x86.c 169 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  60. #define emul_to_vcpu(ctxt) \
  61. container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  62. /* EFER defaults:
  63. * - enable syscall per default because its emulated by KVM
  64. * - enable LME and LMA per default on 64 bit KVM
  65. */
  66. #ifdef CONFIG_X86_64
  67. static
  68. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  69. #else
  70. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  71. #endif
  72. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  73. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  74. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  75. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  76. struct kvm_cpuid_entry2 __user *entries);
  77. struct kvm_x86_ops *kvm_x86_ops;
  78. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  79. int ignore_msrs = 0;
  80. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  81. bool kvm_has_tsc_control;
  82. EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  83. u32 kvm_max_guest_tsc_khz;
  84. EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  85. #define KVM_NR_SHARED_MSRS 16
  86. struct kvm_shared_msrs_global {
  87. int nr;
  88. u32 msrs[KVM_NR_SHARED_MSRS];
  89. };
  90. struct kvm_shared_msrs {
  91. struct user_return_notifier urn;
  92. bool registered;
  93. struct kvm_shared_msr_values {
  94. u64 host;
  95. u64 curr;
  96. } values[KVM_NR_SHARED_MSRS];
  97. };
  98. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  99. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  100. struct kvm_stats_debugfs_item debugfs_entries[] = {
  101. { "pf_fixed", VCPU_STAT(pf_fixed) },
  102. { "pf_guest", VCPU_STAT(pf_guest) },
  103. { "tlb_flush", VCPU_STAT(tlb_flush) },
  104. { "invlpg", VCPU_STAT(invlpg) },
  105. { "exits", VCPU_STAT(exits) },
  106. { "io_exits", VCPU_STAT(io_exits) },
  107. { "mmio_exits", VCPU_STAT(mmio_exits) },
  108. { "signal_exits", VCPU_STAT(signal_exits) },
  109. { "irq_window", VCPU_STAT(irq_window_exits) },
  110. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  111. { "halt_exits", VCPU_STAT(halt_exits) },
  112. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  113. { "hypercalls", VCPU_STAT(hypercalls) },
  114. { "request_irq", VCPU_STAT(request_irq_exits) },
  115. { "irq_exits", VCPU_STAT(irq_exits) },
  116. { "host_state_reload", VCPU_STAT(host_state_reload) },
  117. { "efer_reload", VCPU_STAT(efer_reload) },
  118. { "fpu_reload", VCPU_STAT(fpu_reload) },
  119. { "insn_emulation", VCPU_STAT(insn_emulation) },
  120. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  121. { "irq_injections", VCPU_STAT(irq_injections) },
  122. { "nmi_injections", VCPU_STAT(nmi_injections) },
  123. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  124. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  125. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  126. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  127. { "mmu_flooded", VM_STAT(mmu_flooded) },
  128. { "mmu_recycled", VM_STAT(mmu_recycled) },
  129. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  130. { "mmu_unsync", VM_STAT(mmu_unsync) },
  131. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  132. { "largepages", VM_STAT(lpages) },
  133. { NULL }
  134. };
  135. u64 __read_mostly host_xcr0;
  136. int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
  137. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  138. {
  139. int i;
  140. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  141. vcpu->arch.apf.gfns[i] = ~0;
  142. }
  143. static void kvm_on_user_return(struct user_return_notifier *urn)
  144. {
  145. unsigned slot;
  146. struct kvm_shared_msrs *locals
  147. = container_of(urn, struct kvm_shared_msrs, urn);
  148. struct kvm_shared_msr_values *values;
  149. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  150. values = &locals->values[slot];
  151. if (values->host != values->curr) {
  152. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  153. values->curr = values->host;
  154. }
  155. }
  156. locals->registered = false;
  157. user_return_notifier_unregister(urn);
  158. }
  159. static void shared_msr_update(unsigned slot, u32 msr)
  160. {
  161. struct kvm_shared_msrs *smsr;
  162. u64 value;
  163. smsr = &__get_cpu_var(shared_msrs);
  164. /* only read, and nobody should modify it at this time,
  165. * so don't need lock */
  166. if (slot >= shared_msrs_global.nr) {
  167. printk(KERN_ERR "kvm: invalid MSR slot!");
  168. return;
  169. }
  170. rdmsrl_safe(msr, &value);
  171. smsr->values[slot].host = value;
  172. smsr->values[slot].curr = value;
  173. }
  174. void kvm_define_shared_msr(unsigned slot, u32 msr)
  175. {
  176. if (slot >= shared_msrs_global.nr)
  177. shared_msrs_global.nr = slot + 1;
  178. shared_msrs_global.msrs[slot] = msr;
  179. /* we need ensured the shared_msr_global have been updated */
  180. smp_wmb();
  181. }
  182. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  183. static void kvm_shared_msr_cpu_online(void)
  184. {
  185. unsigned i;
  186. for (i = 0; i < shared_msrs_global.nr; ++i)
  187. shared_msr_update(i, shared_msrs_global.msrs[i]);
  188. }
  189. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  190. {
  191. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  192. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  193. return;
  194. smsr->values[slot].curr = value;
  195. wrmsrl(shared_msrs_global.msrs[slot], value);
  196. if (!smsr->registered) {
  197. smsr->urn.on_user_return = kvm_on_user_return;
  198. user_return_notifier_register(&smsr->urn);
  199. smsr->registered = true;
  200. }
  201. }
  202. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  203. static void drop_user_return_notifiers(void *ignore)
  204. {
  205. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  206. if (smsr->registered)
  207. kvm_on_user_return(&smsr->urn);
  208. }
  209. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  210. {
  211. if (irqchip_in_kernel(vcpu->kvm))
  212. return vcpu->arch.apic_base;
  213. else
  214. return vcpu->arch.apic_base;
  215. }
  216. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  217. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  218. {
  219. /* TODO: reserve bits check */
  220. if (irqchip_in_kernel(vcpu->kvm))
  221. kvm_lapic_set_base(vcpu, data);
  222. else
  223. vcpu->arch.apic_base = data;
  224. }
  225. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  226. #define EXCPT_BENIGN 0
  227. #define EXCPT_CONTRIBUTORY 1
  228. #define EXCPT_PF 2
  229. static int exception_class(int vector)
  230. {
  231. switch (vector) {
  232. case PF_VECTOR:
  233. return EXCPT_PF;
  234. case DE_VECTOR:
  235. case TS_VECTOR:
  236. case NP_VECTOR:
  237. case SS_VECTOR:
  238. case GP_VECTOR:
  239. return EXCPT_CONTRIBUTORY;
  240. default:
  241. break;
  242. }
  243. return EXCPT_BENIGN;
  244. }
  245. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  246. unsigned nr, bool has_error, u32 error_code,
  247. bool reinject)
  248. {
  249. u32 prev_nr;
  250. int class1, class2;
  251. kvm_make_request(KVM_REQ_EVENT, vcpu);
  252. if (!vcpu->arch.exception.pending) {
  253. queue:
  254. vcpu->arch.exception.pending = true;
  255. vcpu->arch.exception.has_error_code = has_error;
  256. vcpu->arch.exception.nr = nr;
  257. vcpu->arch.exception.error_code = error_code;
  258. vcpu->arch.exception.reinject = reinject;
  259. return;
  260. }
  261. /* to check exception */
  262. prev_nr = vcpu->arch.exception.nr;
  263. if (prev_nr == DF_VECTOR) {
  264. /* triple fault -> shutdown */
  265. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  266. return;
  267. }
  268. class1 = exception_class(prev_nr);
  269. class2 = exception_class(nr);
  270. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  271. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  272. /* generate double fault per SDM Table 5-5 */
  273. vcpu->arch.exception.pending = true;
  274. vcpu->arch.exception.has_error_code = true;
  275. vcpu->arch.exception.nr = DF_VECTOR;
  276. vcpu->arch.exception.error_code = 0;
  277. } else
  278. /* replace previous exception with a new one in a hope
  279. that instruction re-execution will regenerate lost
  280. exception */
  281. goto queue;
  282. }
  283. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  284. {
  285. kvm_multiple_exception(vcpu, nr, false, 0, false);
  286. }
  287. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  288. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  289. {
  290. kvm_multiple_exception(vcpu, nr, false, 0, true);
  291. }
  292. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  293. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  294. {
  295. if (err)
  296. kvm_inject_gp(vcpu, 0);
  297. else
  298. kvm_x86_ops->skip_emulated_instruction(vcpu);
  299. }
  300. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  301. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  302. {
  303. ++vcpu->stat.pf_guest;
  304. vcpu->arch.cr2 = fault->address;
  305. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
  308. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  309. {
  310. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  311. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  312. else
  313. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  314. }
  315. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  316. {
  317. kvm_make_request(KVM_REQ_EVENT, vcpu);
  318. vcpu->arch.nmi_pending = 1;
  319. }
  320. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  321. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  322. {
  323. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  324. }
  325. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  326. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  327. {
  328. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  329. }
  330. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  331. /*
  332. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  333. * a #GP and return false.
  334. */
  335. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  336. {
  337. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  338. return true;
  339. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  340. return false;
  341. }
  342. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  343. /*
  344. * This function will be used to read from the physical memory of the currently
  345. * running guest. The difference to kvm_read_guest_page is that this function
  346. * can read from guest physical or from the guest's guest physical memory.
  347. */
  348. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  349. gfn_t ngfn, void *data, int offset, int len,
  350. u32 access)
  351. {
  352. gfn_t real_gfn;
  353. gpa_t ngpa;
  354. ngpa = gfn_to_gpa(ngfn);
  355. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  356. if (real_gfn == UNMAPPED_GVA)
  357. return -EFAULT;
  358. real_gfn = gpa_to_gfn(real_gfn);
  359. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  360. }
  361. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  362. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  363. void *data, int offset, int len, u32 access)
  364. {
  365. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  366. data, offset, len, access);
  367. }
  368. /*
  369. * Load the pae pdptrs. Return true is they are all valid.
  370. */
  371. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  372. {
  373. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  374. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  375. int i;
  376. int ret;
  377. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  378. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  379. offset * sizeof(u64), sizeof(pdpte),
  380. PFERR_USER_MASK|PFERR_WRITE_MASK);
  381. if (ret < 0) {
  382. ret = 0;
  383. goto out;
  384. }
  385. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  386. if (is_present_gpte(pdpte[i]) &&
  387. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  388. ret = 0;
  389. goto out;
  390. }
  391. }
  392. ret = 1;
  393. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  394. __set_bit(VCPU_EXREG_PDPTR,
  395. (unsigned long *)&vcpu->arch.regs_avail);
  396. __set_bit(VCPU_EXREG_PDPTR,
  397. (unsigned long *)&vcpu->arch.regs_dirty);
  398. out:
  399. return ret;
  400. }
  401. EXPORT_SYMBOL_GPL(load_pdptrs);
  402. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  403. {
  404. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  405. bool changed = true;
  406. int offset;
  407. gfn_t gfn;
  408. int r;
  409. if (is_long_mode(vcpu) || !is_pae(vcpu))
  410. return false;
  411. if (!test_bit(VCPU_EXREG_PDPTR,
  412. (unsigned long *)&vcpu->arch.regs_avail))
  413. return true;
  414. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  415. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  416. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  417. PFERR_USER_MASK | PFERR_WRITE_MASK);
  418. if (r < 0)
  419. goto out;
  420. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  421. out:
  422. return changed;
  423. }
  424. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  425. {
  426. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  427. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  428. X86_CR0_CD | X86_CR0_NW;
  429. cr0 |= X86_CR0_ET;
  430. #ifdef CONFIG_X86_64
  431. if (cr0 & 0xffffffff00000000UL)
  432. return 1;
  433. #endif
  434. cr0 &= ~CR0_RESERVED_BITS;
  435. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  436. return 1;
  437. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  438. return 1;
  439. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  440. #ifdef CONFIG_X86_64
  441. if ((vcpu->arch.efer & EFER_LME)) {
  442. int cs_db, cs_l;
  443. if (!is_pae(vcpu))
  444. return 1;
  445. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  446. if (cs_l)
  447. return 1;
  448. } else
  449. #endif
  450. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  451. kvm_read_cr3(vcpu)))
  452. return 1;
  453. }
  454. kvm_x86_ops->set_cr0(vcpu, cr0);
  455. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  456. kvm_clear_async_pf_completion_queue(vcpu);
  457. kvm_async_pf_hash_reset(vcpu);
  458. }
  459. if ((cr0 ^ old_cr0) & update_bits)
  460. kvm_mmu_reset_context(vcpu);
  461. return 0;
  462. }
  463. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  464. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  465. {
  466. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_lmsw);
  469. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  470. {
  471. u64 xcr0;
  472. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  473. if (index != XCR_XFEATURE_ENABLED_MASK)
  474. return 1;
  475. xcr0 = xcr;
  476. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  477. return 1;
  478. if (!(xcr0 & XSTATE_FP))
  479. return 1;
  480. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  481. return 1;
  482. if (xcr0 & ~host_xcr0)
  483. return 1;
  484. vcpu->arch.xcr0 = xcr0;
  485. vcpu->guest_xcr0_loaded = 0;
  486. return 0;
  487. }
  488. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  489. {
  490. if (__kvm_set_xcr(vcpu, index, xcr)) {
  491. kvm_inject_gp(vcpu, 0);
  492. return 1;
  493. }
  494. return 0;
  495. }
  496. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  497. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  498. {
  499. struct kvm_cpuid_entry2 *best;
  500. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  501. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  502. }
  503. static bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
  504. {
  505. struct kvm_cpuid_entry2 *best;
  506. best = kvm_find_cpuid_entry(vcpu, 7, 0);
  507. return best && (best->ebx & bit(X86_FEATURE_SMEP));
  508. }
  509. static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
  510. {
  511. struct kvm_cpuid_entry2 *best;
  512. best = kvm_find_cpuid_entry(vcpu, 7, 0);
  513. return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
  514. }
  515. static void update_cpuid(struct kvm_vcpu *vcpu)
  516. {
  517. struct kvm_cpuid_entry2 *best;
  518. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  519. if (!best)
  520. return;
  521. /* Update OSXSAVE bit */
  522. if (cpu_has_xsave && best->function == 0x1) {
  523. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  524. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  525. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  526. }
  527. }
  528. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  529. {
  530. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  531. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
  532. X86_CR4_PAE | X86_CR4_SMEP;
  533. if (cr4 & CR4_RESERVED_BITS)
  534. return 1;
  535. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  536. return 1;
  537. if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
  538. return 1;
  539. if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
  540. return 1;
  541. if (is_long_mode(vcpu)) {
  542. if (!(cr4 & X86_CR4_PAE))
  543. return 1;
  544. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  545. && ((cr4 ^ old_cr4) & pdptr_bits)
  546. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  547. kvm_read_cr3(vcpu)))
  548. return 1;
  549. if (kvm_x86_ops->set_cr4(vcpu, cr4))
  550. return 1;
  551. if ((cr4 ^ old_cr4) & pdptr_bits)
  552. kvm_mmu_reset_context(vcpu);
  553. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  554. update_cpuid(vcpu);
  555. return 0;
  556. }
  557. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  558. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  559. {
  560. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  561. kvm_mmu_sync_roots(vcpu);
  562. kvm_mmu_flush_tlb(vcpu);
  563. return 0;
  564. }
  565. if (is_long_mode(vcpu)) {
  566. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  567. return 1;
  568. } else {
  569. if (is_pae(vcpu)) {
  570. if (cr3 & CR3_PAE_RESERVED_BITS)
  571. return 1;
  572. if (is_paging(vcpu) &&
  573. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  574. return 1;
  575. }
  576. /*
  577. * We don't check reserved bits in nonpae mode, because
  578. * this isn't enforced, and VMware depends on this.
  579. */
  580. }
  581. /*
  582. * Does the new cr3 value map to physical memory? (Note, we
  583. * catch an invalid cr3 even in real-mode, because it would
  584. * cause trouble later on when we turn on paging anyway.)
  585. *
  586. * A real CPU would silently accept an invalid cr3 and would
  587. * attempt to use it - with largely undefined (and often hard
  588. * to debug) behavior on the guest side.
  589. */
  590. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  591. return 1;
  592. vcpu->arch.cr3 = cr3;
  593. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  594. vcpu->arch.mmu.new_cr3(vcpu);
  595. return 0;
  596. }
  597. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  598. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  599. {
  600. if (cr8 & CR8_RESERVED_BITS)
  601. return 1;
  602. if (irqchip_in_kernel(vcpu->kvm))
  603. kvm_lapic_set_tpr(vcpu, cr8);
  604. else
  605. vcpu->arch.cr8 = cr8;
  606. return 0;
  607. }
  608. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  609. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  610. {
  611. if (irqchip_in_kernel(vcpu->kvm))
  612. return kvm_lapic_get_cr8(vcpu);
  613. else
  614. return vcpu->arch.cr8;
  615. }
  616. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  617. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  618. {
  619. switch (dr) {
  620. case 0 ... 3:
  621. vcpu->arch.db[dr] = val;
  622. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  623. vcpu->arch.eff_db[dr] = val;
  624. break;
  625. case 4:
  626. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  627. return 1; /* #UD */
  628. /* fall through */
  629. case 6:
  630. if (val & 0xffffffff00000000ULL)
  631. return -1; /* #GP */
  632. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  633. break;
  634. case 5:
  635. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  636. return 1; /* #UD */
  637. /* fall through */
  638. default: /* 7 */
  639. if (val & 0xffffffff00000000ULL)
  640. return -1; /* #GP */
  641. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  642. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  643. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  644. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  645. }
  646. break;
  647. }
  648. return 0;
  649. }
  650. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  651. {
  652. int res;
  653. res = __kvm_set_dr(vcpu, dr, val);
  654. if (res > 0)
  655. kvm_queue_exception(vcpu, UD_VECTOR);
  656. else if (res < 0)
  657. kvm_inject_gp(vcpu, 0);
  658. return res;
  659. }
  660. EXPORT_SYMBOL_GPL(kvm_set_dr);
  661. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  662. {
  663. switch (dr) {
  664. case 0 ... 3:
  665. *val = vcpu->arch.db[dr];
  666. break;
  667. case 4:
  668. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  669. return 1;
  670. /* fall through */
  671. case 6:
  672. *val = vcpu->arch.dr6;
  673. break;
  674. case 5:
  675. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  676. return 1;
  677. /* fall through */
  678. default: /* 7 */
  679. *val = vcpu->arch.dr7;
  680. break;
  681. }
  682. return 0;
  683. }
  684. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  685. {
  686. if (_kvm_get_dr(vcpu, dr, val)) {
  687. kvm_queue_exception(vcpu, UD_VECTOR);
  688. return 1;
  689. }
  690. return 0;
  691. }
  692. EXPORT_SYMBOL_GPL(kvm_get_dr);
  693. /*
  694. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  695. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  696. *
  697. * This list is modified at module load time to reflect the
  698. * capabilities of the host cpu. This capabilities test skips MSRs that are
  699. * kvm-specific. Those are put in the beginning of the list.
  700. */
  701. #define KVM_SAVE_MSRS_BEGIN 9
  702. static u32 msrs_to_save[] = {
  703. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  704. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  705. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  706. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
  707. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  708. MSR_STAR,
  709. #ifdef CONFIG_X86_64
  710. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  711. #endif
  712. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  713. };
  714. static unsigned num_msrs_to_save;
  715. static u32 emulated_msrs[] = {
  716. MSR_IA32_MISC_ENABLE,
  717. MSR_IA32_MCG_STATUS,
  718. MSR_IA32_MCG_CTL,
  719. };
  720. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  721. {
  722. u64 old_efer = vcpu->arch.efer;
  723. if (efer & efer_reserved_bits)
  724. return 1;
  725. if (is_paging(vcpu)
  726. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  727. return 1;
  728. if (efer & EFER_FFXSR) {
  729. struct kvm_cpuid_entry2 *feat;
  730. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  731. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  732. return 1;
  733. }
  734. if (efer & EFER_SVME) {
  735. struct kvm_cpuid_entry2 *feat;
  736. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  737. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  738. return 1;
  739. }
  740. efer &= ~EFER_LMA;
  741. efer |= vcpu->arch.efer & EFER_LMA;
  742. kvm_x86_ops->set_efer(vcpu, efer);
  743. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  744. /* Update reserved bits */
  745. if ((efer ^ old_efer) & EFER_NX)
  746. kvm_mmu_reset_context(vcpu);
  747. return 0;
  748. }
  749. void kvm_enable_efer_bits(u64 mask)
  750. {
  751. efer_reserved_bits &= ~mask;
  752. }
  753. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  754. /*
  755. * Writes msr value into into the appropriate "register".
  756. * Returns 0 on success, non-0 otherwise.
