xfs_super.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_clnt.h"
  22. #include "xfs_inum.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_dir2.h"
  27. #include "xfs_alloc.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_quota.h"
  30. #include "xfs_mount.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_bmap.h"
  41. #include "xfs_rtalloc.h"
  42. #include "xfs_error.h"
  43. #include "xfs_itable.h"
  44. #include "xfs_rw.h"
  45. #include "xfs_acl.h"
  46. #include "xfs_attr.h"
  47. #include "xfs_buf_item.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_vnodeops.h"
  50. #include "xfs_version.h"
  51. #include <linux/namei.h>
  52. #include <linux/init.h>
  53. #include <linux/mount.h>
  54. #include <linux/mempool.h>
  55. #include <linux/writeback.h>
  56. #include <linux/kthread.h>
  57. #include <linux/freezer.h>
  58. static struct quotactl_ops xfs_quotactl_operations;
  59. static struct super_operations xfs_super_operations;
  60. static kmem_zone_t *xfs_vnode_zone;
  61. static kmem_zone_t *xfs_ioend_zone;
  62. mempool_t *xfs_ioend_pool;
  63. STATIC struct xfs_mount_args *
  64. xfs_args_allocate(
  65. struct super_block *sb,
  66. int silent)
  67. {
  68. struct xfs_mount_args *args;
  69. args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
  70. args->logbufs = args->logbufsize = -1;
  71. strncpy(args->fsname, sb->s_id, MAXNAMELEN);
  72. /* Copy the already-parsed mount(2) flags we're interested in */
  73. if (sb->s_flags & MS_DIRSYNC)
  74. args->flags |= XFSMNT_DIRSYNC;
  75. if (sb->s_flags & MS_SYNCHRONOUS)
  76. args->flags |= XFSMNT_WSYNC;
  77. if (silent)
  78. args->flags |= XFSMNT_QUIET;
  79. args->flags |= XFSMNT_32BITINODES;
  80. return args;
  81. }
  82. __uint64_t
  83. xfs_max_file_offset(
  84. unsigned int blockshift)
  85. {
  86. unsigned int pagefactor = 1;
  87. unsigned int bitshift = BITS_PER_LONG - 1;
  88. /* Figure out maximum filesize, on Linux this can depend on
  89. * the filesystem blocksize (on 32 bit platforms).
  90. * __block_prepare_write does this in an [unsigned] long...
  91. * page->index << (PAGE_CACHE_SHIFT - bbits)
  92. * So, for page sized blocks (4K on 32 bit platforms),
  93. * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
  94. * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
  95. * but for smaller blocksizes it is less (bbits = log2 bsize).
  96. * Note1: get_block_t takes a long (implicit cast from above)
  97. * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
  98. * can optionally convert the [unsigned] long from above into
  99. * an [unsigned] long long.
  100. */
  101. #if BITS_PER_LONG == 32
  102. # if defined(CONFIG_LBD)
  103. ASSERT(sizeof(sector_t) == 8);
  104. pagefactor = PAGE_CACHE_SIZE;
  105. bitshift = BITS_PER_LONG;
  106. # else
  107. pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
  108. # endif
  109. #endif
  110. return (((__uint64_t)pagefactor) << bitshift) - 1;
  111. }
  112. STATIC_INLINE void
  113. xfs_set_inodeops(
  114. struct inode *inode)
  115. {
  116. switch (inode->i_mode & S_IFMT) {
  117. case S_IFREG:
  118. inode->i_op = &xfs_inode_operations;
  119. inode->i_fop = &xfs_file_operations;
  120. inode->i_mapping->a_ops = &xfs_address_space_operations;
  121. break;
  122. case S_IFDIR:
  123. inode->i_op = &xfs_dir_inode_operations;
  124. inode->i_fop = &xfs_dir_file_operations;
  125. break;
  126. case S_IFLNK:
  127. inode->i_op = &xfs_symlink_inode_operations;
  128. if (inode->i_blocks)
  129. inode->i_mapping->a_ops = &xfs_address_space_operations;
  130. break;
  131. default:
  132. inode->i_op = &xfs_inode_operations;
  133. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  134. break;
  135. }
  136. }
  137. STATIC_INLINE void
  138. xfs_revalidate_inode(
