main.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/nl80211.h>
  17. #include "ath9k.h"
  18. #define ATH_PCI_VERSION "0.1"
  19. static char *dev_info = "ath9k";
  20. MODULE_AUTHOR("Atheros Communications");
  21. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  22. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  23. MODULE_LICENSE("Dual BSD/GPL");
  24. static int modparam_nohwcrypt;
  25. module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
  26. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  27. /* We use the hw_value as an index into our private channel structure */
  28. #define CHAN2G(_freq, _idx) { \
  29. .center_freq = (_freq), \
  30. .hw_value = (_idx), \
  31. .max_power = 30, \
  32. }
  33. #define CHAN5G(_freq, _idx) { \
  34. .band = IEEE80211_BAND_5GHZ, \
  35. .center_freq = (_freq), \
  36. .hw_value = (_idx), \
  37. .max_power = 30, \
  38. }
  39. /* Some 2 GHz radios are actually tunable on 2312-2732
  40. * on 5 MHz steps, we support the channels which we know
  41. * we have calibration data for all cards though to make
  42. * this static */
  43. static struct ieee80211_channel ath9k_2ghz_chantable[] = {
  44. CHAN2G(2412, 0), /* Channel 1 */
  45. CHAN2G(2417, 1), /* Channel 2 */
  46. CHAN2G(2422, 2), /* Channel 3 */
  47. CHAN2G(2427, 3), /* Channel 4 */
  48. CHAN2G(2432, 4), /* Channel 5 */
  49. CHAN2G(2437, 5), /* Channel 6 */
  50. CHAN2G(2442, 6), /* Channel 7 */
  51. CHAN2G(2447, 7), /* Channel 8 */
  52. CHAN2G(2452, 8), /* Channel 9 */
  53. CHAN2G(2457, 9), /* Channel 10 */
  54. CHAN2G(2462, 10), /* Channel 11 */
  55. CHAN2G(2467, 11), /* Channel 12 */
  56. CHAN2G(2472, 12), /* Channel 13 */
  57. CHAN2G(2484, 13), /* Channel 14 */
  58. };
  59. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  60. * on 5 MHz steps, we support the channels which we know
  61. * we have calibration data for all cards though to make
  62. * this static */
  63. static struct ieee80211_channel ath9k_5ghz_chantable[] = {
  64. /* _We_ call this UNII 1 */
  65. CHAN5G(5180, 14), /* Channel 36 */
  66. CHAN5G(5200, 15), /* Channel 40 */
  67. CHAN5G(5220, 16), /* Channel 44 */
  68. CHAN5G(5240, 17), /* Channel 48 */
  69. /* _We_ call this UNII 2 */
  70. CHAN5G(5260, 18), /* Channel 52 */
  71. CHAN5G(5280, 19), /* Channel 56 */
  72. CHAN5G(5300, 20), /* Channel 60 */
  73. CHAN5G(5320, 21), /* Channel 64 */
  74. /* _We_ call this "Middle band" */
  75. CHAN5G(5500, 22), /* Channel 100 */
  76. CHAN5G(5520, 23), /* Channel 104 */
  77. CHAN5G(5540, 24), /* Channel 108 */
  78. CHAN5G(5560, 25), /* Channel 112 */
  79. CHAN5G(5580, 26), /* Channel 116 */
  80. CHAN5G(5600, 27), /* Channel 120 */
  81. CHAN5G(5620, 28), /* Channel 124 */
  82. CHAN5G(5640, 29), /* Channel 128 */
  83. CHAN5G(5660, 30), /* Channel 132 */
  84. CHAN5G(5680, 31), /* Channel 136 */
  85. CHAN5G(5700, 32), /* Channel 140 */
  86. /* _We_ call this UNII 3 */
  87. CHAN5G(5745, 33), /* Channel 149 */
  88. CHAN5G(5765, 34), /* Channel 153 */
  89. CHAN5G(5785, 35), /* Channel 157 */
  90. CHAN5G(5805, 36), /* Channel 161 */
  91. CHAN5G(5825, 37), /* Channel 165 */
  92. };
  93. static void ath_cache_conf_rate(struct ath_softc *sc,
  94. struct ieee80211_conf *conf)
  95. {
  96. switch (conf->channel->band) {
  97. case IEEE80211_BAND_2GHZ:
  98. if (conf_is_ht20(conf))
  99. sc->cur_rate_table =
  100. sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
  101. else if (conf_is_ht40_minus(conf))
  102. sc->cur_rate_table =
  103. sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
  104. else if (conf_is_ht40_plus(conf))
  105. sc->cur_rate_table =
  106. sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
  107. else
  108. sc->cur_rate_table =
  109. sc->hw_rate_table[ATH9K_MODE_11G];
  110. break;
  111. case IEEE80211_BAND_5GHZ:
  112. if (conf_is_ht20(conf))
  113. sc->cur_rate_table =
  114. sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
  115. else if (conf_is_ht40_minus(conf))
  116. sc->cur_rate_table =
  117. sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
  118. else if (conf_is_ht40_plus(conf))
  119. sc->cur_rate_table =
  120. sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
  121. else
  122. sc->cur_rate_table =
  123. sc->hw_rate_table[ATH9K_MODE_11A];
  124. break;
  125. default:
  126. BUG_ON(1);
  127. break;
  128. }
  129. }
  130. static void ath_update_txpow(struct ath_softc *sc)
  131. {
  132. struct ath_hw *ah = sc->sc_ah;
  133. u32 txpow;
  134. if (sc->curtxpow != sc->config.txpowlimit) {
  135. ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
  136. /* read back in case value is clamped */
  137. ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
  138. sc->curtxpow = txpow;
  139. }
  140. }
  141. static u8 parse_mpdudensity(u8 mpdudensity)
  142. {
  143. /*
  144. * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
  145. * 0 for no restriction
  146. * 1 for 1/4 us
  147. * 2 for 1/2 us
  148. * 3 for 1 us
  149. * 4 for 2 us
  150. * 5 for 4 us
  151. * 6 for 8 us
  152. * 7 for 16 us
  153. */
  154. switch (mpdudensity) {
  155. case 0:
  156. return 0;
  157. case 1:
  158. case 2:
  159. case 3:
  160. /* Our lower layer calculations limit our precision to
  161. 1 microsecond */
  162. return 1;
  163. case 4:
  164. return 2;
  165. case 5:
  166. return 4;
  167. case 6:
  168. return 8;
  169. case 7:
  170. return 16;
  171. default:
  172. return 0;
  173. }
  174. }
  175. static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
  176. {
  177. const struct ath_rate_table *rate_table = NULL;
  178. struct ieee80211_supported_band *sband;
  179. struct ieee80211_rate *rate;
  180. int i, maxrates;
  181. switch (band) {
  182. case IEEE80211_BAND_2GHZ:
  183. rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
  184. break;
  185. case IEEE80211_BAND_5GHZ:
  186. rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
  187. break;
  188. default:
  189. break;
  190. }
  191. if (rate_table == NULL)
  192. return;
  193. sband = &sc->sbands[band];
  194. rate = sc->rates[band];
  195. if (rate_table->rate_cnt > ATH_RATE_MAX)
  196. maxrates = ATH_RATE_MAX;
  197. else
  198. maxrates = rate_table->rate_cnt;
  199. for (i = 0; i < maxrates; i++) {
  200. rate[i].bitrate = rate_table->info[i].ratekbps / 100;
  201. rate[i].hw_value = rate_table->info[i].ratecode;
  202. if (rate_table->info[i].short_preamble) {
  203. rate[i].hw_value_short = rate_table->info[i].ratecode |
  204. rate_table->info[i].short_preamble;
  205. rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
  206. }
  207. sband->n_bitrates++;
  208. DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
  209. rate[i].bitrate / 10, rate[i].hw_value);
  210. }
  211. }
  212. /*
  213. * Set/change channels. If the channel is really being changed, it's done
  214. * by reseting the chip. To accomplish this we must first cleanup any pending
  215. * DMA, then restart stuff.
  216. */
  217. int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
  218. struct ath9k_channel *hchan)
  219. {
  220. struct ath_hw *ah = sc->sc_ah;
  221. bool fastcc = true, stopped;
  222. struct ieee80211_channel *channel = hw->conf.channel;
  223. int r;
  224. if (sc->sc_flags & SC_OP_INVALID)
  225. return -EIO;
  226. ath9k_ps_wakeup(sc);
  227. /*
  228. * This is only performed if the channel settings have
  229. * actually changed.
  230. *
  231. * To switch channels clear any pending DMA operations;
  232. * wait long enough for the RX fifo to drain, reset the
  233. * hardware at the new frequency, and then re-enable
  234. * the relevant bits of the h/w.
  235. */
  236. ath9k_hw_set_interrupts(ah, 0);
  237. ath_drain_all_txq(sc, false);
  238. stopped = ath_stoprecv(sc);
  239. /* XXX: do not flush receive queue here. We don't want
  240. * to flush data frames already in queue because of
  241. * changing channel. */
  242. if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
  243. fastcc = false;
  244. DPRINTF(sc, ATH_DBG_CONFIG,
  245. "(%u MHz) -> (%u MHz), chanwidth: %d\n",
  246. sc->sc_ah->curchan->channel,
  247. channel->center_freq, sc->tx_chan_width);
  248. spin_lock_bh(&sc->sc_resetlock);
  249. r = ath9k_hw_reset(ah, hchan, fastcc);
  250. if (r) {
  251. DPRINTF(sc, ATH_DBG_FATAL,
  252. "Unable to reset channel (%u Mhz) "
  253. "reset status %d\n",
  254. channel->center_freq, r);
  255. spin_unlock_bh(&sc->sc_resetlock);
  256. return r;
  257. }
  258. spin_unlock_bh(&sc->sc_resetlock);
  259. sc->sc_flags &= ~SC_OP_FULL_RESET;
  260. if (ath_startrecv(sc) != 0) {
  261. DPRINTF(sc, ATH_DBG_FATAL,
  262. "Unable to restart recv logic\n");
  263. return -EIO;
  264. }
  265. ath_cache_conf_rate(sc, &hw->conf);
  266. ath_update_txpow(sc);
  267. ath9k_hw_set_interrupts(ah, sc->imask);
  268. ath9k_ps_restore(sc);
  269. return 0;
  270. }
  271. /*
  272. * This routine performs the periodic noise floor calibration function
  273. * that is used to adjust and optimize the chip performance. This
  274. * takes environmental changes (location, temperature) into account.
  275. * When the task is complete, it reschedules itself depending on the
  276. * appropriate interval that was calculated.
  277. */
  278. static void ath_ani_calibrate(unsigned long data)
  279. {
  280. struct ath_softc *sc = (struct ath_softc *)data;
  281. struct ath_hw *ah = sc->sc_ah;
  282. bool longcal = false;
  283. bool shortcal = false;
  284. bool aniflag = false;
  285. unsigned int timestamp = jiffies_to_msecs(jiffies);
  286. u32 cal_interval, short_cal_interval;
  287. short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
  288. ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
  289. /*
  290. * don't calibrate when we're scanning.
  291. * we are most likely not on our home channel.