  757. * Assumes vcpu_load() was already called.
  758. */
  759. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  760. {
  761. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  762. }
  763. /*
  764. * Adapt set_msr() to msr_io()'s calling convention
  765. */
  766. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  767. {
  768. return kvm_set_msr(vcpu, index, *data);
  769. }
  770. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  771. {
  772. int version;
  773. int r;
  774. struct pvclock_wall_clock wc;
  775. struct timespec boot;
  776. if (!wall_clock)
  777. return;
  778. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  779. if (r)
  780. return;
  781. if (version & 1)
  782. ++version; /* first time write, random junk */
  783. ++version;
  784. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  785. /*
  786. * The guest calculates current wall clock time by adding
  787. * system time (updated by kvm_guest_time_update below) to the
  788. * wall clock specified here. guest system time equals host
  789. * system time for us, thus we must fill in host boot time here.
  790. */
  791. getboottime(&boot);
  792. wc.sec = boot.tv_sec;
  793. wc.nsec = boot.tv_nsec;
  794. wc.version = version;
  795. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  796. version++;
  797. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  798. }
  799. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  800. {
  801. uint32_t quotient, remainder;
  802. /* Don't try to replace with do_div(), this one calculates
  803. * "(dividend << 32) / divisor" */
  804. __asm__ ( "divl %4"
  805. : "=a" (quotient), "=d" (remainder)
  806. : "0" (0), "1" (dividend), "r" (divisor) );
  807. return quotient;
  808. }
  809. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  810. s8 *pshift, u32 *pmultiplier)
  811. {
  812. uint64_t scaled64;
  813. int32_t shift = 0;
  814. uint64_t tps64;
  815. uint32_t tps32;
  816. tps64 = base_khz * 1000LL;
  817. scaled64 = scaled_khz * 1000LL;
  818. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  819. tps64 >>= 1;
  820. shift--;
  821. }
  822. tps32 = (uint32_t)tps64;
  823. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  824. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  825. scaled64 >>= 1;
  826. else
  827. tps32 <<= 1;
  828. shift++;
  829. }
  830. *pshift = shift;
  831. *pmultiplier = div_frac(scaled64, tps32);
  832. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  833. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  834. }
  835. static inline u64 get_kernel_ns(void)
  836. {
  837. struct timespec ts;
  838. WARN_ON(preemptible());
  839. ktime_get_ts(&ts);
  840. monotonic_to_bootbased(&ts);
  841. return timespec_to_ns(&ts);
  842. }
  843. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  844. unsigned long max_tsc_khz;
  845. static inline int kvm_tsc_changes_freq(void)
  846. {
  847. int cpu = get_cpu();
  848. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  849. cpufreq_quick_get(cpu) != 0;
  850. put_cpu();
  851. return ret;
  852. }
  853. static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
  854. {
  855. if (vcpu->arch.virtual_tsc_khz)
  856. return vcpu->arch.virtual_tsc_khz;
  857. else
  858. return __this_cpu_read(cpu_tsc_khz);
  859. }
  860. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  861. {
  862. u64 ret;
  863. WARN_ON(preemptible());
  864. if (kvm_tsc_changes_freq())
  865. printk_once(KERN_WARNING
  866. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  867. ret = nsec * vcpu_tsc_khz(vcpu);
  868. do_div(ret, USEC_PER_SEC);
  869. return ret;
  870. }
  871. static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
  872. {
  873. /* Compute a scale to convert nanoseconds in TSC cycles */
  874. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  875. &vcpu->arch.tsc_catchup_shift,
  876. &vcpu->arch.tsc_catchup_mult);
  877. }
  878. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  879. {
  880. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  881. vcpu->arch.tsc_catchup_mult,
  882. vcpu->arch.tsc_catchup_shift);
  883. tsc += vcpu->arch.last_tsc_write;
  884. return tsc;
  885. }
  886. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  887. {
  888. struct kvm *kvm = vcpu->kvm;
  889. u64 offset, ns, elapsed;
  890. unsigned long flags;
  891. s64 sdiff;
  892. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  893. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  894. ns = get_kernel_ns();
  895. elapsed = ns - kvm->arch.last_tsc_nsec;
  896. sdiff = data - kvm->arch.last_tsc_write;
  897. if (sdiff < 0)
  898. sdiff = -sdiff;
  899. /*
  900. * Special case: close write to TSC within 5 seconds of
  901. * another CPU is interpreted as an attempt to synchronize
  902. * The 5 seconds is to accommodate host load / swapping as
  903. * well as any reset of TSC during the boot process.
  904. *
  905. * In that case, for a reliable TSC, we can match TSC offsets,
  906. * or make a best guest using elapsed value.
  907. */
  908. if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
  909. elapsed < 5ULL * NSEC_PER_SEC) {
  910. if (!check_tsc_unstable()) {
  911. offset = kvm->arch.last_tsc_offset;
  912. pr_debug("kvm: matched tsc offset for %llu\n", data);
  913. } else {
  914. u64 delta = nsec_to_cycles(vcpu, elapsed);
  915. offset += delta;
  916. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  917. }
  918. ns = kvm->arch.last_tsc_nsec;
  919. }
  920. kvm->arch.last_tsc_nsec = ns;
  921. kvm->arch.last_tsc_write = data;
  922. kvm->arch.last_tsc_offset = offset;
  923. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  924. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  925. /* Reset of TSC must disable overshoot protection below */
  926. vcpu->arch.hv_clock.tsc_timestamp = 0;
  927. vcpu->arch.last_tsc_write = data;
  928. vcpu->arch.last_tsc_nsec = ns;
  929. }
  930. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  931. static int kvm_guest_time_update(struct kvm_vcpu *v)
  932. {
  933. unsigned long flags;
  934. struct kvm_vcpu_arch *vcpu = &v->arch;
  935. void *shared_kaddr;
  936. unsigned long this_tsc_khz;
  937. s64 kernel_ns, max_kernel_ns;
  938. u64 tsc_timestamp;
  939. /* Keep irq disabled to prevent changes to the clock */
  940. local_irq_save(flags);
  941. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  942. kernel_ns = get_kernel_ns();
  943. this_tsc_khz = vcpu_tsc_khz(v);
  944. if (unlikely(this_tsc_khz == 0)) {
  945. local_irq_restore(flags);
  946. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  947. return 1;
  948. }
  949. /*
  950. * We may have to catch up the TSC to match elapsed wall clock
  951. * time for two reasons, even if kvmclock is used.
  952. * 1) CPU could have been running below the maximum TSC rate
  953. * 2) Broken TSC compensation resets the base at each VCPU
  954. * entry to avoid unknown leaps of TSC even when running
  955. * again on the same CPU. This may cause apparent elapsed
  956. * time to disappear, and the guest to stand still or run
  957. * very slowly.
  958. */
  959. if (vcpu->tsc_catchup) {
  960. u64 tsc = compute_guest_tsc(v, kernel_ns);
  961. if (tsc > tsc_timestamp) {
  962. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  963. tsc_timestamp = tsc;
  964. }
  965. }
  966. local_irq_restore(flags);
  967. if (!vcpu->time_page)
  968. return 0;
  969. /*
  970. * Time as measured by the TSC may go backwards when resetting the base
  971. * tsc_timestamp. The reason for this is that the TSC resolution is
  972. * higher than the resolution of the other clock scales. Thus, many
  973. * possible measurments of the TSC correspond to one measurement of any
  974. * other clock, and so a spread of values is possible. This is not a
  975. * problem for the computation of the nanosecond clock; with TSC rates
  976. * around 1GHZ, there can only be a few cycles which correspond to one
  977. * nanosecond value, and any path through this code will inevitably
  978. * take longer than that. However, with the kernel_ns value itself,
  979. * the precision may be much lower, down to HZ granularity. If the
  980. * first sampling of TSC against kernel_ns ends in the low part of the
  981. * range, and the second in the high end of the range, we can get:
  982. *
  983. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  984. *
  985. * As the sampling errors potentially range in the thousands of cycles,
  986. * it is possible such a time value has already been observed by the
  987. * guest. To protect against this, we must compute the system time as
  988. * observed by the guest and ensure the new system time is greater.
  989. */
  990. max_kernel_ns = 0;
  991. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  992. max_kernel_ns = vcpu->last_guest_tsc -
  993. vcpu->hv_clock.tsc_timestamp;
  994. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  995. vcpu->hv_clock.tsc_to_system_mul,
  996. vcpu->hv_clock.tsc_shift);
  997. max_kernel_ns += vcpu->last_kernel_ns;
  998. }
  999. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  1000. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  1001. &vcpu->hv_clock.tsc_shift,
  1002. &vcpu->hv_clock.tsc_to_system_mul);
  1003. vcpu->hw_tsc_khz = this_tsc_khz;
  1004. }
  1005. if (max_kernel_ns > kernel_ns)
  1006. kernel_ns = max_kernel_ns;
  1007. /* With all the info we got, fill in the values */
  1008. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  1009. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  1010. vcpu->last_kernel_ns = kernel_ns;
  1011. vcpu->last_guest_tsc = tsc_timestamp;
  1012. vcpu->hv_clock.flags = 0;
  1013. /*
  1014. * The interface expects us to write an even number signaling that the
  1015. * update is finished. Since the guest won't see the intermediate
  1016. * state, we just increase by 2 at the end.
  1017. */
  1018. vcpu->hv_clock.version += 2;
  1019. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  1020. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  1021. sizeof(vcpu->hv_clock));
  1022. kunmap_atomic(shared_kaddr, KM_USER0);
  1023. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1024. return 0;
  1025. }
  1026. static bool msr_mtrr_valid(unsigned msr)
  1027. {
  1028. switch (msr) {
  1029. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1030. case MSR_MTRRfix64K_00000:
  1031. case MSR_MTRRfix16K_80000:
  1032. case MSR_MTRRfix16K_A0000:
  1033. case MSR_MTRRfix4K_C0000:
  1034. case MSR_MTRRfix4K_C8000:
  1035. case MSR_MTRRfix4K_D0000:
  1036. case MSR_MTRRfix4K_D8000:
  1037. case MSR_MTRRfix4K_E0000:
  1038. case MSR_MTRRfix4K_E8000:
  1039. case MSR_MTRRfix4K_F0000:
  1040. case MSR_MTRRfix4K_F8000:
  1041. case MSR_MTRRdefType:
  1042. case MSR_IA32_CR_PAT:
  1043. return true;
  1044. case 0x2f8:
  1045. return true;
  1046. }
  1047. return false;
  1048. }
  1049. static bool valid_pat_type(unsigned t)
  1050. {
  1051. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1052. }
  1053. static bool valid_mtrr_type(unsigned t)
  1054. {
  1055. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1056. }
  1057. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1058. {
  1059. int i;
  1060. if (!msr_mtrr_valid(msr))
  1061. return false;
  1062. if (msr == MSR_IA32_CR_PAT) {
  1063. for (i = 0; i < 8; i++)
  1064. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1065. return false;
  1066. return true;
  1067. } else if (msr == MSR_MTRRdefType) {
  1068. if (data & ~0xcff)
  1069. return false;
  1070. return valid_mtrr_type(data & 0xff);
  1071. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1072. for (i = 0; i < 8 ; i++)
  1073. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1074. return false;
  1075. return true;
  1076. }
  1077. /* variable MTRRs */
  1078. return valid_mtrr_type(data & 0xff);
  1079. }
  1080. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1081. {
  1082. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1083. if (!mtrr_valid(vcpu, msr, data))
  1084. return 1;
  1085. if (msr == MSR_MTRRdefType) {
  1086. vcpu->arch.mtrr_state.def_type = data;
  1087. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1088. } else if (msr == MSR_MTRRfix64K_00000)
  1089. p[0] = data;
  1090. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1091. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1092. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1093. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1094. else if (msr == MSR_IA32_CR_PAT)
  1095. vcpu->arch.pat = data;
  1096. else { /* Variable MTRRs */
  1097. int idx, is_mtrr_mask;
  1098. u64 *pt;
  1099. idx = (msr - 0x200) / 2;
  1100. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1101. if (!is_mtrr_mask)
  1102. pt =
  1103. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1104. else
  1105. pt =
  1106. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1107. *pt = data;
  1108. }
  1109. kvm_mmu_reset_context(vcpu);
  1110. return 0;
  1111. }
  1112. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1113. {
  1114. u64 mcg_cap = vcpu->arch.mcg_cap;
  1115. unsigned bank_num = mcg_cap & 0xff;
  1116. switch (msr) {
  1117. case MSR_IA32_MCG_STATUS:
  1118. vcpu->arch.mcg_status = data;
  1119. break;
  1120. case MSR_IA32_MCG_CTL:
  1121. if (!(mcg_cap & MCG_CTL_P))
  1122. return 1;
  1123. if (data != 0 && data != ~(u64)0)
  1124. return -1;
  1125. vcpu->arch.mcg_ctl = data;
  1126. break;
  1127. default:
  1128. if (msr >= MSR_IA32_MC0_CTL &&
  1129. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1130. u32 offset = msr - MSR_IA32_MC0_CTL;
  1131. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1132. * some Linux kernels though clear bit 10 in bank 4 to
  1133. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1134. * this to avoid an uncatched #GP in the guest
  1135. */
  1136. if ((offset & 0x3) == 0 &&
  1137. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1138. return -1;
  1139. vcpu->arch.mce_banks[offset] = data;
  1140. break;
  1141. }
  1142. return 1;
  1143. }
  1144. return 0;
  1145. }
  1146. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1147. {
  1148. struct kvm *kvm = vcpu->kvm;
  1149. int lm = is_long_mode(vcpu);
  1150. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1151. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1152. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1153. : kvm->arch.xen_hvm_config.blob_size_32;
  1154. u32 page_num = data & ~PAGE_MASK;
  1155. u64 page_addr = data & PAGE_MASK;
  1156. u8 *page;
  1157. int r;
  1158. r = -E2BIG;
  1159. if (page_num >= blob_size)
  1160. goto out;
  1161. r = -ENOMEM;
  1162. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1163. if (!page)
  1164. goto out;
  1165. r = -EFAULT;
  1166. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1167. goto out_free;
  1168. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1169. goto out_free;
  1170. r = 0;
  1171. out_free:
  1172. kfree(page);
  1173. out:
  1174. return r;
  1175. }
  1176. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1177. {
  1178. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1179. }
  1180. static bool kvm_hv_msr_partition_wide(u32 msr)
  1181. {
  1182. bool r = false;
  1183. switch (msr) {
  1184. case HV_X64_MSR_GUEST_OS_ID:
  1185. case HV_X64_MSR_HYPERCALL:
  1186. r = true;
  1187. break;
  1188. }
  1189. return r;
  1190. }
  1191. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1192. {
  1193. struct kvm *kvm = vcpu->kvm;
  1194. switch (msr) {
  1195. case HV_X64_MSR_GUEST_OS_ID:
  1196. kvm->arch.hv_guest_os_id = data;
  1197. /* setting guest os id to zero disables hypercall page */
  1198. if (!kvm->arch.hv_guest_os_id)
  1199. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1200. break;
  1201. case HV_X64_MSR_HYPERCALL: {
  1202. u64 gfn;
  1203. unsigned long addr;
  1204. u8 instructions[4];
  1205. /* if guest os id is not set hypercall should remain disabled */
  1206. if (!kvm->arch.hv_guest_os_id)
  1207. break;
  1208. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1209. kvm->arch.hv_hypercall = data;
  1210. break;
  1211. }
  1212. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1213. addr = gfn_to_hva(kvm, gfn);
  1214. if (kvm_is_error_hva(addr))
  1215. return 1;
  1216. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1217. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1218. if (__copy_to_user((void __user *)addr, instructions, 4))
  1219. return 1;
  1220. kvm->arch.hv_hypercall = data;
  1221. break;
  1222. }
  1223. default:
  1224. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1225. "data 0x%llx\n", msr, data);
  1226. return 1;
  1227. }
  1228. return 0;
  1229. }
  1230. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1231. {
  1232. switch (msr) {
  1233. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1234. unsigned long addr;
  1235. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1236. vcpu->arch.hv_vapic = data;
  1237. break;
  1238. }
  1239. addr = gfn_to_hva(vcpu->kvm, data >>
  1240. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1241. if (kvm_is_error_hva(addr))
  1242. return 1;
  1243. if (__clear_user((void __user *)addr, PAGE_SIZE))
  1244. return 1;
  1245. vcpu->arch.hv_vapic = data;
  1246. break;
  1247. }
  1248. case HV_X64_MSR_EOI:
  1249. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1250. case HV_X64_MSR_ICR:
  1251. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1252. case HV_X64_MSR_TPR:
  1253. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1254. default:
  1255. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1256. "data 0x%llx\n", msr, data);
  1257. return 1;
  1258. }
  1259. return 0;
  1260. }
  1261. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1262. {
  1263. gpa_t gpa = data & ~0x3f;
  1264. /* Bits 2:5 are resrved, Should be zero */
  1265. if (data & 0x3c)
  1266. return 1;
  1267. vcpu->arch.apf.msr_val = data;
  1268. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1269. kvm_clear_async_pf_completion_queue(vcpu);
  1270. kvm_async_pf_hash_reset(vcpu);
  1271. return 0;
  1272. }
  1273. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1274. return 1;
  1275. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1276. kvm_async_pf_wakeup_all(vcpu);
  1277. return 0;
  1278. }
  1279. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1280. {
  1281. if (vcpu->arch.time_page) {
  1282. kvm_release_page_dirty(vcpu->arch.time_page);
  1283. vcpu->arch.time_page = NULL;
  1284. }
  1285. }
  1286. static void accumulate_steal_time(struct kvm_vcpu *vcpu)
  1287. {
  1288. u64 delta;
  1289. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1290. return;
  1291. delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
  1292. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1293. vcpu->arch.st.accum_steal = delta;
  1294. }
  1295. static void record_steal_time(struct kvm_vcpu *vcpu)
  1296. {
  1297. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1298. return;
  1299. if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1300. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
  1301. return;
  1302. vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
  1303. vcpu->arch.st.steal.version += 2;
  1304. vcpu->arch.st.accum_steal = 0;
  1305. kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1306. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
  1307. }
  1308. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1309. {
  1310. switch (msr) {
  1311. case MSR_EFER:
  1312. return set_efer(vcpu, data);
  1313. case MSR_K7_HWCR:
  1314. data &= ~(u64)0x40; /* ignore flush filter disable */
  1315. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1316. if (data != 0) {
  1317. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1318. data);
  1319. return 1;
  1320. }
  1321. break;
  1322. case MSR_FAM10H_MMIO_CONF_BASE:
  1323. if (data != 0) {
  1324. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1325. "0x%llx\n", data);
  1326. return 1;
  1327. }
  1328. break;
  1329. case MSR_AMD64_NB_CFG:
  1330. break;
  1331. case MSR_IA32_DEBUGCTLMSR:
  1332. if (!data) {
  1333. /* We support the non-activated case already */
  1334. break;
  1335. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1336. /* Values other than LBR and BTF are vendor-specific,
  1337. thus reserved and should throw a #GP */
  1338. return 1;
  1339. }
  1340. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1341. __func__, data);
  1342. break;
  1343. case MSR_IA32_UCODE_REV:
  1344. case MSR_IA32_UCODE_WRITE:
  1345. case MSR_VM_HSAVE_PA:
  1346. case MSR_AMD64_PATCH_LOADER:
  1347. break;
  1348. case 0x200 ... 0x2ff:
  1349. return set_msr_mtrr(vcpu, msr, data);
  1350. case MSR_IA32_APICBASE:
  1351. kvm_set_apic_base(vcpu, data);
  1352. break;
  1353. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1354. return kvm_x2apic_msr_write(vcpu, msr, data);
  1355. case MSR_IA32_MISC_ENABLE:
  1356. vcpu->arch.ia32_misc_enable_msr = data;
  1357. break;
  1358. case MSR_KVM_WALL_CLOCK_NEW:
  1359. case MSR_KVM_WALL_CLOCK:
  1360. vcpu->kvm->arch.wall_clock = data;
  1361. kvm_write_wall_clock(vcpu->kvm, data);
  1362. break;
  1363. case MSR_KVM_SYSTEM_TIME_NEW:
  1364. case MSR_KVM_SYSTEM_TIME: {
  1365. kvmclock_reset(vcpu);
  1366. vcpu->arch.time = data;
  1367. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1368. /* we verify if the enable bit is set... */
  1369. if (!(data & 1))
  1370. break;
  1371. /* ...but clean it before doing the actual write */
  1372. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1373. vcpu->arch.time_page =
  1374. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1375. if (is_error_page(vcpu->arch.time_page)) {
  1376. kvm_release_page_clean(vcpu->arch.time_page);
  1377. vcpu->arch.time_page = NULL;
  1378. }
  1379. break;
  1380. }
  1381. case MSR_KVM_ASYNC_PF_EN:
  1382. if (kvm_pv_enable_async_pf(vcpu, data))
  1383. return 1;
  1384. break;
  1385. case MSR_KVM_STEAL_TIME:
  1386. if (unlikely(!sched_info_on()))
  1387. return 1;
  1388. if (data & KVM_STEAL_RESERVED_MASK)
  1389. return 1;
  1390. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
  1391. data & KVM_STEAL_VALID_BITS))
  1392. return 1;
  1393. vcpu->arch.st.msr_val = data;
  1394. if (!(data & KVM_MSR_ENABLED))
  1395. break;
  1396. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1397. preempt_disable();
  1398. accumulate_steal_time(vcpu);
  1399. preempt_enable();
  1400. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  1401. break;
  1402. case MSR_IA32_MCG_CTL:
  1403. case MSR_IA32_MCG_STATUS:
  1404. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1405. return set_msr_mce(vcpu, msr, data);
  1406. /* Performance counters are not protected by a CPUID bit,
  1407. * so we should check all of them in the generic path for the sake of
  1408. * cross vendor migration.