  139. xfs_mount_t *mp,
  140. bhv_vnode_t *vp,
  141. xfs_inode_t *ip)
  142. {
  143. struct inode *inode = vn_to_inode(vp);
  144. inode->i_mode = ip->i_d.di_mode;
  145. inode->i_nlink = ip->i_d.di_nlink;
  146. inode->i_uid = ip->i_d.di_uid;
  147. inode->i_gid = ip->i_d.di_gid;
  148. switch (inode->i_mode & S_IFMT) {
  149. case S_IFBLK:
  150. case S_IFCHR:
  151. inode->i_rdev =
  152. MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
  153. sysv_minor(ip->i_df.if_u2.if_rdev));
  154. break;
  155. default:
  156. inode->i_rdev = 0;
  157. break;
  158. }
  159. inode->i_generation = ip->i_d.di_gen;
  160. i_size_write(inode, ip->i_d.di_size);
  161. inode->i_blocks =
  162. XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
  163. inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
  164. inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
  165. inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
  166. inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
  167. inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
  168. inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
  169. if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
  170. inode->i_flags |= S_IMMUTABLE;
  171. else
  172. inode->i_flags &= ~S_IMMUTABLE;
  173. if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
  174. inode->i_flags |= S_APPEND;
  175. else
  176. inode->i_flags &= ~S_APPEND;
  177. if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
  178. inode->i_flags |= S_SYNC;
  179. else
  180. inode->i_flags &= ~S_SYNC;
  181. if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
  182. inode->i_flags |= S_NOATIME;
  183. else
  184. inode->i_flags &= ~S_NOATIME;
  185. xfs_iflags_clear(ip, XFS_IMODIFIED);
  186. }
  187. void
  188. xfs_initialize_vnode(
  189. bhv_desc_t *bdp,
  190. bhv_vnode_t *vp,
  191. struct xfs_inode *ip,
  192. int unlock)
  193. {
  194. struct inode *inode = vn_to_inode(vp);
  195. if (!ip->i_vnode) {
  196. ip->i_vnode = vp;
  197. inode->i_private = ip;
  198. }
  199. /*
  200. * We need to set the ops vectors, and unlock the inode, but if
  201. * we have been called during the new inode create process, it is
  202. * too early to fill in the Linux inode. We will get called a
  203. * second time once the inode is properly set up, and then we can
  204. * finish our work.
  205. */
  206. if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
  207. xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
  208. xfs_set_inodeops(inode);
  209. xfs_iflags_clear(ip, XFS_INEW);
  210. barrier();
  211. unlock_new_inode(inode);
  212. }
  213. }
  214. int
  215. xfs_blkdev_get(
  216. xfs_mount_t *mp,
  217. const char *name,
  218. struct block_device **bdevp)
  219. {
  220. int error = 0;
  221. *bdevp = open_bdev_excl(name, 0, mp);
  222. if (IS_ERR(*bdevp)) {
  223. error = PTR_ERR(*bdevp);
  224. printk("XFS: Invalid device [%s], error=%d\n", name, error);
  225. }
  226. return -error;
  227. }
  228. void
  229. xfs_blkdev_put(
  230. struct block_device *bdev)
  231. {
  232. if (bdev)
  233. close_bdev_excl(bdev);
  234. }
  235. /*
  236. * Try to write out the superblock using barriers.
  237. */
  238. STATIC int
  239. xfs_barrier_test(
  240. xfs_mount_t *mp)
  241. {
  242. xfs_buf_t *sbp = xfs_getsb(mp, 0);
  243. int error;
  244. XFS_BUF_UNDONE(sbp);
  245. XFS_BUF_UNREAD(sbp);
  246. XFS_BUF_UNDELAYWRITE(sbp);
  247. XFS_BUF_WRITE(sbp);
  248. XFS_BUF_UNASYNC(sbp);
  249. XFS_BUF_ORDERED(sbp);
  250. xfsbdstrat(mp, sbp);
  251. error = xfs_iowait(sbp);
  252. /*
  253. * Clear all the flags we set and possible error state in the
  254. * buffer. We only did the write to try out whether barriers
  255. * worked and shouldn't leave any traces in the superblock
  256. * buffer.
