dm.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-uevent.h"
  9. #include <linux/init.h>
  10. #include <linux/module.h>
  11. #include <linux/mutex.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/blkpg.h>
  14. #include <linux/bio.h>
  15. #include <linux/mempool.h>
  16. #include <linux/slab.h>
  17. #include <linux/idr.h>
  18. #include <linux/hdreg.h>
  19. #include <linux/delay.h>
  20. #include <trace/events/block.h>
  21. #define DM_MSG_PREFIX "core"
  22. #ifdef CONFIG_PRINTK
  23. /*
  24. * ratelimit state to be used in DMXXX_LIMIT().
  25. */
  26. DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  27. DEFAULT_RATELIMIT_INTERVAL,
  28. DEFAULT_RATELIMIT_BURST);
  29. EXPORT_SYMBOL(dm_ratelimit_state);
  30. #endif
  31. /*
  32. * Cookies are numeric values sent with CHANGE and REMOVE
  33. * uevents while resuming, removing or renaming the device.
  34. */
  35. #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36. #define DM_COOKIE_LENGTH 24
  37. static const char *_name = DM_NAME;
  38. static unsigned int major = 0;
  39. static unsigned int _major = 0;
  40. static DEFINE_IDR(_minor_idr);
  41. static DEFINE_SPINLOCK(_minor_lock);
  42. /*
  43. * For bio-based dm.
  44. * One of these is allocated per bio.
  45. */
  46. struct dm_io {
  47. struct mapped_device *md;
  48. int error;
  49. atomic_t io_count;
  50. struct bio *bio;
  51. unsigned long start_time;
  52. spinlock_t endio_lock;
  53. };
  54. /*
  55. * For request-based dm.
  56. * One of these is allocated per request.
  57. */
  58. struct dm_rq_target_io {
  59. struct mapped_device *md;
  60. struct dm_target *ti;
  61. struct request *orig, clone;
  62. int error;
  63. union map_info info;
  64. };
  65. /*
  66. * For request-based dm - the bio clones we allocate are embedded in these
  67. * structs.
  68. *
  69. * We allocate these with bio_alloc_bioset, using the front_pad parameter when
  70. * the bioset is created - this means the bio has to come at the end of the
  71. * struct.
  72. */
  73. struct dm_rq_clone_bio_info {
  74. struct bio *orig;
  75. struct dm_rq_target_io *tio;
  76. struct bio clone;
  77. };
  78. union map_info *dm_get_mapinfo(struct bio *bio)
  79. {
  80. if (bio && bio->bi_private)
  81. return &((struct dm_target_io *)bio->bi_private)->info;
  82. return NULL;
  83. }
  84. union map_info *dm_get_rq_mapinfo(struct request *rq)
  85. {
  86. if (rq && rq->end_io_data)
  87. return &((struct dm_rq_target_io *)rq->end_io_data)->info;
  88. return NULL;
  89. }
  90. EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
  91. #define MINOR_ALLOCED ((void *)-1)
  92. /*
  93. * Bits for the md->flags field.
  94. */
  95. #define DMF_BLOCK_IO_FOR_SUSPEND 0
  96. #define DMF_SUSPENDED 1
  97. #define DMF_FROZEN 2
  98. #define DMF_FREEING 3
  99. #define DMF_DELETING 4
  100. #define DMF_NOFLUSH_SUSPENDING 5
  101. #define DMF_MERGE_IS_OPTIONAL 6
  102. /*
  103. * Work processed by per-device workqueue.
  104. */
  105. struct mapped_device {
  106. struct rw_semaphore io_lock;
  107. struct mutex suspend_lock;
  108. rwlock_t map_lock;
  109. atomic_t holders;
  110. atomic_t open_count;
  111. unsigned long flags;
  112. struct request_queue *queue;
  113. unsigned type;
  114. /* Protect queue and type against concurrent access. */
  115. struct mutex type_lock;
  116. struct target_type *immutable_target_type;
  117. struct gendisk *disk;
  118. char name[16];
  119. void *interface_ptr;
  120. /*
  121. * A list of ios that arrived while we were suspended.
  122. */
  123. atomic_t pending[2];
  124. wait_queue_head_t wait;
  125. struct work_struct work;
  126. struct bio_list deferred;
  127. spinlock_t deferred_lock;
  128. /*
  129. * Processing queue (flush)
  130. */
  131. struct workqueue_struct *wq;
  132. /*
  133. * The current mapping.
  134. */
  135. struct dm_table *map;
  136. /*
  137. * io objects are allocated from here.
  138. */
  139. mempool_t *io_pool;
  140. mempool_t *tio_pool;
  141. struct bio_set *bs;
  142. /*
  143. * Event handling.
  144. */
  145. atomic_t event_nr;
  146. wait_queue_head_t eventq;
  147. atomic_t uevent_seq;
  148. struct list_head uevent_list;
  149. spinlock_t uevent_lock; /* Protect access to uevent_list */
  150. /*
  151. * freeze/thaw support require holding onto a super block
  152. */
  153. struct super_block *frozen_sb;
  154. struct block_device *bdev;
  155. /* forced geometry settings */
  156. struct hd_geometry geometry;
  157. /* sysfs handle */
  158. struct kobject kobj;
  159. /* zero-length flush that will be cloned and submitted to targets */
  160. struct bio flush_bio;
  161. };
  162. /*
  163. * For mempools pre-allocation at the table loading time.
  164. */
  165. struct dm_md_mempools {
  166. mempool_t *io_pool;
  167. mempool_t *tio_pool;
  168. struct bio_set *bs;
  169. };
  170. #define MIN_IOS 256
  171. static struct kmem_cache *_io_cache;
  172. static struct kmem_cache *_rq_tio_cache;
  173. /*
  174. * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
  175. * still used for _io_cache, I'm leaving this for a later cleanup
  176. */
  177. static struct kmem_cache *_rq_bio_info_cache;
  178. static int __init local_init(void)
  179. {
  180. int r = -ENOMEM;
  181. /* allocate a slab for the dm_ios */
  182. _io_cache = KMEM_CACHE(dm_io, 0);
  183. if (!_io_cache)
  184. return r;
  185. _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
  186. if (!_rq_tio_cache)
  187. goto out_free_io_cache;
  188. _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
  189. if (!_rq_bio_info_cache)
  190. goto out_free_rq_tio_cache;
  191. r = dm_uevent_init();
  192. if (r)
  193. goto out_free_rq_bio_info_cache;
  194. _major = major;
  195. r = register_blkdev(_major, _name);
  196. if (r < 0)
  197. goto out_uevent_exit;
  198. if (!_major)
  199. _major = r;
  200. return 0;
  201. out_uevent_exit:
  202. dm_uevent_exit();
  203. out_free_rq_bio_info_cache:
  204. kmem_cache_destroy(_rq_bio_info_cache);
  205. out_free_rq_tio_cache:
  206. kmem_cache_destroy(_rq_tio_cache);
  207. out_free_io_cache:
  208. kmem_cache_destroy(_io_cache);
  209. return r;
  210. }
  211. static void local_exit(void)
  212. {
  213. kmem_cache_destroy(_rq_bio_info_cache);
  214. kmem_cache_destroy(_rq_tio_cache);
  215. kmem_cache_destroy(_io_cache);
  216. unregister_blkdev(_major, _name);
  217. dm_uevent_exit();
  218. _major = 0;
  219. DMINFO("cleaned up");
  220. }
  221. static int (*_inits[])(void) __initdata = {
  222. local_init,
  223. dm_target_init,
  224. dm_linear_init,
  225. dm_stripe_init,
  226. dm_io_init,
  227. dm_kcopyd_init,
  228. dm_interface_init,
  229. };
  230. static void (*_exits[])(void) = {
  231. local_exit,
  232. dm_target_exit,
  233. dm_linear_exit,
  234. dm_stripe_exit,
  235. dm_io_exit,
  236. dm_kcopyd_exit,
  237. dm_interface_exit,
  238. };
  239. static int __init dm_init(void)
  240. {
  241. const int count = ARRAY_SIZE(_inits);
  242. int r, i;
  243. for (i = 0; i < count; i++) {
  244. r = _inits[i]();
  245. if (r)
  246. goto bad;
  247. }
  248. return 0;
  249. bad:
  250. while (i--)
  251. _exits[i]();
  252. return r;
  253. }
  254. static void __exit dm_exit(void)
  255. {
  256. int i = ARRAY_SIZE(_exits);
  257. while (i--)
  258. _exits[i]();
  259. /*
  260. * Should be empty by this point.
  261. */
  262. idr_destroy(&_minor_idr);
  263. }
  264. /*
  265. * Block device functions
  266. */
  267. int dm_deleting_md(struct mapped_device *md)
  268. {
  269. return test_bit(DMF_DELETING, &md->flags);
  270. }
  271. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  272. {
  273. struct mapped_device *md;
  274. spin_lock(&_minor_lock);
  275. md = bdev->bd_disk->private_data;
  276. if (!md)
  277. goto out;
  278. if (test_bit(DMF_FREEING, &md->flags) ||
  279. dm_deleting_md(md)) {
  280. md = NULL;
  281. goto out;
  282. }
  283. dm_get(md);
  284. atomic_inc(&md->open_count);
  285. out:
  286. spin_unlock(&_minor_lock);
  287. return md ? 0 : -ENXIO;
  288. }
  289. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  290. {
  291. struct mapped_device *md = disk->private_data;
  292. spin_lock(&_minor_lock);
  293. atomic_dec(&md->open_count);
  294. dm_put(md);
  295. spin_unlock(&_minor_lock);
  296. return 0;
  297. }
  298. int dm_open_count(struct mapped_device *md)
  299. {
  300. return atomic_read(&md->open_count);
  301. }
  302. /*
  303. * Guarantees nothing is using the device before it's deleted.