  292. */
  293. if (sc->sc_flags & SC_OP_SCANNING)
  294. goto set_timer;
  295. /* Long calibration runs independently of short calibration. */
  296. if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
  297. longcal = true;
  298. DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
  299. sc->ani.longcal_timer = timestamp;
  300. }
  301. /* Short calibration applies only while caldone is false */
  302. if (!sc->ani.caldone) {
  303. if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
  304. shortcal = true;
  305. DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
  306. sc->ani.shortcal_timer = timestamp;
  307. sc->ani.resetcal_timer = timestamp;
  308. }
  309. } else {
  310. if ((timestamp - sc->ani.resetcal_timer) >=
  311. ATH_RESTART_CALINTERVAL) {
  312. sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
  313. if (sc->ani.caldone)
  314. sc->ani.resetcal_timer = timestamp;
  315. }
  316. }
  317. /* Verify whether we must check ANI */
  318. if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
  319. aniflag = true;
  320. sc->ani.checkani_timer = timestamp;
  321. }
  322. /* Skip all processing if there's nothing to do. */
  323. if (longcal || shortcal || aniflag) {
  324. /* Call ANI routine if necessary */
  325. if (aniflag)
  326. ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
  327. /* Perform calibration if necessary */
  328. if (longcal || shortcal) {
  329. sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
  330. sc->rx_chainmask, longcal);
  331. if (longcal)
  332. sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
  333. ah->curchan);
  334. DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
  335. ah->curchan->channel, ah->curchan->channelFlags,
  336. sc->ani.noise_floor);
  337. }
  338. }
  339. set_timer:
  340. /*
  341. * Set timer interval based on previous results.
  342. * The interval must be the shortest necessary to satisfy ANI,
  343. * short calibration and long calibration.
  344. */
  345. cal_interval = ATH_LONG_CALINTERVAL;
  346. if (sc->sc_ah->config.enable_ani)
  347. cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
  348. if (!sc->ani.caldone)
  349. cal_interval = min(cal_interval, (u32)short_cal_interval);
  350. mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
  351. }
  352. static void ath_start_ani(struct ath_softc *sc)
  353. {
  354. unsigned long timestamp = jiffies_to_msecs(jiffies);
  355. sc->ani.longcal_timer = timestamp;
  356. sc->ani.shortcal_timer = timestamp;
  357. sc->ani.checkani_timer = timestamp;
  358. mod_timer(&sc->ani.timer,
  359. jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
  360. }
  361. /*
  362. * Update tx/rx chainmask. For legacy association,
  363. * hard code chainmask to 1x1, for 11n association, use
  364. * the chainmask configuration, for bt coexistence, use
  365. * the chainmask configuration even in legacy mode.
  366. */
  367. void ath_update_chainmask(struct ath_softc *sc, int is_ht)
  368. {
  369. if (is_ht ||
  370. (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
  371. sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
  372. sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
  373. } else {
  374. sc->tx_chainmask = 1;
  375. sc->rx_chainmask = 1;
  376. }
  377. DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
  378. sc->tx_chainmask, sc->rx_chainmask);
  379. }
  380. static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
  381. {
  382. struct ath_node *an;
  383. an = (struct ath_node *)sta->drv_priv;
  384. if (sc->sc_flags & SC_OP_TXAGGR) {
  385. ath_tx_node_init(sc, an);
  386. an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
  387. sta->ht_cap.ampdu_factor);
  388. an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
  389. }
  390. }
  391. static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
  392. {
  393. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  394. if (sc->sc_flags & SC_OP_TXAGGR)
  395. ath_tx_node_cleanup(sc, an);
  396. }
  397. static void ath9k_tasklet(unsigned long data)
  398. {
  399. struct ath_softc *sc = (struct ath_softc *)data;
  400. u32 status = sc->intrstatus;
  401. ath9k_ps_wakeup(sc);
  402. if (status & ATH9K_INT_FATAL) {
  403. ath_reset(sc, false);
  404. ath9k_ps_restore(sc);
  405. return;
  406. }
  407. if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
  408. spin_lock_bh(&sc->rx.rxflushlock);
  409. ath_rx_tasklet(sc, 0);
  410. spin_unlock_bh(&sc->rx.rxflushlock);
  411. }
  412. if (status & ATH9K_INT_TX)
  413. ath_tx_tasklet(sc);
  414. /* re-enable hardware interrupt */
  415. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  416. ath9k_ps_restore(sc);
  417. }
  418. irqreturn_t ath_isr(int irq, void *dev)
  419. {
  420. #define SCHED_INTR ( \
  421. ATH9K_INT_FATAL | \
  422. ATH9K_INT_RXORN | \
  423. ATH9K_INT_RXEOL | \
  424. ATH9K_INT_RX | \
  425. ATH9K_INT_TX | \
  426. ATH9K_INT_BMISS | \
  427. ATH9K_INT_CST | \
  428. ATH9K_INT_TSFOOR)
  429. struct ath_softc *sc = dev;
  430. struct ath_hw *ah = sc->sc_ah;
  431. enum ath9k_int status;
  432. bool sched = false;
  433. /*
  434. * The hardware is not ready/present, don't
  435. * touch anything. Note this can happen early
  436. * on if the IRQ is shared.
  437. */
  438. if (sc->sc_flags & SC_OP_INVALID)
  439. return IRQ_NONE;
  440. /* shared irq, not for us */
  441. if (!ath9k_hw_intrpend(ah))
  442. return IRQ_NONE;
  443. /*
  444. * Figure out the reason(s) for the interrupt. Note
  445. * that the hal returns a pseudo-ISR that may include
  446. * bits we haven't explicitly enabled so we mask the
  447. * value to insure we only process bits we requested.
  448. */
  449. ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
  450. status &= sc->imask; /* discard unasked-for bits */
  451. /*
  452. * If there are no status bits set, then this interrupt was not
  453. * for me (should have been caught above).
  454. */
  455. if (!status)
  456. return IRQ_NONE;
  457. /* Cache the status */
  458. sc->intrstatus = status;
  459. if (status & SCHED_INTR)
  460. sched = true;
  461. /*
  462. * If a FATAL or RXORN interrupt is received, we have to reset the
  463. * chip immediately.
  464. */
  465. if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
  466. goto chip_reset;
  467. if (status & ATH9K_INT_SWBA)
  468. tasklet_schedule(&sc->bcon_tasklet);
  469. if (status & ATH9K_INT_TXURN)
  470. ath9k_hw_updatetxtriglevel(ah, true);
  471. if (status & ATH9K_INT_MIB) {
  472. /*
  473. * Disable interrupts until we service the MIB
  474. * interrupt; otherwise it will continue to
  475. * fire.
  476. */
  477. ath9k_hw_set_interrupts(ah, 0);
  478. /*
  479. * Let the hal handle the event. We assume
  480. * it will clear whatever condition caused
  481. * the interrupt.
  482. */
  483. ath9k_hw_procmibevent(ah, &sc->nodestats);
  484. ath9k_hw_set_interrupts(ah, sc->imask);
  485. }
  486. if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  487. if (status & ATH9K_INT_TIM_TIMER) {
  488. /* Clear RxAbort bit so that we can
  489. * receive frames */
  490. ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
  491. ath9k_hw_setrxabort(sc->sc_ah, 0);
  492. sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
  493. }
  494. chip_reset:
  495. ath_debug_stat_interrupt(sc, status);
  496. if (sched) {
  497. /* turn off every interrupt except SWBA */
  498. ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
  499. tasklet_schedule(&sc->intr_tq);
  500. }
  501. return IRQ_HANDLED;
  502. #undef SCHED_INTR
  503. }
  504. static u32 ath_get_extchanmode(struct ath_softc *sc,
  505. struct ieee80211_channel *chan,
  506. enum nl80211_channel_type channel_type)
  507. {
  508. u32 chanmode = 0;
  509. switch (chan->band) {
  510. case IEEE80211_BAND_2GHZ:
  511. switch(channel_type) {
  512. case NL80211_CHAN_NO_HT:
  513. case NL80211_CHAN_HT20:
  514. chanmode = CHANNEL_G_HT20;
  515. break;
  516. case NL80211_CHAN_HT40PLUS:
  517. chanmode = CHANNEL_G_HT40PLUS;
  518. break;
  519. case NL80211_CHAN_HT40MINUS:
  520. chanmode = CHANNEL_G_HT40MINUS;
  521. break;
  522. }
  523. break;
  524. case IEEE80211_BAND_5GHZ:
  525. switch(channel_type) {
  526. case NL80211_CHAN_NO_HT:
  527. case NL80211_CHAN_HT20:
  528. chanmode = CHANNEL_A_HT20;
  529. break;
  530. case NL80211_CHAN_HT40PLUS:
  531. chanmode = CHANNEL_A_HT40PLUS;
  532. break;
  533. case NL80211_CHAN_HT40MINUS:
  534. chanmode = CHANNEL_A_HT40MINUS;
  535. break;
  536. }
  537. break;
  538. default:
  539. break;
  540. }
  541. return chanmode;
  542. }
  543. static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
  544. struct ath9k_keyval *hk, const u8 *addr,
  545. bool authenticator)
  546. {
  547. const u8 *key_rxmic;
  548. const u8 *key_txmic;
  549. key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
  550. key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
  551. if (addr == NULL) {
  552. /*
  553. * Group key installation - only two key cache entries are used
  554. * regardless of splitmic capability since group key is only
  555. * used either for TX or RX.