  257. */
  258. XFS_BUF_DONE(sbp);
  259. XFS_BUF_ERROR(sbp, 0);
  260. XFS_BUF_UNORDERED(sbp);
  261. xfs_buf_relse(sbp);
  262. return error;
  263. }
  264. void
  265. xfs_mountfs_check_barriers(xfs_mount_t *mp)
  266. {
  267. int error;
  268. if (mp->m_logdev_targp != mp->m_ddev_targp) {
  269. xfs_fs_cmn_err(CE_NOTE, mp,
  270. "Disabling barriers, not supported with external log device");
  271. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  272. return;
  273. }
  274. if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
  275. xfs_fs_cmn_err(CE_NOTE, mp,
  276. "Disabling barriers, underlying device is readonly");
  277. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  278. return;
  279. }
  280. error = xfs_barrier_test(mp);
  281. if (error) {
  282. xfs_fs_cmn_err(CE_NOTE, mp,
  283. "Disabling barriers, trial barrier write failed");
  284. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  285. return;
  286. }
  287. }
  288. void
  289. xfs_blkdev_issue_flush(
  290. xfs_buftarg_t *buftarg)
  291. {
  292. blkdev_issue_flush(buftarg->bt_bdev, NULL);
  293. }
  294. STATIC struct inode *
  295. xfs_fs_alloc_inode(
  296. struct super_block *sb)
  297. {
  298. bhv_vnode_t *vp;
  299. vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
  300. if (unlikely(!vp))
  301. return NULL;
  302. return vn_to_inode(vp);
  303. }
  304. STATIC void
  305. xfs_fs_destroy_inode(
  306. struct inode *inode)
  307. {
  308. kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
  309. }
  310. STATIC void
  311. xfs_fs_inode_init_once(
  312. void *vnode,
  313. kmem_zone_t *zonep,
  314. unsigned long flags)
  315. {
  316. inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
  317. }
  318. STATIC int
  319. xfs_init_zones(void)
  320. {
  321. xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
  322. KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
  323. KM_ZONE_SPREAD,
  324. xfs_fs_inode_init_once);
  325. if (!xfs_vnode_zone)
  326. goto out;
  327. xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
  328. if (!xfs_ioend_zone)
  329. goto out_destroy_vnode_zone;
  330. xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
  331. xfs_ioend_zone);
  332. if (!xfs_ioend_pool)
  333. goto out_free_ioend_zone;
  334. return 0;
  335. out_free_ioend_zone:
  336. kmem_zone_destroy(xfs_ioend_zone);
  337. out_destroy_vnode_zone:
  338. kmem_zone_destroy(xfs_vnode_zone);
  339. out:
  340. return -ENOMEM;
  341. }
  342. STATIC void
  343. xfs_destroy_zones(void)
  344. {
  345. mempool_destroy(xfs_ioend_pool);
  346. kmem_zone_destroy(xfs_vnode_zone);
  347. kmem_zone_destroy(xfs_ioend_zone);
  348. }
  349. /*
  350. * Attempt to flush the inode, this will actually fail
  351. * if the inode is pinned, but we dirty the inode again
  352. * at the point when it is unpinned after a log write,
  353. * since this is when the inode itself becomes flushable.
  354. */
  355. STATIC int
  356. xfs_fs_write_inode(
  357. struct inode *inode,
  358. int sync)
  359. {
  360. int error = 0, flags = FLUSH_INODE;
  361. vn_trace_entry(XFS_I(inode), __FUNCTION__,
  362. (inst_t *)__return_address);
  363. if (sync) {
  364. filemap_fdatawait(inode->i_mapping);
  365. flags |= FLUSH_SYNC;
  366. }
  367. error = xfs_inode_flush(XFS_I(inode), flags);
  368. if (error == EAGAIN) {
  369. if (sync)
  370. error = xfs_inode_flush(XFS_I(inode),
  371. flags | FLUSH_LOG);
  372. else
  373. error = 0;
  374. }
  375. return -error;
  376. }
  377. STATIC void
  378. xfs_fs_clear_inode(
  379. struct inode *inode)
  380. {
  381. xfs_inode_t *ip = XFS_I(inode);
  382. /*
  383. * ip can be null when xfs_iget_core calls xfs_idestroy if we
  384. * find an inode with di_mode == 0 but without IGET_CREATE set.