  1409. * Writing a zero into the event select MSRs disables them,
  1410. * which we perfectly emulate ;-). Any other value should be at least
  1411. * reported, some guests depend on them.
  1412. */
  1413. case MSR_P6_EVNTSEL0:
  1414. case MSR_P6_EVNTSEL1:
  1415. case MSR_K7_EVNTSEL0:
  1416. case MSR_K7_EVNTSEL1:
  1417. case MSR_K7_EVNTSEL2:
  1418. case MSR_K7_EVNTSEL3:
  1419. if (data != 0)
  1420. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1421. "0x%x data 0x%llx\n", msr, data);
  1422. break;
  1423. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1424. * so we ignore writes to make it happy.
  1425. */
  1426. case MSR_P6_PERFCTR0:
  1427. case MSR_P6_PERFCTR1:
  1428. case MSR_K7_PERFCTR0:
  1429. case MSR_K7_PERFCTR1:
  1430. case MSR_K7_PERFCTR2:
  1431. case MSR_K7_PERFCTR3:
  1432. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1433. "0x%x data 0x%llx\n", msr, data);
  1434. break;
  1435. case MSR_K7_CLK_CTL:
  1436. /*
  1437. * Ignore all writes to this no longer documented MSR.
  1438. * Writes are only relevant for old K7 processors,
  1439. * all pre-dating SVM, but a recommended workaround from
  1440. * AMD for these chips. It is possible to speicify the
  1441. * affected processor models on the command line, hence
  1442. * the need to ignore the workaround.
  1443. */
  1444. break;
  1445. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1446. if (kvm_hv_msr_partition_wide(msr)) {
  1447. int r;
  1448. mutex_lock(&vcpu->kvm->lock);
  1449. r = set_msr_hyperv_pw(vcpu, msr, data);
  1450. mutex_unlock(&vcpu->kvm->lock);
  1451. return r;
  1452. } else
  1453. return set_msr_hyperv(vcpu, msr, data);
  1454. break;
  1455. case MSR_IA32_BBL_CR_CTL3:
  1456. /* Drop writes to this legacy MSR -- see rdmsr
  1457. * counterpart for further detail.
  1458. */
  1459. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1460. break;
  1461. default:
  1462. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1463. return xen_hvm_config(vcpu, data);
  1464. if (!ignore_msrs) {
  1465. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1466. msr, data);
  1467. return 1;
  1468. } else {
  1469. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1470. msr, data);
  1471. break;
  1472. }
  1473. }
  1474. return 0;
  1475. }
  1476. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1477. /*
  1478. * Reads an msr value (of 'msr_index') into 'pdata'.
  1479. * Returns 0 on success, non-0 otherwise.
  1480. * Assumes vcpu_load() was already called.
  1481. */
  1482. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1483. {
  1484. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1485. }
  1486. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1487. {
  1488. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1489. if (!msr_mtrr_valid(msr))
  1490. return 1;
  1491. if (msr == MSR_MTRRdefType)
  1492. *pdata = vcpu->arch.mtrr_state.def_type +
  1493. (vcpu->arch.mtrr_state.enabled << 10);
  1494. else if (msr == MSR_MTRRfix64K_00000)
  1495. *pdata = p[0];
  1496. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1497. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1498. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1499. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1500. else if (msr == MSR_IA32_CR_PAT)
  1501. *pdata = vcpu->arch.pat;
  1502. else { /* Variable MTRRs */
  1503. int idx, is_mtrr_mask;
  1504. u64 *pt;
  1505. idx = (msr - 0x200) / 2;
  1506. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1507. if (!is_mtrr_mask)
  1508. pt =
  1509. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1510. else
  1511. pt =
  1512. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1513. *pdata = *pt;
  1514. }
  1515. return 0;
  1516. }
  1517. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1518. {
  1519. u64 data;
  1520. u64 mcg_cap = vcpu->arch.mcg_cap;
  1521. unsigned bank_num = mcg_cap & 0xff;
  1522. switch (msr) {
  1523. case MSR_IA32_P5_MC_ADDR:
  1524. case MSR_IA32_P5_MC_TYPE:
  1525. data = 0;
  1526. break;
  1527. case MSR_IA32_MCG_CAP:
  1528. data = vcpu->arch.mcg_cap;
  1529. break;
  1530. case MSR_IA32_MCG_CTL:
  1531. if (!(mcg_cap & MCG_CTL_P))
  1532. return 1;
  1533. data = vcpu->arch.mcg_ctl;
  1534. break;
  1535. case MSR_IA32_MCG_STATUS:
  1536. data = vcpu->arch.mcg_status;
  1537. break;
  1538. default:
  1539. if (msr >= MSR_IA32_MC0_CTL &&
  1540. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1541. u32 offset = msr - MSR_IA32_MC0_CTL;
  1542. data = vcpu->arch.mce_banks[offset];
  1543. break;
  1544. }
  1545. return 1;
  1546. }
  1547. *pdata = data;
  1548. return 0;
  1549. }
  1550. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1551. {
  1552. u64 data = 0;
  1553. struct kvm *kvm = vcpu->kvm;
  1554. switch (msr) {
  1555. case HV_X64_MSR_GUEST_OS_ID:
  1556. data = kvm->arch.hv_guest_os_id;
  1557. break;
  1558. case HV_X64_MSR_HYPERCALL:
  1559. data = kvm->arch.hv_hypercall;
  1560. break;
  1561. default:
  1562. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1563. return 1;
  1564. }
  1565. *pdata = data;
  1566. return 0;
  1567. }
  1568. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1569. {
  1570. u64 data = 0;
  1571. switch (msr) {
  1572. case HV_X64_MSR_VP_INDEX: {
  1573. int r;
  1574. struct kvm_vcpu *v;
  1575. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1576. if (v == vcpu)
  1577. data = r;
  1578. break;
  1579. }
  1580. case HV_X64_MSR_EOI:
  1581. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1582. case HV_X64_MSR_ICR:
  1583. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1584. case HV_X64_MSR_TPR:
  1585. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1586. case HV_X64_MSR_APIC_ASSIST_PAGE:
  1587. return vcpu->arch.hv_vapic;
  1588. default:
  1589. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1590. return 1;
  1591. }
  1592. *pdata = data;
  1593. return 0;
  1594. }
  1595. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1596. {
  1597. u64 data;
  1598. switch (msr) {
  1599. case MSR_IA32_PLATFORM_ID:
  1600. case MSR_IA32_UCODE_REV:
  1601. case MSR_IA32_EBL_CR_POWERON:
  1602. case MSR_IA32_DEBUGCTLMSR:
  1603. case MSR_IA32_LASTBRANCHFROMIP:
  1604. case MSR_IA32_LASTBRANCHTOIP:
  1605. case MSR_IA32_LASTINTFROMIP:
  1606. case MSR_IA32_LASTINTTOIP:
  1607. case MSR_K8_SYSCFG:
  1608. case MSR_K7_HWCR:
  1609. case MSR_VM_HSAVE_PA:
  1610. case MSR_P6_PERFCTR0:
  1611. case MSR_P6_PERFCTR1:
  1612. case MSR_P6_EVNTSEL0:
  1613. case MSR_P6_EVNTSEL1:
  1614. case MSR_K7_EVNTSEL0:
  1615. case MSR_K7_PERFCTR0:
  1616. case MSR_K8_INT_PENDING_MSG:
  1617. case MSR_AMD64_NB_CFG:
  1618. case MSR_FAM10H_MMIO_CONF_BASE:
  1619. data = 0;
  1620. break;
  1621. case MSR_MTRRcap:
  1622. data = 0x500 | KVM_NR_VAR_MTRR;
  1623. break;
  1624. case 0x200 ... 0x2ff:
  1625. return get_msr_mtrr(vcpu, msr, pdata);
  1626. case 0xcd: /* fsb frequency */
  1627. data = 3;
  1628. break;
  1629. /*
  1630. * MSR_EBC_FREQUENCY_ID
  1631. * Conservative value valid for even the basic CPU models.
  1632. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1633. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1634. * and 266MHz for model 3, or 4. Set Core Clock
  1635. * Frequency to System Bus Frequency Ratio to 1 (bits
  1636. * 31:24) even though these are only valid for CPU
  1637. * models > 2, however guests may end up dividing or
  1638. * multiplying by zero otherwise.
  1639. */
  1640. case MSR_EBC_FREQUENCY_ID:
  1641. data = 1 << 24;
  1642. break;
  1643. case MSR_IA32_APICBASE:
  1644. data = kvm_get_apic_base(vcpu);
  1645. break;
  1646. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1647. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1648. break;
  1649. case MSR_IA32_MISC_ENABLE:
  1650. data = vcpu->arch.ia32_misc_enable_msr;
  1651. break;
  1652. case MSR_IA32_PERF_STATUS:
  1653. /* TSC increment by tick */
  1654. data = 1000ULL;
  1655. /* CPU multiplier */
  1656. data |= (((uint64_t)4ULL) << 40);
  1657. break;
  1658. case MSR_EFER:
  1659. data = vcpu->arch.efer;
  1660. break;
  1661. case MSR_KVM_WALL_CLOCK:
  1662. case MSR_KVM_WALL_CLOCK_NEW:
  1663. data = vcpu->kvm->arch.wall_clock;
  1664. break;
  1665. case MSR_KVM_SYSTEM_TIME:
  1666. case MSR_KVM_SYSTEM_TIME_NEW:
  1667. data = vcpu->arch.time;
  1668. break;
  1669. case MSR_KVM_ASYNC_PF_EN:
  1670. data = vcpu->arch.apf.msr_val;
  1671. break;
  1672. case MSR_KVM_STEAL_TIME:
  1673. data = vcpu->arch.st.msr_val;
  1674. break;
  1675. case MSR_IA32_P5_MC_ADDR:
  1676. case MSR_IA32_P5_MC_TYPE:
  1677. case MSR_IA32_MCG_CAP:
  1678. case MSR_IA32_MCG_CTL:
  1679. case MSR_IA32_MCG_STATUS:
  1680. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1681. return get_msr_mce(vcpu, msr, pdata);
  1682. case MSR_K7_CLK_CTL:
  1683. /*
  1684. * Provide expected ramp-up count for K7. All other
  1685. * are set to zero, indicating minimum divisors for
  1686. * every field.
  1687. *
  1688. * This prevents guest kernels on AMD host with CPU
  1689. * type 6, model 8 and higher from exploding due to
  1690. * the rdmsr failing.
  1691. */
  1692. data = 0x20000000;
  1693. break;
  1694. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1695. if (kvm_hv_msr_partition_wide(msr)) {
  1696. int r;
  1697. mutex_lock(&vcpu->kvm->lock);
  1698. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1699. mutex_unlock(&vcpu->kvm->lock);
  1700. return r;
  1701. } else
  1702. return get_msr_hyperv(vcpu, msr, pdata);
  1703. break;
  1704. case MSR_IA32_BBL_CR_CTL3:
  1705. /* This legacy MSR exists but isn't fully documented in current
  1706. * silicon. It is however accessed by winxp in very narrow
  1707. * scenarios where it sets bit #19, itself documented as
  1708. * a "reserved" bit. Best effort attempt to source coherent
  1709. * read data here should the balance of the register be
  1710. * interpreted by the guest:
  1711. *
  1712. * L2 cache control register 3: 64GB range, 256KB size,
  1713. * enabled, latency 0x1, configured
  1714. */
  1715. data = 0xbe702111;
  1716. break;
  1717. default:
  1718. if (!ignore_msrs) {
  1719. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1720. return 1;
  1721. } else {
  1722. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1723. data = 0;
  1724. }
  1725. break;
  1726. }
  1727. *pdata = data;
  1728. return 0;
  1729. }
  1730. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1731. /*
  1732. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1733. *
  1734. * @return number of msrs set successfully.
  1735. */
  1736. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1737. struct kvm_msr_entry *entries,
  1738. int (*do_msr)(struct kvm_vcpu *vcpu,
  1739. unsigned index, u64 *data))
  1740. {
  1741. int i, idx;
  1742. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1743. for (i = 0; i < msrs->nmsrs; ++i)
  1744. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1745. break;
  1746. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1747. return i;
  1748. }
  1749. /*
  1750. * Read or write a bunch of msrs. Parameters are user addresses.
  1751. *
  1752. * @return number of msrs set successfully.
  1753. */
  1754. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1755. int (*do_msr)(struct kvm_vcpu *vcpu,
  1756. unsigned index, u64 *data),
  1757. int writeback)
  1758. {
  1759. struct kvm_msrs msrs;
  1760. struct kvm_msr_entry *entries;
  1761. int r, n;
  1762. unsigned size;
  1763. r = -EFAULT;
  1764. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1765. goto out;
  1766. r = -E2BIG;
  1767. if (msrs.nmsrs >= MAX_IO_MSRS)
  1768. goto out;
  1769. r = -ENOMEM;
  1770. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1771. entries = kmalloc(size, GFP_KERNEL);
  1772. if (!entries)
  1773. goto out;
  1774. r = -EFAULT;
  1775. if (copy_from_user(entries, user_msrs->entries, size))
  1776. goto out_free;
  1777. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1778. if (r < 0)
  1779. goto out_free;
  1780. r = -EFAULT;
  1781. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1782. goto out_free;
  1783. r = n;
  1784. out_free:
  1785. kfree(entries);
  1786. out:
  1787. return r;
  1788. }
  1789. int kvm_dev_ioctl_check_extension(long ext)
  1790. {
  1791. int r;
  1792. switch (ext) {
  1793. case KVM_CAP_IRQCHIP:
  1794. case KVM_CAP_HLT:
  1795. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1796. case KVM_CAP_SET_TSS_ADDR:
  1797. case KVM_CAP_EXT_CPUID:
  1798. case KVM_CAP_CLOCKSOURCE:
  1799. case KVM_CAP_PIT:
  1800. case KVM_CAP_NOP_IO_DELAY:
  1801. case KVM_CAP_MP_STATE:
  1802. case KVM_CAP_SYNC_MMU:
  1803. case KVM_CAP_USER_NMI:
  1804. case KVM_CAP_REINJECT_CONTROL:
  1805. case KVM_CAP_IRQ_INJECT_STATUS:
  1806. case KVM_CAP_ASSIGN_DEV_IRQ:
  1807. case KVM_CAP_IRQFD:
  1808. case KVM_CAP_IOEVENTFD:
  1809. case KVM_CAP_PIT2:
  1810. case KVM_CAP_PIT_STATE2:
  1811. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1812. case KVM_CAP_XEN_HVM:
  1813. case KVM_CAP_ADJUST_CLOCK:
  1814. case KVM_CAP_VCPU_EVENTS:
  1815. case KVM_CAP_HYPERV:
  1816. case KVM_CAP_HYPERV_VAPIC:
  1817. case KVM_CAP_HYPERV_SPIN:
  1818. case KVM_CAP_PCI_SEGMENT:
  1819. case KVM_CAP_DEBUGREGS:
  1820. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1821. case KVM_CAP_XSAVE:
  1822. case KVM_CAP_ASYNC_PF:
  1823. case KVM_CAP_GET_TSC_KHZ:
  1824. r = 1;
  1825. break;
  1826. case KVM_CAP_COALESCED_MMIO:
  1827. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1828. break;
  1829. case KVM_CAP_VAPIC:
  1830. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1831. break;
  1832. case KVM_CAP_NR_VCPUS:
  1833. r = KVM_SOFT_MAX_VCPUS;
  1834. break;
  1835. case KVM_CAP_MAX_VCPUS:
  1836. r = KVM_MAX_VCPUS;
  1837. break;
  1838. case KVM_CAP_NR_MEMSLOTS:
  1839. r = KVM_MEMORY_SLOTS;
  1840. break;
  1841. case KVM_CAP_PV_MMU: /* obsolete */
  1842. r = 0;
  1843. break;
  1844. case KVM_CAP_IOMMU:
  1845. r = iommu_found();
  1846. break;
  1847. case KVM_CAP_MCE:
  1848. r = KVM_MAX_MCE_BANKS;
  1849. break;
  1850. case KVM_CAP_XCRS:
  1851. r = cpu_has_xsave;
  1852. break;
  1853. case KVM_CAP_TSC_CONTROL:
  1854. r = kvm_has_tsc_control;
  1855. break;
  1856. default:
  1857. r = 0;
  1858. break;
  1859. }
  1860. return r;
  1861. }
  1862. long kvm_arch_dev_ioctl(struct file *filp,
  1863. unsigned int ioctl, unsigned long arg)
  1864. {
  1865. void __user *argp = (void __user *)arg;
  1866. long r;
  1867. switch (ioctl) {
  1868. case KVM_GET_MSR_INDEX_LIST: {
  1869. struct kvm_msr_list __user *user_msr_list = argp;
  1870. struct kvm_msr_list msr_list;
  1871. unsigned n;
  1872. r = -EFAULT;
  1873. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1874. goto out;
  1875. n = msr_list.nmsrs;
  1876. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1877. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1878. goto out;
  1879. r = -E2BIG;
  1880. if (n < msr_list.nmsrs)
  1881. goto out;
  1882. r = -EFAULT;
  1883. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1884. num_msrs_to_save * sizeof(u32)))
  1885. goto out;
  1886. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1887. &emulated_msrs,
  1888. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1889. goto out;
  1890. r = 0;
  1891. break;
  1892. }
  1893. case KVM_GET_SUPPORTED_CPUID: {
  1894. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1895. struct kvm_cpuid2 cpuid;
  1896. r = -EFAULT;
  1897. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1898. goto out;
  1899. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1900. cpuid_arg->entries);
  1901. if (r)
  1902. goto out;
  1903. r = -EFAULT;
  1904. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1905. goto out;
  1906. r = 0;
  1907. break;
  1908. }
  1909. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1910. u64 mce_cap;
  1911. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1912. r = -EFAULT;
  1913. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1914. goto out;
  1915. r = 0;
  1916. break;
  1917. }
  1918. default:
  1919. r = -EINVAL;
  1920. }
  1921. out:
  1922. return r;
  1923. }
  1924. static void wbinvd_ipi(void *garbage)
  1925. {
  1926. wbinvd();
  1927. }
  1928. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1929. {
  1930. return vcpu->kvm->arch.iommu_domain &&
  1931. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1932. }
  1933. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1934. {
  1935. /* Address WBINVD may be executed by guest */
  1936. if (need_emulate_wbinvd(vcpu)) {
  1937. if (kvm_x86_ops->has_wbinvd_exit())
  1938. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1939. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1940. smp_call_function_single(vcpu->cpu,
  1941. wbinvd_ipi, NULL, 1);
  1942. }
  1943. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1944. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1945. /* Make sure TSC doesn't go backwards */
  1946. s64 tsc_delta;
  1947. u64 tsc;
  1948. kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
  1949. tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
  1950. tsc - vcpu->arch.last_guest_tsc;
  1951. if (tsc_delta < 0)
  1952. mark_tsc_unstable("KVM discovered backwards TSC");
  1953. if (check_tsc_unstable()) {
  1954. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1955. vcpu->arch.tsc_catchup = 1;
  1956. }
  1957. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1958. if (vcpu->cpu != cpu)
  1959. kvm_migrate_timers(vcpu);
  1960. vcpu->cpu = cpu;
  1961. }
  1962. accumulate_steal_time(vcpu);
  1963. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  1964. }
  1965. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1966. {
  1967. kvm_x86_ops->vcpu_put(vcpu);
  1968. kvm_put_guest_fpu(vcpu);
  1969. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  1970. }
  1971. static int is_efer_nx(void)
  1972. {
  1973. unsigned long long efer = 0;
  1974. rdmsrl_safe(MSR_EFER, &efer);
  1975. return efer & EFER_NX;
  1976. }
  1977. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1978. {
  1979. int i;
  1980. struct kvm_cpuid_entry2 *e, *entry;
  1981. entry = NULL;
  1982. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1983. e = &vcpu->arch.cpuid_entries[i];
  1984. if (e->function == 0x80000001) {
  1985. entry = e;
  1986. break;
  1987. }
  1988. }
  1989. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1990. entry->edx &= ~(1 << 20);
  1991. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1992. }
  1993. }
  1994. /* when an old userspace process fills a new kernel module */
  1995. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1996. struct kvm_cpuid *cpuid,
  1997. struct kvm_cpuid_entry __user *entries)
  1998. {
  1999. int r, i;
  2000. struct kvm_cpuid_entry *cpuid_entries;
  2001. r = -E2BIG;
  2002. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2003. goto out;
  2004. r = -ENOMEM;
  2005. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  2006. if (!cpuid_entries)
  2007. goto out;
  2008. r = -EFAULT;
  2009. if (copy_from_user(cpuid_entries, entries,
  2010. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2011. goto out_free;
  2012. for (i = 0; i < cpuid->nent; i++) {
  2013. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  2014. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  2015. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  2016. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  2017. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  2018. vcpu->arch.cpuid_entries[i].index = 0;
  2019. vcpu->arch.cpuid_entries[i].flags = 0;
  2020. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  2021. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  2022. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  2023. }
  2024. vcpu->arch.cpuid_nent = cpuid->nent;
  2025. cpuid_fix_nx_cap(vcpu);
  2026. r = 0;
  2027. kvm_apic_set_version(vcpu);
  2028. kvm_x86_ops->cpuid_update(vcpu);
  2029. update_cpuid(vcpu);
  2030. out_free:
  2031. vfree(cpuid_entries);
  2032. out:
  2033. return r;
  2034. }
  2035. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  2036. struct kvm_cpuid2 *cpuid,
  2037. struct kvm_cpuid_entry2 __user *entries)
  2038. {
  2039. int r;
  2040. r = -E2BIG;
  2041. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2042. goto out;
  2043. r = -EFAULT;
  2044. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  2045. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  2046. goto out;
  2047. vcpu->arch.cpuid_nent = cpuid->nent;
  2048. kvm_apic_set_version(vcpu);
  2049. kvm_x86_ops->cpuid_update(vcpu);
  2050. update_cpuid(vcpu);
  2051. return 0;
  2052. out:
  2053. return r;
  2054. }
  2055. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  2056. struct kvm_cpuid2 *cpuid,
  2057. struct kvm_cpuid_entry2 __user *entries)
  2058. {
  2059. int r;
  2060. r = -E2BIG;
  2061. if (cpuid->nent < vcpu->arch.cpuid_nent)
  2062. goto out;
  2063. r = -EFAULT;
  2064. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  2065. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  2066. goto out;
  2067. return 0;
  2068. out:
  2069. cpuid->nent = vcpu->arch.cpuid_nent;
  2070. return r;
  2071. }
  2072. static void cpuid_mask(u32 *word, int wordnum)
  2073. {
  2074. *word &= boot_cpu_data.x86_capability[wordnum];
  2075. }
  2076. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2077. u32 index)