  556. */
  557. if (authenticator) {
  558. memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
  559. memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
  560. } else {
  561. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  562. memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
  563. }
  564. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
  565. }
  566. if (!sc->splitmic) {
  567. /* TX and RX keys share the same key cache entry. */
  568. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  569. memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
  570. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
  571. }
  572. /* Separate key cache entries for TX and RX */
  573. /* TX key goes at first index, RX key at +32. */
  574. memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
  575. if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
  576. /* TX MIC entry failed. No need to proceed further */
  577. DPRINTF(sc, ATH_DBG_FATAL,
  578. "Setting TX MIC Key Failed\n");
  579. return 0;
  580. }
  581. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  582. /* XXX delete tx key on failure? */
  583. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
  584. }
  585. static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
  586. {
  587. int i;
  588. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
  589. if (test_bit(i, sc->keymap) ||
  590. test_bit(i + 64, sc->keymap))
  591. continue; /* At least one part of TKIP key allocated */
  592. if (sc->splitmic &&
  593. (test_bit(i + 32, sc->keymap) ||
  594. test_bit(i + 64 + 32, sc->keymap)))
  595. continue; /* At least one part of TKIP key allocated */
  596. /* Found a free slot for a TKIP key */
  597. return i;
  598. }
  599. return -1;
  600. }
  601. static int ath_reserve_key_cache_slot(struct ath_softc *sc)
  602. {
  603. int i;
  604. /* First, try to find slots that would not be available for TKIP. */
  605. if (sc->splitmic) {
  606. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
  607. if (!test_bit(i, sc->keymap) &&
  608. (test_bit(i + 32, sc->keymap) ||
  609. test_bit(i + 64, sc->keymap) ||
  610. test_bit(i + 64 + 32, sc->keymap)))
  611. return i;
  612. if (!test_bit(i + 32, sc->keymap) &&
  613. (test_bit(i, sc->keymap) ||
  614. test_bit(i + 64, sc->keymap) ||
  615. test_bit(i + 64 + 32, sc->keymap)))
  616. return i + 32;
  617. if (!test_bit(i + 64, sc->keymap) &&
  618. (test_bit(i , sc->keymap) ||
  619. test_bit(i + 32, sc->keymap) ||
  620. test_bit(i + 64 + 32, sc->keymap)))
  621. return i + 64;
  622. if (!test_bit(i + 64 + 32, sc->keymap) &&
  623. (test_bit(i, sc->keymap) ||
  624. test_bit(i + 32, sc->keymap) ||
  625. test_bit(i + 64, sc->keymap)))
  626. return i + 64 + 32;
  627. }
  628. } else {
  629. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
  630. if (!test_bit(i, sc->keymap) &&
  631. test_bit(i + 64, sc->keymap))
  632. return i;
  633. if (test_bit(i, sc->keymap) &&
  634. !test_bit(i + 64, sc->keymap))
  635. return i + 64;
  636. }
  637. }
  638. /* No partially used TKIP slots, pick any available slot */
  639. for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
  640. /* Do not allow slots that could be needed for TKIP group keys
  641. * to be used. This limitation could be removed if we know that
  642. * TKIP will not be used. */
  643. if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
  644. continue;
  645. if (sc->splitmic) {
  646. if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
  647. continue;
  648. if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
  649. continue;
  650. }
  651. if (!test_bit(i, sc->keymap))
  652. return i; /* Found a free slot for a key */
  653. }
  654. /* No free slot found */
  655. return -1;
  656. }
  657. static int ath_key_config(struct ath_softc *sc,
  658. struct ieee80211_vif *vif,
  659. struct ieee80211_sta *sta,
  660. struct ieee80211_key_conf *key)
  661. {
  662. struct ath9k_keyval hk;
  663. const u8 *mac = NULL;
  664. int ret = 0;
  665. int idx;
  666. memset(&hk, 0, sizeof(hk));
  667. switch (key->alg) {
  668. case ALG_WEP:
  669. hk.kv_type = ATH9K_CIPHER_WEP;
  670. break;
  671. case ALG_TKIP:
  672. hk.kv_type = ATH9K_CIPHER_TKIP;
  673. break;
  674. case ALG_CCMP:
  675. hk.kv_type = ATH9K_CIPHER_AES_CCM;
  676. break;
  677. default:
  678. return -EOPNOTSUPP;
  679. }
  680. hk.kv_len = key->keylen;
  681. memcpy(hk.kv_val, key->key, key->keylen);
  682. if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
  683. /* For now, use the default keys for broadcast keys. This may
  684. * need to change with virtual interfaces. */
  685. idx = key->keyidx;
  686. } else if (key->keyidx) {
  687. if (WARN_ON(!sta))
  688. return -EOPNOTSUPP;
  689. mac = sta->addr;
  690. if (vif->type != NL80211_IFTYPE_AP) {
  691. /* Only keyidx 0 should be used with unicast key, but
  692. * allow this for client mode for now. */
  693. idx = key->keyidx;
  694. } else
  695. return -EIO;
  696. } else {
  697. if (WARN_ON(!sta))
  698. return -EOPNOTSUPP;
  699. mac = sta->addr;
  700. if (key->alg == ALG_TKIP)
  701. idx = ath_reserve_key_cache_slot_tkip(sc);
  702. else
  703. idx = ath_reserve_key_cache_slot(sc);
  704. if (idx < 0)
  705. return -ENOSPC; /* no free key cache entries */
  706. }
  707. if (key->alg == ALG_TKIP)
  708. ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
  709. vif->type == NL80211_IFTYPE_AP);
  710. else
  711. ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
  712. if (!ret)
  713. return -EIO;
  714. set_bit(idx, sc->keymap);
  715. if (key->alg == ALG_TKIP) {
  716. set_bit(idx + 64, sc->keymap);
  717. if (sc->splitmic) {
  718. set_bit(idx + 32, sc->keymap);
  719. set_bit(idx + 64 + 32, sc->keymap);
  720. }
  721. }
  722. return idx;
  723. }
  724. static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
  725. {
  726. ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
  727. if (key->hw_key_idx < IEEE80211_WEP_NKID)
  728. return;
  729. clear_bit(key->hw_key_idx, sc->keymap);
  730. if (key->alg != ALG_TKIP)
  731. return;
  732. clear_bit(key->hw_key_idx + 64, sc->keymap);
  733. if (sc->splitmic) {
  734. clear_bit(key->hw_key_idx + 32, sc->keymap);
  735. clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
  736. }
  737. }
  738. static void setup_ht_cap(struct ath_softc *sc,
  739. struct ieee80211_sta_ht_cap *ht_info)
  740. {
  741. #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
  742. #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
  743. ht_info->ht_supported = true;
  744. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  745. IEEE80211_HT_CAP_SM_PS |
  746. IEEE80211_HT_CAP_SGI_40 |
  747. IEEE80211_HT_CAP_DSSSCCK40;
  748. ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
  749. ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
  750. /* set up supported mcs set */
  751. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  752. switch(sc->rx_chainmask) {
  753. case 1:
  754. ht_info->mcs.rx_mask[0] = 0xff;
  755. break;
  756. case 3:
  757. case 5:
  758. case 7:
  759. default:
  760. ht_info->mcs.rx_mask[0] = 0xff;
  761. ht_info->mcs.rx_mask[1] = 0xff;
  762. break;
  763. }
  764. ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
  765. }
  766. static void ath9k_bss_assoc_info(struct ath_softc *sc,
  767. struct ieee80211_vif *vif,
  768. struct ieee80211_bss_conf *bss_conf)
  769. {
  770. struct ath_vif *avp = (void *)vif->drv_priv;
  771. if (bss_conf->assoc) {
  772. DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
  773. bss_conf->aid, sc->curbssid);
  774. /* New association, store aid */
  775. if (avp->av_opmode == NL80211_IFTYPE_STATION) {
  776. sc->curaid = bss_conf->aid;
  777. ath9k_hw_write_associd(sc);
  778. }
  779. /* Configure the beacon */
  780. ath_beacon_config(sc, vif);
  781. /* Reset rssi stats */
  782. sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
  783. sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
  784. sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
  785. sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
  786. ath_start_ani(sc);
  787. } else {
  788. DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
  789. sc->curaid = 0;
  790. }
  791. }
  792. /********************************/
  793. /* LED functions */
  794. /********************************/
  795. static void ath_led_blink_work(struct work_struct *work)
  796. {
  797. struct ath_softc *sc = container_of(work, struct ath_softc,
  798. ath_led_blink_work.work);
  799. if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
  800. return;
  801. if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
  802. (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
  803. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
  804. else
  805. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
  806. (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
  807. queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
  808. (sc->sc_flags & SC_OP_LED_ON) ?
  809. msecs_to_jiffies(sc->led_off_duration) :
  810. msecs_to_jiffies(sc->led_on_duration));
  811. sc->led_on_duration = sc->led_on_cnt ?
  812. max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
  813. ATH_LED_ON_DURATION_IDLE;
  814. sc->led_off_duration = sc->led_off_cnt ?
  815. max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
  816. ATH_LED_OFF_DURATION_IDLE;
  817. sc->led_on_cnt = sc->led_off_cnt = 0;
  818. if (sc->sc_flags & SC_OP_LED_ON)
  819. sc->sc_flags &= ~SC_OP_LED_ON;
  820. else
  821. sc->sc_flags |= SC_OP_LED_ON;
  822. }
  823. static void ath_led_brightness(struct led_classdev *led_cdev,
  824. enum led_brightness brightness)
  825. {
  826. struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
  827. struct ath_softc *sc = led->sc;
  828. switch (brightness) {
  829. case LED_OFF:
  830. if (led->led_type == ATH_LED_ASSOC ||
  831. led->led_type == ATH_LED_RADIO) {
  832. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
  833. (led->led_type == ATH_LED_RADIO));
  834. sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
  835. if (led->led_type == ATH_LED_RADIO)
  836. sc->sc_flags &= ~SC_OP_LED_ON;
  837. } else {
  838. sc->led_off_cnt++;
  839. }
  840. break;
  841. case LED_FULL:
  842. if (led->led_type == ATH_LED_ASSOC) {
  843. sc->sc_flags |= SC_OP_LED_ASSOCIATED;
  844. queue_delayed_work(sc->hw->workqueue,
  845. &sc->ath_led_blink_work, 0);
  846. } else if (led->led_type == ATH_LED_RADIO) {
  847. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
  848. sc->sc_flags |= SC_OP_LED_ON;
  849. } else {
  850. sc->led_on_cnt++;
  851. }
  852. break;
  853. default:
  854. break;
  855. }
  856. }
  857. static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
  858. char *trigger)
  859. {
  860. int ret;
  861. led->sc = sc;
  862. led->led_cdev.name = led->name;
  863. led->led_cdev.default_trigger = trigger;
  864. led->led_cdev.brightness_set = ath_led_brightness;
  865. ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
  866. if (ret)
  867. DPRINTF(sc, ATH_DBG_FATAL,
  868. "Failed to register led:%s", led->name);
  869. else
  870. led->registered = 1;
  871. return ret;
  872. }
  873. static void ath_unregister_led(struct ath_led *led)
  874. {
  875. if (led->registered) {
  876. led_classdev_unregister(&led->led_cdev);
  877. led->registered = 0;
  878. }
  879. }
  880. static void ath_deinit_leds(struct ath_softc *sc)
  881. {
  882. cancel_delayed_work_sync(&sc->ath_led_blink_work);
  883. ath_unregister_led(&sc->assoc_led);
  884. sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
  885. ath_unregister_led(&sc->tx_led);
  886. ath_unregister_led(&sc->rx_led);
  887. ath_unregister_led(&sc->radio_led);
  888. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
  889. }
  890. static void ath_init_leds(struct ath_softc *sc)
  891. {
  892. char *trigger;
  893. int ret;
  894. /* Configure gpio 1 for output */
  895. ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
  896. AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  897. /* LED off, active low */
  898. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