  304. */
  305. int dm_lock_for_deletion(struct mapped_device *md)
  306. {
  307. int r = 0;
  308. spin_lock(&_minor_lock);
  309. if (dm_open_count(md))
  310. r = -EBUSY;
  311. else
  312. set_bit(DMF_DELETING, &md->flags);
  313. spin_unlock(&_minor_lock);
  314. return r;
  315. }
  316. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  317. {
  318. struct mapped_device *md = bdev->bd_disk->private_data;
  319. return dm_get_geometry(md, geo);
  320. }
  321. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  322. unsigned int cmd, unsigned long arg)
  323. {
  324. struct mapped_device *md = bdev->bd_disk->private_data;
  325. struct dm_table *map = dm_get_live_table(md);
  326. struct dm_target *tgt;
  327. int r = -ENOTTY;
  328. if (!map || !dm_table_get_size(map))
  329. goto out;
  330. /* We only support devices that have a single target */
  331. if (dm_table_get_num_targets(map) != 1)
  332. goto out;
  333. tgt = dm_table_get_target(map, 0);
  334. if (dm_suspended_md(md)) {
  335. r = -EAGAIN;
  336. goto out;
  337. }
  338. if (tgt->type->ioctl)
  339. r = tgt->type->ioctl(tgt, cmd, arg);
  340. out:
  341. dm_table_put(map);
  342. return r;
  343. }
  344. static struct dm_io *alloc_io(struct mapped_device *md)
  345. {
  346. return mempool_alloc(md->io_pool, GFP_NOIO);
  347. }
  348. static void free_io(struct mapped_device *md, struct dm_io *io)
  349. {
  350. mempool_free(io, md->io_pool);
  351. }
  352. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  353. {
  354. bio_put(&tio->clone);
  355. }
  356. static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
  357. gfp_t gfp_mask)
  358. {
  359. return mempool_alloc(md->tio_pool, gfp_mask);
  360. }
  361. static void free_rq_tio(struct dm_rq_target_io *tio)
  362. {
  363. mempool_free(tio, tio->md->tio_pool);
  364. }
  365. static int md_in_flight(struct mapped_device *md)
  366. {
  367. return atomic_read(&md->pending[READ]) +
  368. atomic_read(&md->pending[WRITE]);
  369. }
  370. static void start_io_acct(struct dm_io *io)
  371. {
  372. struct mapped_device *md = io->md;
  373. int cpu;
  374. int rw = bio_data_dir(io->bio);
  375. io->start_time = jiffies;
  376. cpu = part_stat_lock();
  377. part_round_stats(cpu, &dm_disk(md)->part0);
  378. part_stat_unlock();
  379. atomic_set(&dm_disk(md)->part0.in_flight[rw],
  380. atomic_inc_return(&md->pending[rw]));
  381. }
  382. static void end_io_acct(struct dm_io *io)
  383. {
  384. struct mapped_device *md = io->md;
  385. struct bio *bio = io->bio;
  386. unsigned long duration = jiffies - io->start_time;
  387. int pending, cpu;
  388. int rw = bio_data_dir(bio);
  389. cpu = part_stat_lock();
  390. part_round_stats(cpu, &dm_disk(md)->part0);
  391. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  392. part_stat_unlock();
  393. /*
  394. * After this is decremented the bio must not be touched if it is
  395. * a flush.
  396. */
  397. pending = atomic_dec_return(&md->pending[rw]);
  398. atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
  399. pending += atomic_read(&md->pending[rw^0x1]);
  400. /* nudge anyone waiting on suspend queue */
  401. if (!pending)
  402. wake_up(&md->wait);
  403. }
  404. /*
  405. * Add the bio to the list of deferred io.
  406. */
  407. static void queue_io(struct mapped_device *md, struct bio *bio)
  408. {
  409. unsigned long flags;
  410. spin_lock_irqsave(&md->deferred_lock, flags);
  411. bio_list_add(&md->deferred, bio);
  412. spin_unlock_irqrestore(&md->deferred_lock, flags);
  413. queue_work(md->wq, &md->work);
  414. }
  415. /*
  416. * Everyone (including functions in this file), should use this
  417. * function to access the md->map field, and make sure they call
  418. * dm_table_put() when finished.
  419. */
  420. struct dm_table *dm_get_live_table(struct mapped_device *md)
  421. {
  422. struct dm_table *t;
  423. unsigned long flags;
  424. read_lock_irqsave(&md->map_lock, flags);
  425. t = md->map;
  426. if (t)
  427. dm_table_get(t);
  428. read_unlock_irqrestore(&md->map_lock, flags);
  429. return t;
  430. }
  431. /*
  432. * Get the geometry associated with a dm device
  433. */
  434. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  435. {
  436. *geo = md->geometry;
  437. return 0;
  438. }
  439. /*
  440. * Set the geometry of a device.
  441. */
  442. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  443. {
  444. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  445. if (geo->start > sz) {
  446. DMWARN("Start sector is beyond the geometry limits.");
  447. return -EINVAL;
  448. }
  449. md->geometry = *geo;
  450. return 0;
  451. }
  452. /*-----------------------------------------------------------------
  453. * CRUD START:
  454. * A more elegant soln is in the works that uses the queue
  455. * merge fn, unfortunately there are a couple of changes to
  456. * the block layer that I want to make for this. So in the
  457. * interests of getting something for people to use I give
  458. * you this clearly demarcated crap.
  459. *---------------------------------------------------------------*/
  460. static int __noflush_suspending(struct mapped_device *md)
  461. {
  462. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  463. }
  464. /*
  465. * Decrements the number of outstanding ios that a bio has been
  466. * cloned into, completing the original io if necc.
  467. */
  468. static void dec_pending(struct dm_io *io, int error)
  469. {
  470. unsigned long flags;
  471. int io_error;
  472. struct bio *bio;
  473. struct mapped_device *md = io->md;
  474. /* Push-back supersedes any I/O errors */
  475. if (unlikely(error)) {
  476. spin_lock_irqsave(&io->endio_lock, flags);
  477. if (!(io->error > 0 && __noflush_suspending(md)))
  478. io->error = error;
  479. spin_unlock_irqrestore(&io->endio_lock, flags);
  480. }
  481. if (atomic_dec_and_test(&io->io_count)) {
  482. if (io->error == DM_ENDIO_REQUEUE) {
  483. /*
  484. * Target requested pushing back the I/O.
  485. */
  486. spin_lock_irqsave(&md->deferred_lock, flags);
  487. if (__noflush_suspending(md))
  488. bio_list_add_head(&md->deferred, io->bio);
  489. else
  490. /* noflush suspend was interrupted. */
  491. io->error = -EIO;
  492. spin_unlock_irqrestore(&md->deferred_lock, flags);
  493. }
  494. io_error = io->error;
  495. bio = io->bio;
  496. end_io_acct(io);
  497. free_io(md, io);
  498. if (io_error == DM_ENDIO_REQUEUE)
  499. return;
  500. if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
  501. /*
  502. * Preflush done for flush with data, reissue
  503. * without REQ_FLUSH.
  504. */
  505. bio->bi_rw &= ~REQ_FLUSH;
  506. queue_io(md, bio);
  507. } else {
  508. /* done with normal IO or empty flush */
  509. bio_endio(bio, io_error);
  510. }
  511. }
  512. }
  513. static void clone_endio(struct bio *bio, int error)
  514. {
  515. int r = 0;
  516. struct dm_target_io *tio = bio->bi_private;
  517. struct dm_io *io = tio->io;
  518. struct mapped_device *md = tio->io->md;
  519. dm_endio_fn endio = tio->ti->type->end_io;
  520. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  521. error = -EIO;
  522. if (endio) {
  523. r = endio(tio->ti, bio, error);
  524. if (r < 0 || r == DM_ENDIO_REQUEUE)
  525. /*
  526. * error and requeue request are handled
  527. * in dec_pending().
  528. */
  529. error = r;
  530. else if (r == DM_ENDIO_INCOMPLETE)
  531. /* The target will handle the io */
  532. return;
  533. else if (r) {
  534. DMWARN("unimplemented target endio return value: %d", r);
  535. BUG();
  536. }
  537. }
  538. free_tio(md, tio);
  539. dec_pending(io, error);
  540. }
  541. /*
  542. * Partial completion handling for request-based dm
  543. */
  544. static void end_clone_bio(struct bio *clone, int error)
  545. {
  546. struct dm_rq_clone_bio_info *info = clone->bi_private;
  547. struct dm_rq_target_io *tio = info->tio;
  548. struct bio *bio = info->orig;
  549. unsigned int nr_bytes = info->orig->bi_size;
  550. bio_put(clone);
  551. if (tio->error)
  552. /*
  553. * An error has already been detected on the request.
  554. * Once error occurred, just let clone->end_io() handle
  555. * the remainder.
  556. */
  557. return;
  558. else if (error) {
  559. /*
  560. * Don't notice the error to the upper layer yet.
  561. * The error handling decision is made by the target driver,
  562. * when the request is completed.
  563. */
  564. tio->error = error;
  565. return;
  566. }
  567. /*
  568. * I/O for the bio successfully completed.
  569. * Notice the data completion to the upper layer.
  570. */
  571. /*
  572. * bios are processed from the head of the list.
  573. * So the completing bio should always be rq->bio.
  574. * If it's not, something wrong is happening.
  575. */
  576. if (tio->orig->bio != bio)
  577. DMERR("bio completion is going in the middle of the request");
  578. /*
  579. * Update the original request.
  580. * Do not use blk_end_request() here, because it may complete
  581. * the original request before the clone, and break the ordering.
  582. */
  583. blk_update_request(tio->orig, 0, nr_bytes);
  584. }
  585. /*
  586. * Don't touch any member of the md after calling this function because
  587. * the md may be freed in dm_put() at the end of this function.
  588. * Or do dm_get() before calling this function and dm_put() later.
  589. */
  590. static void rq_completed(struct mapped_device *md, int rw, int run_queue)
  591. {
  592. atomic_dec(&md->pending[rw]);
  593. /* nudge anyone waiting on suspend queue */
  594. if (!md_in_flight(md))
  595. wake_up(&md->wait);
  596. /*
  597. * Run this off this callpath, as drivers could invoke end_io while
  598. * inside their request_fn (and holding the queue lock). Calling
  599. * back into ->request_fn() could deadlock attempting to grab the
  600. * queue lock again.
  601. */
  602. if (run_queue)
  603. blk_run_queue_async(md->queue);
  604. /*
  605. * dm_put() must be at the end of this function. See the comment above
  606. */
  607. dm_put(md);
  608. }
  609. static void free_rq_clone(struct request *clone)
  610. {
  611. struct dm_rq_target_io *tio = clone->end_io_data;
  612. blk_rq_unprep_clone(clone);
  613. free_rq_tio(tio);
  614. }
  615. /*
  616. * Complete the clone and the original request.
  617. * Must be called without queue lock.