  2078. {
  2079. entry->function = function;
  2080. entry->index = index;
  2081. cpuid_count(entry->function, entry->index,
  2082. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  2083. entry->flags = 0;
  2084. }
  2085. static bool supported_xcr0_bit(unsigned bit)
  2086. {
  2087. u64 mask = ((u64)1 << bit);
  2088. return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
  2089. }
  2090. #define F(x) bit(X86_FEATURE_##x)
  2091. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2092. u32 index, int *nent, int maxnent)
  2093. {
  2094. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  2095. #ifdef CONFIG_X86_64
  2096. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  2097. ? F(GBPAGES) : 0;
  2098. unsigned f_lm = F(LM);
  2099. #else
  2100. unsigned f_gbpages = 0;
  2101. unsigned f_lm = 0;
  2102. #endif
  2103. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  2104. /* cpuid 1.edx */
  2105. const u32 kvm_supported_word0_x86_features =
  2106. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2107. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2108. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  2109. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2110. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  2111. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  2112. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  2113. 0 /* HTT, TM, Reserved, PBE */;
  2114. /* cpuid 0x80000001.edx */
  2115. const u32 kvm_supported_word1_x86_features =
  2116. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2117. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2118. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2119. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2120. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2121. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2122. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2123. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2124. /* cpuid 1.ecx */
  2125. const u32 kvm_supported_word4_x86_features =
  2126. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2127. 0 /* DS-CPL, VMX, SMX, EST */ |
  2128. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2129. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2130. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2131. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2132. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2133. F(F16C) | F(RDRAND);
  2134. /* cpuid 0x80000001.ecx */
  2135. const u32 kvm_supported_word6_x86_features =
  2136. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2137. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2138. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2139. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2140. /* cpuid 0xC0000001.edx */
  2141. const u32 kvm_supported_word5_x86_features =
  2142. F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
  2143. F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
  2144. F(PMM) | F(PMM_EN);
  2145. /* cpuid 7.0.ebx */
  2146. const u32 kvm_supported_word9_x86_features =
  2147. F(SMEP) | F(FSGSBASE) | F(ERMS);
  2148. /* all calls to cpuid_count() should be made on the same cpu */
  2149. get_cpu();
  2150. do_cpuid_1_ent(entry, function, index);
  2151. ++*nent;
  2152. switch (function) {
  2153. case 0:
  2154. entry->eax = min(entry->eax, (u32)0xd);
  2155. break;
  2156. case 1:
  2157. entry->edx &= kvm_supported_word0_x86_features;
  2158. cpuid_mask(&entry->edx, 0);
  2159. entry->ecx &= kvm_supported_word4_x86_features;
  2160. cpuid_mask(&entry->ecx, 4);
  2161. /* we support x2apic emulation even if host does not support
  2162. * it since we emulate x2apic in software */
  2163. entry->ecx |= F(X2APIC);
  2164. break;
  2165. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2166. * may return different values. This forces us to get_cpu() before
  2167. * issuing the first command, and also to emulate this annoying behavior
  2168. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2169. case 2: {
  2170. int t, times = entry->eax & 0xff;
  2171. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2172. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2173. for (t = 1; t < times && *nent < maxnent; ++t) {
  2174. do_cpuid_1_ent(&entry[t], function, 0);
  2175. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2176. ++*nent;
  2177. }
  2178. break;
  2179. }
  2180. /* function 4 has additional index. */
  2181. case 4: {
  2182. int i, cache_type;
  2183. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2184. /* read more entries until cache_type is zero */
  2185. for (i = 1; *nent < maxnent; ++i) {
  2186. cache_type = entry[i - 1].eax & 0x1f;
  2187. if (!cache_type)
  2188. break;
  2189. do_cpuid_1_ent(&entry[i], function, i);
  2190. entry[i].flags |=
  2191. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2192. ++*nent;
  2193. }
  2194. break;
  2195. }
  2196. case 7: {
  2197. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2198. /* Mask ebx against host capbability word 9 */
  2199. if (index == 0) {
  2200. entry->ebx &= kvm_supported_word9_x86_features;
  2201. cpuid_mask(&entry->ebx, 9);
  2202. } else
  2203. entry->ebx = 0;
  2204. entry->eax = 0;
  2205. entry->ecx = 0;
  2206. entry->edx = 0;
  2207. break;
  2208. }
  2209. case 9:
  2210. break;
  2211. /* function 0xb has additional index. */
  2212. case 0xb: {
  2213. int i, level_type;
  2214. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2215. /* read more entries until level_type is zero */
  2216. for (i = 1; *nent < maxnent; ++i) {
  2217. level_type = entry[i - 1].ecx & 0xff00;
  2218. if (!level_type)
  2219. break;
  2220. do_cpuid_1_ent(&entry[i], function, i);
  2221. entry[i].flags |=
  2222. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2223. ++*nent;
  2224. }
  2225. break;
  2226. }
  2227. case 0xd: {
  2228. int idx, i;
  2229. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2230. for (idx = 1, i = 1; *nent < maxnent && idx < 64; ++idx) {
  2231. do_cpuid_1_ent(&entry[i], function, idx);
  2232. if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
  2233. continue;
  2234. entry[i].flags |=
  2235. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2236. ++*nent;
  2237. ++i;
  2238. }
  2239. break;
  2240. }
  2241. case KVM_CPUID_SIGNATURE: {
  2242. char signature[12] = "KVMKVMKVM\0\0";
  2243. u32 *sigptr = (u32 *)signature;
  2244. entry->eax = 0;
  2245. entry->ebx = sigptr[0];
  2246. entry->ecx = sigptr[1];
  2247. entry->edx = sigptr[2];
  2248. break;
  2249. }
  2250. case KVM_CPUID_FEATURES:
  2251. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2252. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2253. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2254. (1 << KVM_FEATURE_ASYNC_PF) |
  2255. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2256. if (sched_info_on())
  2257. entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
  2258. entry->ebx = 0;
  2259. entry->ecx = 0;
  2260. entry->edx = 0;
  2261. break;
  2262. case 0x80000000:
  2263. entry->eax = min(entry->eax, 0x8000001a);
  2264. break;
  2265. case 0x80000001:
  2266. entry->edx &= kvm_supported_word1_x86_features;
  2267. cpuid_mask(&entry->edx, 1);
  2268. entry->ecx &= kvm_supported_word6_x86_features;
  2269. cpuid_mask(&entry->ecx, 6);
  2270. break;
  2271. case 0x80000008: {
  2272. unsigned g_phys_as = (entry->eax >> 16) & 0xff;
  2273. unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
  2274. unsigned phys_as = entry->eax & 0xff;
  2275. if (!g_phys_as)
  2276. g_phys_as = phys_as;
  2277. entry->eax = g_phys_as | (virt_as << 8);
  2278. entry->ebx = entry->edx = 0;
  2279. break;
  2280. }
  2281. case 0x80000019:
  2282. entry->ecx = entry->edx = 0;
  2283. break;
  2284. case 0x8000001a:
  2285. break;
  2286. case 0x8000001d:
  2287. break;
  2288. /*Add support for Centaur's CPUID instruction*/
  2289. case 0xC0000000:
  2290. /*Just support up to 0xC0000004 now*/
  2291. entry->eax = min(entry->eax, 0xC0000004);
  2292. break;
  2293. case 0xC0000001:
  2294. entry->edx &= kvm_supported_word5_x86_features;
  2295. cpuid_mask(&entry->edx, 5);
  2296. break;
  2297. case 3: /* Processor serial number */
  2298. case 5: /* MONITOR/MWAIT */
  2299. case 6: /* Thermal management */
  2300. case 0xA: /* Architectural Performance Monitoring */
  2301. case 0x80000007: /* Advanced power management */
  2302. case 0xC0000002:
  2303. case 0xC0000003:
  2304. case 0xC0000004:
  2305. default:
  2306. entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
  2307. break;
  2308. }
  2309. kvm_x86_ops->set_supported_cpuid(function, entry);
  2310. put_cpu();
  2311. }
  2312. #undef F
  2313. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2314. struct kvm_cpuid_entry2 __user *entries)
  2315. {
  2316. struct kvm_cpuid_entry2 *cpuid_entries;
  2317. int limit, nent = 0, r = -E2BIG;
  2318. u32 func;
  2319. if (cpuid->nent < 1)
  2320. goto out;
  2321. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2322. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2323. r = -ENOMEM;
  2324. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2325. if (!cpuid_entries)
  2326. goto out;
  2327. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2328. limit = cpuid_entries[0].eax;
  2329. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2330. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2331. &nent, cpuid->nent);
  2332. r = -E2BIG;
  2333. if (nent >= cpuid->nent)
  2334. goto out_free;
  2335. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2336. limit = cpuid_entries[nent - 1].eax;
  2337. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2338. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2339. &nent, cpuid->nent);
  2340. r = -E2BIG;
  2341. if (nent >= cpuid->nent)
  2342. goto out_free;
  2343. /* Add support for Centaur's CPUID instruction. */
  2344. if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
  2345. do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
  2346. &nent, cpuid->nent);
  2347. r = -E2BIG;
  2348. if (nent >= cpuid->nent)
  2349. goto out_free;
  2350. limit = cpuid_entries[nent - 1].eax;
  2351. for (func = 0xC0000001;
  2352. func <= limit && nent < cpuid->nent; ++func)
  2353. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2354. &nent, cpuid->nent);
  2355. r = -E2BIG;
  2356. if (nent >= cpuid->nent)
  2357. goto out_free;
  2358. }
  2359. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2360. cpuid->nent);
  2361. r = -E2BIG;
  2362. if (nent >= cpuid->nent)
  2363. goto out_free;
  2364. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2365. cpuid->nent);
  2366. r = -E2BIG;
  2367. if (nent >= cpuid->nent)
  2368. goto out_free;
  2369. r = -EFAULT;
  2370. if (copy_to_user(entries, cpuid_entries,
  2371. nent * sizeof(struct kvm_cpuid_entry2)))
  2372. goto out_free;
  2373. cpuid->nent = nent;
  2374. r = 0;
  2375. out_free:
  2376. vfree(cpuid_entries);
  2377. out:
  2378. return r;
  2379. }
  2380. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2381. struct kvm_lapic_state *s)
  2382. {
  2383. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2384. return 0;
  2385. }
  2386. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2387. struct kvm_lapic_state *s)
  2388. {
  2389. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2390. kvm_apic_post_state_restore(vcpu);
  2391. update_cr8_intercept(vcpu);
  2392. return 0;
  2393. }
  2394. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2395. struct kvm_interrupt *irq)
  2396. {
  2397. if (irq->irq < 0 || irq->irq >= 256)
  2398. return -EINVAL;
  2399. if (irqchip_in_kernel(vcpu->kvm))
  2400. return -ENXIO;
  2401. kvm_queue_interrupt(vcpu, irq->irq, false);
  2402. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2403. return 0;
  2404. }
  2405. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2406. {
  2407. kvm_inject_nmi(vcpu);
  2408. return 0;
  2409. }
  2410. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2411. struct kvm_tpr_access_ctl *tac)
  2412. {
  2413. if (tac->flags)
  2414. return -EINVAL;
  2415. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2416. return 0;
  2417. }
  2418. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2419. u64 mcg_cap)
  2420. {
  2421. int r;
  2422. unsigned bank_num = mcg_cap & 0xff, bank;
  2423. r = -EINVAL;
  2424. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2425. goto out;
  2426. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2427. goto out;
  2428. r = 0;
  2429. vcpu->arch.mcg_cap = mcg_cap;
  2430. /* Init IA32_MCG_CTL to all 1s */
  2431. if (mcg_cap & MCG_CTL_P)
  2432. vcpu->arch.mcg_ctl = ~(u64)0;
  2433. /* Init IA32_MCi_CTL to all 1s */
  2434. for (bank = 0; bank < bank_num; bank++)
  2435. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2436. out:
  2437. return r;
  2438. }
  2439. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2440. struct kvm_x86_mce *mce)
  2441. {
  2442. u64 mcg_cap = vcpu->arch.mcg_cap;
  2443. unsigned bank_num = mcg_cap & 0xff;
  2444. u64 *banks = vcpu->arch.mce_banks;
  2445. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2446. return -EINVAL;
  2447. /*
  2448. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2449. * reporting is disabled
  2450. */
  2451. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2452. vcpu->arch.mcg_ctl != ~(u64)0)
  2453. return 0;
  2454. banks += 4 * mce->bank;
  2455. /*
  2456. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2457. * reporting is disabled for the bank
  2458. */
  2459. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2460. return 0;
  2461. if (mce->status & MCI_STATUS_UC) {
  2462. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2463. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2464. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2465. return 0;
  2466. }
  2467. if (banks[1] & MCI_STATUS_VAL)
  2468. mce->status |= MCI_STATUS_OVER;
  2469. banks[2] = mce->addr;
  2470. banks[3] = mce->misc;
  2471. vcpu->arch.mcg_status = mce->mcg_status;
  2472. banks[1] = mce->status;
  2473. kvm_queue_exception(vcpu, MC_VECTOR);
  2474. } else if (!(banks[1] & MCI_STATUS_VAL)
  2475. || !(banks[1] & MCI_STATUS_UC)) {
  2476. if (banks[1] & MCI_STATUS_VAL)
  2477. mce->status |= MCI_STATUS_OVER;
  2478. banks[2] = mce->addr;
  2479. banks[3] = mce->misc;
  2480. banks[1] = mce->status;
  2481. } else
  2482. banks[1] |= MCI_STATUS_OVER;
  2483. return 0;
  2484. }
  2485. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2486. struct kvm_vcpu_events *events)
  2487. {
  2488. events->exception.injected =
  2489. vcpu->arch.exception.pending &&
  2490. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2491. events->exception.nr = vcpu->arch.exception.nr;
  2492. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2493. events->exception.pad = 0;
  2494. events->exception.error_code = vcpu->arch.exception.error_code;
  2495. events->interrupt.injected =
  2496. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2497. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2498. events->interrupt.soft = 0;
  2499. events->interrupt.shadow =
  2500. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2501. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2502. events->nmi.injected = vcpu->arch.nmi_injected;
  2503. events->nmi.pending = vcpu->arch.nmi_pending;
  2504. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2505. events->nmi.pad = 0;
  2506. events->sipi_vector = vcpu->arch.sipi_vector;
  2507. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2508. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2509. | KVM_VCPUEVENT_VALID_SHADOW);
  2510. memset(&events->reserved, 0, sizeof(events->reserved));
  2511. }
  2512. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2513. struct kvm_vcpu_events *events)
  2514. {
  2515. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2516. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2517. | KVM_VCPUEVENT_VALID_SHADOW))
  2518. return -EINVAL;
  2519. vcpu->arch.exception.pending = events->exception.injected;
  2520. vcpu->arch.exception.nr = events->exception.nr;
  2521. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2522. vcpu->arch.exception.error_code = events->exception.error_code;
  2523. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2524. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2525. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2526. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2527. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2528. events->interrupt.shadow);
  2529. vcpu->arch.nmi_injected = events->nmi.injected;
  2530. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2531. vcpu->arch.nmi_pending = events->nmi.pending;
  2532. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2533. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2534. vcpu->arch.sipi_vector = events->sipi_vector;
  2535. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2536. return 0;
  2537. }
  2538. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2539. struct kvm_debugregs *dbgregs)
  2540. {
  2541. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2542. dbgregs->dr6 = vcpu->arch.dr6;
  2543. dbgregs->dr7 = vcpu->arch.dr7;
  2544. dbgregs->flags = 0;
  2545. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2546. }
  2547. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2548. struct kvm_debugregs *dbgregs)
  2549. {
  2550. if (dbgregs->flags)
  2551. return -EINVAL;
  2552. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2553. vcpu->arch.dr6 = dbgregs->dr6;
  2554. vcpu->arch.dr7 = dbgregs->dr7;
  2555. return 0;
  2556. }
  2557. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2558. struct kvm_xsave *guest_xsave)
  2559. {
  2560. if (cpu_has_xsave)
  2561. memcpy(guest_xsave->region,
  2562. &vcpu->arch.guest_fpu.state->xsave,
  2563. xstate_size);
  2564. else {
  2565. memcpy(guest_xsave->region,
  2566. &vcpu->arch.guest_fpu.state->fxsave,
  2567. sizeof(struct i387_fxsave_struct));
  2568. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2569. XSTATE_FPSSE;
  2570. }
  2571. }
  2572. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2573. struct kvm_xsave *guest_xsave)
  2574. {
  2575. u64 xstate_bv =
  2576. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2577. if (cpu_has_xsave)
  2578. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2579. guest_xsave->region, xstate_size);
  2580. else {
  2581. if (xstate_bv & ~XSTATE_FPSSE)
  2582. return -EINVAL;
  2583. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2584. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2585. }
  2586. return 0;
  2587. }
  2588. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2589. struct kvm_xcrs *guest_xcrs)
  2590. {
  2591. if (!cpu_has_xsave) {
  2592. guest_xcrs->nr_xcrs = 0;
  2593. return;
  2594. }
  2595. guest_xcrs->nr_xcrs = 1;
  2596. guest_xcrs->flags = 0;
  2597. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2598. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2599. }
  2600. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2601. struct kvm_xcrs *guest_xcrs)
  2602. {
  2603. int i, r = 0;
  2604. if (!cpu_has_xsave)
  2605. return -EINVAL;
  2606. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2607. return -EINVAL;
  2608. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2609. /* Only support XCR0 currently */
  2610. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2611. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2612. guest_xcrs->xcrs[0].value);
  2613. break;
  2614. }
  2615. if (r)
  2616. r = -EINVAL;
  2617. return r;
  2618. }
  2619. long kvm_arch_vcpu_ioctl(struct file *filp,
  2620. unsigned int ioctl, unsigned long arg)
  2621. {
  2622. struct kvm_vcpu *vcpu = filp->private_data;
  2623. void __user *argp = (void __user *)arg;
  2624. int r;
  2625. union {
  2626. struct kvm_lapic_state *lapic;
  2627. struct kvm_xsave *xsave;
  2628. struct kvm_xcrs *xcrs;
  2629. void *buffer;
  2630. } u;
  2631. u.buffer = NULL;
  2632. switch (ioctl) {
  2633. case KVM_GET_LAPIC: {
  2634. r = -EINVAL;
  2635. if (!vcpu->arch.apic)
  2636. goto out;
  2637. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2638. r = -ENOMEM;
  2639. if (!u.lapic)
  2640. goto out;
  2641. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2642. if (r)
  2643. goto out;
  2644. r = -EFAULT;
  2645. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2646. goto out;
  2647. r = 0;
  2648. break;
  2649. }
  2650. case KVM_SET_LAPIC: {
  2651. r = -EINVAL;
  2652. if (!vcpu->arch.apic)
  2653. goto out;
  2654. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2655. r = -ENOMEM;
  2656. if (!u.lapic)
  2657. goto out;
  2658. r = -EFAULT;
  2659. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2660. goto out;
  2661. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2662. if (r)
  2663. goto out;
  2664. r = 0;
  2665. break;
  2666. }
  2667. case KVM_INTERRUPT: {
  2668. struct kvm_interrupt irq;
  2669. r = -EFAULT;
  2670. if (copy_from_user(&irq, argp, sizeof irq))
  2671. goto out;
  2672. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2673. if (r)
  2674. goto out;
  2675. r = 0;
  2676. break;
  2677. }
  2678. case KVM_NMI: {
  2679. r = kvm_vcpu_ioctl_nmi(vcpu);
  2680. if (r)
  2681. goto out;
  2682. r = 0;