  899. INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
  900. trigger = ieee80211_get_radio_led_name(sc->hw);
  901. snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
  902. "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
  903. ret = ath_register_led(sc, &sc->radio_led, trigger);
  904. sc->radio_led.led_type = ATH_LED_RADIO;
  905. if (ret)
  906. goto fail;
  907. trigger = ieee80211_get_assoc_led_name(sc->hw);
  908. snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
  909. "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
  910. ret = ath_register_led(sc, &sc->assoc_led, trigger);
  911. sc->assoc_led.led_type = ATH_LED_ASSOC;
  912. if (ret)
  913. goto fail;
  914. trigger = ieee80211_get_tx_led_name(sc->hw);
  915. snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
  916. "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
  917. ret = ath_register_led(sc, &sc->tx_led, trigger);
  918. sc->tx_led.led_type = ATH_LED_TX;
  919. if (ret)
  920. goto fail;
  921. trigger = ieee80211_get_rx_led_name(sc->hw);
  922. snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
  923. "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
  924. ret = ath_register_led(sc, &sc->rx_led, trigger);
  925. sc->rx_led.led_type = ATH_LED_RX;
  926. if (ret)
  927. goto fail;
  928. return;
  929. fail:
  930. ath_deinit_leds(sc);
  931. }
  932. void ath_radio_enable(struct ath_softc *sc)
  933. {
  934. struct ath_hw *ah = sc->sc_ah;
  935. struct ieee80211_channel *channel = sc->hw->conf.channel;
  936. int r;
  937. ath9k_ps_wakeup(sc);
  938. ath9k_hw_configpcipowersave(ah, 0);
  939. spin_lock_bh(&sc->sc_resetlock);
  940. r = ath9k_hw_reset(ah, ah->curchan, false);
  941. if (r) {
  942. DPRINTF(sc, ATH_DBG_FATAL,
  943. "Unable to reset channel %u (%uMhz) ",
  944. "reset status %d\n",
  945. channel->center_freq, r);
  946. }
  947. spin_unlock_bh(&sc->sc_resetlock);
  948. ath_update_txpow(sc);
  949. if (ath_startrecv(sc) != 0) {
  950. DPRINTF(sc, ATH_DBG_FATAL,
  951. "Unable to restart recv logic\n");
  952. return;
  953. }
  954. if (sc->sc_flags & SC_OP_BEACONS)
  955. ath_beacon_config(sc, NULL); /* restart beacons */
  956. /* Re-Enable interrupts */
  957. ath9k_hw_set_interrupts(ah, sc->imask);
  958. /* Enable LED */
  959. ath9k_hw_cfg_output(ah, ATH_LED_PIN,
  960. AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  961. ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
  962. ieee80211_wake_queues(sc->hw);
  963. ath9k_ps_restore(sc);
  964. }
  965. void ath_radio_disable(struct ath_softc *sc)
  966. {
  967. struct ath_hw *ah = sc->sc_ah;
  968. struct ieee80211_channel *channel = sc->hw->conf.channel;
  969. int r;
  970. ath9k_ps_wakeup(sc);
  971. ieee80211_stop_queues(sc->hw);
  972. /* Disable LED */
  973. ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
  974. ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
  975. /* Disable interrupts */
  976. ath9k_hw_set_interrupts(ah, 0);
  977. ath_drain_all_txq(sc, false); /* clear pending tx frames */
  978. ath_stoprecv(sc); /* turn off frame recv */
  979. ath_flushrecv(sc); /* flush recv queue */
  980. spin_lock_bh(&sc->sc_resetlock);
  981. r = ath9k_hw_reset(ah, ah->curchan, false);
  982. if (r) {
  983. DPRINTF(sc, ATH_DBG_FATAL,
  984. "Unable to reset channel %u (%uMhz) "
  985. "reset status %d\n",
  986. channel->center_freq, r);
  987. }
  988. spin_unlock_bh(&sc->sc_resetlock);
  989. ath9k_hw_phy_disable(ah);
  990. ath9k_hw_configpcipowersave(ah, 1);
  991. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  992. ath9k_ps_restore(sc);
  993. }
  994. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  995. /*******************/
  996. /* Rfkill */
  997. /*******************/
  998. static bool ath_is_rfkill_set(struct ath_softc *sc)
  999. {
  1000. struct ath_hw *ah = sc->sc_ah;
  1001. return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
  1002. ah->rfkill_polarity;
  1003. }
  1004. /* h/w rfkill poll function */
  1005. static void ath_rfkill_poll(struct work_struct *work)
  1006. {
  1007. struct ath_softc *sc = container_of(work, struct ath_softc,
  1008. rf_kill.rfkill_poll.work);
  1009. bool radio_on;
  1010. if (sc->sc_flags & SC_OP_INVALID)
  1011. return;
  1012. radio_on = !ath_is_rfkill_set(sc);
  1013. /*
  1014. * enable/disable radio only when there is a
  1015. * state change in RF switch
  1016. */
  1017. if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
  1018. enum rfkill_state state;
  1019. if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
  1020. state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
  1021. : RFKILL_STATE_HARD_BLOCKED;
  1022. } else if (radio_on) {
  1023. ath_radio_enable(sc);
  1024. state = RFKILL_STATE_UNBLOCKED;
  1025. } else {
  1026. ath_radio_disable(sc);
  1027. state = RFKILL_STATE_HARD_BLOCKED;
  1028. }
  1029. if (state == RFKILL_STATE_HARD_BLOCKED)
  1030. sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
  1031. else
  1032. sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
  1033. rfkill_force_state(sc->rf_kill.rfkill, state);
  1034. }
  1035. queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
  1036. msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
  1037. }
  1038. /* s/w rfkill handler */
  1039. static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
  1040. {
  1041. struct ath_softc *sc = data;
  1042. switch (state) {
  1043. case RFKILL_STATE_SOFT_BLOCKED:
  1044. if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
  1045. SC_OP_RFKILL_SW_BLOCKED)))
  1046. ath_radio_disable(sc);
  1047. sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
  1048. return 0;
  1049. case RFKILL_STATE_UNBLOCKED:
  1050. if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
  1051. sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
  1052. if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
  1053. DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
  1054. "radio as it is disabled by h/w\n");
  1055. return -EPERM;
  1056. }
  1057. ath_radio_enable(sc);
  1058. }
  1059. return 0;
  1060. default:
  1061. return -EINVAL;
  1062. }
  1063. }
  1064. /* Init s/w rfkill */
  1065. static int ath_init_sw_rfkill(struct ath_softc *sc)
  1066. {
  1067. sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
  1068. RFKILL_TYPE_WLAN);
  1069. if (!sc->rf_kill.rfkill) {
  1070. DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
  1071. return -ENOMEM;
  1072. }
  1073. snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
  1074. "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
  1075. sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
  1076. sc->rf_kill.rfkill->data = sc;
  1077. sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
  1078. sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
  1079. return 0;
  1080. }
  1081. /* Deinitialize rfkill */
  1082. static void ath_deinit_rfkill(struct ath_softc *sc)
  1083. {
  1084. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1085. cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
  1086. if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
  1087. rfkill_unregister(sc->rf_kill.rfkill);
  1088. sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
  1089. sc->rf_kill.rfkill = NULL;
  1090. }
  1091. }
  1092. static int ath_start_rfkill_poll(struct ath_softc *sc)
  1093. {
  1094. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1095. queue_delayed_work(sc->hw->workqueue,
  1096. &sc->rf_kill.rfkill_poll, 0);
  1097. if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
  1098. if (rfkill_register(sc->rf_kill.rfkill)) {
  1099. DPRINTF(sc, ATH_DBG_FATAL,
  1100. "Unable to register rfkill\n");
  1101. rfkill_free(sc->rf_kill.rfkill);
  1102. /* Deinitialize the device */
  1103. ath_cleanup(sc);
  1104. return -EIO;
  1105. } else {
  1106. sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
  1107. }
  1108. }
  1109. return 0;
  1110. }
  1111. #endif /* CONFIG_RFKILL */
  1112. void ath_cleanup(struct ath_softc *sc)
  1113. {
  1114. ath_detach(sc);
  1115. free_irq(sc->irq, sc);
  1116. ath_bus_cleanup(sc);
  1117. kfree(sc->sec_wiphy);
  1118. ieee80211_free_hw(sc->hw);
  1119. }
  1120. void ath_detach(struct ath_softc *sc)
  1121. {
  1122. struct ieee80211_hw *hw = sc->hw;
  1123. int i = 0;
  1124. ath9k_ps_wakeup(sc);
  1125. DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
  1126. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1127. ath_deinit_rfkill(sc);
  1128. #endif
  1129. ath_deinit_leds(sc);
  1130. cancel_work_sync(&sc->chan_work);
  1131. cancel_delayed_work_sync(&sc->wiphy_work);
  1132. for (i = 0; i < sc->num_sec_wiphy; i++) {
  1133. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  1134. if (aphy == NULL)
  1135. continue;
  1136. sc->sec_wiphy[i] = NULL;
  1137. ieee80211_unregister_hw(aphy->hw);
  1138. ieee80211_free_hw(aphy->hw);
  1139. }
  1140. ieee80211_unregister_hw(hw);
  1141. ath_rx_cleanup(sc);
  1142. ath_tx_cleanup(sc);
  1143. tasklet_kill(&sc->intr_tq);
  1144. tasklet_kill(&sc->bcon_tasklet);
  1145. if (!(sc->sc_flags & SC_OP_INVALID))
  1146. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
  1147. /* cleanup tx queues */
  1148. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1149. if (ATH_TXQ_SETUP(sc, i))
  1150. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1151. ath9k_hw_detach(sc->sc_ah);
  1152. ath9k_exit_debug(sc);
  1153. ath9k_ps_restore(sc);
  1154. }
  1155. static int ath9k_reg_notifier(struct wiphy *wiphy,
  1156. struct regulatory_request *request)
  1157. {
  1158. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  1159. struct ath_wiphy *aphy = hw->priv;
  1160. struct ath_softc *sc = aphy->sc;
  1161. struct ath_regulatory *reg = &sc->sc_ah->regulatory;
  1162. return ath_reg_notifier_apply(wiphy, request, reg);
  1163. }
  1164. static int ath_init(u16 devid, struct ath_softc *sc)
  1165. {
  1166. struct ath_hw *ah = NULL;
  1167. int status;
  1168. int error = 0, i;
  1169. int csz = 0;
  1170. /* XXX: hardware will not be ready until ath_open() being called */
  1171. sc->sc_flags |= SC_OP_INVALID;
  1172. if (ath9k_init_debug(sc) < 0)
  1173. printk(KERN_ERR "Unable to create debugfs files\n");
  1174. spin_lock_init(&sc->wiphy_lock);
  1175. spin_lock_init(&sc->sc_resetlock);
  1176. spin_lock_init(&sc->sc_serial_rw);
  1177. mutex_init(&sc->mutex);
  1178. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  1179. tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
  1180. (unsigned long)sc);
  1181. /*
  1182. * Cache line size is used to size and align various
  1183. * structures used to communicate with the hardware.
  1184. */
  1185. ath_read_cachesize(sc, &csz);
  1186. /* XXX assert csz is non-zero */
  1187. sc->cachelsz = csz << 2; /* convert to bytes */
  1188. ah = ath9k_hw_attach(devid, sc, &status);
  1189. if (ah == NULL) {
  1190. DPRINTF(sc, ATH_DBG_FATAL,
  1191. "Unable to attach hardware; HAL status %d\n", status);
  1192. error = -ENXIO;
  1193. goto bad;
  1194. }
  1195. sc->sc_ah = ah;
  1196. /* Get the hardware key cache size. */
  1197. sc->keymax = ah->caps.keycache_size;
  1198. if (sc->keymax > ATH_KEYMAX) {
  1199. DPRINTF(sc, ATH_DBG_ANY,
  1200. "Warning, using only %u entries in %u key cache\n",
  1201. ATH_KEYMAX, sc->keymax);
  1202. sc->keymax = ATH_KEYMAX;
  1203. }
  1204. /*
  1205. * Reset the key cache since some parts do not
  1206. * reset the contents on initial power up.
  1207. */
  1208. for (i = 0; i < sc->keymax; i++)
  1209. ath9k_hw_keyreset(ah, (u16) i);
  1210. error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
  1211. ath9k_reg_notifier);
  1212. if (error)
  1213. goto bad;
  1214. /* default to MONITOR mode */
  1215. sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
  1216. /* Setup rate tables */
  1217. ath_rate_attach(sc);
  1218. ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
  1219. ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
  1220. /*
  1221. * Allocate hardware transmit queues: one queue for
  1222. * beacon frames and one data queue for each QoS
  1223. * priority. Note that the hal handles reseting
  1224. * these queues at the needed time.