  618. */
  619. static void dm_end_request(struct request *clone, int error)
  620. {
  621. int rw = rq_data_dir(clone);
  622. struct dm_rq_target_io *tio = clone->end_io_data;
  623. struct mapped_device *md = tio->md;
  624. struct request *rq = tio->orig;
  625. if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
  626. rq->errors = clone->errors;
  627. rq->resid_len = clone->resid_len;
  628. if (rq->sense)
  629. /*
  630. * We are using the sense buffer of the original
  631. * request.
  632. * So setting the length of the sense data is enough.
  633. */
  634. rq->sense_len = clone->sense_len;
  635. }
  636. free_rq_clone(clone);
  637. blk_end_request_all(rq, error);
  638. rq_completed(md, rw, true);
  639. }
  640. static void dm_unprep_request(struct request *rq)
  641. {
  642. struct request *clone = rq->special;
  643. rq->special = NULL;
  644. rq->cmd_flags &= ~REQ_DONTPREP;
  645. free_rq_clone(clone);
  646. }
  647. /*
  648. * Requeue the original request of a clone.
  649. */
  650. void dm_requeue_unmapped_request(struct request *clone)
  651. {
  652. int rw = rq_data_dir(clone);
  653. struct dm_rq_target_io *tio = clone->end_io_data;
  654. struct mapped_device *md = tio->md;
  655. struct request *rq = tio->orig;
  656. struct request_queue *q = rq->q;
  657. unsigned long flags;
  658. dm_unprep_request(rq);
  659. spin_lock_irqsave(q->queue_lock, flags);
  660. blk_requeue_request(q, rq);
  661. spin_unlock_irqrestore(q->queue_lock, flags);
  662. rq_completed(md, rw, 0);
  663. }
  664. EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
  665. static void __stop_queue(struct request_queue *q)
  666. {
  667. blk_stop_queue(q);
  668. }
  669. static void stop_queue(struct request_queue *q)
  670. {
  671. unsigned long flags;
  672. spin_lock_irqsave(q->queue_lock, flags);
  673. __stop_queue(q);
  674. spin_unlock_irqrestore(q->queue_lock, flags);
  675. }
  676. static void __start_queue(struct request_queue *q)
  677. {
  678. if (blk_queue_stopped(q))
  679. blk_start_queue(q);
  680. }
  681. static void start_queue(struct request_queue *q)
  682. {
  683. unsigned long flags;
  684. spin_lock_irqsave(q->queue_lock, flags);
  685. __start_queue(q);
  686. spin_unlock_irqrestore(q->queue_lock, flags);
  687. }
  688. static void dm_done(struct request *clone, int error, bool mapped)
  689. {
  690. int r = error;
  691. struct dm_rq_target_io *tio = clone->end_io_data;
  692. dm_request_endio_fn rq_end_io = NULL;
  693. if (tio->ti) {
  694. rq_end_io = tio->ti->type->rq_end_io;
  695. if (mapped && rq_end_io)
  696. r = rq_end_io(tio->ti, clone, error, &tio->info);
  697. }
  698. if (r <= 0)
  699. /* The target wants to complete the I/O */
  700. dm_end_request(clone, r);
  701. else if (r == DM_ENDIO_INCOMPLETE)
  702. /* The target will handle the I/O */
  703. return;
  704. else if (r == DM_ENDIO_REQUEUE)
  705. /* The target wants to requeue the I/O */
  706. dm_requeue_unmapped_request(clone);
  707. else {
  708. DMWARN("unimplemented target endio return value: %d", r);
  709. BUG();
  710. }
  711. }
  712. /*
  713. * Request completion handler for request-based dm
  714. */
  715. static void dm_softirq_done(struct request *rq)
  716. {
  717. bool mapped = true;
  718. struct request *clone = rq->completion_data;
  719. struct dm_rq_target_io *tio = clone->end_io_data;
  720. if (rq->cmd_flags & REQ_FAILED)
  721. mapped = false;
  722. dm_done(clone, tio->error, mapped);
  723. }
  724. /*
  725. * Complete the clone and the original request with the error status
  726. * through softirq context.
  727. */
  728. static void dm_complete_request(struct request *clone, int error)
  729. {
  730. struct dm_rq_target_io *tio = clone->end_io_data;
  731. struct request *rq = tio->orig;
  732. tio->error = error;
  733. rq->completion_data = clone;
  734. blk_complete_request(rq);
  735. }
  736. /*
  737. * Complete the not-mapped clone and the original request with the error status
  738. * through softirq context.
  739. * Target's rq_end_io() function isn't called.
  740. * This may be used when the target's map_rq() function fails.
  741. */
  742. void dm_kill_unmapped_request(struct request *clone, int error)
  743. {
  744. struct dm_rq_target_io *tio = clone->end_io_data;
  745. struct request *rq = tio->orig;
  746. rq->cmd_flags |= REQ_FAILED;
  747. dm_complete_request(clone, error);
  748. }
  749. EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
  750. /*
  751. * Called with the queue lock held
  752. */
  753. static void end_clone_request(struct request *clone, int error)
  754. {
  755. /*
  756. * For just cleaning up the information of the queue in which
  757. * the clone was dispatched.
  758. * The clone is *NOT* freed actually here because it is alloced from
  759. * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
  760. */
  761. __blk_put_request(clone->q, clone);
  762. /*
  763. * Actual request completion is done in a softirq context which doesn't
  764. * hold the queue lock. Otherwise, deadlock could occur because:
  765. * - another request may be submitted by the upper level driver
  766. * of the stacking during the completion
  767. * - the submission which requires queue lock may be done
  768. * against this queue
  769. */
  770. dm_complete_request(clone, error);
  771. }
  772. /*
  773. * Return maximum size of I/O possible at the supplied sector up to the current
  774. * target boundary.
  775. */
  776. static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
  777. {
  778. sector_t target_offset = dm_target_offset(ti, sector);
  779. return ti->len - target_offset;
  780. }
  781. static sector_t max_io_len(sector_t sector, struct dm_target *ti)
  782. {
  783. sector_t len = max_io_len_target_boundary(sector, ti);
  784. sector_t offset, max_len;
  785. /*
  786. * Does the target need to split even further?
  787. */
  788. if (ti->max_io_len) {
  789. offset = dm_target_offset(ti, sector);
  790. if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
  791. max_len = sector_div(offset, ti->max_io_len);
  792. else
  793. max_len = offset & (ti->max_io_len - 1);
  794. max_len = ti->max_io_len - max_len;
  795. if (len > max_len)
  796. len = max_len;
  797. }
  798. return len;
  799. }
  800. int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
  801. {
  802. if (len > UINT_MAX) {
  803. DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
  804. (unsigned long long)len, UINT_MAX);
  805. ti->error = "Maximum size of target IO is too large";
  806. return -EINVAL;
  807. }
  808. ti->max_io_len = (uint32_t) len;
  809. return 0;
  810. }
  811. EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
  812. static void __map_bio(struct dm_target_io *tio)
  813. {
  814. int r;
  815. sector_t sector;
  816. struct mapped_device *md;
  817. struct bio *clone = &tio->clone;
  818. struct dm_target *ti = tio->ti;
  819. clone->bi_end_io = clone_endio;
  820. clone->bi_private = tio;
  821. /*
  822. * Map the clone. If r == 0 we don't need to do
  823. * anything, the target has assumed ownership of
  824. * this io.
  825. */
  826. atomic_inc(&tio->io->io_count);
  827. sector = clone->bi_sector;
  828. r = ti->type->map(ti, clone);
  829. if (r == DM_MAPIO_REMAPPED) {
  830. /* the bio has been remapped so dispatch it */
  831. trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
  832. tio->io->bio->bi_bdev->bd_dev, sector);
  833. generic_make_request(clone);
  834. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  835. /* error the io and bail out, or requeue it if needed */
  836. md = tio->io->md;
  837. dec_pending(tio->io, r);
  838. free_tio(md, tio);
  839. } else if (r) {
  840. DMWARN("unimplemented target map return value: %d", r);
  841. BUG();
  842. }
  843. }
  844. struct clone_info {
  845. struct mapped_device *md;
  846. struct dm_table *map;
  847. struct bio *bio;
  848. struct dm_io *io;
  849. sector_t sector;
  850. sector_t sector_count;
  851. unsigned short idx;
  852. };
  853. static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
  854. {
  855. bio->bi_sector = sector;
  856. bio->bi_size = to_bytes(len);
  857. }
  858. static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
  859. {
  860. bio->bi_idx = idx;
  861. bio->bi_vcnt = idx + bv_count;
  862. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  863. }
  864. static void clone_bio_integrity(struct bio *bio, struct bio *clone,
  865. unsigned short idx, unsigned len, unsigned offset,
  866. unsigned trim)
  867. {
  868. if (!bio_integrity(bio))
  869. return;
  870. bio_integrity_clone(clone, bio, GFP_NOIO);
  871. if (trim)
  872. bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
  873. }
  874. /*
  875. * Creates a little bio that just does part of a bvec.
  876. */
  877. static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
  878. sector_t sector, unsigned short idx,
  879. unsigned offset, unsigned len)
  880. {
  881. struct bio *clone = &tio->clone;
  882. struct bio_vec *bv = bio->bi_io_vec + idx;
  883. *clone->bi_io_vec = *bv;
  884. bio_setup_sector(clone, sector, len);
  885. clone->bi_bdev = bio->bi_bdev;
  886. clone->bi_rw = bio->bi_rw;
  887. clone->bi_vcnt = 1;
  888. clone->bi_io_vec->bv_offset = offset;
  889. clone->bi_io_vec->bv_len = clone->bi_size;
  890. clone->bi_flags |= 1 << BIO_CLONED;
  891. clone_bio_integrity(bio, clone, idx, len, offset, 1);
  892. }
  893. /*
  894. * Creates a bio that consists of range of complete bvecs.