  2683. break;
  2684. }
  2685. case KVM_SET_CPUID: {
  2686. struct kvm_cpuid __user *cpuid_arg = argp;
  2687. struct kvm_cpuid cpuid;
  2688. r = -EFAULT;
  2689. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2690. goto out;
  2691. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2692. if (r)
  2693. goto out;
  2694. break;
  2695. }
  2696. case KVM_SET_CPUID2: {
  2697. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2698. struct kvm_cpuid2 cpuid;
  2699. r = -EFAULT;
  2700. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2701. goto out;
  2702. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2703. cpuid_arg->entries);
  2704. if (r)
  2705. goto out;
  2706. break;
  2707. }
  2708. case KVM_GET_CPUID2: {
  2709. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2710. struct kvm_cpuid2 cpuid;
  2711. r = -EFAULT;
  2712. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2713. goto out;
  2714. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2715. cpuid_arg->entries);
  2716. if (r)
  2717. goto out;
  2718. r = -EFAULT;
  2719. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2720. goto out;
  2721. r = 0;
  2722. break;
  2723. }
  2724. case KVM_GET_MSRS:
  2725. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2726. break;
  2727. case KVM_SET_MSRS:
  2728. r = msr_io(vcpu, argp, do_set_msr, 0);
  2729. break;
  2730. case KVM_TPR_ACCESS_REPORTING: {
  2731. struct kvm_tpr_access_ctl tac;
  2732. r = -EFAULT;
  2733. if (copy_from_user(&tac, argp, sizeof tac))
  2734. goto out;
  2735. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2736. if (r)
  2737. goto out;
  2738. r = -EFAULT;
  2739. if (copy_to_user(argp, &tac, sizeof tac))
  2740. goto out;
  2741. r = 0;
  2742. break;
  2743. };
  2744. case KVM_SET_VAPIC_ADDR: {
  2745. struct kvm_vapic_addr va;
  2746. r = -EINVAL;
  2747. if (!irqchip_in_kernel(vcpu->kvm))
  2748. goto out;
  2749. r = -EFAULT;
  2750. if (copy_from_user(&va, argp, sizeof va))
  2751. goto out;
  2752. r = 0;
  2753. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2754. break;
  2755. }
  2756. case KVM_X86_SETUP_MCE: {
  2757. u64 mcg_cap;
  2758. r = -EFAULT;
  2759. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2760. goto out;
  2761. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2762. break;
  2763. }
  2764. case KVM_X86_SET_MCE: {
  2765. struct kvm_x86_mce mce;
  2766. r = -EFAULT;
  2767. if (copy_from_user(&mce, argp, sizeof mce))
  2768. goto out;
  2769. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2770. break;
  2771. }
  2772. case KVM_GET_VCPU_EVENTS: {
  2773. struct kvm_vcpu_events events;
  2774. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2775. r = -EFAULT;
  2776. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2777. break;
  2778. r = 0;
  2779. break;
  2780. }
  2781. case KVM_SET_VCPU_EVENTS: {
  2782. struct kvm_vcpu_events events;
  2783. r = -EFAULT;
  2784. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2785. break;
  2786. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2787. break;
  2788. }
  2789. case KVM_GET_DEBUGREGS: {
  2790. struct kvm_debugregs dbgregs;
  2791. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2792. r = -EFAULT;
  2793. if (copy_to_user(argp, &dbgregs,
  2794. sizeof(struct kvm_debugregs)))
  2795. break;
  2796. r = 0;
  2797. break;
  2798. }
  2799. case KVM_SET_DEBUGREGS: {
  2800. struct kvm_debugregs dbgregs;
  2801. r = -EFAULT;
  2802. if (copy_from_user(&dbgregs, argp,
  2803. sizeof(struct kvm_debugregs)))
  2804. break;
  2805. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2806. break;
  2807. }
  2808. case KVM_GET_XSAVE: {
  2809. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2810. r = -ENOMEM;
  2811. if (!u.xsave)
  2812. break;
  2813. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2814. r = -EFAULT;
  2815. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2816. break;
  2817. r = 0;
  2818. break;
  2819. }
  2820. case KVM_SET_XSAVE: {
  2821. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2822. r = -ENOMEM;
  2823. if (!u.xsave)
  2824. break;
  2825. r = -EFAULT;
  2826. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2827. break;
  2828. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2829. break;
  2830. }
  2831. case KVM_GET_XCRS: {
  2832. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2833. r = -ENOMEM;
  2834. if (!u.xcrs)
  2835. break;
  2836. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2837. r = -EFAULT;
  2838. if (copy_to_user(argp, u.xcrs,
  2839. sizeof(struct kvm_xcrs)))
  2840. break;
  2841. r = 0;
  2842. break;
  2843. }
  2844. case KVM_SET_XCRS: {
  2845. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2846. r = -ENOMEM;
  2847. if (!u.xcrs)
  2848. break;
  2849. r = -EFAULT;
  2850. if (copy_from_user(u.xcrs, argp,
  2851. sizeof(struct kvm_xcrs)))
  2852. break;
  2853. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2854. break;
  2855. }
  2856. case KVM_SET_TSC_KHZ: {
  2857. u32 user_tsc_khz;
  2858. r = -EINVAL;
  2859. if (!kvm_has_tsc_control)
  2860. break;
  2861. user_tsc_khz = (u32)arg;
  2862. if (user_tsc_khz >= kvm_max_guest_tsc_khz)
  2863. goto out;
  2864. kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
  2865. r = 0;
  2866. goto out;
  2867. }
  2868. case KVM_GET_TSC_KHZ: {
  2869. r = -EIO;
  2870. if (check_tsc_unstable())
  2871. goto out;
  2872. r = vcpu_tsc_khz(vcpu);
  2873. goto out;
  2874. }
  2875. default:
  2876. r = -EINVAL;
  2877. }
  2878. out:
  2879. kfree(u.buffer);
  2880. return r;
  2881. }
  2882. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2883. {
  2884. int ret;
  2885. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2886. return -1;
  2887. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2888. return ret;
  2889. }
  2890. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2891. u64 ident_addr)
  2892. {
  2893. kvm->arch.ept_identity_map_addr = ident_addr;
  2894. return 0;
  2895. }
  2896. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2897. u32 kvm_nr_mmu_pages)
  2898. {
  2899. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2900. return -EINVAL;
  2901. mutex_lock(&kvm->slots_lock);
  2902. spin_lock(&kvm->mmu_lock);
  2903. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2904. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2905. spin_unlock(&kvm->mmu_lock);
  2906. mutex_unlock(&kvm->slots_lock);
  2907. return 0;
  2908. }
  2909. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2910. {
  2911. return kvm->arch.n_max_mmu_pages;
  2912. }
  2913. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2914. {
  2915. int r;
  2916. r = 0;
  2917. switch (chip->chip_id) {
  2918. case KVM_IRQCHIP_PIC_MASTER:
  2919. memcpy(&chip->chip.pic,
  2920. &pic_irqchip(kvm)->pics[0],
  2921. sizeof(struct kvm_pic_state));
  2922. break;
  2923. case KVM_IRQCHIP_PIC_SLAVE:
  2924. memcpy(&chip->chip.pic,
  2925. &pic_irqchip(kvm)->pics[1],
  2926. sizeof(struct kvm_pic_state));
  2927. break;
  2928. case KVM_IRQCHIP_IOAPIC:
  2929. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2930. break;
  2931. default:
  2932. r = -EINVAL;
  2933. break;
  2934. }
  2935. return r;
  2936. }
  2937. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2938. {
  2939. int r;
  2940. r = 0;
  2941. switch (chip->chip_id) {
  2942. case KVM_IRQCHIP_PIC_MASTER:
  2943. spin_lock(&pic_irqchip(kvm)->lock);
  2944. memcpy(&pic_irqchip(kvm)->pics[0],
  2945. &chip->chip.pic,
  2946. sizeof(struct kvm_pic_state));
  2947. spin_unlock(&pic_irqchip(kvm)->lock);
  2948. break;
  2949. case KVM_IRQCHIP_PIC_SLAVE:
  2950. spin_lock(&pic_irqchip(kvm)->lock);
  2951. memcpy(&pic_irqchip(kvm)->pics[1],
  2952. &chip->chip.pic,
  2953. sizeof(struct kvm_pic_state));
  2954. spin_unlock(&pic_irqchip(kvm)->lock);
  2955. break;
  2956. case KVM_IRQCHIP_IOAPIC:
  2957. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2958. break;
  2959. default:
  2960. r = -EINVAL;
  2961. break;
  2962. }
  2963. kvm_pic_update_irq(pic_irqchip(kvm));
  2964. return r;
  2965. }
  2966. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2967. {
  2968. int r = 0;
  2969. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2970. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2971. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2972. return r;
  2973. }
  2974. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2975. {
  2976. int r = 0;
  2977. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2978. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2979. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2980. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2981. return r;
  2982. }
  2983. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2984. {
  2985. int r = 0;
  2986. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2987. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2988. sizeof(ps->channels));
  2989. ps->flags = kvm->arch.vpit->pit_state.flags;
  2990. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2991. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2992. return r;
  2993. }
  2994. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2995. {
  2996. int r = 0, start = 0;
  2997. u32 prev_legacy, cur_legacy;
  2998. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2999. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  3000. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  3001. if (!prev_legacy && cur_legacy)
  3002. start = 1;
  3003. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  3004. sizeof(kvm->arch.vpit->pit_state.channels));
  3005. kvm->arch.vpit->pit_state.flags = ps->flags;
  3006. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  3007. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  3008. return r;
  3009. }
  3010. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  3011. struct kvm_reinject_control *control)
  3012. {
  3013. if (!kvm->arch.vpit)
  3014. return -ENXIO;
  3015. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  3016. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  3017. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  3018. return 0;
  3019. }
  3020. /*
  3021. * Get (and clear) the dirty memory log for a memory slot.
  3022. */
  3023. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  3024. struct kvm_dirty_log *log)
  3025. {
  3026. int r, i;
  3027. struct kvm_memory_slot *memslot;
  3028. unsigned long n;
  3029. unsigned long is_dirty = 0;
  3030. mutex_lock(&kvm->slots_lock);
  3031. r = -EINVAL;
  3032. if (log->slot >= KVM_MEMORY_SLOTS)
  3033. goto out;
  3034. memslot = &kvm->memslots->memslots[log->slot];
  3035. r = -ENOENT;
  3036. if (!memslot->dirty_bitmap)
  3037. goto out;
  3038. n = kvm_dirty_bitmap_bytes(memslot);
  3039. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  3040. is_dirty = memslot->dirty_bitmap[i];
  3041. /* If nothing is dirty, don't bother messing with page tables. */
  3042. if (is_dirty) {
  3043. struct kvm_memslots *slots, *old_slots;
  3044. unsigned long *dirty_bitmap;
  3045. dirty_bitmap = memslot->dirty_bitmap_head;
  3046. if (memslot->dirty_bitmap == dirty_bitmap)
  3047. dirty_bitmap += n / sizeof(long);
  3048. memset(dirty_bitmap, 0, n);
  3049. r = -ENOMEM;
  3050. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  3051. if (!slots)
  3052. goto out;
  3053. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  3054. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  3055. slots->generation++;
  3056. old_slots = kvm->memslots;
  3057. rcu_assign_pointer(kvm->memslots, slots);
  3058. synchronize_srcu_expedited(&kvm->srcu);
  3059. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  3060. kfree(old_slots);
  3061. spin_lock(&kvm->mmu_lock);
  3062. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  3063. spin_unlock(&kvm->mmu_lock);
  3064. r = -EFAULT;
  3065. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  3066. goto out;
  3067. } else {
  3068. r = -EFAULT;
  3069. if (clear_user(log->dirty_bitmap, n))
  3070. goto out;
  3071. }
  3072. r = 0;
  3073. out:
  3074. mutex_unlock(&kvm->slots_lock);
  3075. return r;
  3076. }
  3077. long kvm_arch_vm_ioctl(struct file *filp,
  3078. unsigned int ioctl, unsigned long arg)
  3079. {
  3080. struct kvm *kvm = filp->private_data;
  3081. void __user *argp = (void __user *)arg;
  3082. int r = -ENOTTY;
  3083. /*
  3084. * This union makes it completely explicit to gcc-3.x
  3085. * that these two variables' stack usage should be
  3086. * combined, not added together.
  3087. */
  3088. union {
  3089. struct kvm_pit_state ps;
  3090. struct kvm_pit_state2 ps2;
  3091. struct kvm_pit_config pit_config;
  3092. } u;
  3093. switch (ioctl) {
  3094. case KVM_SET_TSS_ADDR:
  3095. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  3096. if (r < 0)
  3097. goto out;
  3098. break;
  3099. case KVM_SET_IDENTITY_MAP_ADDR: {
  3100. u64 ident_addr;
  3101. r = -EFAULT;
  3102. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  3103. goto out;
  3104. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  3105. if (r < 0)
  3106. goto out;
  3107. break;
  3108. }
  3109. case KVM_SET_NR_MMU_PAGES:
  3110. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  3111. if (r)
  3112. goto out;
  3113. break;
  3114. case KVM_GET_NR_MMU_PAGES:
  3115. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  3116. break;
  3117. case KVM_CREATE_IRQCHIP: {
  3118. struct kvm_pic *vpic;
  3119. mutex_lock(&kvm->lock);
  3120. r = -EEXIST;
  3121. if (kvm->arch.vpic)
  3122. goto create_irqchip_unlock;
  3123. r = -ENOMEM;
  3124. vpic = kvm_create_pic(kvm);
  3125. if (vpic) {
  3126. r = kvm_ioapic_init(kvm);
  3127. if (r) {
  3128. mutex_lock(&kvm->slots_lock);
  3129. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3130. &vpic->dev);
  3131. mutex_unlock(&kvm->slots_lock);
  3132. kfree(vpic);
  3133. goto create_irqchip_unlock;
  3134. }
  3135. } else
  3136. goto create_irqchip_unlock;
  3137. smp_wmb();
  3138. kvm->arch.vpic = vpic;
  3139. smp_wmb();
  3140. r = kvm_setup_default_irq_routing(kvm);
  3141. if (r) {
  3142. mutex_lock(&kvm->slots_lock);
  3143. mutex_lock(&kvm->irq_lock);
  3144. kvm_ioapic_destroy(kvm);
  3145. kvm_destroy_pic(kvm);
  3146. mutex_unlock(&kvm->irq_lock);
  3147. mutex_unlock(&kvm->slots_lock);
  3148. }
  3149. create_irqchip_unlock:
  3150. mutex_unlock(&kvm->lock);
  3151. break;
  3152. }
  3153. case KVM_CREATE_PIT:
  3154. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  3155. goto create_pit;
  3156. case KVM_CREATE_PIT2:
  3157. r = -EFAULT;
  3158. if (copy_from_user(&u.pit_config, argp,
  3159. sizeof(struct kvm_pit_config)))
  3160. goto out;
  3161. create_pit:
  3162. mutex_lock(&kvm->slots_lock);
  3163. r = -EEXIST;
  3164. if (kvm->arch.vpit)
  3165. goto create_pit_unlock;
  3166. r = -ENOMEM;
  3167. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  3168. if (kvm->arch.vpit)
  3169. r = 0;
  3170. create_pit_unlock:
  3171. mutex_unlock(&kvm->slots_lock);
  3172. break;
  3173. case KVM_IRQ_LINE_STATUS:
  3174. case KVM_IRQ_LINE: {
  3175. struct kvm_irq_level irq_event;
  3176. r = -EFAULT;
  3177. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  3178. goto out;
  3179. r = -ENXIO;
  3180. if (irqchip_in_kernel(kvm)) {
  3181. __s32 status;
  3182. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3183. irq_event.irq, irq_event.level);
  3184. if (ioctl == KVM_IRQ_LINE_STATUS) {
  3185. r = -EFAULT;
  3186. irq_event.status = status;
  3187. if (copy_to_user(argp, &irq_event,
  3188. sizeof irq_event))
  3189. goto out;
  3190. }
  3191. r = 0;
  3192. }
  3193. break;
  3194. }
  3195. case KVM_GET_IRQCHIP: {
  3196. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3197. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3198. r = -ENOMEM;
  3199. if (!chip)
  3200. goto out;
  3201. r = -EFAULT;
  3202. if (copy_from_user(chip, argp, sizeof *chip))
  3203. goto get_irqchip_out;
  3204. r = -ENXIO;
  3205. if (!irqchip_in_kernel(kvm))
  3206. goto get_irqchip_out;
  3207. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3208. if (r)
  3209. goto get_irqchip_out;
  3210. r = -EFAULT;
  3211. if (copy_to_user(argp, chip, sizeof *chip))
  3212. goto get_irqchip_out;
  3213. r = 0;
  3214. get_irqchip_out:
  3215. kfree(chip);
  3216. if (r)
  3217. goto out;
  3218. break;
  3219. }
  3220. case KVM_SET_IRQCHIP: {
  3221. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3222. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3223. r = -ENOMEM;
  3224. if (!chip)
  3225. goto out;
  3226. r = -EFAULT;
  3227. if (copy_from_user(chip, argp, sizeof *chip))
  3228. goto set_irqchip_out;
  3229. r = -ENXIO;
  3230. if (!irqchip_in_kernel(kvm))
  3231. goto set_irqchip_out;
  3232. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3233. if (r)
  3234. goto set_irqchip_out;
  3235. r = 0;
  3236. set_irqchip_out:
  3237. kfree(chip);
  3238. if (r)
  3239. goto out;
  3240. break;
  3241. }
  3242. case KVM_GET_PIT: {
  3243. r = -EFAULT;
  3244. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3245. goto out;
  3246. r = -ENXIO;
  3247. if (!kvm->arch.vpit)
  3248. goto out;
  3249. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3250. if (r)
  3251. goto out;
  3252. r = -EFAULT;
  3253. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3254. goto out;
  3255. r = 0;
  3256. break;
  3257. }
  3258. case KVM_SET_PIT: {
  3259. r = -EFAULT;
  3260. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3261. goto out;
  3262. r = -ENXIO;
  3263. if (!kvm->arch.vpit)
  3264. goto out;
  3265. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3266. if (r)
  3267. goto out;
  3268. r = 0;
  3269. break;
  3270. }
  3271. case KVM_GET_PIT2: {
  3272. r = -ENXIO;
  3273. if (!kvm->arch.vpit)
  3274. goto out;
  3275. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3276. if (r)
  3277. goto out;
  3278. r = -EFAULT;
  3279. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3280. goto out;
  3281. r = 0;
  3282. break;
  3283. }
  3284. case KVM_SET_PIT2: {
  3285. r = -EFAULT;
  3286. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3287. goto out;
  3288. r = -ENXIO;
  3289. if (!kvm->arch.vpit)
  3290. goto out;
  3291. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3292. if (r)
  3293. goto out;
  3294. r = 0;
  3295. break;
  3296. }
  3297. case KVM_REINJECT_CONTROL: {
  3298. struct kvm_reinject_control control;
  3299. r = -EFAULT;
  3300. if (copy_from_user(&control, argp, sizeof(control)))
  3301. goto out;
  3302. r = kvm_vm_ioctl_reinject(kvm, &control);
  3303. if (r)
  3304. goto out;
  3305. r = 0;
  3306. break;
  3307. }
  3308. case KVM_XEN_HVM_CONFIG: {
  3309. r = -EFAULT;
  3310. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3311. sizeof(struct kvm_xen_hvm_config)))
  3312. goto out;
  3313. r = -EINVAL;
  3314. if (kvm->arch.xen_hvm_config.flags)
  3315. goto out;
  3316. r = 0;
  3317. break;
  3318. }
  3319. case KVM_SET_CLOCK: {
  3320. struct kvm_clock_data user_ns;
  3321. u64 now_ns;
  3322. s64 delta;
  3323. r = -EFAULT;
  3324. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3325. goto out;
  3326. r = -EINVAL;
  3327. if (user_ns.flags)
  3328. goto out;
  3329. r = 0;
  3330. local_irq_disable();
  3331. now_ns = get_kernel_ns();
  3332. delta = user_ns.clock - now_ns;
  3333. local_irq_enable();
  3334. kvm->arch.kvmclock_offset = delta;
  3335. break;
  3336. }
  3337. case KVM_GET_CLOCK: {
  3338. struct kvm_clock_data user_ns;
  3339. u64 now_ns;
  3340. local_irq_disable();
  3341. now_ns = get_kernel_ns();
  3342. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3343. local_irq_enable();
  3344. user_ns.flags = 0;
  3345. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3346. r = -EFAULT;
  3347. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3348. goto out;
  3349. r = 0;
  3350. break;
  3351. }
  3352. default:
  3353. ;
  3354. }
  3355. out:
  3356. return r;
  3357. }
  3358. static void kvm_init_msr_list(void)
  3359. {
  3360. u32 dummy[2];
  3361. unsigned i, j;
  3362. /* skip the first msrs in the list. KVM-specific */
  3363. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3364. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3365. continue;
  3366. if (j < i)
  3367. msrs_to_save[j] = msrs_to_save[i];
  3368. j++;
  3369. }
  3370. num_msrs_to_save = j;
  3371. }
  3372. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3373. const void *v)
  3374. {
  3375. int handled = 0;
  3376. int n;
  3377. do {
  3378. n = min(len, 8);
  3379. if (!(vcpu->arch.apic &&
  3380. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
  3381. && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3382. break;
  3383. handled += n;
  3384. addr += n;
  3385. len -= n;
  3386. v += n;
  3387. } while (len);
  3388. return handled;
  3389. }
  3390. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3391. {
  3392. int handled = 0;
  3393. int n;
  3394. do {
  3395. n = min(len, 8);
  3396. if (!(vcpu->arch.apic &&
  3397. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
  3398. && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3399. break;
  3400. trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
  3401. handled += n;
  3402. addr += n;
  3403. len -= n;
  3404. v += n;
  3405. } while (len);
  3406. return handled;
  3407. }