  385. */
  386. if (ip) {
  387. vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);
  388. XFS_STATS_INC(vn_rele);
  389. XFS_STATS_INC(vn_remove);
  390. XFS_STATS_INC(vn_reclaim);
  391. XFS_STATS_DEC(vn_active);
  392. xfs_inactive(ip);
  393. xfs_iflags_clear(ip, XFS_IMODIFIED);
  394. if (xfs_reclaim(ip))
  395. panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
  396. }
  397. ASSERT(XFS_I(inode) == NULL);
  398. }
  399. /*
  400. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  401. * Doing this has two advantages:
  402. * - It saves on stack space, which is tight in certain situations
  403. * - It can be used (with care) as a mechanism to avoid deadlocks.
  404. * Flushing while allocating in a full filesystem requires both.
  405. */
  406. STATIC void
  407. xfs_syncd_queue_work(
  408. struct bhv_vfs *vfs,
  409. void *data,
  410. void (*syncer)(bhv_vfs_t *, void *))
  411. {
  412. struct bhv_vfs_sync_work *work;
  413. work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
  414. INIT_LIST_HEAD(&work->w_list);
  415. work->w_syncer = syncer;
  416. work->w_data = data;
  417. work->w_vfs = vfs;
  418. spin_lock(&vfs->vfs_sync_lock);
  419. list_add_tail(&work->w_list, &vfs->vfs_sync_list);
  420. spin_unlock(&vfs->vfs_sync_lock);
  421. wake_up_process(vfs->vfs_sync_task);
  422. }
  423. /*
  424. * Flush delayed allocate data, attempting to free up reserved space
  425. * from existing allocations. At this point a new allocation attempt
  426. * has failed with ENOSPC and we are in the process of scratching our
  427. * heads, looking about for more room...
  428. */
  429. STATIC void
  430. xfs_flush_inode_work(
  431. bhv_vfs_t *vfs,
  432. void *inode)
  433. {
  434. filemap_flush(((struct inode *)inode)->i_mapping);
  435. iput((struct inode *)inode);
  436. }
  437. void
  438. xfs_flush_inode(
  439. xfs_inode_t *ip)
  440. {
  441. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  442. struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
  443. igrab(inode);
  444. xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
  445. delay(msecs_to_jiffies(500));
  446. }
  447. /*
  448. * This is the "bigger hammer" version of xfs_flush_inode_work...
  449. * (IOW, "If at first you don't succeed, use a Bigger Hammer").
  450. */
  451. STATIC void
  452. xfs_flush_device_work(
  453. bhv_vfs_t *vfs,
  454. void *inode)
  455. {
  456. sync_blockdev(vfs->vfs_super->s_bdev);
  457. iput((struct inode *)inode);
  458. }
  459. void
  460. xfs_flush_device(
  461. xfs_inode_t *ip)
  462. {
  463. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  464. struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
  465. igrab(inode);
  466. xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
  467. delay(msecs_to_jiffies(500));
  468. xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
  469. }
  470. STATIC void
  471. vfs_sync_worker(
  472. bhv_vfs_t *vfsp,
  473. void *unused)
  474. {
  475. int error;
  476. if (!(vfsp->vfs_flag & VFS_RDONLY))
  477. error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
  478. SYNC_ATTR | SYNC_REFCACHE | SYNC_SUPER,
  479. NULL);
  480. vfsp->vfs_sync_seq++;
  481. wake_up(&vfsp->vfs_wait_single_sync_task);
  482. }
  483. STATIC int
  484. xfssyncd(
  485. void *arg)
  486. {
  487. long timeleft;
  488. bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
  489. bhv_vfs_sync_work_t *work, *n;
  490. LIST_HEAD (tmp);
  491. set_freezable();
  492. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  493. for (;;) {
  494. timeleft = schedule_timeout_interruptible(timeleft);
  495. /* swsusp */
  496. try_to_freeze();
  497. if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
  498. break;
  499. spin_lock(&vfsp->vfs_sync_lock);
  500. /*
  501. * We can get woken by laptop mode, to do a sync -
  502. * that's the (only!) case where the list would be
  503. * empty with time remaining.