  895. */
  896. static void clone_bio(struct dm_target_io *tio, struct bio *bio,
  897. sector_t sector, unsigned short idx,
  898. unsigned short bv_count, unsigned int len)
  899. {
  900. struct bio *clone = &tio->clone;
  901. unsigned trim = 0;
  902. __bio_clone(clone, bio);
  903. bio_setup_sector(clone, sector, len);
  904. bio_setup_bv(clone, idx, bv_count);
  905. if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
  906. trim = 1;
  907. clone_bio_integrity(bio, clone, idx, len, 0, trim);
  908. }
  909. static struct dm_target_io *alloc_tio(struct clone_info *ci,
  910. struct dm_target *ti, int nr_iovecs,
  911. unsigned target_bio_nr)
  912. {
  913. struct dm_target_io *tio;
  914. struct bio *clone;
  915. clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
  916. tio = container_of(clone, struct dm_target_io, clone);
  917. tio->io = ci->io;
  918. tio->ti = ti;
  919. memset(&tio->info, 0, sizeof(tio->info));
  920. tio->target_bio_nr = target_bio_nr;
  921. return tio;
  922. }
  923. static void __clone_and_map_simple_bio(struct clone_info *ci,
  924. struct dm_target *ti,
  925. unsigned target_bio_nr, sector_t len)
  926. {
  927. struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
  928. struct bio *clone = &tio->clone;
  929. /*
  930. * Discard requests require the bio's inline iovecs be initialized.
  931. * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
  932. * and discard, so no need for concern about wasted bvec allocations.
  933. */
  934. __bio_clone(clone, ci->bio);
  935. if (len)
  936. bio_setup_sector(clone, ci->sector, len);
  937. __map_bio(tio);
  938. }
  939. static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
  940. unsigned num_bios, sector_t len)
  941. {
  942. unsigned target_bio_nr;
  943. for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
  944. __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
  945. }
  946. static int __send_empty_flush(struct clone_info *ci)
  947. {
  948. unsigned target_nr = 0;
  949. struct dm_target *ti;
  950. BUG_ON(bio_has_data(ci->bio));
  951. while ((ti = dm_table_get_target(ci->map, target_nr++)))
  952. __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
  953. return 0;
  954. }
  955. static void __clone_and_map_data_bio(struct clone_info *ci,
  956. struct dm_target *ti)
  957. {
  958. struct bio *bio = ci->bio;
  959. struct dm_target_io *tio;
  960. tio = alloc_tio(ci, ti, bio->bi_max_vecs, 0);
  961. clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
  962. ci->sector_count);
  963. __map_bio(tio);
  964. ci->sector_count = 0;
  965. }
  966. typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
  967. static unsigned get_num_discard_bios(struct dm_target *ti)
  968. {
  969. return ti->num_discard_bios;
  970. }
  971. static unsigned get_num_write_same_bios(struct dm_target *ti)
  972. {
  973. return ti->num_write_same_bios;
  974. }
  975. typedef bool (*is_split_required_fn)(struct dm_target *ti);
  976. static bool is_split_required_for_discard(struct dm_target *ti)
  977. {
  978. return ti->split_discard_bios;
  979. }
  980. static int __send_changing_extent_only(struct clone_info *ci,
  981. get_num_bios_fn get_num_bios,
  982. is_split_required_fn is_split_required)
  983. {
  984. struct dm_target *ti;
  985. sector_t len;
  986. unsigned num_bios;
  987. do {
  988. ti = dm_table_find_target(ci->map, ci->sector);
  989. if (!dm_target_is_valid(ti))
  990. return -EIO;
  991. /*
  992. * Even though the device advertised support for this type of
  993. * request, that does not mean every target supports it, and
  994. * reconfiguration might also have changed that since the
  995. * check was performed.
  996. */
  997. num_bios = get_num_bios ? get_num_bios(ti) : 0;
  998. if (!num_bios)
  999. return -EOPNOTSUPP;
  1000. if (is_split_required && !is_split_required(ti))
  1001. len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
  1002. else
  1003. len = min(ci->sector_count, max_io_len(ci->sector, ti));
  1004. __send_duplicate_bios(ci, ti, num_bios, len);
  1005. ci->sector += len;
  1006. } while (ci->sector_count -= len);
  1007. return 0;
  1008. }
  1009. static int __send_discard(struct clone_info *ci)
  1010. {
  1011. return __send_changing_extent_only(ci, get_num_discard_bios,
  1012. is_split_required_for_discard);
  1013. }
  1014. static int __send_write_same(struct clone_info *ci)
  1015. {
  1016. return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
  1017. }
  1018. static int __split_and_process_non_flush(struct clone_info *ci)
  1019. {
  1020. struct bio *bio = ci->bio;
  1021. struct dm_target *ti;
  1022. sector_t len = 0, max;
  1023. struct dm_target_io *tio;
  1024. if (unlikely(bio->bi_rw & REQ_DISCARD))
  1025. return __send_discard(ci);
  1026. else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
  1027. return __send_write_same(ci);
  1028. ti = dm_table_find_target(ci->map, ci->sector);
  1029. if (!dm_target_is_valid(ti))
  1030. return -EIO;
  1031. max = max_io_len(ci->sector, ti);
  1032. if (ci->sector_count <= max) {
  1033. /*
  1034. * Optimise for the simple case where we can do all of
  1035. * the remaining io with a single clone.
  1036. */
  1037. __clone_and_map_data_bio(ci, ti);
  1038. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  1039. /*
  1040. * There are some bvecs that don't span targets.
  1041. * Do as many of these as possible.
  1042. */
  1043. int i;
  1044. sector_t remaining = max;
  1045. sector_t bv_len;
  1046. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  1047. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  1048. if (bv_len > remaining)
  1049. break;
  1050. remaining -= bv_len;
  1051. len += bv_len;
  1052. }
  1053. tio = alloc_tio(ci, ti, bio->bi_max_vecs, 0);
  1054. clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len);
  1055. __map_bio(tio);
  1056. ci->sector += len;
  1057. ci->sector_count -= len;
  1058. ci->idx = i;
  1059. } else {
  1060. /*
  1061. * Handle a bvec that must be split between two or more targets.
  1062. */
  1063. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  1064. sector_t remaining = to_sector(bv->bv_len);
  1065. unsigned int offset = 0;
  1066. do {
  1067. if (offset) {
  1068. ti = dm_table_find_target(ci->map, ci->sector);
  1069. if (!dm_target_is_valid(ti))
  1070. return -EIO;
  1071. max = max_io_len(ci->sector, ti);
  1072. }
  1073. len = min(remaining, max);
  1074. tio = alloc_tio(ci, ti, 1, 0);
  1075. clone_split_bio(tio, bio, ci->sector, ci->idx,
  1076. bv->bv_offset + offset, len);
  1077. __map_bio(tio);
  1078. ci->sector += len;
  1079. ci->sector_count -= len;
  1080. offset += to_bytes(len);
  1081. } while (remaining -= len);
  1082. ci->idx++;
  1083. }
  1084. return 0;
  1085. }
  1086. /*
  1087. * Entry point to split a bio into clones and submit them to the targets.
  1088. */
  1089. static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
  1090. {
  1091. struct clone_info ci;
  1092. int error = 0;
  1093. ci.map = dm_get_live_table(md);
  1094. if (unlikely(!ci.map)) {
  1095. bio_io_error(bio);
  1096. return;
  1097. }
  1098. ci.md = md;
  1099. ci.io = alloc_io(md);
  1100. ci.io->error = 0;
  1101. atomic_set(&ci.io->io_count, 1);
  1102. ci.io->bio = bio;
  1103. ci.io->md = md;
  1104. spin_lock_init(&ci.io->endio_lock);
  1105. ci.sector = bio->bi_sector;
  1106. ci.idx = bio->bi_idx;
  1107. start_io_acct(ci.io);
  1108. if (bio->bi_rw & REQ_FLUSH) {
  1109. ci.bio = &ci.md->flush_bio;
  1110. ci.sector_count = 0;
  1111. error = __send_empty_flush(&ci);
  1112. /* dec_pending submits any data associated with flush */
  1113. } else {
  1114. ci.bio = bio;
  1115. ci.sector_count = bio_sectors(bio);
  1116. while (ci.sector_count && !error)
  1117. error = __split_and_process_non_flush(&ci);
  1118. }
  1119. /* drop the extra reference count */
  1120. dec_pending(ci.io, error);
  1121. dm_table_put(ci.map);
  1122. }
  1123. /*-----------------------------------------------------------------
  1124. * CRUD END
  1125. *---------------------------------------------------------------*/
  1126. static int dm_merge_bvec(struct request_queue *q,
  1127. struct bvec_merge_data *bvm,
  1128. struct bio_vec *biovec)
  1129. {
  1130. struct mapped_device *md = q->queuedata;
  1131. struct dm_table *map = dm_get_live_table(md);
  1132. struct dm_target *ti;
  1133. sector_t max_sectors;
  1134. int max_size = 0;
  1135. if (unlikely(!map))
  1136. goto out;
  1137. ti = dm_table_find_target(map, bvm->bi_sector);
  1138. if (!dm_target_is_valid(ti))
  1139. goto out_table;
  1140. /*
  1141. * Find maximum amount of I/O that won't need splitting
  1142. */
  1143. max_sectors = min(max_io_len(bvm->bi_sector, ti),
  1144. (sector_t) BIO_MAX_SECTORS);
  1145. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  1146. if (max_size < 0)
  1147. max_size = 0;
  1148. /*
  1149. * merge_bvec_fn() returns number of bytes
  1150. * it can accept at this offset
  1151. * max is precomputed maximal io size
  1152. */
  1153. if (max_size && ti->type->merge)
  1154. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  1155. /*
  1156. * If the target doesn't support merge method and some of the devices
  1157. * provided their merge_bvec method (we know this by looking at
  1158. * queue_max_hw_sectors), then we can't allow bios with multiple vector
  1159. * entries. So always set max_size to 0, and the code below allows
  1160. * just one page.
  1161. */
  1162. else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
  1163. max_size = 0;
  1164. out_table:
  1165. dm_table_put(map);
  1166. out:
  1167. /*
  1168. * Always allow an entire first page
  1169. */
  1170. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  1171. max_size = biovec->bv_len;
  1172. return max_size;
  1173. }
  1174. /*
  1175. * The request function that just remaps the bio built up by
  1176. * dm_merge_bvec.