  3408. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3409. struct kvm_segment *var, int seg)
  3410. {
  3411. kvm_x86_ops->set_segment(vcpu, var, seg);
  3412. }
  3413. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3414. struct kvm_segment *var, int seg)
  3415. {
  3416. kvm_x86_ops->get_segment(vcpu, var, seg);
  3417. }
  3418. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3419. {
  3420. return gpa;
  3421. }
  3422. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3423. {
  3424. gpa_t t_gpa;
  3425. struct x86_exception exception;
  3426. BUG_ON(!mmu_is_nested(vcpu));
  3427. /* NPT walks are always user-walks */
  3428. access |= PFERR_USER_MASK;
  3429. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3430. return t_gpa;
  3431. }
  3432. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3433. struct x86_exception *exception)
  3434. {
  3435. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3436. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3437. }
  3438. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3439. struct x86_exception *exception)
  3440. {
  3441. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3442. access |= PFERR_FETCH_MASK;
  3443. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3444. }
  3445. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3446. struct x86_exception *exception)
  3447. {
  3448. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3449. access |= PFERR_WRITE_MASK;
  3450. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3451. }
  3452. /* uses this to access any guest's mapped memory without checking CPL */
  3453. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3454. struct x86_exception *exception)
  3455. {
  3456. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3457. }
  3458. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3459. struct kvm_vcpu *vcpu, u32 access,
  3460. struct x86_exception *exception)
  3461. {
  3462. void *data = val;
  3463. int r = X86EMUL_CONTINUE;
  3464. while (bytes) {
  3465. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3466. exception);
  3467. unsigned offset = addr & (PAGE_SIZE-1);
  3468. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3469. int ret;
  3470. if (gpa == UNMAPPED_GVA)
  3471. return X86EMUL_PROPAGATE_FAULT;
  3472. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3473. if (ret < 0) {
  3474. r = X86EMUL_IO_NEEDED;
  3475. goto out;
  3476. }
  3477. bytes -= toread;
  3478. data += toread;
  3479. addr += toread;
  3480. }
  3481. out:
  3482. return r;
  3483. }
  3484. /* used for instruction fetching */
  3485. static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
  3486. gva_t addr, void *val, unsigned int bytes,
  3487. struct x86_exception *exception)
  3488. {
  3489. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3490. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3491. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3492. access | PFERR_FETCH_MASK,
  3493. exception);
  3494. }
  3495. int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  3496. gva_t addr, void *val, unsigned int bytes,
  3497. struct x86_exception *exception)
  3498. {
  3499. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3500. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3501. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3502. exception);
  3503. }
  3504. EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
  3505. static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3506. gva_t addr, void *val, unsigned int bytes,
  3507. struct x86_exception *exception)
  3508. {
  3509. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3510. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3511. }
  3512. int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3513. gva_t addr, void *val,
  3514. unsigned int bytes,
  3515. struct x86_exception *exception)
  3516. {
  3517. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3518. void *data = val;
  3519. int r = X86EMUL_CONTINUE;
  3520. while (bytes) {
  3521. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3522. PFERR_WRITE_MASK,
  3523. exception);
  3524. unsigned offset = addr & (PAGE_SIZE-1);
  3525. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3526. int ret;
  3527. if (gpa == UNMAPPED_GVA)
  3528. return X86EMUL_PROPAGATE_FAULT;
  3529. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3530. if (ret < 0) {
  3531. r = X86EMUL_IO_NEEDED;
  3532. goto out;
  3533. }
  3534. bytes -= towrite;
  3535. data += towrite;
  3536. addr += towrite;
  3537. }
  3538. out:
  3539. return r;
  3540. }
  3541. EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
  3542. static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
  3543. gpa_t *gpa, struct x86_exception *exception,
  3544. bool write)
  3545. {
  3546. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3547. if (vcpu_match_mmio_gva(vcpu, gva) &&
  3548. check_write_user_access(vcpu, write, access,
  3549. vcpu->arch.access)) {
  3550. *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
  3551. (gva & (PAGE_SIZE - 1));
  3552. trace_vcpu_match_mmio(gva, *gpa, write, false);
  3553. return 1;
  3554. }
  3555. if (write)
  3556. access |= PFERR_WRITE_MASK;
  3557. *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3558. if (*gpa == UNMAPPED_GVA)
  3559. return -1;
  3560. /* For APIC access vmexit */
  3561. if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3562. return 1;
  3563. if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
  3564. trace_vcpu_match_mmio(gva, *gpa, write, true);
  3565. return 1;
  3566. }
  3567. return 0;
  3568. }
  3569. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3570. const void *val, int bytes)
  3571. {
  3572. int ret;
  3573. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3574. if (ret < 0)
  3575. return 0;
  3576. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3577. return 1;
  3578. }
  3579. struct read_write_emulator_ops {
  3580. int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
  3581. int bytes);
  3582. int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3583. void *val, int bytes);
  3584. int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3585. int bytes, void *val);
  3586. int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3587. void *val, int bytes);
  3588. bool write;
  3589. };
  3590. static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
  3591. {
  3592. if (vcpu->mmio_read_completed) {
  3593. memcpy(val, vcpu->mmio_data, bytes);
  3594. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3595. vcpu->mmio_phys_addr, *(u64 *)val);
  3596. vcpu->mmio_read_completed = 0;
  3597. return 1;
  3598. }
  3599. return 0;
  3600. }
  3601. static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3602. void *val, int bytes)
  3603. {
  3604. return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
  3605. }
  3606. static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3607. void *val, int bytes)
  3608. {
  3609. return emulator_write_phys(vcpu, gpa, val, bytes);
  3610. }
  3611. static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
  3612. {
  3613. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3614. return vcpu_mmio_write(vcpu, gpa, bytes, val);
  3615. }
  3616. static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3617. void *val, int bytes)
  3618. {
  3619. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3620. return X86EMUL_IO_NEEDED;
  3621. }
  3622. static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3623. void *val, int bytes)
  3624. {
  3625. memcpy(vcpu->mmio_data, val, bytes);
  3626. memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
  3627. return X86EMUL_CONTINUE;
  3628. }
  3629. static struct read_write_emulator_ops read_emultor = {
  3630. .read_write_prepare = read_prepare,
  3631. .read_write_emulate = read_emulate,
  3632. .read_write_mmio = vcpu_mmio_read,
  3633. .read_write_exit_mmio = read_exit_mmio,
  3634. };
  3635. static struct read_write_emulator_ops write_emultor = {
  3636. .read_write_emulate = write_emulate,
  3637. .read_write_mmio = write_mmio,
  3638. .read_write_exit_mmio = write_exit_mmio,
  3639. .write = true,
  3640. };
  3641. static int emulator_read_write_onepage(unsigned long addr, void *val,
  3642. unsigned int bytes,
  3643. struct x86_exception *exception,
  3644. struct kvm_vcpu *vcpu,
  3645. struct read_write_emulator_ops *ops)
  3646. {
  3647. gpa_t gpa;
  3648. int handled, ret;
  3649. bool write = ops->write;
  3650. if (ops->read_write_prepare &&
  3651. ops->read_write_prepare(vcpu, val, bytes))
  3652. return X86EMUL_CONTINUE;
  3653. ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
  3654. if (ret < 0)
  3655. return X86EMUL_PROPAGATE_FAULT;
  3656. /* For APIC access vmexit */
  3657. if (ret)
  3658. goto mmio;
  3659. if (ops->read_write_emulate(vcpu, gpa, val, bytes))
  3660. return X86EMUL_CONTINUE;
  3661. mmio:
  3662. /*
  3663. * Is this MMIO handled locally?
  3664. */
  3665. handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
  3666. if (handled == bytes)
  3667. return X86EMUL_CONTINUE;
  3668. gpa += handled;
  3669. bytes -= handled;
  3670. val += handled;
  3671. vcpu->mmio_needed = 1;
  3672. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3673. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3674. vcpu->mmio_size = bytes;
  3675. vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
  3676. vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
  3677. vcpu->mmio_index = 0;
  3678. return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
  3679. }
  3680. int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
  3681. void *val, unsigned int bytes,
  3682. struct x86_exception *exception,
  3683. struct read_write_emulator_ops *ops)
  3684. {
  3685. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3686. /* Crossing a page boundary? */
  3687. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3688. int rc, now;
  3689. now = -addr & ~PAGE_MASK;
  3690. rc = emulator_read_write_onepage(addr, val, now, exception,
  3691. vcpu, ops);
  3692. if (rc != X86EMUL_CONTINUE)
  3693. return rc;
  3694. addr += now;
  3695. val += now;
  3696. bytes -= now;
  3697. }
  3698. return emulator_read_write_onepage(addr, val, bytes, exception,
  3699. vcpu, ops);
  3700. }
  3701. static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
  3702. unsigned long addr,
  3703. void *val,
  3704. unsigned int bytes,
  3705. struct x86_exception *exception)
  3706. {
  3707. return emulator_read_write(ctxt, addr, val, bytes,
  3708. exception, &read_emultor);
  3709. }
  3710. int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
  3711. unsigned long addr,
  3712. const void *val,
  3713. unsigned int bytes,
  3714. struct x86_exception *exception)
  3715. {
  3716. return emulator_read_write(ctxt, addr, (void *)val, bytes,
  3717. exception, &write_emultor);
  3718. }
  3719. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3720. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3721. #ifdef CONFIG_X86_64
  3722. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3723. #else
  3724. # define CMPXCHG64(ptr, old, new) \
  3725. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3726. #endif
  3727. static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
  3728. unsigned long addr,
  3729. const void *old,
  3730. const void *new,
  3731. unsigned int bytes,
  3732. struct x86_exception *exception)
  3733. {
  3734. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3735. gpa_t gpa;
  3736. struct page *page;
  3737. char *kaddr;
  3738. bool exchanged;
  3739. /* guests cmpxchg8b have to be emulated atomically */
  3740. if (bytes > 8 || (bytes & (bytes - 1)))
  3741. goto emul_write;
  3742. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3743. if (gpa == UNMAPPED_GVA ||
  3744. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3745. goto emul_write;
  3746. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3747. goto emul_write;
  3748. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3749. if (is_error_page(page)) {
  3750. kvm_release_page_clean(page);
  3751. goto emul_write;
  3752. }
  3753. kaddr = kmap_atomic(page, KM_USER0);
  3754. kaddr += offset_in_page(gpa);
  3755. switch (bytes) {
  3756. case 1:
  3757. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3758. break;
  3759. case 2:
  3760. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3761. break;
  3762. case 4:
  3763. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3764. break;
  3765. case 8:
  3766. exchanged = CMPXCHG64(kaddr, old, new);
  3767. break;
  3768. default:
  3769. BUG();
  3770. }
  3771. kunmap_atomic(kaddr, KM_USER0);
  3772. kvm_release_page_dirty(page);
  3773. if (!exchanged)
  3774. return X86EMUL_CMPXCHG_FAILED;
  3775. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3776. return X86EMUL_CONTINUE;
  3777. emul_write:
  3778. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3779. return emulator_write_emulated(ctxt, addr, new, bytes, exception);
  3780. }
  3781. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3782. {
  3783. /* TODO: String I/O for in kernel device */
  3784. int r;
  3785. if (vcpu->arch.pio.in)
  3786. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3787. vcpu->arch.pio.size, pd);
  3788. else
  3789. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3790. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3791. pd);
  3792. return r;
  3793. }
  3794. static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  3795. int size, unsigned short port, void *val,
  3796. unsigned int count)
  3797. {
  3798. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3799. if (vcpu->arch.pio.count)
  3800. goto data_avail;
  3801. trace_kvm_pio(0, port, size, count);
  3802. vcpu->arch.pio.port = port;
  3803. vcpu->arch.pio.in = 1;
  3804. vcpu->arch.pio.count = count;
  3805. vcpu->arch.pio.size = size;
  3806. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3807. data_avail:
  3808. memcpy(val, vcpu->arch.pio_data, size * count);
  3809. vcpu->arch.pio.count = 0;
  3810. return 1;
  3811. }
  3812. vcpu->run->exit_reason = KVM_EXIT_IO;
  3813. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3814. vcpu->run->io.size = size;
  3815. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3816. vcpu->run->io.count = count;
  3817. vcpu->run->io.port = port;
  3818. return 0;
  3819. }
  3820. static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
  3821. int size, unsigned short port,
  3822. const void *val, unsigned int count)
  3823. {
  3824. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3825. trace_kvm_pio(1, port, size, count);
  3826. vcpu->arch.pio.port = port;
  3827. vcpu->arch.pio.in = 0;
  3828. vcpu->arch.pio.count = count;
  3829. vcpu->arch.pio.size = size;
  3830. memcpy(vcpu->arch.pio_data, val, size * count);
  3831. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3832. vcpu->arch.pio.count = 0;
  3833. return 1;
  3834. }
  3835. vcpu->run->exit_reason = KVM_EXIT_IO;
  3836. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3837. vcpu->run->io.size = size;
  3838. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3839. vcpu->run->io.count = count;
  3840. vcpu->run->io.port = port;
  3841. return 0;
  3842. }
  3843. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3844. {
  3845. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3846. }
  3847. static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
  3848. {
  3849. kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
  3850. }
  3851. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3852. {
  3853. if (!need_emulate_wbinvd(vcpu))
  3854. return X86EMUL_CONTINUE;
  3855. if (kvm_x86_ops->has_wbinvd_exit()) {
  3856. int cpu = get_cpu();
  3857. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3858. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3859. wbinvd_ipi, NULL, 1);
  3860. put_cpu();
  3861. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3862. } else
  3863. wbinvd();
  3864. return X86EMUL_CONTINUE;
  3865. }
  3866. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3867. static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
  3868. {
  3869. kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
  3870. }
  3871. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3872. {
  3873. return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
  3874. }
  3875. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3876. {
  3877. return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
  3878. }
  3879. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3880. {
  3881. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3882. }
  3883. static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
  3884. {
  3885. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3886. unsigned long value;
  3887. switch (cr) {
  3888. case 0:
  3889. value = kvm_read_cr0(vcpu);
  3890. break;
  3891. case 2:
  3892. value = vcpu->arch.cr2;
  3893. break;
  3894. case 3:
  3895. value = kvm_read_cr3(vcpu);
  3896. break;
  3897. case 4:
  3898. value = kvm_read_cr4(vcpu);
  3899. break;
  3900. case 8:
  3901. value = kvm_get_cr8(vcpu);
  3902. break;
  3903. default:
  3904. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3905. return 0;
  3906. }
  3907. return value;
  3908. }
  3909. static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
  3910. {
  3911. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3912. int res = 0;
  3913. switch (cr) {
  3914. case 0:
  3915. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3916. break;
  3917. case 2:
  3918. vcpu->arch.cr2 = val;
  3919. break;
  3920. case 3:
  3921. res = kvm_set_cr3(vcpu, val);
  3922. break;
  3923. case 4:
  3924. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3925. break;
  3926. case 8:
  3927. res = kvm_set_cr8(vcpu, val);
  3928. break;
  3929. default:
  3930. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3931. res = -1;
  3932. }
  3933. return res;
  3934. }
  3935. static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
  3936. {
  3937. return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
  3938. }
  3939. static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3940. {
  3941. kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
  3942. }
  3943. static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3944. {
  3945. kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
  3946. }
  3947. static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3948. {
  3949. kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
  3950. }
  3951. static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3952. {
  3953. kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
  3954. }
  3955. static unsigned long emulator_get_cached_segment_base(
  3956. struct x86_emulate_ctxt *ctxt, int seg)
  3957. {
  3958. return get_segment_base(emul_to_vcpu(ctxt), seg);
  3959. }
  3960. static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
  3961. struct desc_struct *desc, u32 *base3,
  3962. int seg)
  3963. {
  3964. struct kvm_segment var;
  3965. kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
  3966. *selector = var.selector;
  3967. if (var.unusable)
  3968. return false;
  3969. if (var.g)
  3970. var.limit >>= 12;
  3971. set_desc_limit(desc, var.limit);
  3972. set_desc_base(desc, (unsigned long)var.base);
  3973. #ifdef CONFIG_X86_64
  3974. if (base3)
  3975. *base3 = var.base >> 32;
  3976. #endif
  3977. desc->type = var.type;
  3978. desc->s = var.s;
  3979. desc->dpl = var.dpl;
  3980. desc->p = var.present;
  3981. desc->avl = var.avl;
  3982. desc->l = var.l;
  3983. desc->d = var.db;
  3984. desc->g = var.g;
  3985. return true;
  3986. }
  3987. static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
  3988. struct desc_struct *desc, u32 base3,
  3989. int seg)
  3990. {
  3991. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3992. struct kvm_segment var;
  3993. var.selector = selector;
  3994. var.base = get_desc_base(desc);
  3995. #ifdef CONFIG_X86_64
  3996. var.base |= ((u64)base3) << 32;
  3997. #endif
  3998. var.limit = get_desc_limit(desc);
  3999. if (desc->g)
  4000. var.limit = (var.limit << 12) | 0xfff;
  4001. var.type = desc->type;
  4002. var.present = desc->p;
  4003. var.dpl = desc->dpl;
  4004. var.db = desc->d;
  4005. var.s = desc->s;
  4006. var.l = desc->l;
  4007. var.g = desc->g;
  4008. var.avl = desc->avl;
  4009. var.present = desc->p;
  4010. var.unusable = !var.present;
  4011. var.padding = 0;
  4012. kvm_set_segment(vcpu, &var, seg);
  4013. return;
  4014. }
  4015. static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
  4016. u32 msr_index, u64 *pdata)
  4017. {
  4018. return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
  4019. }
  4020. static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
  4021. u32 msr_index, u64 data)
  4022. {
  4023. return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
  4024. }
  4025. static void emulator_halt(struct x86_emulate_ctxt *ctxt)
  4026. {
  4027. emul_to_vcpu(ctxt)->arch.halt_request = 1;
  4028. }
  4029. static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
  4030. {
  4031. preempt_disable();
  4032. kvm_load_guest_fpu(emul_to_vcpu(ctxt));
  4033. /*
  4034. * CR0.TS may reference the host fpu state, not the guest fpu state,
  4035. * so it may be clear at this point.