  504. */
  505. if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
  506. if (!timeleft)
  507. timeleft = xfs_syncd_centisecs *
  508. msecs_to_jiffies(10);
  509. INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
  510. list_add_tail(&vfsp->vfs_sync_work.w_list,
  511. &vfsp->vfs_sync_list);
  512. }
  513. list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
  514. list_move(&work->w_list, &tmp);
  515. spin_unlock(&vfsp->vfs_sync_lock);
  516. list_for_each_entry_safe(work, n, &tmp, w_list) {
  517. (*work->w_syncer)(vfsp, work->w_data);
  518. list_del(&work->w_list);
  519. if (work == &vfsp->vfs_sync_work)
  520. continue;
  521. kmem_free(work, sizeof(struct bhv_vfs_sync_work));
  522. }
  523. }
  524. return 0;
  525. }
  526. STATIC int
  527. xfs_fs_start_syncd(
  528. bhv_vfs_t *vfsp)
  529. {
  530. vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
  531. vfsp->vfs_sync_work.w_vfs = vfsp;
  532. vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
  533. if (IS_ERR(vfsp->vfs_sync_task))
  534. return -PTR_ERR(vfsp->vfs_sync_task);
  535. return 0;
  536. }
  537. STATIC void
  538. xfs_fs_stop_syncd(
  539. bhv_vfs_t *vfsp)
  540. {
  541. kthread_stop(vfsp->vfs_sync_task);
  542. }
  543. STATIC void
  544. xfs_fs_put_super(
  545. struct super_block *sb)
  546. {
  547. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  548. int error;
  549. xfs_fs_stop_syncd(vfsp);
  550. bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
  551. error = bhv_vfs_unmount(vfsp, 0, NULL);
  552. if (error) {
  553. printk("XFS: unmount got error=%d\n", error);
  554. printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
  555. } else {
  556. vfs_deallocate(vfsp);
  557. }
  558. }
  559. STATIC void
  560. xfs_fs_write_super(
  561. struct super_block *sb)
  562. {
  563. if (!(sb->s_flags & MS_RDONLY))
  564. bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
  565. sb->s_dirt = 0;
  566. }
  567. STATIC int
  568. xfs_fs_sync_super(
  569. struct super_block *sb,
  570. int wait)
  571. {
  572. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  573. int error;
  574. int flags;
  575. if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
  576. /*
  577. * First stage of freeze - no more writers will make progress
  578. * now we are here, so we flush delwri and delalloc buffers
  579. * here, then wait for all I/O to complete. Data is frozen at
  580. * that point. Metadata is not frozen, transactions can still
  581. * occur here so don't bother flushing the buftarg (i.e
  582. * SYNC_QUIESCE) because it'll just get dirty again.
  583. */
  584. flags = SYNC_DATA_QUIESCE;
  585. } else
  586. flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
  587. error = bhv_vfs_sync(vfsp, flags, NULL);
  588. sb->s_dirt = 0;
  589. if (unlikely(laptop_mode)) {
  590. int prev_sync_seq = vfsp->vfs_sync_seq;
  591. /*
  592. * The disk must be active because we're syncing.
  593. * We schedule xfssyncd now (now that the disk is
  594. * active) instead of later (when it might not be).
  595. */
  596. wake_up_process(vfsp->vfs_sync_task);
  597. /*
  598. * We have to wait for the sync iteration to complete.
  599. * If we don't, the disk activity caused by the sync
  600. * will come after the sync is completed, and that
  601. * triggers another sync from laptop mode.