  1177. */
  1178. static void _dm_request(struct request_queue *q, struct bio *bio)
  1179. {
  1180. int rw = bio_data_dir(bio);
  1181. struct mapped_device *md = q->queuedata;
  1182. int cpu;
  1183. down_read(&md->io_lock);
  1184. cpu = part_stat_lock();
  1185. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  1186. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  1187. part_stat_unlock();
  1188. /* if we're suspended, we have to queue this io for later */
  1189. if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
  1190. up_read(&md->io_lock);
  1191. if (bio_rw(bio) != READA)
  1192. queue_io(md, bio);
  1193. else
  1194. bio_io_error(bio);
  1195. return;
  1196. }
  1197. __split_and_process_bio(md, bio);
  1198. up_read(&md->io_lock);
  1199. return;
  1200. }
  1201. static int dm_request_based(struct mapped_device *md)
  1202. {
  1203. return blk_queue_stackable(md->queue);
  1204. }
  1205. static void dm_request(struct request_queue *q, struct bio *bio)
  1206. {
  1207. struct mapped_device *md = q->queuedata;
  1208. if (dm_request_based(md))
  1209. blk_queue_bio(q, bio);
  1210. else
  1211. _dm_request(q, bio);
  1212. }
  1213. void dm_dispatch_request(struct request *rq)
  1214. {
  1215. int r;
  1216. if (blk_queue_io_stat(rq->q))
  1217. rq->cmd_flags |= REQ_IO_STAT;
  1218. rq->start_time = jiffies;
  1219. r = blk_insert_cloned_request(rq->q, rq);
  1220. if (r)
  1221. dm_complete_request(rq, r);
  1222. }
  1223. EXPORT_SYMBOL_GPL(dm_dispatch_request);
  1224. static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
  1225. void *data)
  1226. {
  1227. struct dm_rq_target_io *tio = data;
  1228. struct dm_rq_clone_bio_info *info =
  1229. container_of(bio, struct dm_rq_clone_bio_info, clone);
  1230. info->orig = bio_orig;
  1231. info->tio = tio;
  1232. bio->bi_end_io = end_clone_bio;
  1233. bio->bi_private = info;
  1234. return 0;
  1235. }
  1236. static int setup_clone(struct request *clone, struct request *rq,
  1237. struct dm_rq_target_io *tio)
  1238. {
  1239. int r;
  1240. r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
  1241. dm_rq_bio_constructor, tio);
  1242. if (r)
  1243. return r;
  1244. clone->cmd = rq->cmd;
  1245. clone->cmd_len = rq->cmd_len;
  1246. clone->sense = rq->sense;
  1247. clone->buffer = rq->buffer;
  1248. clone->end_io = end_clone_request;
  1249. clone->end_io_data = tio;
  1250. return 0;
  1251. }
  1252. static struct request *clone_rq(struct request *rq, struct mapped_device *md,
  1253. gfp_t gfp_mask)
  1254. {
  1255. struct request *clone;
  1256. struct dm_rq_target_io *tio;
  1257. tio = alloc_rq_tio(md, gfp_mask);
  1258. if (!tio)
  1259. return NULL;
  1260. tio->md = md;
  1261. tio->ti = NULL;
  1262. tio->orig = rq;
  1263. tio->error = 0;
  1264. memset(&tio->info, 0, sizeof(tio->info));
  1265. clone = &tio->clone;
  1266. if (setup_clone(clone, rq, tio)) {
  1267. /* -ENOMEM */
  1268. free_rq_tio(tio);
  1269. return NULL;
  1270. }
  1271. return clone;
  1272. }
  1273. /*
  1274. * Called with the queue lock held.
  1275. */
  1276. static int dm_prep_fn(struct request_queue *q, struct request *rq)
  1277. {
  1278. struct mapped_device *md = q->queuedata;
  1279. struct request *clone;
  1280. if (unlikely(rq->special)) {
  1281. DMWARN("Already has something in rq->special.");
  1282. return BLKPREP_KILL;
  1283. }
  1284. clone = clone_rq(rq, md, GFP_ATOMIC);
  1285. if (!clone)
  1286. return BLKPREP_DEFER;
  1287. rq->special = clone;
  1288. rq->cmd_flags |= REQ_DONTPREP;
  1289. return BLKPREP_OK;
  1290. }
  1291. /*
  1292. * Returns:
  1293. * 0 : the request has been processed (not requeued)
  1294. * !0 : the request has been requeued
  1295. */
  1296. static int map_request(struct dm_target *ti, struct request *clone,
  1297. struct mapped_device *md)
  1298. {
  1299. int r, requeued = 0;
  1300. struct dm_rq_target_io *tio = clone->end_io_data;
  1301. tio->ti = ti;
  1302. r = ti->type->map_rq(ti, clone, &tio->info);
  1303. switch (r) {
  1304. case DM_MAPIO_SUBMITTED:
  1305. /* The target has taken the I/O to submit by itself later */
  1306. break;
  1307. case DM_MAPIO_REMAPPED:
  1308. /* The target has remapped the I/O so dispatch it */
  1309. trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
  1310. blk_rq_pos(tio->orig));
  1311. dm_dispatch_request(clone);
  1312. break;
  1313. case DM_MAPIO_REQUEUE:
  1314. /* The target wants to requeue the I/O */
  1315. dm_requeue_unmapped_request(clone);
  1316. requeued = 1;
  1317. break;
  1318. default:
  1319. if (r > 0) {
  1320. DMWARN("unimplemented target map return value: %d", r);
  1321. BUG();
  1322. }
  1323. /* The target wants to complete the I/O */
  1324. dm_kill_unmapped_request(clone, r);
  1325. break;
  1326. }
  1327. return requeued;
  1328. }
  1329. static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
  1330. {
  1331. struct request *clone;
  1332. blk_start_request(orig);
  1333. clone = orig->special;
  1334. atomic_inc(&md->pending[rq_data_dir(clone)]);
  1335. /*
  1336. * Hold the md reference here for the in-flight I/O.
  1337. * We can't rely on the reference count by device opener,
  1338. * because the device may be closed during the request completion
  1339. * when all bios are completed.
  1340. * See the comment in rq_completed() too.
  1341. */
  1342. dm_get(md);
  1343. return clone;
  1344. }
  1345. /*
  1346. * q->request_fn for request-based dm.
  1347. * Called with the queue lock held.
  1348. */
  1349. static void dm_request_fn(struct request_queue *q)
  1350. {
  1351. struct mapped_device *md = q->queuedata;
  1352. struct dm_table *map = dm_get_live_table(md);
  1353. struct dm_target *ti;
  1354. struct request *rq, *clone;
  1355. sector_t pos;
  1356. /*
  1357. * For suspend, check blk_queue_stopped() and increment
  1358. * ->pending within a single queue_lock not to increment the
  1359. * number of in-flight I/Os after the queue is stopped in
  1360. * dm_suspend().
  1361. */
  1362. while (!blk_queue_stopped(q)) {
  1363. rq = blk_peek_request(q);
  1364. if (!rq)
  1365. goto delay_and_out;
  1366. /* always use block 0 to find the target for flushes for now */
  1367. pos = 0;
  1368. if (!(rq->cmd_flags & REQ_FLUSH))
  1369. pos = blk_rq_pos(rq);
  1370. ti = dm_table_find_target(map, pos);
  1371. if (!dm_target_is_valid(ti)) {
  1372. /*
  1373. * Must perform setup, that dm_done() requires,
  1374. * before calling dm_kill_unmapped_request
  1375. */
  1376. DMERR_LIMIT("request attempted access beyond the end of device");
  1377. clone = dm_start_request(md, rq);
  1378. dm_kill_unmapped_request(clone, -EIO);
  1379. continue;
  1380. }
  1381. if (ti->type->busy && ti->type->busy(ti))
  1382. goto delay_and_out;
  1383. clone = dm_start_request(md, rq);
  1384. spin_unlock(q->queue_lock);
  1385. if (map_request(ti, clone, md))
  1386. goto requeued;
  1387. BUG_ON(!irqs_disabled());
  1388. spin_lock(q->queue_lock);
  1389. }
  1390. goto out;
  1391. requeued:
  1392. BUG_ON(!irqs_disabled());
  1393. spin_lock(q->queue_lock);
  1394. delay_and_out:
  1395. blk_delay_queue(q, HZ / 10);
  1396. out:
  1397. dm_table_put(map);
  1398. }
  1399. int dm_underlying_device_busy(struct request_queue *q)
  1400. {
  1401. return blk_lld_busy(q);
  1402. }
  1403. EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
  1404. static int dm_lld_busy(struct request_queue *q)
  1405. {
  1406. int r;
  1407. struct mapped_device *md = q->queuedata;
  1408. struct dm_table *map = dm_get_live_table(md);
  1409. if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
  1410. r = 1;
  1411. else
  1412. r = dm_table_any_busy_target(map);
  1413. dm_table_put(map);
  1414. return r;
  1415. }
  1416. static int dm_any_congested(void *congested_data, int bdi_bits)
  1417. {
  1418. int r = bdi_bits;
  1419. struct mapped_device *md = congested_data;
  1420. struct dm_table *map;
  1421. if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1422. map = dm_get_live_table(md);
  1423. if (map) {
  1424. /*
  1425. * Request-based dm cares about only own queue for
  1426. * the query about congestion status of request_queue
  1427. */
  1428. if (dm_request_based(md))
  1429. r = md->queue->backing_dev_info.state &
  1430. bdi_bits;
  1431. else
  1432. r = dm_table_any_congested(map, bdi_bits);
  1433. dm_table_put(map);
  1434. }
  1435. }
  1436. return r;
  1437. }
  1438. /*-----------------------------------------------------------------
  1439. * An IDR is used to keep track of allocated minor numbers.
  1440. *---------------------------------------------------------------*/
  1441. static void free_minor(int minor)
  1442. {
  1443. spin_lock(&_minor_lock);
  1444. idr_remove(&_minor_idr, minor);
  1445. spin_unlock(&_minor_lock);
  1446. }
  1447. /*
  1448. * See if the device with a specific minor # is free.
  1449. */
  1450. static int specific_minor(int minor)
  1451. {
  1452. int r;
  1453. if (minor >= (1 << MINORBITS))
  1454. return -EINVAL;
  1455. idr_preload(GFP_KERNEL);
  1456. spin_lock(&_minor_lock);
  1457. r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
  1458. spin_unlock(&_minor_lock);
  1459. idr_preload_end();
  1460. if (r < 0)
  1461. return r == -ENOSPC ? -EBUSY : r;
  1462. return 0;
  1463. }
  1464. static int next_free_minor(int *minor)
  1465. {
  1466. int r;
  1467. idr_preload(GFP_KERNEL);
  1468. spin_lock(&_minor_lock);
  1469. r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
  1470. spin_unlock(&_minor_lock);
  1471. idr_preload_end();
  1472. if (r < 0)
  1473. return r;
  1474. *minor = r;
  1475. return 0;
  1476. }
  1477. static const struct block_device_operations dm_blk_dops;
  1478. static void dm_wq_work(struct work_struct *work);
  1479. static void dm_init_md_queue(struct mapped_device *md)
  1480. {
  1481. /*
  1482. * Request-based dm devices cannot be stacked on top of bio-based dm
  1483. * devices. The type of this dm device has not been decided yet.