  4036. */
  4037. clts();
  4038. }
  4039. static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
  4040. {
  4041. preempt_enable();
  4042. }
  4043. static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
  4044. struct x86_instruction_info *info,
  4045. enum x86_intercept_stage stage)
  4046. {
  4047. return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
  4048. }
  4049. static struct x86_emulate_ops emulate_ops = {
  4050. .read_std = kvm_read_guest_virt_system,
  4051. .write_std = kvm_write_guest_virt_system,
  4052. .fetch = kvm_fetch_guest_virt,
  4053. .read_emulated = emulator_read_emulated,
  4054. .write_emulated = emulator_write_emulated,
  4055. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  4056. .invlpg = emulator_invlpg,
  4057. .pio_in_emulated = emulator_pio_in_emulated,
  4058. .pio_out_emulated = emulator_pio_out_emulated,
  4059. .get_segment = emulator_get_segment,
  4060. .set_segment = emulator_set_segment,
  4061. .get_cached_segment_base = emulator_get_cached_segment_base,
  4062. .get_gdt = emulator_get_gdt,
  4063. .get_idt = emulator_get_idt,
  4064. .set_gdt = emulator_set_gdt,
  4065. .set_idt = emulator_set_idt,
  4066. .get_cr = emulator_get_cr,
  4067. .set_cr = emulator_set_cr,
  4068. .cpl = emulator_get_cpl,
  4069. .get_dr = emulator_get_dr,
  4070. .set_dr = emulator_set_dr,
  4071. .set_msr = emulator_set_msr,
  4072. .get_msr = emulator_get_msr,
  4073. .halt = emulator_halt,
  4074. .wbinvd = emulator_wbinvd,
  4075. .fix_hypercall = emulator_fix_hypercall,
  4076. .get_fpu = emulator_get_fpu,
  4077. .put_fpu = emulator_put_fpu,
  4078. .intercept = emulator_intercept,
  4079. };
  4080. static void cache_all_regs(struct kvm_vcpu *vcpu)
  4081. {
  4082. kvm_register_read(vcpu, VCPU_REGS_RAX);
  4083. kvm_register_read(vcpu, VCPU_REGS_RSP);
  4084. kvm_register_read(vcpu, VCPU_REGS_RIP);
  4085. vcpu->arch.regs_dirty = ~0;
  4086. }
  4087. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  4088. {
  4089. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  4090. /*
  4091. * an sti; sti; sequence only disable interrupts for the first
  4092. * instruction. So, if the last instruction, be it emulated or
  4093. * not, left the system with the INT_STI flag enabled, it
  4094. * means that the last instruction is an sti. We should not
  4095. * leave the flag on in this case. The same goes for mov ss
  4096. */
  4097. if (!(int_shadow & mask))
  4098. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  4099. }
  4100. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  4101. {
  4102. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4103. if (ctxt->exception.vector == PF_VECTOR)
  4104. kvm_propagate_fault(vcpu, &ctxt->exception);
  4105. else if (ctxt->exception.error_code_valid)
  4106. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  4107. ctxt->exception.error_code);
  4108. else
  4109. kvm_queue_exception(vcpu, ctxt->exception.vector);
  4110. }
  4111. static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
  4112. const unsigned long *regs)
  4113. {
  4114. memset(&ctxt->twobyte, 0,
  4115. (void *)&ctxt->regs - (void *)&ctxt->twobyte);
  4116. memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
  4117. ctxt->fetch.start = 0;
  4118. ctxt->fetch.end = 0;
  4119. ctxt->io_read.pos = 0;
  4120. ctxt->io_read.end = 0;
  4121. ctxt->mem_read.pos = 0;
  4122. ctxt->mem_read.end = 0;
  4123. }
  4124. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  4125. {
  4126. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4127. int cs_db, cs_l;
  4128. /*
  4129. * TODO: fix emulate.c to use guest_read/write_register
  4130. * instead of direct ->regs accesses, can save hundred cycles
  4131. * on Intel for instructions that don't read/change RSP, for
  4132. * for example.
  4133. */
  4134. cache_all_regs(vcpu);
  4135. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4136. ctxt->eflags = kvm_get_rflags(vcpu);
  4137. ctxt->eip = kvm_rip_read(vcpu);
  4138. ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4139. (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
  4140. cs_l ? X86EMUL_MODE_PROT64 :
  4141. cs_db ? X86EMUL_MODE_PROT32 :
  4142. X86EMUL_MODE_PROT16;
  4143. ctxt->guest_mode = is_guest_mode(vcpu);
  4144. init_decode_cache(ctxt, vcpu->arch.regs);
  4145. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4146. }
  4147. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
  4148. {
  4149. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4150. int ret;
  4151. init_emulate_ctxt(vcpu);
  4152. ctxt->op_bytes = 2;
  4153. ctxt->ad_bytes = 2;
  4154. ctxt->_eip = ctxt->eip + inc_eip;
  4155. ret = emulate_int_real(ctxt, irq);
  4156. if (ret != X86EMUL_CONTINUE)
  4157. return EMULATE_FAIL;
  4158. ctxt->eip = ctxt->_eip;
  4159. memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
  4160. kvm_rip_write(vcpu, ctxt->eip);
  4161. kvm_set_rflags(vcpu, ctxt->eflags);
  4162. if (irq == NMI_VECTOR)
  4163. vcpu->arch.nmi_pending = false;
  4164. else
  4165. vcpu->arch.interrupt.pending = false;
  4166. return EMULATE_DONE;
  4167. }
  4168. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  4169. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  4170. {
  4171. int r = EMULATE_DONE;
  4172. ++vcpu->stat.insn_emulation_fail;
  4173. trace_kvm_emulate_insn_failed(vcpu);
  4174. if (!is_guest_mode(vcpu)) {
  4175. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4176. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4177. vcpu->run->internal.ndata = 0;
  4178. r = EMULATE_FAIL;
  4179. }
  4180. kvm_queue_exception(vcpu, UD_VECTOR);
  4181. return r;
  4182. }
  4183. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  4184. {
  4185. gpa_t gpa;
  4186. if (tdp_enabled)
  4187. return false;
  4188. /*
  4189. * if emulation was due to access to shadowed page table
  4190. * and it failed try to unshadow page and re-entetr the
  4191. * guest to let CPU execute the instruction.
  4192. */
  4193. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  4194. return true;
  4195. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  4196. if (gpa == UNMAPPED_GVA)
  4197. return true; /* let cpu generate fault */
  4198. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  4199. return true;
  4200. return false;
  4201. }
  4202. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  4203. unsigned long cr2,
  4204. int emulation_type,
  4205. void *insn,
  4206. int insn_len)
  4207. {
  4208. int r;
  4209. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4210. bool writeback = true;
  4211. kvm_clear_exception_queue(vcpu);
  4212. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  4213. init_emulate_ctxt(vcpu);
  4214. ctxt->interruptibility = 0;
  4215. ctxt->have_exception = false;
  4216. ctxt->perm_ok = false;
  4217. ctxt->only_vendor_specific_insn
  4218. = emulation_type & EMULTYPE_TRAP_UD;
  4219. r = x86_decode_insn(ctxt, insn, insn_len);
  4220. trace_kvm_emulate_insn_start(vcpu);
  4221. ++vcpu->stat.insn_emulation;
  4222. if (r) {
  4223. if (emulation_type & EMULTYPE_TRAP_UD)
  4224. return EMULATE_FAIL;
  4225. if (reexecute_instruction(vcpu, cr2))
  4226. return EMULATE_DONE;
  4227. if (emulation_type & EMULTYPE_SKIP)
  4228. return EMULATE_FAIL;
  4229. return handle_emulation_failure(vcpu);
  4230. }
  4231. }
  4232. if (emulation_type & EMULTYPE_SKIP) {
  4233. kvm_rip_write(vcpu, ctxt->_eip);
  4234. return EMULATE_DONE;
  4235. }
  4236. /* this is needed for vmware backdoor interface to work since it
  4237. changes registers values during IO operation */
  4238. if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
  4239. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4240. memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
  4241. }
  4242. restart:
  4243. r = x86_emulate_insn(ctxt);
  4244. if (r == EMULATION_INTERCEPTED)
  4245. return EMULATE_DONE;
  4246. if (r == EMULATION_FAILED) {
  4247. if (reexecute_instruction(vcpu, cr2))
  4248. return EMULATE_DONE;
  4249. return handle_emulation_failure(vcpu);
  4250. }
  4251. if (ctxt->have_exception) {
  4252. inject_emulated_exception(vcpu);
  4253. r = EMULATE_DONE;
  4254. } else if (vcpu->arch.pio.count) {
  4255. if (!vcpu->arch.pio.in)
  4256. vcpu->arch.pio.count = 0;
  4257. else
  4258. writeback = false;
  4259. r = EMULATE_DO_MMIO;
  4260. } else if (vcpu->mmio_needed) {
  4261. if (!vcpu->mmio_is_write)
  4262. writeback = false;
  4263. r = EMULATE_DO_MMIO;
  4264. } else if (r == EMULATION_RESTART)
  4265. goto restart;
  4266. else
  4267. r = EMULATE_DONE;
  4268. if (writeback) {
  4269. toggle_interruptibility(vcpu, ctxt->interruptibility);
  4270. kvm_set_rflags(vcpu, ctxt->eflags);
  4271. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4272. memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
  4273. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4274. kvm_rip_write(vcpu, ctxt->eip);
  4275. } else
  4276. vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
  4277. return r;
  4278. }
  4279. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  4280. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  4281. {
  4282. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4283. int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
  4284. size, port, &val, 1);
  4285. /* do not return to emulator after return from userspace */
  4286. vcpu->arch.pio.count = 0;
  4287. return ret;
  4288. }
  4289. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  4290. static void tsc_bad(void *info)
  4291. {
  4292. __this_cpu_write(cpu_tsc_khz, 0);
  4293. }
  4294. static void tsc_khz_changed(void *data)
  4295. {
  4296. struct cpufreq_freqs *freq = data;
  4297. unsigned long khz = 0;
  4298. if (data)
  4299. khz = freq->new;
  4300. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4301. khz = cpufreq_quick_get(raw_smp_processor_id());
  4302. if (!khz)
  4303. khz = tsc_khz;
  4304. __this_cpu_write(cpu_tsc_khz, khz);
  4305. }
  4306. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  4307. void *data)
  4308. {
  4309. struct cpufreq_freqs *freq = data;
  4310. struct kvm *kvm;
  4311. struct kvm_vcpu *vcpu;
  4312. int i, send_ipi = 0;
  4313. /*
  4314. * We allow guests to temporarily run on slowing clocks,
  4315. * provided we notify them after, or to run on accelerating
  4316. * clocks, provided we notify them before. Thus time never
  4317. * goes backwards.
  4318. *
  4319. * However, we have a problem. We can't atomically update
  4320. * the frequency of a given CPU from this function; it is
  4321. * merely a notifier, which can be called from any CPU.
  4322. * Changing the TSC frequency at arbitrary points in time
  4323. * requires a recomputation of local variables related to
  4324. * the TSC for each VCPU. We must flag these local variables
  4325. * to be updated and be sure the update takes place with the
  4326. * new frequency before any guests proceed.
  4327. *
  4328. * Unfortunately, the combination of hotplug CPU and frequency
  4329. * change creates an intractable locking scenario; the order
  4330. * of when these callouts happen is undefined with respect to
  4331. * CPU hotplug, and they can race with each other. As such,
  4332. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  4333. * undefined; you can actually have a CPU frequency change take
  4334. * place in between the computation of X and the setting of the
  4335. * variable. To protect against this problem, all updates of
  4336. * the per_cpu tsc_khz variable are done in an interrupt
  4337. * protected IPI, and all callers wishing to update the value
  4338. * must wait for a synchronous IPI to complete (which is trivial
  4339. * if the caller is on the CPU already). This establishes the
  4340. * necessary total order on variable updates.
  4341. *
  4342. * Note that because a guest time update may take place
  4343. * anytime after the setting of the VCPU's request bit, the
  4344. * correct TSC value must be set before the request. However,
  4345. * to ensure the update actually makes it to any guest which
  4346. * starts running in hardware virtualization between the set
  4347. * and the acquisition of the spinlock, we must also ping the
  4348. * CPU after setting the request bit.
  4349. *
  4350. */
  4351. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4352. return 0;
  4353. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4354. return 0;
  4355. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4356. raw_spin_lock(&kvm_lock);
  4357. list_for_each_entry(kvm, &vm_list, vm_list) {
  4358. kvm_for_each_vcpu(i, vcpu, kvm) {
  4359. if (vcpu->cpu != freq->cpu)
  4360. continue;
  4361. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4362. if (vcpu->cpu != smp_processor_id())
  4363. send_ipi = 1;
  4364. }
  4365. }
  4366. raw_spin_unlock(&kvm_lock);
  4367. if (freq->old < freq->new && send_ipi) {
  4368. /*
  4369. * We upscale the frequency. Must make the guest
  4370. * doesn't see old kvmclock values while running with
  4371. * the new frequency, otherwise we risk the guest sees
  4372. * time go backwards.
  4373. *
  4374. * In case we update the frequency for another cpu
  4375. * (which might be in guest context) send an interrupt
  4376. * to kick the cpu out of guest context. Next time
  4377. * guest context is entered kvmclock will be updated,
  4378. * so the guest will not see stale values.
  4379. */
  4380. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4381. }
  4382. return 0;
  4383. }
  4384. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4385. .notifier_call = kvmclock_cpufreq_notifier
  4386. };
  4387. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4388. unsigned long action, void *hcpu)
  4389. {
  4390. unsigned int cpu = (unsigned long)hcpu;
  4391. switch (action) {
  4392. case CPU_ONLINE:
  4393. case CPU_DOWN_FAILED:
  4394. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4395. break;
  4396. case CPU_DOWN_PREPARE:
  4397. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4398. break;
  4399. }
  4400. return NOTIFY_OK;
  4401. }
  4402. static struct notifier_block kvmclock_cpu_notifier_block = {
  4403. .notifier_call = kvmclock_cpu_notifier,
  4404. .priority = -INT_MAX
  4405. };
  4406. static void kvm_timer_init(void)
  4407. {
  4408. int cpu;
  4409. max_tsc_khz = tsc_khz;
  4410. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4411. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4412. #ifdef CONFIG_CPU_FREQ
  4413. struct cpufreq_policy policy;
  4414. memset(&policy, 0, sizeof(policy));
  4415. cpu = get_cpu();
  4416. cpufreq_get_policy(&policy, cpu);
  4417. if (policy.cpuinfo.max_freq)
  4418. max_tsc_khz = policy.cpuinfo.max_freq;
  4419. put_cpu();
  4420. #endif
  4421. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4422. CPUFREQ_TRANSITION_NOTIFIER);
  4423. }
  4424. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4425. for_each_online_cpu(cpu)
  4426. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4427. }
  4428. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4429. static int kvm_is_in_guest(void)
  4430. {
  4431. return percpu_read(current_vcpu) != NULL;
  4432. }
  4433. static int kvm_is_user_mode(void)
  4434. {
  4435. int user_mode = 3;
  4436. if (percpu_read(current_vcpu))
  4437. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4438. return user_mode != 0;
  4439. }
  4440. static unsigned long kvm_get_guest_ip(void)
  4441. {
  4442. unsigned long ip = 0;
  4443. if (percpu_read(current_vcpu))
  4444. ip = kvm_rip_read(percpu_read(current_vcpu));
  4445. return ip;
  4446. }
  4447. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4448. .is_in_guest = kvm_is_in_guest,
  4449. .is_user_mode = kvm_is_user_mode,
  4450. .get_guest_ip = kvm_get_guest_ip,
  4451. };
  4452. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4453. {
  4454. percpu_write(current_vcpu, vcpu);
  4455. }
  4456. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4457. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4458. {
  4459. percpu_write(current_vcpu, NULL);
  4460. }
  4461. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4462. static void kvm_set_mmio_spte_mask(void)
  4463. {
  4464. u64 mask;
  4465. int maxphyaddr = boot_cpu_data.x86_phys_bits;
  4466. /*
  4467. * Set the reserved bits and the present bit of an paging-structure
  4468. * entry to generate page fault with PFER.RSV = 1.
  4469. */
  4470. mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
  4471. mask |= 1ull;
  4472. #ifdef CONFIG_X86_64
  4473. /*
  4474. * If reserved bit is not supported, clear the present bit to disable
  4475. * mmio page fault.
  4476. */
  4477. if (maxphyaddr == 52)
  4478. mask &= ~1ull;
  4479. #endif
  4480. kvm_mmu_set_mmio_spte_mask(mask);
  4481. }
  4482. int kvm_arch_init(void *opaque)
  4483. {
  4484. int r;
  4485. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4486. if (kvm_x86_ops) {
  4487. printk(KERN_ERR "kvm: already loaded the other module\n");
  4488. r = -EEXIST;
  4489. goto out;
  4490. }
  4491. if (!ops->cpu_has_kvm_support()) {
  4492. printk(KERN_ERR "kvm: no hardware support\n");
  4493. r = -EOPNOTSUPP;
  4494. goto out;
  4495. }
  4496. if (ops->disabled_by_bios()) {
  4497. printk(KERN_ERR "kvm: disabled by bios\n");
  4498. r = -EOPNOTSUPP;
  4499. goto out;
  4500. }
  4501. r = kvm_mmu_module_init();
  4502. if (r)
  4503. goto out;
  4504. kvm_set_mmio_spte_mask();
  4505. kvm_init_msr_list();
  4506. kvm_x86_ops = ops;
  4507. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4508. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4509. kvm_timer_init();
  4510. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4511. if (cpu_has_xsave)
  4512. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4513. return 0;
  4514. out:
  4515. return r;
  4516. }
  4517. void kvm_arch_exit(void)
  4518. {
  4519. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4520. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4521. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4522. CPUFREQ_TRANSITION_NOTIFIER);
  4523. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4524. kvm_x86_ops = NULL;
  4525. kvm_mmu_module_exit();
  4526. }
  4527. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4528. {
  4529. ++vcpu->stat.halt_exits;
  4530. if (irqchip_in_kernel(vcpu->kvm)) {
  4531. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4532. return 1;
  4533. } else {
  4534. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4535. return 0;
  4536. }
  4537. }
  4538. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4539. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4540. unsigned long a1)
  4541. {
  4542. if (is_long_mode(vcpu))
  4543. return a0;
  4544. else
  4545. return a0 | ((gpa_t)a1 << 32);
  4546. }
  4547. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4548. {
  4549. u64 param, ingpa, outgpa, ret;
  4550. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4551. bool fast, longmode;
  4552. int cs_db, cs_l;
  4553. /*
  4554. * hypercall generates UD from non zero cpl and real mode
  4555. * per HYPER-V spec
  4556. */
  4557. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4558. kvm_queue_exception(vcpu, UD_VECTOR);
  4559. return 0;
  4560. }
  4561. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4562. longmode = is_long_mode(vcpu) && cs_l == 1;
  4563. if (!longmode) {
  4564. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4565. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4566. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4567. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4568. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4569. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4570. }
  4571. #ifdef CONFIG_X86_64
  4572. else {
  4573. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4574. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4575. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4576. }
  4577. #endif
  4578. code = param & 0xffff;
  4579. fast = (param >> 16) & 0x1;
  4580. rep_cnt = (param >> 32) & 0xfff;
  4581. rep_idx = (param >> 48) & 0xfff;
  4582. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4583. switch (code) {
  4584. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4585. kvm_vcpu_on_spin(vcpu);
  4586. break;
  4587. default:
  4588. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4589. break;
  4590. }
  4591. ret = res | (((u64)rep_done & 0xfff) << 32);
  4592. if (longmode) {
  4593. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4594. } else {
  4595. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4596. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4597. }
  4598. return 1;
  4599. }
  4600. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4601. {
  4602. unsigned long nr, a0, a1, a2, a3, ret;
  4603. int r = 1;
  4604. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4605. return kvm_hv_hypercall(vcpu);
  4606. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4607. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4608. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4609. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4610. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4611. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4612. if (!is_long_mode(vcpu)) {
  4613. nr &= 0xFFFFFFFF;
  4614. a0 &= 0xFFFFFFFF;
  4615. a1 &= 0xFFFFFFFF;
  4616. a2 &= 0xFFFFFFFF;
  4617. a3 &= 0xFFFFFFFF;
  4618. }
  4619. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4620. ret = -KVM_EPERM;
  4621. goto out;
  4622. }
  4623. switch (nr) {
  4624. case KVM_HC_VAPIC_POLL_IRQ:
  4625. ret = 0;
  4626. break;
  4627. case KVM_HC_MMU_OP:
  4628. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4629. break;
  4630. default:
  4631. ret = -KVM_ENOSYS;
  4632. break;
  4633. }
  4634. out:
  4635. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4636. ++vcpu->stat.hypercalls;
  4637. return r;
  4638. }
  4639. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4640. int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
  4641. {
  4642. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4643. char instruction[3];
  4644. unsigned long rip = kvm_rip_read(vcpu);
  4645. /*
  4646. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4647. * to ensure that the updated hypercall appears atomically across all
  4648. * VCPUs.