  1225. */
  1226. sc->beacon.beaconq = ath_beaconq_setup(ah);
  1227. if (sc->beacon.beaconq == -1) {
  1228. DPRINTF(sc, ATH_DBG_FATAL,
  1229. "Unable to setup a beacon xmit queue\n");
  1230. error = -EIO;
  1231. goto bad2;
  1232. }
  1233. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  1234. if (sc->beacon.cabq == NULL) {
  1235. DPRINTF(sc, ATH_DBG_FATAL,
  1236. "Unable to setup CAB xmit queue\n");
  1237. error = -EIO;
  1238. goto bad2;
  1239. }
  1240. sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
  1241. ath_cabq_update(sc);
  1242. for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
  1243. sc->tx.hwq_map[i] = -1;
  1244. /* Setup data queues */
  1245. /* NB: ensure BK queue is the lowest priority h/w queue */
  1246. if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
  1247. DPRINTF(sc, ATH_DBG_FATAL,
  1248. "Unable to setup xmit queue for BK traffic\n");
  1249. error = -EIO;
  1250. goto bad2;
  1251. }
  1252. if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
  1253. DPRINTF(sc, ATH_DBG_FATAL,
  1254. "Unable to setup xmit queue for BE traffic\n");
  1255. error = -EIO;
  1256. goto bad2;
  1257. }
  1258. if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
  1259. DPRINTF(sc, ATH_DBG_FATAL,
  1260. "Unable to setup xmit queue for VI traffic\n");
  1261. error = -EIO;
  1262. goto bad2;
  1263. }
  1264. if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
  1265. DPRINTF(sc, ATH_DBG_FATAL,
  1266. "Unable to setup xmit queue for VO traffic\n");
  1267. error = -EIO;
  1268. goto bad2;
  1269. }
  1270. /* Initializes the noise floor to a reasonable default value.
  1271. * Later on this will be updated during ANI processing. */
  1272. sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
  1273. setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  1274. if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1275. ATH9K_CIPHER_TKIP, NULL)) {
  1276. /*
  1277. * Whether we should enable h/w TKIP MIC.
  1278. * XXX: if we don't support WME TKIP MIC, then we wouldn't
  1279. * report WMM capable, so it's always safe to turn on
  1280. * TKIP MIC in this case.
  1281. */
  1282. ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
  1283. 0, 1, NULL);
  1284. }
  1285. /*
  1286. * Check whether the separate key cache entries
  1287. * are required to handle both tx+rx MIC keys.
  1288. * With split mic keys the number of stations is limited
  1289. * to 27 otherwise 59.
  1290. */
  1291. if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1292. ATH9K_CIPHER_TKIP, NULL)
  1293. && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1294. ATH9K_CIPHER_MIC, NULL)
  1295. && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
  1296. 0, NULL))
  1297. sc->splitmic = 1;
  1298. /* turn on mcast key search if possible */
  1299. if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
  1300. (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
  1301. 1, NULL);
  1302. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  1303. /* 11n Capabilities */
  1304. if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1305. sc->sc_flags |= SC_OP_TXAGGR;
  1306. sc->sc_flags |= SC_OP_RXAGGR;
  1307. }
  1308. sc->tx_chainmask = ah->caps.tx_chainmask;
  1309. sc->rx_chainmask = ah->caps.rx_chainmask;
  1310. ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
  1311. sc->rx.defant = ath9k_hw_getdefantenna(ah);
  1312. if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  1313. memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
  1314. sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
  1315. /* initialize beacon slots */
  1316. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  1317. sc->beacon.bslot[i] = NULL;
  1318. sc->beacon.bslot_aphy[i] = NULL;
  1319. }
  1320. /* setup channels and rates */
  1321. sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
  1322. sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
  1323. sc->rates[IEEE80211_BAND_2GHZ];
  1324. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  1325. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  1326. ARRAY_SIZE(ath9k_2ghz_chantable);
  1327. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
  1328. sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
  1329. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  1330. sc->rates[IEEE80211_BAND_5GHZ];
  1331. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  1332. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  1333. ARRAY_SIZE(ath9k_5ghz_chantable);
  1334. }
  1335. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
  1336. ath9k_hw_btcoex_enable(sc->sc_ah);
  1337. return 0;
  1338. bad2:
  1339. /* cleanup tx queues */
  1340. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1341. if (ATH_TXQ_SETUP(sc, i))
  1342. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1343. bad:
  1344. if (ah)
  1345. ath9k_hw_detach(ah);
  1346. ath9k_exit_debug(sc);
  1347. return error;
  1348. }
  1349. void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  1350. {
  1351. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  1352. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1353. IEEE80211_HW_SIGNAL_DBM |
  1354. IEEE80211_HW_AMPDU_AGGREGATION |
  1355. IEEE80211_HW_SUPPORTS_PS |
  1356. IEEE80211_HW_PS_NULLFUNC_STACK |
  1357. IEEE80211_HW_SPECTRUM_MGMT;
  1358. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
  1359. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  1360. hw->wiphy->interface_modes =
  1361. BIT(NL80211_IFTYPE_AP) |
  1362. BIT(NL80211_IFTYPE_STATION) |
  1363. BIT(NL80211_IFTYPE_ADHOC) |
  1364. BIT(NL80211_IFTYPE_MESH_POINT);
  1365. hw->queues = 4;
  1366. hw->max_rates = 4;
  1367. hw->channel_change_time = 5000;
  1368. hw->max_listen_interval = 10;
  1369. hw->max_rate_tries = ATH_11N_TXMAXTRY;
  1370. hw->sta_data_size = sizeof(struct ath_node);
  1371. hw->vif_data_size = sizeof(struct ath_vif);
  1372. hw->rate_control_algorithm = "ath9k_rate_control";
  1373. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  1374. &sc->sbands[IEEE80211_BAND_2GHZ];
  1375. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  1376. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  1377. &sc->sbands[IEEE80211_BAND_5GHZ];
  1378. }
  1379. int ath_attach(u16 devid, struct ath_softc *sc)
  1380. {
  1381. struct ieee80211_hw *hw = sc->hw;
  1382. int error = 0, i;
  1383. struct ath_regulatory *reg;
  1384. DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
  1385. error = ath_init(devid, sc);
  1386. if (error != 0)
  1387. return error;
  1388. reg = &sc->sc_ah->regulatory;
  1389. /* get mac address from hardware and set in mac80211 */
  1390. SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
  1391. ath_set_hw_capab(sc, hw);
  1392. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1393. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  1394. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  1395. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  1396. }
  1397. /* initialize tx/rx engine */
  1398. error = ath_tx_init(sc, ATH_TXBUF);
  1399. if (error != 0)
  1400. goto error_attach;
  1401. error = ath_rx_init(sc, ATH_RXBUF);
  1402. if (error != 0)
  1403. goto error_attach;
  1404. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1405. /* Initialze h/w Rfkill */
  1406. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1407. INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
  1408. /* Initialize s/w rfkill */
  1409. error = ath_init_sw_rfkill(sc);
  1410. if (error)
  1411. goto error_attach;
  1412. #endif
  1413. INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
  1414. INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
  1415. sc->wiphy_scheduler_int = msecs_to_jiffies(500);
  1416. error = ieee80211_register_hw(hw);
  1417. if (!ath_is_world_regd(reg)) {
  1418. error = regulatory_hint(hw->wiphy, reg->alpha2);
  1419. if (error)
  1420. goto error_attach;
  1421. }
  1422. /* Initialize LED control */
  1423. ath_init_leds(sc);
  1424. return 0;
  1425. error_attach:
  1426. /* cleanup tx queues */
  1427. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1428. if (ATH_TXQ_SETUP(sc, i))
  1429. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1430. ath9k_hw_detach(sc->sc_ah);
  1431. ath9k_exit_debug(sc);
  1432. return error;
  1433. }
  1434. int ath_reset(struct ath_softc *sc, bool retry_tx)
  1435. {
  1436. struct ath_hw *ah = sc->sc_ah;
  1437. struct ieee80211_hw *hw = sc->hw;
  1438. int r;
  1439. ath9k_hw_set_interrupts(ah, 0);
  1440. ath_drain_all_txq(sc, retry_tx);
  1441. ath_stoprecv(sc);
  1442. ath_flushrecv(sc);
  1443. spin_lock_bh(&sc->sc_resetlock);
  1444. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
  1445. if (r)
  1446. DPRINTF(sc, ATH_DBG_FATAL,
  1447. "Unable to reset hardware; reset status %d\n", r);
  1448. spin_unlock_bh(&sc->sc_resetlock);
  1449. if (ath_startrecv(sc) != 0)
  1450. DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
  1451. /*
  1452. * We may be doing a reset in response to a request
  1453. * that changes the channel so update any state that
  1454. * might change as a result.
  1455. */
  1456. ath_cache_conf_rate(sc, &hw->conf);
  1457. ath_update_txpow(sc);
  1458. if (sc->sc_flags & SC_OP_BEACONS)
  1459. ath_beacon_config(sc, NULL); /* restart beacons */
  1460. ath9k_hw_set_interrupts(ah, sc->imask);
  1461. if (retry_tx) {
  1462. int i;
  1463. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1464. if (ATH_TXQ_SETUP(sc, i)) {
  1465. spin_lock_bh(&sc->tx.txq[i].axq_lock);
  1466. ath_txq_schedule(sc, &sc->tx.txq[i]);
  1467. spin_unlock_bh(&sc->tx.txq[i].axq_lock);
  1468. }
  1469. }
  1470. }
  1471. return r;
  1472. }
  1473. /*
  1474. * This function will allocate both the DMA descriptor structure, and the
  1475. * buffers it contains. These are used to contain the descriptors used
  1476. * by the system.
  1477. */
  1478. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  1479. struct list_head *head, const char *name,
  1480. int nbuf, int ndesc)
  1481. {
  1482. #define DS2PHYS(_dd, _ds) \
  1483. ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
  1484. #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
  1485. #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
  1486. struct ath_desc *ds;
  1487. struct ath_buf *bf;
  1488. int i, bsize, error;
  1489. DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  1490. name, nbuf, ndesc);
  1491. INIT_LIST_HEAD(head);
  1492. /* ath_desc must be a multiple of DWORDs */
  1493. if ((sizeof(struct ath_desc) % 4) != 0) {
  1494. DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
  1495. ASSERT((sizeof(struct ath_desc) % 4) == 0);
  1496. error = -ENOMEM;
  1497. goto fail;
  1498. }
  1499. dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
  1500. /*
  1501. * Need additional DMA memory because we can't use
  1502. * descriptors that cross the 4K page boundary. Assume
  1503. * one skipped descriptor per 4K page.
  1504. */
  1505. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  1506. u32 ndesc_skipped =
  1507. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  1508. u32 dma_len;
  1509. while (ndesc_skipped) {
  1510. dma_len = ndesc_skipped * sizeof(struct ath_desc);
  1511. dd->dd_desc_len += dma_len;
  1512. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  1513. };
  1514. }
  1515. /* allocate descriptors */
  1516. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1517. &dd->dd_desc_paddr, GFP_KERNEL);
  1518. if (dd->dd_desc == NULL) {
  1519. error = -ENOMEM;
  1520. goto fail;
  1521. }
  1522. ds = dd->dd_desc;
  1523. DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  1524. name, ds, (u32) dd->dd_desc_len,
  1525. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  1526. /* allocate buffers */
  1527. bsize = sizeof(struct ath_buf) * nbuf;
  1528. bf = kzalloc(bsize, GFP_KERNEL);
  1529. if (bf == NULL) {
  1530. error = -ENOMEM;
  1531. goto fail2;
  1532. }
  1533. dd->dd_bufptr = bf;
  1534. for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
  1535. bf->bf_desc = ds;
  1536. bf->bf_daddr = DS2PHYS(dd, ds);
  1537. if (!(sc->sc_ah->caps.hw_caps &
  1538. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  1539. /*
  1540. * Skip descriptor addresses which can cause 4KB
  1541. * boundary crossing (addr + length) with a 32 dword
  1542. * descriptor fetch.