  1484. * The type is decided at the first table loading time.
  1485. * To prevent problematic device stacking, clear the queue flag
  1486. * for request stacking support until then.
  1487. *
  1488. * This queue is new, so no concurrency on the queue_flags.
  1489. */
  1490. queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
  1491. md->queue->queuedata = md;
  1492. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  1493. md->queue->backing_dev_info.congested_data = md;
  1494. blk_queue_make_request(md->queue, dm_request);
  1495. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  1496. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  1497. }
  1498. /*
  1499. * Allocate and initialise a blank device with a given minor.
  1500. */
  1501. static struct mapped_device *alloc_dev(int minor)
  1502. {
  1503. int r;
  1504. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  1505. void *old_md;
  1506. if (!md) {
  1507. DMWARN("unable to allocate device, out of memory.");
  1508. return NULL;
  1509. }
  1510. if (!try_module_get(THIS_MODULE))
  1511. goto bad_module_get;
  1512. /* get a minor number for the dev */
  1513. if (minor == DM_ANY_MINOR)
  1514. r = next_free_minor(&minor);
  1515. else
  1516. r = specific_minor(minor);
  1517. if (r < 0)
  1518. goto bad_minor;
  1519. md->type = DM_TYPE_NONE;
  1520. init_rwsem(&md->io_lock);
  1521. mutex_init(&md->suspend_lock);
  1522. mutex_init(&md->type_lock);
  1523. spin_lock_init(&md->deferred_lock);
  1524. rwlock_init(&md->map_lock);
  1525. atomic_set(&md->holders, 1);
  1526. atomic_set(&md->open_count, 0);
  1527. atomic_set(&md->event_nr, 0);
  1528. atomic_set(&md->uevent_seq, 0);
  1529. INIT_LIST_HEAD(&md->uevent_list);
  1530. spin_lock_init(&md->uevent_lock);
  1531. md->queue = blk_alloc_queue(GFP_KERNEL);
  1532. if (!md->queue)
  1533. goto bad_queue;
  1534. dm_init_md_queue(md);
  1535. md->disk = alloc_disk(1);
  1536. if (!md->disk)
  1537. goto bad_disk;
  1538. atomic_set(&md->pending[0], 0);
  1539. atomic_set(&md->pending[1], 0);
  1540. init_waitqueue_head(&md->wait);
  1541. INIT_WORK(&md->work, dm_wq_work);
  1542. init_waitqueue_head(&md->eventq);
  1543. md->disk->major = _major;
  1544. md->disk->first_minor = minor;
  1545. md->disk->fops = &dm_blk_dops;
  1546. md->disk->queue = md->queue;
  1547. md->disk->private_data = md;
  1548. sprintf(md->disk->disk_name, "dm-%d", minor);
  1549. add_disk(md->disk);
  1550. format_dev_t(md->name, MKDEV(_major, minor));
  1551. md->wq = alloc_workqueue("kdmflush",
  1552. WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
  1553. if (!md->wq)
  1554. goto bad_thread;
  1555. md->bdev = bdget_disk(md->disk, 0);
  1556. if (!md->bdev)
  1557. goto bad_bdev;
  1558. bio_init(&md->flush_bio);
  1559. md->flush_bio.bi_bdev = md->bdev;
  1560. md->flush_bio.bi_rw = WRITE_FLUSH;
  1561. /* Populate the mapping, nobody knows we exist yet */
  1562. spin_lock(&_minor_lock);
  1563. old_md = idr_replace(&_minor_idr, md, minor);
  1564. spin_unlock(&_minor_lock);
  1565. BUG_ON(old_md != MINOR_ALLOCED);
  1566. return md;
  1567. bad_bdev:
  1568. destroy_workqueue(md->wq);
  1569. bad_thread:
  1570. del_gendisk(md->disk);
  1571. put_disk(md->disk);
  1572. bad_disk:
  1573. blk_cleanup_queue(md->queue);
  1574. bad_queue:
  1575. free_minor(minor);
  1576. bad_minor:
  1577. module_put(THIS_MODULE);
  1578. bad_module_get:
  1579. kfree(md);
  1580. return NULL;
  1581. }
  1582. static void unlock_fs(struct mapped_device *md);
  1583. static void free_dev(struct mapped_device *md)
  1584. {
  1585. int minor = MINOR(disk_devt(md->disk));
  1586. unlock_fs(md);
  1587. bdput(md->bdev);
  1588. destroy_workqueue(md->wq);
  1589. if (md->tio_pool)
  1590. mempool_destroy(md->tio_pool);
  1591. if (md->io_pool)
  1592. mempool_destroy(md->io_pool);
  1593. if (md->bs)
  1594. bioset_free(md->bs);
  1595. blk_integrity_unregister(md->disk);
  1596. del_gendisk(md->disk);
  1597. free_minor(minor);
  1598. spin_lock(&_minor_lock);
  1599. md->disk->private_data = NULL;
  1600. spin_unlock(&_minor_lock);
  1601. put_disk(md->disk);
  1602. blk_cleanup_queue(md->queue);
  1603. module_put(THIS_MODULE);
  1604. kfree(md);
  1605. }
  1606. static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
  1607. {
  1608. struct dm_md_mempools *p = dm_table_get_md_mempools(t);
  1609. if (md->io_pool && md->bs) {
  1610. /* The md already has necessary mempools. */
  1611. if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
  1612. /*
  1613. * Reload bioset because front_pad may have changed
  1614. * because a different table was loaded.
  1615. */
  1616. bioset_free(md->bs);
  1617. md->bs = p->bs;
  1618. p->bs = NULL;
  1619. } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
  1620. BUG_ON(!md->tio_pool);
  1621. /*
  1622. * There's no need to reload with request-based dm
  1623. * because the size of front_pad doesn't change.
  1624. * Note for future: If you are to reload bioset,
  1625. * prep-ed requests in the queue may refer
  1626. * to bio from the old bioset, so you must walk
  1627. * through the queue to unprep.
  1628. */
  1629. }
  1630. goto out;
  1631. }
  1632. BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
  1633. md->io_pool = p->io_pool;
  1634. p->io_pool = NULL;
  1635. md->tio_pool = p->tio_pool;
  1636. p->tio_pool = NULL;
  1637. md->bs = p->bs;
  1638. p->bs = NULL;
  1639. out:
  1640. /* mempool bind completed, now no need any mempools in the table */
  1641. dm_table_free_md_mempools(t);
  1642. }
  1643. /*
  1644. * Bind a table to the device.
  1645. */
  1646. static void event_callback(void *context)
  1647. {
  1648. unsigned long flags;
  1649. LIST_HEAD(uevents);
  1650. struct mapped_device *md = (struct mapped_device *) context;
  1651. spin_lock_irqsave(&md->uevent_lock, flags);
  1652. list_splice_init(&md->uevent_list, &uevents);
  1653. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1654. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  1655. atomic_inc(&md->event_nr);
  1656. wake_up(&md->eventq);
  1657. }
  1658. /*
  1659. * Protected by md->suspend_lock obtained by dm_swap_table().
  1660. */
  1661. static void __set_size(struct mapped_device *md, sector_t size)
  1662. {
  1663. set_capacity(md->disk, size);
  1664. i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  1665. }
  1666. /*
  1667. * Return 1 if the queue has a compulsory merge_bvec_fn function.
  1668. *
  1669. * If this function returns 0, then the device is either a non-dm
  1670. * device without a merge_bvec_fn, or it is a dm device that is
  1671. * able to split any bios it receives that are too big.
  1672. */
  1673. int dm_queue_merge_is_compulsory(struct request_queue *q)
  1674. {
  1675. struct mapped_device *dev_md;
  1676. if (!q->merge_bvec_fn)
  1677. return 0;
  1678. if (q->make_request_fn == dm_request) {
  1679. dev_md = q->queuedata;
  1680. if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
  1681. return 0;
  1682. }
  1683. return 1;
  1684. }
  1685. static int dm_device_merge_is_compulsory(struct dm_target *ti,
  1686. struct dm_dev *dev, sector_t start,
  1687. sector_t len, void *data)
  1688. {
  1689. struct block_device *bdev = dev->bdev;
  1690. struct request_queue *q = bdev_get_queue(bdev);
  1691. return dm_queue_merge_is_compulsory(q);
  1692. }
  1693. /*
  1694. * Return 1 if it is acceptable to ignore merge_bvec_fn based
  1695. * on the properties of the underlying devices.
  1696. */
  1697. static int dm_table_merge_is_optional(struct dm_table *table)
  1698. {
  1699. unsigned i = 0;
  1700. struct dm_target *ti;
  1701. while (i < dm_table_get_num_targets(table)) {
  1702. ti = dm_table_get_target(table, i++);
  1703. if (ti->type->iterate_devices &&
  1704. ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
  1705. return 0;
  1706. }
  1707. return 1;
  1708. }
  1709. /*
  1710. * Returns old map, which caller must destroy.
  1711. */
  1712. static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
  1713. struct queue_limits *limits)
  1714. {
  1715. struct dm_table *old_map;
  1716. struct request_queue *q = md->queue;
  1717. sector_t size;
  1718. unsigned long flags;
  1719. int merge_is_optional;
  1720. size = dm_table_get_size(t);
  1721. /*
  1722. * Wipe any geometry if the size of the table changed.
  1723. */
  1724. if (size != get_capacity(md->disk))
  1725. memset(&md->geometry, 0, sizeof(md->geometry));
  1726. __set_size(md, size);
  1727. dm_table_event_callback(t, event_callback, md);
  1728. /*
  1729. * The queue hasn't been stopped yet, if the old table type wasn't
  1730. * for request-based during suspension. So stop it to prevent
  1731. * I/O mapping before resume.
  1732. * This must be done before setting the queue restrictions,
  1733. * because request-based dm may be run just after the setting.