  602. */
  603. wait_event(vfsp->vfs_wait_single_sync_task,
  604. vfsp->vfs_sync_seq != prev_sync_seq);
  605. }
  606. return -error;
  607. }
  608. STATIC int
  609. xfs_fs_statfs(
  610. struct dentry *dentry,
  611. struct kstatfs *statp)
  612. {
  613. return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
  614. vn_from_inode(dentry->d_inode));
  615. }
  616. STATIC int
  617. xfs_fs_remount(
  618. struct super_block *sb,
  619. int *flags,
  620. char *options)
  621. {
  622. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  623. struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
  624. int error;
  625. error = bhv_vfs_parseargs(vfsp, options, args, 1);
  626. if (!error)
  627. error = bhv_vfs_mntupdate(vfsp, flags, args);
  628. kmem_free(args, sizeof(*args));
  629. return -error;
  630. }
  631. STATIC void
  632. xfs_fs_lockfs(
  633. struct super_block *sb)
  634. {
  635. bhv_vfs_freeze(vfs_from_sb(sb));
  636. }
  637. STATIC int
  638. xfs_fs_show_options(
  639. struct seq_file *m,
  640. struct vfsmount *mnt)
  641. {
  642. return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
  643. }
  644. STATIC int
  645. xfs_fs_quotasync(
  646. struct super_block *sb,
  647. int type)
  648. {
  649. return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
  650. }
  651. STATIC int
  652. xfs_fs_getxstate(
  653. struct super_block *sb,
  654. struct fs_quota_stat *fqs)
  655. {
  656. return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
  657. }
  658. STATIC int
  659. xfs_fs_setxstate(
  660. struct super_block *sb,
  661. unsigned int flags,
  662. int op)
  663. {
  664. return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
  665. }
  666. STATIC int
  667. xfs_fs_getxquota(
  668. struct super_block *sb,
  669. int type,
  670. qid_t id,
  671. struct fs_disk_quota *fdq)
  672. {
  673. return -bhv_vfs_quotactl(vfs_from_sb(sb),
  674. (type == USRQUOTA) ? Q_XGETQUOTA :
  675. ((type == GRPQUOTA) ? Q_XGETGQUOTA :
  676. Q_XGETPQUOTA), id, (caddr_t)fdq);
  677. }
  678. STATIC int
  679. xfs_fs_setxquota(
  680. struct super_block *sb,
  681. int type,
  682. qid_t id,
  683. struct fs_disk_quota *fdq)
  684. {
  685. return -bhv_vfs_quotactl(vfs_from_sb(sb),
  686. (type == USRQUOTA) ? Q_XSETQLIM :
  687. ((type == GRPQUOTA) ? Q_XSETGQLIM :
  688. Q_XSETPQLIM), id, (caddr_t)fdq);
  689. }
  690. STATIC int
  691. xfs_fs_fill_super(
  692. struct super_block *sb,
  693. void *data,
  694. int silent)
  695. {
  696. struct bhv_vnode *rootvp;
  697. struct bhv_vfs *vfsp = vfs_allocate(sb);
  698. struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
  699. struct kstatfs statvfs;
  700. int error;
  701. bhv_insert_all_vfsops(vfsp);
  702. error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
  703. if (error) {
  704. bhv_remove_all_vfsops(vfsp, 1);
  705. goto fail_vfsop;
  706. }
  707. sb_min_blocksize(sb, BBSIZE);
  708. sb->s_export_op = &xfs_export_operations;
  709. sb->s_qcop = &xfs_quotactl_operations;
  710. sb->s_op = &xfs_super_operations;
  711. error = bhv_vfs_mount(vfsp, args, NULL);
  712. if (error) {
  713. bhv_remove_all_vfsops(vfsp, 1);
  714. goto fail_vfsop;
  715. }
  716. error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
  717. if (error)
  718. goto fail_unmount;
  719. sb->s_dirt = 1;
  720. sb->s_magic = statvfs.f_type;
  721. sb->s_blocksize = statvfs.f_bsize;
  722. sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
