference to it, so that the normal code flow
  3385. * will not attempt to free it. oom_cfqq is linked to root_group
  3386. * but shouldn't hold a reference as it'll never be unlinked. Lose
  3387. * the reference from linking right away.
  3388. */
  3389. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3390. cfqd->oom_cfqq.ref++;
  3391. spin_lock_irq(q->queue_lock);
  3392. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
  3393. cfqg_put(cfqd->root_group);
  3394. spin_unlock_irq(q->queue_lock);
  3395. init_timer(&cfqd->idle_slice_timer);
  3396. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3397. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3398. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3399. cfqd->cfq_quantum = cfq_quantum;
  3400. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3401. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3402. cfqd->cfq_back_max = cfq_back_max;
  3403. cfqd->cfq_back_penalty = cfq_back_penalty;
  3404. cfqd->cfq_slice[0] = cfq_slice_async;
  3405. cfqd->cfq_slice[1] = cfq_slice_sync;
  3406. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3407. cfqd->cfq_slice_idle = cfq_slice_idle;
  3408. cfqd->cfq_group_idle = cfq_group_idle;
  3409. cfqd->cfq_latency = 1;
  3410. cfqd->hw_tag = -1;
  3411. /*
  3412. * we optimistically start assuming sync ops weren't delayed in last
  3413. * second, in order to have larger depth for async operations.
  3414. */
  3415. cfqd->last_delayed_sync = jiffies - HZ;
  3416. return 0;
  3417. }
  3418. /*
  3419. * sysfs parts below -->
  3420. */
  3421. static ssize_t
  3422. cfq_var_show(unsigned int var, char *page)
  3423. {
  3424. return sprintf(page, "%d\n", var);
  3425. }
  3426. static ssize_t
  3427. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3428. {
  3429. char *p = (char *) page;
  3430. *var = simple_strtoul(p, &p, 10);
  3431. return count;
  3432. }
  3433. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3434. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3435. { \
  3436. struct cfq_data *cfqd = e->elevator_data; \
  3437. unsigned int __data = __VAR; \
  3438. if (__CONV) \
  3439. __data = jiffies_to_msecs(__data); \
  3440. return cfq_var_show(__data, (page)); \
  3441. }
  3442. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3443. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3444. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3445. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3446. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3447. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3448. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3449. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3450. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3451. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3452. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3453. #undef SHOW_FUNCTION
  3454. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3455. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3456. { \
  3457. struct cfq_data *cfqd = e->elevator_data; \
  3458. unsigned int __data; \
  3459. int ret = cfq_var_store(&__data, (page), count); \
  3460. if (__data < (MIN)) \
  3461. __data = (MIN); \
  3462. else if (__data > (MAX)) \
  3463. __data = (MAX); \
  3464. if (__CONV) \
  3465. *(__PTR) = msecs_to_jiffies(__data); \
  3466. else \
  3467. *(__PTR) = __data; \
  3468. return ret; \
  3469. }
  3470. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3471. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3472. UINT_MAX, 1);
  3473. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3474. UINT_MAX, 1);
  3475. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3476. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3477. UINT_MAX, 0);
  3478. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3479. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3480. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3481. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3482. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3483. UINT_MAX, 0);
  3484. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3485. #undef STORE_FUNCTION
  3486. #define CFQ_ATTR(name) \
  3487. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3488. static struct elv_fs_entry cfq_attrs[] = {
  3489. CFQ_ATTR(quantum),
  3490. CFQ_ATTR(fifo_expire_sync),
  3491. CFQ_ATTR(fifo_expire_async),
  3492. CFQ_ATTR(back_seek_max),
  3493. CFQ_ATTR(back_seek_penalty),
  3494. CFQ_ATTR(slice_sync),
  3495. CFQ_ATTR(slice_async),
  3496. CFQ_ATTR(slice_async_rq),
  3497. CFQ_ATTR(slice_idle),
  3498. CFQ_ATTR(group_idle),
  3499. CFQ_ATTR(low_latency),
  3500. __ATTR_NULL
  3501. };
  3502. static struct elevator_type iosched_cfq = {
  3503. .ops = {
  3504. .elevator_merge_fn = cfq_merge,
  3505. .elevator_merged_fn = cfq_merged_request,
  3506. .elevator_merge_req_fn = cfq_merged_requests,
  3507. .elevator_allow_merge_fn = cfq_allow_merge,
  3508. .elevator_bio_merged_fn = cfq_bio_merged,
  3509. .elevator_dispatch_fn = cfq_dispatch_requests,
  3510. .elevator_add_req_fn = cfq_insert_request,
  3511. .elevator_activate_req_fn = cfq_activate_request,
  3512. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3513. .elevator_completed_req_fn = cfq_completed_request,
  3514. .elevator_former_req_fn = elv_rb_former_request,
  3515. .elevator_latter_req_fn = elv_rb_latter_request,
  3516. .elevator_init_icq_fn = cfq_init_icq,
  3517. .elevator_exit_icq_fn = cfq_exit_icq,
  3518. .elevator_set_req_fn = cfq_set_request,
  3519. .elevator_put_req_fn = cfq_put_request,
  3520. .elevator_may_queue_fn = cfq_may_queue,
  3521. .elevator_init_fn = cfq_init_queue,
  3522. .elevator_exit_fn = cfq_exit_queue,
  3523. },
  3524. .icq_size = sizeof(struct cfq_io_cq),
  3525. .icq_align = __alignof__(struct cfq_io_cq),
  3526. .elevator_attrs = cfq_attrs,
  3527. .elevator_name = "cfq",
  3528. .elevator_owner = THIS_MODULE,
  3529. };
  3530. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3531. static struct blkio_policy_type blkio_policy_cfq = {
  3532. .ops = {
  3533. .blkio_init_group_fn = cfq_init_blkio_group,
  3534. .blkio_reset_group_stats_fn = cfqg_stats_reset,
  3535. },
  3536. .plid = BLKIO_POLICY_PROP,
  3537. .pdata_size = sizeof(struct cfq_group),
  3538. .cftypes = cfq_blkcg_files,
  3539. };
  3540. #endif
  3541. static int __init cfq_init(void)
  3542. {
  3543. int ret;
  3544. /*
  3545. * could be 0 on HZ < 1000 setups
  3546. */
  3547. if (!cfq_slice_async)
  3548. cfq_slice_async = 1;
  3549. if (!cfq_slice_idle)
  3550. cfq_slice_idle = 1;
  3551. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3552. if (!cfq_group_idle)
  3553. cfq_group_idle = 1;
  3554. #else
  3555. cfq_group_idle = 0;
  3556. #endif
  3557. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3558. if (!cfq_pool)
  3559. return -ENOMEM;
  3560. ret = elv_register(&iosched_cfq);
  3561. if (ret) {
  3562. kmem_cache_destroy(cfq_pool);
  3563. return ret;
  3564. }
  3565. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3566. blkio_policy_register(&blkio_policy_cfq);
  3567. #endif
  3568. return 0;
  3569. }
  3570. static void __exit cfq_exit(void)
  3571. {
  3572. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3573. blkio_policy_unregister(&blkio_policy_cfq);
  3574. #endif
  3575. elv_unregister(&iosched_cfq);
  3576. kmem_cache_destroy(cfq_pool);
  3577. }
  3578. module_init(cfq_init);
  3579. module_exit(cfq_exit);
  3580. MODULE_AUTHOR("Jens Axboe");
  3581. MODULE_LICENSE("GPL");
  3582. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");