  1734. */
  1735. if (dm_table_request_based(t) && !blk_queue_stopped(q))
  1736. stop_queue(q);
  1737. __bind_mempools(md, t);
  1738. merge_is_optional = dm_table_merge_is_optional(t);
  1739. write_lock_irqsave(&md->map_lock, flags);
  1740. old_map = md->map;
  1741. md->map = t;
  1742. md->immutable_target_type = dm_table_get_immutable_target_type(t);
  1743. dm_table_set_restrictions(t, q, limits);
  1744. if (merge_is_optional)
  1745. set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
  1746. else
  1747. clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
  1748. write_unlock_irqrestore(&md->map_lock, flags);
  1749. return old_map;
  1750. }
  1751. /*
  1752. * Returns unbound table for the caller to free.
  1753. */
  1754. static struct dm_table *__unbind(struct mapped_device *md)
  1755. {
  1756. struct dm_table *map = md->map;
  1757. unsigned long flags;
  1758. if (!map)
  1759. return NULL;
  1760. dm_table_event_callback(map, NULL, NULL);
  1761. write_lock_irqsave(&md->map_lock, flags);
  1762. md->map = NULL;
  1763. write_unlock_irqrestore(&md->map_lock, flags);
  1764. return map;
  1765. }
  1766. /*
  1767. * Constructor for a new device.
  1768. */
  1769. int dm_create(int minor, struct mapped_device **result)
  1770. {
  1771. struct mapped_device *md;
  1772. md = alloc_dev(minor);
  1773. if (!md)
  1774. return -ENXIO;
  1775. dm_sysfs_init(md);
  1776. *result = md;
  1777. return 0;
  1778. }
  1779. /*
  1780. * Functions to manage md->type.
  1781. * All are required to hold md->type_lock.
  1782. */
  1783. void dm_lock_md_type(struct mapped_device *md)
  1784. {
  1785. mutex_lock(&md->type_lock);
  1786. }
  1787. void dm_unlock_md_type(struct mapped_device *md)
  1788. {
  1789. mutex_unlock(&md->type_lock);
  1790. }
  1791. void dm_set_md_type(struct mapped_device *md, unsigned type)
  1792. {
  1793. md->type = type;
  1794. }
  1795. unsigned dm_get_md_type(struct mapped_device *md)
  1796. {
  1797. return md->type;
  1798. }
  1799. struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
  1800. {
  1801. return md->immutable_target_type;
  1802. }
  1803. /*
  1804. * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
  1805. */
  1806. static int dm_init_request_based_queue(struct mapped_device *md)
  1807. {
  1808. struct request_queue *q = NULL;
  1809. if (md->queue->elevator)
  1810. return 1;
  1811. /* Fully initialize the queue */
  1812. q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
  1813. if (!q)
  1814. return 0;
  1815. md->queue = q;
  1816. dm_init_md_queue(md);
  1817. blk_queue_softirq_done(md->queue, dm_softirq_done);
  1818. blk_queue_prep_rq(md->queue, dm_prep_fn);
  1819. blk_queue_lld_busy(md->queue, dm_lld_busy);
  1820. elv_register_queue(md->queue);
  1821. return 1;
  1822. }
  1823. /*
  1824. * Setup the DM device's queue based on md's type
  1825. */
  1826. int dm_setup_md_queue(struct mapped_device *md)
  1827. {
  1828. if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
  1829. !dm_init_request_based_queue(md)) {
  1830. DMWARN("Cannot initialize queue for request-based mapped device");
  1831. return -EINVAL;
  1832. }
  1833. return 0;
  1834. }
  1835. static struct mapped_device *dm_find_md(dev_t dev)
  1836. {
  1837. struct mapped_device *md;
  1838. unsigned minor = MINOR(dev);
  1839. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1840. return NULL;
  1841. spin_lock(&_minor_lock);
  1842. md = idr_find(&_minor_idr, minor);
  1843. if (md && (md == MINOR_ALLOCED ||
  1844. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1845. dm_deleting_md(md) ||
  1846. test_bit(DMF_FREEING, &md->flags))) {
  1847. md = NULL;
  1848. goto out;
  1849. }
  1850. out:
  1851. spin_unlock(&_minor_lock);
  1852. return md;
  1853. }
  1854. struct mapped_device *dm_get_md(dev_t dev)
  1855. {
  1856. struct mapped_device *md = dm_find_md(dev);
  1857. if (md)
  1858. dm_get(md);
  1859. return md;
  1860. }
  1861. EXPORT_SYMBOL_GPL(dm_get_md);
  1862. void *dm_get_mdptr(struct mapped_device *md)
  1863. {
  1864. return md->interface_ptr;
  1865. }
  1866. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1867. {
  1868. md->interface_ptr = ptr;
  1869. }
  1870. void dm_get(struct mapped_device *md)
  1871. {
  1872. atomic_inc(&md->holders);
  1873. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1874. }
  1875. const char *dm_device_name(struct mapped_device *md)
  1876. {
  1877. return md->name;
  1878. }
  1879. EXPORT_SYMBOL_GPL(dm_device_name);
  1880. static void __dm_destroy(struct mapped_device *md, bool wait)
  1881. {
  1882. struct dm_table *map;
  1883. might_sleep();
  1884. spin_lock(&_minor_lock);
  1885. map = dm_get_live_table(md);
  1886. idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
  1887. set_bit(DMF_FREEING, &md->flags);
  1888. spin_unlock(&_minor_lock);
  1889. if (!dm_suspended_md(md)) {
  1890. dm_table_presuspend_targets(map);
  1891. dm_table_postsuspend_targets(map);
  1892. }
  1893. /*
  1894. * Rare, but there may be I/O requests still going to complete,
  1895. * for example. Wait for all references to disappear.
  1896. * No one should increment the reference count of the mapped_device,
  1897. * after the mapped_device state becomes DMF_FREEING.
  1898. */
  1899. if (wait)
  1900. while (atomic_read(&md->holders))
  1901. msleep(1);
  1902. else if (atomic_read(&md->holders))
  1903. DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
  1904. dm_device_name(md), atomic_read(&md->holders));
  1905. dm_sysfs_exit(md);
  1906. dm_table_put(map);
  1907. dm_table_destroy(__unbind(md));
  1908. free_dev(md);
  1909. }
  1910. void dm_destroy(struct mapped_device *md)
  1911. {
  1912. __dm_destroy(md, true);
  1913. }
  1914. void dm_destroy_immediate(struct mapped_device *md)
  1915. {
  1916. __dm_destroy(md, false);
  1917. }
  1918. void dm_put(struct mapped_device *md)
  1919. {
  1920. atomic_dec(&md->holders);
  1921. }
  1922. EXPORT_SYMBOL_GPL(dm_put);
  1923. static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
  1924. {
  1925. int r = 0;
  1926. DECLARE_WAITQUEUE(wait, current);
  1927. add_wait_queue(&md->wait, &wait);
  1928. while (1) {
  1929. set_current_state(interruptible);
  1930. if (!md_in_flight(md))
  1931. break;
  1932. if (interruptible == TASK_INTERRUPTIBLE &&
  1933. signal_pending(current)) {
  1934. r = -EINTR;
  1935. break;
  1936. }
  1937. io_schedule();
  1938. }
  1939. set_current_state(TASK_RUNNING);
  1940. remove_wait_queue(&md->wait, &wait);
  1941. return r;
  1942. }
  1943. /*
  1944. * Process the deferred bios
  1945. */
  1946. static void dm_wq_work(struct work_struct *work)
  1947. {
  1948. struct mapped_device *md = container_of(work, struct mapped_device,
  1949. work);
  1950. struct bio *c;
  1951. down_read(&md->io_lock);
  1952. while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1953. spin_lock_irq(&md->deferred_lock);
  1954. c = bio_list_pop(&md->deferred);
  1955. spin_unlock_irq(&md->deferred_lock);
  1956. if (!c)
  1957. break;
  1958. up_read(&md->io_lock);
  1959. if (dm_request_based(md))
  1960. generic_make_request(c);
  1961. else
  1962. __split_and_process_bio(md, c);
  1963. down_read(&md->io_lock);
  1964. }
  1965. up_read(&md->io_lock);
  1966. }
  1967. static void dm_queue_flush(struct mapped_device *md)
  1968. {
  1969. clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1970. smp_mb__after_clear_bit();
  1971. queue_work(md->wq, &md->work);
  1972. }
  1973. /*
  1974. * Swap in a new table, returning the old one for the caller to destroy.
  1975. */
  1976. struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1977. {
  1978. struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
  1979. struct queue_limits limits;
  1980. int r;
  1981. mutex_lock(&md->suspend_lock);
  1982. /* device must be suspended */
  1983. if (!dm_suspended_md(md))
  1984. goto out;
  1985. /*
  1986. * If the new table has no data devices, retain the existing limits.
  1987. * This helps multipath with queue_if_no_path if all paths disappear,
  1988. * then new I/O is queued based on these limits, and then some paths
  1989. * reappear.
  1990. */
  1991. if (dm_table_has_no_data_devices(table)) {
  1992. live_map = dm_get_live_table(md);
  1993. if (live_map)
  1994. limits = md->queue->limits;
  1995. dm_table_put(live_map);
  1996. }
  1997. r = dm_calculate_queue_limits(table, &limits);
  1998. if (r) {
  1999. map = ERR_PTR(r);
  2000. goto out;
  2001. }
  2002. map = __bind(md, table, &limits);
  2003. out:
  2004. mutex_unlock(&md->suspend_lock);
  2005. return map;
  2006. }
  2007. /*
  2008. * Functions to lock and unlock any filesystem running on the
  2009. * device.
  2010. */
  2011. static int lock_fs(struct mapped_device *md)
  2012. {
  2013. int r;
  2014. WARN_ON(md->frozen_sb);
  2015. md->frozen_sb = freeze_bdev(md->bdev);
  2016. if (IS_ERR(md->frozen_sb)) {
  2017. r = PTR_ERR(md->frozen_sb);
  2018. md->frozen_sb = NULL;
  2019. return r;
  2020. }
  2021. set_bit(DMF_FROZEN, &md->flags);
  2022. return 0;
  2023. }
  2024. static void unlock_fs(struct mapped_device *md)
  2025. {
  2026. if (!test_bit(DMF_FROZEN, &md->flags))
  2027. return;
  2028. thaw_bdev(md->bdev, md->frozen_sb);
  2029. md->frozen_sb = NULL;
  2030. clear_bit(DMF_FROZEN, &md->flags);
  2031. }
  2032. /*
  2033. * We need to be able to change a mapping table under a mounted
  2034. * filesystem. For example we might want to move some data in
  2035. * the background. Before the table can be swapped with
  2036. * dm_bind_table, dm_suspend must be called to flush any in
  2037. * flight bios and ensure that any further io gets deferred.