  723. sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
  724. sb->s_time_gran = 1;
  725. set_posix_acl_flag(sb);
  726. error = bhv_vfs_root(vfsp, &rootvp);
  727. if (error)
  728. goto fail_unmount;
  729. sb->s_root = d_alloc_root(vn_to_inode(rootvp));
  730. if (!sb->s_root) {
  731. error = ENOMEM;
  732. goto fail_vnrele;
  733. }
  734. if (is_bad_inode(sb->s_root->d_inode)) {
  735. error = EINVAL;
  736. goto fail_vnrele;
  737. }
  738. if ((error = xfs_fs_start_syncd(vfsp)))
  739. goto fail_vnrele;
  740. vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
  741. (inst_t *)__return_address);
  742. kmem_free(args, sizeof(*args));
  743. return 0;
  744. fail_vnrele:
  745. if (sb->s_root) {
  746. dput(sb->s_root);
  747. sb->s_root = NULL;
  748. } else {
  749. VN_RELE(rootvp);
  750. }
  751. fail_unmount:
  752. bhv_vfs_unmount(vfsp, 0, NULL);
  753. fail_vfsop:
  754. vfs_deallocate(vfsp);
  755. kmem_free(args, sizeof(*args));
  756. return -error;
  757. }
  758. STATIC int
  759. xfs_fs_get_sb(
  760. struct file_system_type *fs_type,
  761. int flags,
  762. const char *dev_name,
  763. void *data,
  764. struct vfsmount *mnt)
  765. {
  766. return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
  767. mnt);
  768. }
  769. static struct super_operations xfs_super_operations = {
  770. .alloc_inode = xfs_fs_alloc_inode,
  771. .destroy_inode = xfs_fs_destroy_inode,
  772. .write_inode = xfs_fs_write_inode,
  773. .clear_inode = xfs_fs_clear_inode,
  774. .put_super = xfs_fs_put_super,
  775. .write_super = xfs_fs_write_super,
  776. .sync_fs = xfs_fs_sync_super,
  777. .write_super_lockfs = xfs_fs_lockfs,
  778. .statfs = xfs_fs_statfs,
  779. .remount_fs = xfs_fs_remount,
  780. .show_options = xfs_fs_show_options,
  781. };
  782. static struct quotactl_ops xfs_quotactl_operations = {
  783. .quota_sync = xfs_fs_quotasync,
  784. .get_xstate = xfs_fs_getxstate,
  785. .set_xstate = xfs_fs_setxstate,
  786. .get_xquota = xfs_fs_getxquota,
  787. .set_xquota = xfs_fs_setxquota,
  788. };
  789. static struct file_system_type xfs_fs_type = {
  790. .owner = THIS_MODULE,
  791. .name = "xfs",
  792. .get_sb = xfs_fs_get_sb,
  793. .kill_sb = kill_block_super,
  794. .fs_flags = FS_REQUIRES_DEV,
  795. };
  796. STATIC int __init
  797. init_xfs_fs( void )
  798. {
  799. int error;
  800. static char message[] __initdata = KERN_INFO \
  801. XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
  802. printk(message);
  803. ktrace_init(64);
  804. error = xfs_init_zones();
  805. if (error < 0)
  806. goto undo_zones;
  807. error = xfs_buf_init();
  808. if (error < 0)
  809. goto undo_buffers;
  810. vn_init();
  811. xfs_init();
  812. uuid_init();
  813. vfs_initquota();
  814. error = register_filesystem(&xfs_fs_type);
  815. if (error)
  816. goto undo_register;
  817. return 0;
  818. undo_register:
  819. xfs_buf_terminate();
  820. undo_buffers:
  821. xfs_destroy_zones();
  822. undo_zones:
  823. return error;
  824. }
  825. STATIC void __exit
  826. exit_xfs_fs( void )
  827. {
  828. vfs_exitquota();
  829. unregister_filesystem(&xfs_fs_type);
  830. xfs_cleanup();
  831. xfs_buf_terminate();
  832. xfs_destroy_zones();
  833. ktrace_uninit();
  834. }
  835. module_init(init_xfs_fs);
  836. module_exit(exit_xfs_fs);
  837. MODULE_AUTHOR("Silicon Graphics, Inc.");
  838. MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
  839. MODULE_LICENSE("GPL");