  1543. */
  1544. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  1545. ASSERT((caddr_t) bf->bf_desc <
  1546. ((caddr_t) dd->dd_desc +
  1547. dd->dd_desc_len));
  1548. ds += ndesc;
  1549. bf->bf_desc = ds;
  1550. bf->bf_daddr = DS2PHYS(dd, ds);
  1551. }
  1552. }
  1553. list_add_tail(&bf->list, head);
  1554. }
  1555. return 0;
  1556. fail2:
  1557. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1558. dd->dd_desc_paddr);
  1559. fail:
  1560. memset(dd, 0, sizeof(*dd));
  1561. return error;
  1562. #undef ATH_DESC_4KB_BOUND_CHECK
  1563. #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
  1564. #undef DS2PHYS
  1565. }
  1566. void ath_descdma_cleanup(struct ath_softc *sc,
  1567. struct ath_descdma *dd,
  1568. struct list_head *head)
  1569. {
  1570. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1571. dd->dd_desc_paddr);
  1572. INIT_LIST_HEAD(head);
  1573. kfree(dd->dd_bufptr);
  1574. memset(dd, 0, sizeof(*dd));
  1575. }
  1576. int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
  1577. {
  1578. int qnum;
  1579. switch (queue) {
  1580. case 0:
  1581. qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
  1582. break;
  1583. case 1:
  1584. qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
  1585. break;
  1586. case 2:
  1587. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
  1588. break;
  1589. case 3:
  1590. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
  1591. break;
  1592. default:
  1593. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
  1594. break;
  1595. }
  1596. return qnum;
  1597. }
  1598. int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
  1599. {
  1600. int qnum;
  1601. switch (queue) {
  1602. case ATH9K_WME_AC_VO:
  1603. qnum = 0;
  1604. break;
  1605. case ATH9K_WME_AC_VI:
  1606. qnum = 1;
  1607. break;
  1608. case ATH9K_WME_AC_BE:
  1609. qnum = 2;
  1610. break;
  1611. case ATH9K_WME_AC_BK:
  1612. qnum = 3;
  1613. break;
  1614. default:
  1615. qnum = -1;
  1616. break;
  1617. }
  1618. return qnum;
  1619. }
  1620. /* XXX: Remove me once we don't depend on ath9k_channel for all
  1621. * this redundant data */
  1622. void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
  1623. struct ath9k_channel *ichan)
  1624. {
  1625. struct ieee80211_channel *chan = hw->conf.channel;
  1626. struct ieee80211_conf *conf = &hw->conf;
  1627. ichan->channel = chan->center_freq;
  1628. ichan->chan = chan;
  1629. if (chan->band == IEEE80211_BAND_2GHZ) {
  1630. ichan->chanmode = CHANNEL_G;
  1631. ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
  1632. } else {
  1633. ichan->chanmode = CHANNEL_A;
  1634. ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
  1635. }
  1636. sc->tx_chan_width = ATH9K_HT_MACMODE_20;
  1637. if (conf_is_ht(conf)) {
  1638. if (conf_is_ht40(conf))
  1639. sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
  1640. ichan->chanmode = ath_get_extchanmode(sc, chan,
  1641. conf->channel_type);
  1642. }
  1643. }
  1644. /**********************/
  1645. /* mac80211 callbacks */
  1646. /**********************/
  1647. static int ath9k_start(struct ieee80211_hw *hw)
  1648. {
  1649. struct ath_wiphy *aphy = hw->priv;
  1650. struct ath_softc *sc = aphy->sc;
  1651. struct ieee80211_channel *curchan = hw->conf.channel;
  1652. struct ath9k_channel *init_channel;
  1653. int r, pos;
  1654. DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
  1655. "initial channel: %d MHz\n", curchan->center_freq);
  1656. mutex_lock(&sc->mutex);
  1657. if (ath9k_wiphy_started(sc)) {
  1658. if (sc->chan_idx == curchan->hw_value) {
  1659. /*
  1660. * Already on the operational channel, the new wiphy
  1661. * can be marked active.
  1662. */
  1663. aphy->state = ATH_WIPHY_ACTIVE;
  1664. ieee80211_wake_queues(hw);
  1665. } else {
  1666. /*
  1667. * Another wiphy is on another channel, start the new
  1668. * wiphy in paused state.
  1669. */
  1670. aphy->state = ATH_WIPHY_PAUSED;
  1671. ieee80211_stop_queues(hw);
  1672. }
  1673. mutex_unlock(&sc->mutex);
  1674. return 0;
  1675. }
  1676. aphy->state = ATH_WIPHY_ACTIVE;
  1677. /* setup initial channel */
  1678. pos = curchan->hw_value;
  1679. sc->chan_idx = pos;
  1680. init_channel = &sc->sc_ah->channels[pos];
  1681. ath9k_update_ichannel(sc, hw, init_channel);
  1682. /* Reset SERDES registers */
  1683. ath9k_hw_configpcipowersave(sc->sc_ah, 0);
  1684. /*
  1685. * The basic interface to setting the hardware in a good
  1686. * state is ``reset''. On return the hardware is known to
  1687. * be powered up and with interrupts disabled. This must
  1688. * be followed by initialization of the appropriate bits
  1689. * and then setup of the interrupt mask.
  1690. */
  1691. spin_lock_bh(&sc->sc_resetlock);
  1692. r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
  1693. if (r) {
  1694. DPRINTF(sc, ATH_DBG_FATAL,
  1695. "Unable to reset hardware; reset status %d "
  1696. "(freq %u MHz)\n", r,
  1697. curchan->center_freq);
  1698. spin_unlock_bh(&sc->sc_resetlock);
  1699. goto mutex_unlock;
  1700. }
  1701. spin_unlock_bh(&sc->sc_resetlock);
  1702. /*
  1703. * This is needed only to setup initial state
  1704. * but it's best done after a reset.
  1705. */
  1706. ath_update_txpow(sc);
  1707. /*
  1708. * Setup the hardware after reset:
  1709. * The receive engine is set going.
  1710. * Frame transmit is handled entirely
  1711. * in the frame output path; there's nothing to do
  1712. * here except setup the interrupt mask.
  1713. */
  1714. if (ath_startrecv(sc) != 0) {
  1715. DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
  1716. r = -EIO;
  1717. goto mutex_unlock;
  1718. }
  1719. /* Setup our intr mask. */
  1720. sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
  1721. | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
  1722. | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
  1723. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
  1724. sc->imask |= ATH9K_INT_GTT;
  1725. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1726. sc->imask |= ATH9K_INT_CST;
  1727. ath_cache_conf_rate(sc, &hw->conf);
  1728. sc->sc_flags &= ~SC_OP_INVALID;
  1729. /* Disable BMISS interrupt when we're not associated */
  1730. sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
  1731. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  1732. ieee80211_wake_queues(hw);
  1733. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1734. r = ath_start_rfkill_poll(sc);
  1735. #endif
  1736. mutex_unlock:
  1737. mutex_unlock(&sc->mutex);
  1738. return r;
  1739. }
  1740. static int ath9k_tx(struct ieee80211_hw *hw,
  1741. struct sk_buff *skb)
  1742. {
  1743. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1744. struct ath_wiphy *aphy = hw->priv;
  1745. struct ath_softc *sc = aphy->sc;
  1746. struct ath_tx_control txctl;
  1747. int hdrlen, padsize;
  1748. if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
  1749. printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
  1750. "%d\n", wiphy_name(hw->wiphy), aphy->state);
  1751. goto exit;
  1752. }
  1753. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1754. /*
  1755. * As a temporary workaround, assign seq# here; this will likely need
  1756. * to be cleaned up to work better with Beacon transmission and virtual
  1757. * BSSes.
  1758. */
  1759. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1760. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1761. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1762. sc->tx.seq_no += 0x10;
  1763. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1764. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1765. }
  1766. /* Add the padding after the header if this is not already done */
  1767. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1768. if (hdrlen & 3) {
  1769. padsize = hdrlen % 4;
  1770. if (skb_headroom(skb) < padsize)
  1771. return -1;
  1772. skb_push(skb, padsize);
  1773. memmove(skb->data, skb->data + padsize, hdrlen);
  1774. }
  1775. /* Check if a tx queue is available */
  1776. txctl.txq = ath_test_get_txq(sc, skb);
  1777. if (!txctl.txq)
  1778. goto exit;
  1779. DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
  1780. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1781. DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
  1782. goto exit;
  1783. }
  1784. return 0;
  1785. exit:
  1786. dev_kfree_skb_any(skb);
  1787. return 0;
  1788. }
  1789. static void ath9k_stop(struct ieee80211_hw *hw)
  1790. {
  1791. struct ath_wiphy *aphy = hw->priv;
  1792. struct ath_softc *sc = aphy->sc;
  1793. aphy->state = ATH_WIPHY_INACTIVE;
  1794. if (sc->sc_flags & SC_OP_INVALID) {
  1795. DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
  1796. return;
  1797. }
  1798. mutex_lock(&sc->mutex);
  1799. ieee80211_stop_queues(hw);
  1800. if (ath9k_wiphy_started(sc)) {
  1801. mutex_unlock(&sc->mutex);
  1802. return; /* another wiphy still in use */
  1803. }
  1804. /* make sure h/w will not generate any interrupt
  1805. * before setting the invalid flag. */
  1806. ath9k_hw_set_interrupts(sc->sc_ah, 0);
  1807. if (!(sc->sc_flags & SC_OP_INVALID)) {
  1808. ath_drain_all_txq(sc, false);
  1809. ath_stoprecv(sc);
  1810. ath9k_hw_phy_disable(sc->sc_ah);
  1811. } else
  1812. sc->rx.rxlink = NULL;
  1813. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1814. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1815. cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
  1816. #endif
  1817. /* disable HAL and put h/w to sleep */
  1818. ath9k_hw_disable(sc->sc_ah);
  1819. ath9k_hw_configpcipowersave(sc->sc_ah, 1);
  1820. sc->sc_flags |= SC_OP_INVALID;
  1821. mutex_unlock(&sc->mutex);
  1822. DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
  1823. }
  1824. static int ath9k_add_interface(struct ieee80211_hw *hw,
  1825. struct ieee80211_if_init_conf *conf)
  1826. {
  1827. struct ath_wiphy *aphy = hw->priv;
  1828. struct ath_softc *sc = aphy->sc;
  1829. struct ath_vif *avp = (void *)conf->vif->drv_priv;
  1830. enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
  1831. int ret = 0;
  1832. mutex_lock(&sc->mutex);
  1833. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
  1834. sc->nvifs > 0) {
  1835. ret = -ENOBUFS;
  1836. goto out;
  1837. }
  1838. switch (conf->type) {
  1839. case NL80211_IFTYPE_STATION:
  1840. ic_opmode = NL80211_IFTYPE_STATION;
  1841. break;
  1842. case NL80211_IFTYPE_ADHOC:
  1843. case NL80211_IFTYPE_AP:
  1844. case NL80211_IFTYPE_MESH_POINT:
  1845. if (sc->nbcnvifs >= ATH_BCBUF) {
  1846. ret = -ENOBUFS;
  1847. goto out;
  1848. }
  1849. ic_opmode = conf->type;
  1850. break;
  1851. default:
  1852. DPRINTF(sc, ATH_DBG_FATAL,
  1853. "Interface type %d not yet supported\n", conf->type);
  1854. ret = -EOPNOTSUPP;
  1855. goto out;
  1856. }
  1857. DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
  1858. /* Set the VIF opmode */
  1859. avp->av_opmode = ic_opmode;
  1860. avp->av_bslot = -1;
  1861. sc->nvifs++;
  1862. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  1863. ath9k_set_bssid_mask(hw);
  1864. if (sc->nvifs > 1)
  1865. goto out; /* skip global settings for secondary vif */
  1866. if (ic_opmode == NL80211_IFTYPE_AP) {
  1867. ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
  1868. sc->sc_flags |= SC_OP_TSF_RESET;
  1869. }
  1870. /* Set the device opmode */
  1871. sc->sc_ah->opmode = ic_opmode;
  1872. /*
  1873. * Enable MIB interrupts when there are hardware phy counters.