  2038. */
  2039. /*
  2040. * Suspend mechanism in request-based dm.
  2041. *
  2042. * 1. Flush all I/Os by lock_fs() if needed.
  2043. * 2. Stop dispatching any I/O by stopping the request_queue.
  2044. * 3. Wait for all in-flight I/Os to be completed or requeued.
  2045. *
  2046. * To abort suspend, start the request_queue.
  2047. */
  2048. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  2049. {
  2050. struct dm_table *map = NULL;
  2051. int r = 0;
  2052. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  2053. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  2054. mutex_lock(&md->suspend_lock);
  2055. if (dm_suspended_md(md)) {
  2056. r = -EINVAL;
  2057. goto out_unlock;
  2058. }
  2059. map = dm_get_live_table(md);
  2060. /*
  2061. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  2062. * This flag is cleared before dm_suspend returns.
  2063. */
  2064. if (noflush)
  2065. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  2066. /* This does not get reverted if there's an error later. */
  2067. dm_table_presuspend_targets(map);
  2068. /*
  2069. * Flush I/O to the device.
  2070. * Any I/O submitted after lock_fs() may not be flushed.
  2071. * noflush takes precedence over do_lockfs.
  2072. * (lock_fs() flushes I/Os and waits for them to complete.)
  2073. */
  2074. if (!noflush && do_lockfs) {
  2075. r = lock_fs(md);
  2076. if (r)
  2077. goto out;
  2078. }
  2079. /*
  2080. * Here we must make sure that no processes are submitting requests
  2081. * to target drivers i.e. no one may be executing
  2082. * __split_and_process_bio. This is called from dm_request and
  2083. * dm_wq_work.
  2084. *
  2085. * To get all processes out of __split_and_process_bio in dm_request,
  2086. * we take the write lock. To prevent any process from reentering
  2087. * __split_and_process_bio from dm_request and quiesce the thread
  2088. * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
  2089. * flush_workqueue(md->wq).
  2090. */
  2091. down_write(&md->io_lock);
  2092. set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  2093. up_write(&md->io_lock);
  2094. /*
  2095. * Stop md->queue before flushing md->wq in case request-based
  2096. * dm defers requests to md->wq from md->queue.
  2097. */
  2098. if (dm_request_based(md))
  2099. stop_queue(md->queue);
  2100. flush_workqueue(md->wq);
  2101. /*
  2102. * At this point no more requests are entering target request routines.
  2103. * We call dm_wait_for_completion to wait for all existing requests
  2104. * to finish.
  2105. */
  2106. r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
  2107. down_write(&md->io_lock);
  2108. if (noflush)
  2109. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  2110. up_write(&md->io_lock);
  2111. /* were we interrupted ? */
  2112. if (r < 0) {
  2113. dm_queue_flush(md);
  2114. if (dm_request_based(md))
  2115. start_queue(md->queue);
  2116. unlock_fs(md);
  2117. goto out; /* pushback list is already flushed, so skip flush */
  2118. }
  2119. /*
  2120. * If dm_wait_for_completion returned 0, the device is completely
  2121. * quiescent now. There is no request-processing activity. All new
  2122. * requests are being added to md->deferred list.
  2123. */
  2124. set_bit(DMF_SUSPENDED, &md->flags);
  2125. dm_table_postsuspend_targets(map);
  2126. out:
  2127. dm_table_put(map);
  2128. out_unlock:
  2129. mutex_unlock(&md->suspend_lock);
  2130. return r;
  2131. }
  2132. int dm_resume(struct mapped_device *md)
  2133. {
  2134. int r = -EINVAL;
  2135. struct dm_table *map = NULL;
  2136. mutex_lock(&md->suspend_lock);
  2137. if (!dm_suspended_md(md))
  2138. goto out;
  2139. map = dm_get_live_table(md);
  2140. if (!map || !dm_table_get_size(map))
  2141. goto out;
  2142. r = dm_table_resume_targets(map);
  2143. if (r)
  2144. goto out;
  2145. dm_queue_flush(md);
  2146. /*
  2147. * Flushing deferred I/Os must be done after targets are resumed
  2148. * so that mapping of targets can work correctly.
  2149. * Request-based dm is queueing the deferred I/Os in its request_queue.
  2150. */
  2151. if (dm_request_based(md))
  2152. start_queue(md->queue);
  2153. unlock_fs(md);
  2154. clear_bit(DMF_SUSPENDED, &md->flags);
  2155. r = 0;
  2156. out:
  2157. dm_table_put(map);
  2158. mutex_unlock(&md->suspend_lock);
  2159. return r;
  2160. }
  2161. /*-----------------------------------------------------------------
  2162. * Event notification.
  2163. *---------------------------------------------------------------*/
  2164. int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
  2165. unsigned cookie)
  2166. {
  2167. char udev_cookie[DM_COOKIE_LENGTH];
  2168. char *envp[] = { udev_cookie, NULL };
  2169. if (!cookie)
  2170. return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
  2171. else {
  2172. snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
  2173. DM_COOKIE_ENV_VAR_NAME, cookie);
  2174. return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
  2175. action, envp);
  2176. }
  2177. }
  2178. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  2179. {
  2180. return atomic_add_return(1, &md->uevent_seq);
  2181. }
  2182. uint32_t dm_get_event_nr(struct mapped_device *md)
  2183. {
  2184. return atomic_read(&md->event_nr);
  2185. }
  2186. int dm_wait_event(struct mapped_device *md, int event_nr)
  2187. {
  2188. return wait_event_interruptible(md->eventq,
  2189. (event_nr != atomic_read(&md->event_nr)));
  2190. }
  2191. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  2192. {
  2193. unsigned long flags;
  2194. spin_lock_irqsave(&md->uevent_lock, flags);
  2195. list_add(elist, &md->uevent_list);
  2196. spin_unlock_irqrestore(&md->uevent_lock, flags);
  2197. }
  2198. /*
  2199. * The gendisk is only valid as long as you have a reference
  2200. * count on 'md'.
  2201. */
  2202. struct gendisk *dm_disk(struct mapped_device *md)
  2203. {
  2204. return md->disk;
  2205. }
  2206. struct kobject *dm_kobject(struct mapped_device *md)
  2207. {
  2208. return &md->kobj;
  2209. }
  2210. /*
  2211. * struct mapped_device should not be exported outside of dm.c
  2212. * so use this check to verify that kobj is part of md structure
  2213. */
  2214. struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
  2215. {
  2216. struct mapped_device *md;
  2217. md = container_of(kobj, struct mapped_device, kobj);
  2218. if (&md->kobj != kobj)
  2219. return NULL;
  2220. if (test_bit(DMF_FREEING, &md->flags) ||
  2221. dm_deleting_md(md))
  2222. return NULL;
  2223. dm_get(md);
  2224. return md;
  2225. }
  2226. int dm_suspended_md(struct mapped_device *md)
  2227. {
  2228. return test_bit(DMF_SUSPENDED, &md->flags);
  2229. }
  2230. int dm_suspended(struct dm_target *ti)
  2231. {
  2232. return dm_suspended_md(dm_table_get_md(ti->table));
  2233. }
  2234. EXPORT_SYMBOL_GPL(dm_suspended);
  2235. int dm_noflush_suspending(struct dm_target *ti)
  2236. {
  2237. return __noflush_suspending(dm_table_get_md(ti->table));
  2238. }
  2239. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  2240. struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
  2241. {
  2242. struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
  2243. unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
  2244. if (!pools)
  2245. return NULL;
  2246. per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io));
  2247. pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
  2248. mempool_create_slab_pool(MIN_IOS, _io_cache) :
  2249. mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
  2250. if (!pools->io_pool)
  2251. goto free_pools_and_out;
  2252. pools->tio_pool = NULL;
  2253. if (type == DM_TYPE_REQUEST_BASED) {
  2254. pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
  2255. if (!pools->tio_pool)
  2256. goto free_io_pool_and_out;
  2257. }
  2258. pools->bs = (type == DM_TYPE_BIO_BASED) ?
  2259. bioset_create(pool_size,
  2260. per_bio_data_size + offsetof(struct dm_target_io, clone)) :
  2261. bioset_create(pool_size,
  2262. offsetof(struct dm_rq_clone_bio_info, clone));
  2263. if (!pools->bs)
  2264. goto free_tio_pool_and_out;
  2265. if (integrity && bioset_integrity_create(pools->bs, pool_size))
  2266. goto free_bioset_and_out;
  2267. return pools;
  2268. free_bioset_and_out:
  2269. bioset_free(pools->bs);
  2270. free_tio_pool_and_out:
  2271. if (pools->tio_pool)
  2272. mempool_destroy(pools->tio_pool);
  2273. free_io_pool_and_out:
  2274. mempool_destroy(pools->io_pool);
  2275. free_pools_and_out:
  2276. kfree(pools);
  2277. return NULL;
  2278. }
  2279. void dm_free_md_mempools(struct dm_md_mempools *pools)
  2280. {
  2281. if (!pools)
  2282. return;
  2283. if (pools->io_pool)
  2284. mempool_destroy(pools->io_pool);
  2285. if (pools->tio_pool)
  2286. mempool_destroy(pools->tio_pool);
  2287. if (pools->bs)
  2288. bioset_free(pools->bs);
  2289. kfree(pools);
  2290. }
  2291. static const struct block_device_operations dm_blk_dops = {
  2292. .open = dm_blk_open,
  2293. .release = dm_blk_close,
  2294. .ioctl = dm_blk_ioctl,
  2295. .getgeo = dm_blk_getgeo,
  2296. .owner = THIS_MODULE
  2297. };
  2298. EXPORT_SYMBOL(dm_get_mapinfo);
  2299. /*
  2300. * module hooks
  2301. */
  2302. module_init(dm_init);
  2303. module_exit(dm_exit);
  2304. module_param(major, uint, 0);
  2305. MODULE_PARM_DESC(major, "The major number of the device mapper");
  2306. MODULE_DESCRIPTION(DM_NAME " driver");
  2307. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2308. MODULE_LICENSE("GPL");