  1874. * Note we only do this (at the moment) for station mode.
  1875. */
  1876. if ((conf->type == NL80211_IFTYPE_STATION) ||
  1877. (conf->type == NL80211_IFTYPE_ADHOC) ||
  1878. (conf->type == NL80211_IFTYPE_MESH_POINT)) {
  1879. if (ath9k_hw_phycounters(sc->sc_ah))
  1880. sc->imask |= ATH9K_INT_MIB;
  1881. sc->imask |= ATH9K_INT_TSFOOR;
  1882. }
  1883. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  1884. if (conf->type == NL80211_IFTYPE_AP)
  1885. ath_start_ani(sc);
  1886. out:
  1887. mutex_unlock(&sc->mutex);
  1888. return ret;
  1889. }
  1890. static void ath9k_remove_interface(struct ieee80211_hw *hw,
  1891. struct ieee80211_if_init_conf *conf)
  1892. {
  1893. struct ath_wiphy *aphy = hw->priv;
  1894. struct ath_softc *sc = aphy->sc;
  1895. struct ath_vif *avp = (void *)conf->vif->drv_priv;
  1896. int i;
  1897. DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
  1898. mutex_lock(&sc->mutex);
  1899. /* Stop ANI */
  1900. del_timer_sync(&sc->ani.timer);
  1901. /* Reclaim beacon resources */
  1902. if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
  1903. (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
  1904. (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
  1905. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  1906. ath_beacon_return(sc, avp);
  1907. }
  1908. sc->sc_flags &= ~SC_OP_BEACONS;
  1909. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  1910. if (sc->beacon.bslot[i] == conf->vif) {
  1911. printk(KERN_DEBUG "%s: vif had allocated beacon "
  1912. "slot\n", __func__);
  1913. sc->beacon.bslot[i] = NULL;
  1914. sc->beacon.bslot_aphy[i] = NULL;
  1915. }
  1916. }
  1917. sc->nvifs--;
  1918. mutex_unlock(&sc->mutex);
  1919. }
  1920. static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
  1921. {
  1922. struct ath_wiphy *aphy = hw->priv;
  1923. struct ath_softc *sc = aphy->sc;
  1924. struct ieee80211_conf *conf = &hw->conf;
  1925. struct ath_hw *ah = sc->sc_ah;
  1926. mutex_lock(&sc->mutex);
  1927. if (changed & IEEE80211_CONF_CHANGE_PS) {
  1928. if (conf->flags & IEEE80211_CONF_PS) {
  1929. if (!(ah->caps.hw_caps &
  1930. ATH9K_HW_CAP_AUTOSLEEP)) {
  1931. if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
  1932. sc->imask |= ATH9K_INT_TIM_TIMER;
  1933. ath9k_hw_set_interrupts(sc->sc_ah,
  1934. sc->imask);
  1935. }
  1936. ath9k_hw_setrxabort(sc->sc_ah, 1);
  1937. }
  1938. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
  1939. } else {
  1940. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
  1941. if (!(ah->caps.hw_caps &
  1942. ATH9K_HW_CAP_AUTOSLEEP)) {
  1943. ath9k_hw_setrxabort(sc->sc_ah, 0);
  1944. sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
  1945. if (sc->imask & ATH9K_INT_TIM_TIMER) {
  1946. sc->imask &= ~ATH9K_INT_TIM_TIMER;
  1947. ath9k_hw_set_interrupts(sc->sc_ah,
  1948. sc->imask);
  1949. }
  1950. }
  1951. }
  1952. }
  1953. if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
  1954. struct ieee80211_channel *curchan = hw->conf.channel;
  1955. int pos = curchan->hw_value;
  1956. aphy->chan_idx = pos;
  1957. aphy->chan_is_ht = conf_is_ht(conf);
  1958. if (aphy->state == ATH_WIPHY_SCAN ||
  1959. aphy->state == ATH_WIPHY_ACTIVE)
  1960. ath9k_wiphy_pause_all_forced(sc, aphy);
  1961. else {
  1962. /*
  1963. * Do not change operational channel based on a paused
  1964. * wiphy changes.
  1965. */
  1966. goto skip_chan_change;
  1967. }
  1968. DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
  1969. curchan->center_freq);
  1970. /* XXX: remove me eventualy */
  1971. ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
  1972. ath_update_chainmask(sc, conf_is_ht(conf));
  1973. if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
  1974. DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
  1975. mutex_unlock(&sc->mutex);
  1976. return -EINVAL;
  1977. }
  1978. }
  1979. skip_chan_change:
  1980. if (changed & IEEE80211_CONF_CHANGE_POWER)
  1981. sc->config.txpowlimit = 2 * conf->power_level;
  1982. mutex_unlock(&sc->mutex);
  1983. return 0;
  1984. }
  1985. #define SUPPORTED_FILTERS \
  1986. (FIF_PROMISC_IN_BSS | \
  1987. FIF_ALLMULTI | \
  1988. FIF_CONTROL | \
  1989. FIF_OTHER_BSS | \
  1990. FIF_BCN_PRBRESP_PROMISC | \
  1991. FIF_FCSFAIL)
  1992. /* FIXME: sc->sc_full_reset ? */
  1993. static void ath9k_configure_filter(struct ieee80211_hw *hw,
  1994. unsigned int changed_flags,
  1995. unsigned int *total_flags,
  1996. int mc_count,
  1997. struct dev_mc_list *mclist)
  1998. {
  1999. struct ath_wiphy *aphy = hw->priv;
  2000. struct ath_softc *sc = aphy->sc;
  2001. u32 rfilt;
  2002. changed_flags &= SUPPORTED_FILTERS;
  2003. *total_flags &= SUPPORTED_FILTERS;
  2004. sc->rx.rxfilter = *total_flags;
  2005. rfilt = ath_calcrxfilter(sc);
  2006. ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
  2007. DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
  2008. }
  2009. static void ath9k_sta_notify(struct ieee80211_hw *hw,
  2010. struct ieee80211_vif *vif,
  2011. enum sta_notify_cmd cmd,
  2012. struct ieee80211_sta *sta)
  2013. {
  2014. struct ath_wiphy *aphy = hw->priv;
  2015. struct ath_softc *sc = aphy->sc;
  2016. switch (cmd) {
  2017. case STA_NOTIFY_ADD:
  2018. ath_node_attach(sc, sta);
  2019. break;
  2020. case STA_NOTIFY_REMOVE:
  2021. ath_node_detach(sc, sta);
  2022. break;
  2023. default:
  2024. break;
  2025. }
  2026. }
  2027. static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
  2028. const struct ieee80211_tx_queue_params *params)
  2029. {
  2030. struct ath_wiphy *aphy = hw->priv;
  2031. struct ath_softc *sc = aphy->sc;
  2032. struct ath9k_tx_queue_info qi;
  2033. int ret = 0, qnum;
  2034. if (queue >= WME_NUM_AC)
  2035. return 0;
  2036. mutex_lock(&sc->mutex);
  2037. memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
  2038. qi.tqi_aifs = params->aifs;
  2039. qi.tqi_cwmin = params->cw_min;
  2040. qi.tqi_cwmax = params->cw_max;
  2041. qi.tqi_burstTime = params->txop;
  2042. qnum = ath_get_hal_qnum(queue, sc);
  2043. DPRINTF(sc, ATH_DBG_CONFIG,
  2044. "Configure tx [queue/halq] [%d/%d], "
  2045. "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
  2046. queue, qnum, params->aifs, params->cw_min,
  2047. params->cw_max, params->txop);
  2048. ret = ath_txq_update(sc, qnum, &qi);
  2049. if (ret)
  2050. DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
  2051. mutex_unlock(&sc->mutex);
  2052. return ret;
  2053. }
  2054. static int ath9k_set_key(struct ieee80211_hw *hw,
  2055. enum set_key_cmd cmd,
  2056. struct ieee80211_vif *vif,
  2057. struct ieee80211_sta *sta,
  2058. struct ieee80211_key_conf *key)
  2059. {
  2060. struct ath_wiphy *aphy = hw->priv;
  2061. struct ath_softc *sc = aphy->sc;
  2062. int ret = 0;
  2063. if (modparam_nohwcrypt)
  2064. return -ENOSPC;
  2065. mutex_lock(&sc->mutex);
  2066. ath9k_ps_wakeup(sc);
  2067. DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
  2068. switch (cmd) {
  2069. case SET_KEY:
  2070. ret = ath_key_config(sc, vif, sta, key);
  2071. if (ret >= 0) {
  2072. key->hw_key_idx = ret;
  2073. /* push IV and Michael MIC generation to stack */
  2074. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  2075. if (key->alg == ALG_TKIP)
  2076. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  2077. if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
  2078. key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
  2079. ret = 0;
  2080. }
  2081. break;
  2082. case DISABLE_KEY:
  2083. ath_key_delete(sc, key);
  2084. break;
  2085. default:
  2086. ret = -EINVAL;
  2087. }
  2088. ath9k_ps_restore(sc);
  2089. mutex_unlock(&sc->mutex);
  2090. return ret;
  2091. }
  2092. static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
  2093. struct ieee80211_vif *vif,
  2094. struct ieee80211_bss_conf *bss_conf,
  2095. u32 changed)
  2096. {
  2097. struct ath_wiphy *aphy = hw->priv;
  2098. struct ath_softc *sc = aphy->sc;
  2099. struct ath_hw *ah = sc->sc_ah;
  2100. struct ath_vif *avp = (void *)vif->drv_priv;
  2101. u32 rfilt = 0;
  2102. int error, i;
  2103. mutex_lock(&sc->mutex);
  2104. /*
  2105. * TODO: Need to decide which hw opmode to use for
  2106. * multi-interface cases
  2107. * XXX: This belongs into add_interface!
  2108. */
  2109. if (vif->type == NL80211_IFTYPE_AP &&
  2110. ah->opmode != NL80211_IFTYPE_AP) {
  2111. ah->opmode = NL80211_IFTYPE_STATION;
  2112. ath9k_hw_setopmode(ah);
  2113. memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
  2114. sc->curaid = 0;
  2115. ath9k_hw_write_associd(sc);
  2116. /* Request full reset to get hw opmode changed properly */
  2117. sc->sc_flags |= SC_OP_FULL_RESET;
  2118. }
  2119. if ((changed & BSS_CHANGED_BSSID) &&
  2120. !is_zero_ether_addr(bss_conf->bssid)) {
  2121. switch (vif->type) {
  2122. case NL80211_IFTYPE_STATION:
  2123. case NL80211_IFTYPE_ADHOC:
  2124. case NL80211_IFTYPE_MESH_POINT:
  2125. /* Set BSSID */
  2126. memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
  2127. memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
  2128. sc->curaid = 0;
  2129. ath9k_hw_write_associd(sc);
  2130. /* Set aggregation protection mode parameters */
  2131. sc->config.ath_aggr_prot = 0;
  2132. DPRINTF(sc, ATH_DBG_CONFIG,
  2133. "RX filter 0x%x bssid %pM aid 0x%x\n",
  2134. rfilt, sc->curbssid, sc->curaid);
  2135. /* need to reconfigure the beacon */
  2136. sc->sc_flags &= ~SC_OP_BEACONS ;
  2137. break;
  2138. default:
  2139. break;
  2140. }
  2141. }
  2142. if ((vif->type == NL80211_IFTYPE_ADHOC) ||
  2143. (vif->type == NL80211_IFTYPE_AP) ||
  2144. (vif->type == NL80211_IFTYPE_MESH_POINT)) {
  2145. if ((changed & BSS_CHANGED_BEACON) ||
  2146. (changed & BSS_CHANGED_BEACON_ENABLED &&
  2147. bss_conf->enable_beacon)) {
  2148. /*
  2149. * Allocate and setup the beacon frame.
  2150. *
  2151. * Stop any previous beacon DMA. This may be
  2152. * necessary, for example, when an ibss merge
  2153. * causes reconfiguration; we may be called
  2154. * with beacon transmission active.
  2155. */
  2156. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  2157. error = ath_beacon_alloc(aphy, vif);
  2158. if (!error)
  2159. ath_beacon_config(sc, vif);
  2160. }
  2161. }
  2162. /* Check for WLAN_CAPABILITY_PRIVACY ? */
  2163. if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
  2164. for (i = 0; i < IEEE80211_WEP_NKID; i++)
  2165. if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
  2166. ath9k_hw_keysetmac(sc->sc_ah,
  2167. (u16)i,
  2168. sc->curbssid);
  2169. }
  2170. /* Only legacy IBSS for now */
  2171. if (vif->type == NL80211_IFTYPE_ADHOC)
  2172. ath_update_chainmask(sc, 0);
  2173. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  2174. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
  2175. bss_conf->use_short_preamble);
  2176. if (bss_conf->use_short_preamble)
  2177. sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
  2178. else
  2179. sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
  2180. }
  2181. if (changed & BSS_CHANGED_ERP_CTS_PROT) {
  2182. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
  2183. bss_conf->use_cts_prot);
  2184. if (bss_conf->use_cts_prot &&
  2185. hw->conf.channel->band != IEEE80211_BAND_5GHZ)
  2186. sc->sc_flags |= SC_OP_PROTECT_ENABLE;
  2187. else
  2188. sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
  2189. }
  2190. if (changed & BSS_CHANGED_ASSOC) {
  2191. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
  2192. bss_conf->assoc);
  2193. ath9k_bss_assoc_info(sc, vif, bss_conf);
  2194. }
  2195. /*
  2196. * The HW TSF has to be reset when the beacon interval changes.
  2197. * We set the flag here, and ath_beacon_config_ap() would take this
  2198. * into account when it gets called through the subsequent
  2199. * config_interface() call - with IFCC_BEACON in the changed field.
  2200. */
  2201. if (changed & BSS_CHANGED_BEACON_INT) {
  2202. sc->sc_flags |= SC_OP_TSF_RESET;
  2203. sc->beacon_interval = bss_conf->beacon_int;
  2204. }
  2205. mutex_unlock(&sc->mutex);
  2206. }
  2207. static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
  2208. {
  2209. u64 tsf;
  2210. struct ath_wiphy *aphy = hw->priv;
  2211. struct ath_softc *sc = aphy->sc;
  2212. mutex_lock(&sc->mutex);
  2213. tsf = ath9k_hw_gettsf64(sc->sc_ah);
  2214. mutex_unlock(&sc->mutex);
  2215. return tsf;
  2216. }
  2217. static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
  2218. {
  2219. struct ath_wiphy *aphy = hw->priv;
  2220. struct ath_softc *sc = aphy->sc;
  2221. mutex_lock(&sc->mutex);
  2222. ath9k_hw_settsf64(sc->sc_ah, tsf);
  2223. mutex_unlock(&sc->mutex);
  2224. }
  2225. static void ath9k_reset_tsf(struct ieee80211_hw *hw)
  2226. {
  2227. struct ath_wiphy *aphy = hw->priv;
  2228. struct ath_softc *sc = aphy->sc;
  2229. mutex_lock(&sc->mutex);
  2230. ath9k_hw_reset_tsf(sc->sc_ah);
  2231. mutex_unlock(&sc->mutex);
  2232. }
  2233. static int ath9k_ampdu_action(struct ieee80211_hw *hw,
  2234. enum ieee80211_ampdu_mlme_action action,
  2235. struct ieee80211_sta *sta,
  2236. u16 tid, u16 *ssn)
  2237. {
  2238. struct ath_wiphy *aphy = hw->priv;
  2239. struct ath_softc *sc = aphy->sc;
  2240. int ret = 0;
  2241. switch (action) {
  2242. case IEEE80211_AMPDU_RX_START:
  2243. if (!(sc->sc_flags & SC_OP_RXAGGR))
  2244. ret = -ENOTSUPP;
  2245. break;
  2246. case IEEE80211_AMPDU_RX_STOP:
  2247. break;
  2248. case IEEE80211_AMPDU_TX_START:
  2249. ret = ath_tx_aggr_start(sc, sta, tid, ssn);
  2250. if (ret < 0)
  2251. DPRINTF(sc, ATH_DBG_FATAL,
  2252. "Unable to start TX aggregation\n");
  2253. else
  2254. ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
  2255. break;
  2256. case IEEE80211_AMPDU_TX_STOP:
  2257. ret = ath_tx_aggr_stop(sc, sta, tid);
  2258. if (ret < 0)
  2259. DPRINTF(sc, ATH_DBG_FATAL,
  2260. "Unable to stop TX aggregation\n");
  2261. ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
  2262. break;
  2263. case IEEE80211_AMPDU_TX_OPERATIONAL:
  2264. ath_tx_aggr_resume(sc, sta, tid);
  2265. break;
  2266. default:
  2267. DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
  2268. }
  2269. return ret;
  2270. }
  2271. static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
  2272. {
  2273. struct ath_wiphy *aphy = hw->priv;
  2274. struct ath_softc *sc = aphy->sc;
  2275. if (ath9k_wiphy_scanning(sc)) {
  2276. printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
  2277. "same time\n");
  2278. /*
  2279. * Do not allow the concurrent scanning state for now. This
  2280. * could be improved with scanning control moved into ath9k.
  2281. */
  2282. return;
  2283. }
  2284. aphy->state = ATH_WIPHY_SCAN;
  2285. ath9k_wiphy_pause_all_forced(sc, aphy);
  2286. mutex_lock(&sc->mutex);
  2287. sc->sc_flags |= SC_OP_SCANNING;
  2288. mutex_unlock(&sc->mutex);
  2289. }
  2290. static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
  2291. {
  2292. struct ath_wiphy *aphy = hw->priv;
  2293. struct ath_softc *sc = aphy->sc;
  2294. mutex_lock(&sc->mutex);
  2295. aphy->state = ATH_WIPHY_ACTIVE;
  2296. sc->sc_flags &= ~SC_OP_SCANNING;
  2297. sc->sc_flags |= SC_OP_FULL_RESET;
  2298. mutex_unlock(&sc->mutex);
  2299. }
  2300. struct ieee80211_ops ath9k_ops = {
  2301. .tx = ath9k_tx,
  2302. .start = ath9k_start,
  2303. .stop = ath9k_stop,
  2304. .add_interface = ath9k_add_interface,
  2305. .remove_interface = ath9k_remove_interface,
  2306. .config = ath9k_config,
  2307. .configure_filter = ath9k_configure_filter,
  2308. .sta_notify = ath9k_sta_notify,
  2309. .conf_tx = ath9k_conf_tx,
  2310. .bss_info_changed = ath9k_bss_info_changed,
  2311. .set_key = ath9k_set_key,
  2312. .get_tsf = ath9k_get_tsf,
  2313. .set_tsf = ath9k_set_tsf,
  2314. .reset_tsf = ath9k_reset_tsf,
  2315. .ampdu_action = ath9k_ampdu_action,
  2316. .sw_scan_start = ath9k_sw_scan_start,
  2317. .sw_scan_complete = ath9k_sw_scan_complete,
  2318. };
  2319. static struct {
  2320. u32 version;
  2321. const char * name;
  2322. } ath_mac_bb_names[] = {
  2323. { AR_SREV_VERSION_5416_PCI, "5416" },
  2324. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2325. { AR_SREV_VERSION_9100, "9100" },
  2326. { AR_SREV_VERSION_9160, "9160" },
  2327. { AR_SREV_VERSION_9280, "9280" },
  2328. { AR_SREV_VERSION_9285, "9285" }
  2329. };
  2330. static struct {
  2331. u16 version;
  2332. const char * name;
  2333. } ath_rf_names[] = {
  2334. { 0, "5133" },
  2335. { AR_RAD5133_SREV_MAJOR, "5133" },
  2336. { AR_RAD5122_SREV_MAJOR, "5122" },
  2337. { AR_RAD2133_SREV_MAJOR, "2133" },
  2338. { AR_RAD2122_SREV_MAJOR, "2122" }
  2339. };
  2340. /*
  2341. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2342. */
  2343. const char *
  2344. ath_mac_bb_name(u32 mac_bb_version)
  2345. {
  2346. int i;
  2347. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2348. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2349. return ath_mac_bb_names[i].name;
  2350. }
  2351. }
  2352. return "????";
  2353. }
  2354. /*
  2355. * Return the RF name. "????" is returned if the RF is unknown.
  2356. */
  2357. const char *
  2358. ath_rf_name(u16 rf_version)
  2359. {
  2360. int i;
  2361. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2362. if (ath_rf_names[i].version == rf_version) {
  2363. return ath_rf_names[i].name;
  2364. }
  2365. }
  2366. return "????";
  2367. }
  2368. static int __init ath9k_init(void)
  2369. {
  2370. int error;
  2371. /* Register rate control algorithm */
  2372. error = ath_rate_control_register();
  2373. if (error != 0) {
  2374. printk(KERN_ERR
  2375. "ath9k: Unable to register rate control "
  2376. "algorithm: %d\n",
  2377. error);
  2378. goto err_out;
  2379. }
  2380. error = ath9k_debug_create_root();
  2381. if (error) {
  2382. printk(KERN_ERR
  2383. "ath9k: Unable to create debugfs root: %d\n",
  2384. error);
  2385. goto err_rate_unregister;
  2386. }
  2387. error = ath_pci_init();
  2388. if (error < 0) {
  2389. printk(KERN_ERR
  2390. "ath9k: No PCI devices found, driver not installed.\n");
  2391. error = -ENODEV;
  2392. goto err_remove_root;
  2393. }
  2394. error = ath_ahb_init();
  2395. if (error < 0) {
  2396. error = -ENODEV;
  2397. goto err_pci_exit;
  2398. }
  2399. return 0;
  2400. err_pci_exit:
  2401. ath_pci_exit();
  2402. err_remove_root:
  2403. ath9k_debug_remove_root();
  2404. err_rate_unregister:
  2405. ath_rate_control_unregister();
  2406. err_out:
  2407. return error;
  2408. }
  2409. module_init(ath9k_init);
  2410. static void __exit ath9k_exit(void)
  2411. {
  2412. ath_ahb_exit();
  2413. ath_pci_exit();
  2414. ath9k_debug_remove_root();
  2415. ath_rate_control_unregister();
  2416. printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
  2417. }
  2418. module_exit(ath9k_exit);