  4649. */
  4650. kvm_mmu_zap_all(vcpu->kvm);
  4651. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4652. return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
  4653. }
  4654. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4655. {
  4656. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4657. int j, nent = vcpu->arch.cpuid_nent;
  4658. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4659. /* when no next entry is found, the current entry[i] is reselected */
  4660. for (j = i + 1; ; j = (j + 1) % nent) {
  4661. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4662. if (ej->function == e->function) {
  4663. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4664. return j;
  4665. }
  4666. }
  4667. return 0; /* silence gcc, even though control never reaches here */
  4668. }
  4669. /* find an entry with matching function, matching index (if needed), and that
  4670. * should be read next (if it's stateful) */
  4671. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4672. u32 function, u32 index)
  4673. {
  4674. if (e->function != function)
  4675. return 0;
  4676. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4677. return 0;
  4678. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4679. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4680. return 0;
  4681. return 1;
  4682. }
  4683. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4684. u32 function, u32 index)
  4685. {
  4686. int i;
  4687. struct kvm_cpuid_entry2 *best = NULL;
  4688. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4689. struct kvm_cpuid_entry2 *e;
  4690. e = &vcpu->arch.cpuid_entries[i];
  4691. if (is_matching_cpuid_entry(e, function, index)) {
  4692. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4693. move_to_next_stateful_cpuid_entry(vcpu, i);
  4694. best = e;
  4695. break;
  4696. }
  4697. }
  4698. return best;
  4699. }
  4700. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4701. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4702. {
  4703. struct kvm_cpuid_entry2 *best;
  4704. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4705. if (!best || best->eax < 0x80000008)
  4706. goto not_found;
  4707. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4708. if (best)
  4709. return best->eax & 0xff;
  4710. not_found:
  4711. return 36;
  4712. }
  4713. /*
  4714. * If no match is found, check whether we exceed the vCPU's limit
  4715. * and return the content of the highest valid _standard_ leaf instead.
  4716. * This is to satisfy the CPUID specification.
  4717. */
  4718. static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
  4719. u32 function, u32 index)
  4720. {
  4721. struct kvm_cpuid_entry2 *maxlevel;
  4722. maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
  4723. if (!maxlevel || maxlevel->eax >= function)
  4724. return NULL;
  4725. if (function & 0x80000000) {
  4726. maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
  4727. if (!maxlevel)
  4728. return NULL;
  4729. }
  4730. return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
  4731. }
  4732. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4733. {
  4734. u32 function, index;
  4735. struct kvm_cpuid_entry2 *best;
  4736. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4737. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4738. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4739. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4740. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4741. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4742. best = kvm_find_cpuid_entry(vcpu, function, index);
  4743. if (!best)
  4744. best = check_cpuid_limit(vcpu, function, index);
  4745. if (best) {
  4746. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4747. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4748. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4749. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4750. }
  4751. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4752. trace_kvm_cpuid(function,
  4753. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4754. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4755. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4756. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4757. }
  4758. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4759. /*
  4760. * Check if userspace requested an interrupt window, and that the
  4761. * interrupt window is open.
  4762. *
  4763. * No need to exit to userspace if we already have an interrupt queued.
  4764. */
  4765. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4766. {
  4767. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4768. vcpu->run->request_interrupt_window &&
  4769. kvm_arch_interrupt_allowed(vcpu));
  4770. }
  4771. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4772. {
  4773. struct kvm_run *kvm_run = vcpu->run;
  4774. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4775. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4776. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4777. if (irqchip_in_kernel(vcpu->kvm))
  4778. kvm_run->ready_for_interrupt_injection = 1;
  4779. else
  4780. kvm_run->ready_for_interrupt_injection =
  4781. kvm_arch_interrupt_allowed(vcpu) &&
  4782. !kvm_cpu_has_interrupt(vcpu) &&
  4783. !kvm_event_needs_reinjection(vcpu);
  4784. }
  4785. static void vapic_enter(struct kvm_vcpu *vcpu)
  4786. {
  4787. struct kvm_lapic *apic = vcpu->arch.apic;
  4788. struct page *page;
  4789. if (!apic || !apic->vapic_addr)
  4790. return;
  4791. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4792. vcpu->arch.apic->vapic_page = page;
  4793. }
  4794. static void vapic_exit(struct kvm_vcpu *vcpu)
  4795. {
  4796. struct kvm_lapic *apic = vcpu->arch.apic;
  4797. int idx;
  4798. if (!apic || !apic->vapic_addr)
  4799. return;
  4800. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4801. kvm_release_page_dirty(apic->vapic_page);
  4802. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4803. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4804. }
  4805. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4806. {
  4807. int max_irr, tpr;
  4808. if (!kvm_x86_ops->update_cr8_intercept)
  4809. return;
  4810. if (!vcpu->arch.apic)
  4811. return;
  4812. if (!vcpu->arch.apic->vapic_addr)
  4813. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4814. else
  4815. max_irr = -1;
  4816. if (max_irr != -1)
  4817. max_irr >>= 4;
  4818. tpr = kvm_lapic_get_cr8(vcpu);
  4819. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4820. }
  4821. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4822. {
  4823. /* try to reinject previous events if any */
  4824. if (vcpu->arch.exception.pending) {
  4825. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4826. vcpu->arch.exception.has_error_code,
  4827. vcpu->arch.exception.error_code);
  4828. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4829. vcpu->arch.exception.has_error_code,
  4830. vcpu->arch.exception.error_code,
  4831. vcpu->arch.exception.reinject);
  4832. return;
  4833. }
  4834. if (vcpu->arch.nmi_injected) {
  4835. kvm_x86_ops->set_nmi(vcpu);
  4836. return;
  4837. }
  4838. if (vcpu->arch.interrupt.pending) {
  4839. kvm_x86_ops->set_irq(vcpu);
  4840. return;
  4841. }
  4842. /* try to inject new event if pending */
  4843. if (vcpu->arch.nmi_pending) {
  4844. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4845. vcpu->arch.nmi_pending = false;
  4846. vcpu->arch.nmi_injected = true;
  4847. kvm_x86_ops->set_nmi(vcpu);
  4848. }
  4849. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4850. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4851. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4852. false);
  4853. kvm_x86_ops->set_irq(vcpu);
  4854. }
  4855. }
  4856. }
  4857. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4858. {
  4859. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4860. !vcpu->guest_xcr0_loaded) {
  4861. /* kvm_set_xcr() also depends on this */
  4862. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4863. vcpu->guest_xcr0_loaded = 1;
  4864. }
  4865. }
  4866. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4867. {
  4868. if (vcpu->guest_xcr0_loaded) {
  4869. if (vcpu->arch.xcr0 != host_xcr0)
  4870. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4871. vcpu->guest_xcr0_loaded = 0;
  4872. }
  4873. }
  4874. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4875. {
  4876. int r;
  4877. bool nmi_pending;
  4878. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4879. vcpu->run->request_interrupt_window;
  4880. if (vcpu->requests) {
  4881. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4882. kvm_mmu_unload(vcpu);
  4883. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4884. __kvm_migrate_timers(vcpu);
  4885. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4886. r = kvm_guest_time_update(vcpu);
  4887. if (unlikely(r))
  4888. goto out;
  4889. }
  4890. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4891. kvm_mmu_sync_roots(vcpu);
  4892. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4893. kvm_x86_ops->tlb_flush(vcpu);
  4894. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4895. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4896. r = 0;
  4897. goto out;
  4898. }
  4899. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4900. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4901. r = 0;
  4902. goto out;
  4903. }
  4904. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4905. vcpu->fpu_active = 0;
  4906. kvm_x86_ops->fpu_deactivate(vcpu);
  4907. }
  4908. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4909. /* Page is swapped out. Do synthetic halt */
  4910. vcpu->arch.apf.halted = true;
  4911. r = 1;
  4912. goto out;
  4913. }
  4914. if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
  4915. record_steal_time(vcpu);
  4916. }
  4917. r = kvm_mmu_reload(vcpu);
  4918. if (unlikely(r))
  4919. goto out;
  4920. /*
  4921. * An NMI can be injected between local nmi_pending read and
  4922. * vcpu->arch.nmi_pending read inside inject_pending_event().
  4923. * But in that case, KVM_REQ_EVENT will be set, which makes
  4924. * the race described above benign.
  4925. */
  4926. nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
  4927. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4928. inject_pending_event(vcpu);
  4929. /* enable NMI/IRQ window open exits if needed */
  4930. if (nmi_pending)
  4931. kvm_x86_ops->enable_nmi_window(vcpu);
  4932. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4933. kvm_x86_ops->enable_irq_window(vcpu);
  4934. if (kvm_lapic_enabled(vcpu)) {
  4935. update_cr8_intercept(vcpu);
  4936. kvm_lapic_sync_to_vapic(vcpu);
  4937. }
  4938. }
  4939. preempt_disable();
  4940. kvm_x86_ops->prepare_guest_switch(vcpu);
  4941. if (vcpu->fpu_active)
  4942. kvm_load_guest_fpu(vcpu);
  4943. kvm_load_guest_xcr0(vcpu);
  4944. vcpu->mode = IN_GUEST_MODE;
  4945. /* We should set ->mode before check ->requests,
  4946. * see the comment in make_all_cpus_request.
  4947. */
  4948. smp_mb();
  4949. local_irq_disable();
  4950. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4951. || need_resched() || signal_pending(current)) {
  4952. vcpu->mode = OUTSIDE_GUEST_MODE;
  4953. smp_wmb();
  4954. local_irq_enable();
  4955. preempt_enable();
  4956. kvm_x86_ops->cancel_injection(vcpu);
  4957. r = 1;
  4958. goto out;
  4959. }
  4960. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4961. kvm_guest_enter();
  4962. if (unlikely(vcpu->arch.switch_db_regs)) {
  4963. set_debugreg(0, 7);
  4964. set_debugreg(vcpu->arch.eff_db[0], 0);
  4965. set_debugreg(vcpu->arch.eff_db[1], 1);
  4966. set_debugreg(vcpu->arch.eff_db[2], 2);
  4967. set_debugreg(vcpu->arch.eff_db[3], 3);
  4968. }
  4969. trace_kvm_entry(vcpu->vcpu_id);
  4970. kvm_x86_ops->run(vcpu);
  4971. /*
  4972. * If the guest has used debug registers, at least dr7
  4973. * will be disabled while returning to the host.
  4974. * If we don't have active breakpoints in the host, we don't
  4975. * care about the messed up debug address registers. But if
  4976. * we have some of them active, restore the old state.
  4977. */
  4978. if (hw_breakpoint_active())
  4979. hw_breakpoint_restore();
  4980. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4981. vcpu->mode = OUTSIDE_GUEST_MODE;
  4982. smp_wmb();
  4983. local_irq_enable();
  4984. ++vcpu->stat.exits;
  4985. /*
  4986. * We must have an instruction between local_irq_enable() and
  4987. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4988. * the interrupt shadow. The stat.exits increment will do nicely.
  4989. * But we need to prevent reordering, hence this barrier():
  4990. */
  4991. barrier();
  4992. kvm_guest_exit();
  4993. preempt_enable();
  4994. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4995. /*
  4996. * Profile KVM exit RIPs:
  4997. */
  4998. if (unlikely(prof_on == KVM_PROFILING)) {
  4999. unsigned long rip = kvm_rip_read(vcpu);
  5000. profile_hit(KVM_PROFILING, (void *)rip);
  5001. }
  5002. kvm_lapic_sync_from_vapic(vcpu);
  5003. r = kvm_x86_ops->handle_exit(vcpu);
  5004. out:
  5005. return r;
  5006. }
  5007. static int __vcpu_run(struct kvm_vcpu *vcpu)
  5008. {
  5009. int r;
  5010. struct kvm *kvm = vcpu->kvm;
  5011. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  5012. pr_debug("vcpu %d received sipi with vector # %x\n",
  5013. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  5014. kvm_lapic_reset(vcpu);
  5015. r = kvm_arch_vcpu_reset(vcpu);
  5016. if (r)
  5017. return r;
  5018. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5019. }
  5020. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5021. vapic_enter(vcpu);
  5022. r = 1;
  5023. while (r > 0) {
  5024. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5025. !vcpu->arch.apf.halted)
  5026. r = vcpu_enter_guest(vcpu);
  5027. else {
  5028. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5029. kvm_vcpu_block(vcpu);
  5030. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5031. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  5032. {
  5033. switch(vcpu->arch.mp_state) {
  5034. case KVM_MP_STATE_HALTED:
  5035. vcpu->arch.mp_state =
  5036. KVM_MP_STATE_RUNNABLE;
  5037. case KVM_MP_STATE_RUNNABLE:
  5038. vcpu->arch.apf.halted = false;
  5039. break;
  5040. case KVM_MP_STATE_SIPI_RECEIVED:
  5041. default:
  5042. r = -EINTR;
  5043. break;
  5044. }
  5045. }
  5046. }
  5047. if (r <= 0)
  5048. break;
  5049. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  5050. if (kvm_cpu_has_pending_timer(vcpu))
  5051. kvm_inject_pending_timer_irqs(vcpu);
  5052. if (dm_request_for_irq_injection(vcpu)) {
  5053. r = -EINTR;
  5054. vcpu->run->exit_reason = KVM_EXIT_INTR;
  5055. ++vcpu->stat.request_irq_exits;
  5056. }
  5057. kvm_check_async_pf_completion(vcpu);
  5058. if (signal_pending(current)) {
  5059. r = -EINTR;
  5060. vcpu->run->exit_reason = KVM_EXIT_INTR;
  5061. ++vcpu->stat.signal_exits;
  5062. }
  5063. if (need_resched()) {
  5064. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5065. kvm_resched(vcpu);
  5066. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5067. }
  5068. }
  5069. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5070. vapic_exit(vcpu);
  5071. return r;
  5072. }
  5073. static int complete_mmio(struct kvm_vcpu *vcpu)
  5074. {
  5075. struct kvm_run *run = vcpu->run;
  5076. int r;
  5077. if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
  5078. return 1;
  5079. if (vcpu->mmio_needed) {
  5080. vcpu->mmio_needed = 0;
  5081. if (!vcpu->mmio_is_write)
  5082. memcpy(vcpu->mmio_data + vcpu->mmio_index,
  5083. run->mmio.data, 8);
  5084. vcpu->mmio_index += 8;
  5085. if (vcpu->mmio_index < vcpu->mmio_size) {
  5086. run->exit_reason = KVM_EXIT_MMIO;
  5087. run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
  5088. memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
  5089. run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
  5090. run->mmio.is_write = vcpu->mmio_is_write;
  5091. vcpu->mmio_needed = 1;
  5092. return 0;
  5093. }
  5094. if (vcpu->mmio_is_write)
  5095. return 1;
  5096. vcpu->mmio_read_completed = 1;
  5097. }
  5098. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  5099. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  5100. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  5101. if (r != EMULATE_DONE)
  5102. return 0;
  5103. return 1;
  5104. }
  5105. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  5106. {
  5107. int r;
  5108. sigset_t sigsaved;
  5109. if (!tsk_used_math(current) && init_fpu(current))
  5110. return -ENOMEM;
  5111. if (vcpu->sigset_active)
  5112. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  5113. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  5114. kvm_vcpu_block(vcpu);
  5115. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  5116. r = -EAGAIN;
  5117. goto out;
  5118. }
  5119. /* re-sync apic's tpr */
  5120. if (!irqchip_in_kernel(vcpu->kvm)) {
  5121. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  5122. r = -EINVAL;
  5123. goto out;
  5124. }
  5125. }
  5126. r = complete_mmio(vcpu);
  5127. if (r <= 0)
  5128. goto out;
  5129. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  5130. kvm_register_write(vcpu, VCPU_REGS_RAX,
  5131. kvm_run->hypercall.ret);
  5132. r = __vcpu_run(vcpu);
  5133. out:
  5134. post_kvm_run_save(vcpu);
  5135. if (vcpu->sigset_active)
  5136. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  5137. return r;
  5138. }
  5139. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5140. {
  5141. if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
  5142. /*
  5143. * We are here if userspace calls get_regs() in the middle of
  5144. * instruction emulation. Registers state needs to be copied
  5145. * back from emulation context to vcpu. Usrapace shouldn't do
  5146. * that usually, but some bad designed PV devices (vmware
  5147. * backdoor interface) need this to work
  5148. */
  5149. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  5150. memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
  5151. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5152. }
  5153. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  5154. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  5155. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  5156. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  5157. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  5158. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  5159. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5160. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  5161. #ifdef CONFIG_X86_64
  5162. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  5163. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  5164. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  5165. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  5166. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  5167. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  5168. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  5169. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  5170. #endif
  5171. regs->rip = kvm_rip_read(vcpu);
  5172. regs->rflags = kvm_get_rflags(vcpu);
  5173. return 0;
  5174. }
  5175. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5176. {
  5177. vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
  5178. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5179. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  5180. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  5181. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  5182. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  5183. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  5184. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  5185. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  5186. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  5187. #ifdef CONFIG_X86_64
  5188. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  5189. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  5190. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  5191. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  5192. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  5193. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  5194. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  5195. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  5196. #endif
  5197. kvm_rip_write(vcpu, regs->rip);
  5198. kvm_set_rflags(vcpu, regs->rflags);
  5199. vcpu->arch.exception.pending = false;
  5200. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5201. return 0;
  5202. }
  5203. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  5204. {
  5205. struct kvm_segment cs;
  5206. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  5207. *db = cs.db;
  5208. *l = cs.l;
  5209. }
  5210. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  5211. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  5212. struct kvm_sregs *sregs)
  5213. {
  5214. struct desc_ptr dt;
  5215. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5216. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5217. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5218. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5219. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5220. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5221. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5222. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5223. kvm_x86_ops->get_idt(vcpu, &dt);
  5224. sregs->idt.limit = dt.size;
  5225. sregs->idt.base = dt.address;
  5226. kvm_x86_ops->get_gdt(vcpu, &dt);
  5227. sregs->gdt.limit = dt.size;
  5228. sregs->gdt.base = dt.address;
  5229. sregs->cr0 = kvm_read_cr0(vcpu);
  5230. sregs->cr2 = vcpu->arch.cr2;
  5231. sregs->cr3 = kvm_read_cr3(vcpu);
  5232. sregs->cr4 = kvm_read_cr4(vcpu);
  5233. sregs->cr8 = kvm_get_cr8(vcpu);
  5234. sregs->efer = vcpu->arch.efer;
  5235. sregs->apic_base = kvm_get_apic_base(vcpu);
  5236. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  5237. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  5238. set_bit(vcpu->arch.interrupt.nr,
  5239. (unsigned long *)sregs->interrupt_bitmap);
  5240. return 0;
  5241. }
  5242. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  5243. struct kvm_mp_state *mp_state)
  5244. {
  5245. mp_state->mp_state = vcpu->arch.mp_state;
  5246. return 0;
  5247. }
  5248. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  5249. struct kvm_mp_state *mp_state)
  5250. {
  5251. vcpu->arch.mp_state = mp_state->mp_state;
  5252. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5253. return 0;
  5254. }
  5255. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  5256. bool has_error_code, u32 error_code)
  5257. {
  5258. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  5259. int ret;
  5260. init_emulate_ctxt(vcpu);
  5261. ret = emulator_task_switch(ctxt, tss_selector, reason,
  5262. has_error_code, error_code);
  5263. if (ret)
  5264. return EMULATE_FAIL;
  5265. memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
  5266. kvm_rip_write(vcpu, ctxt->eip);
  5267. kvm_set_rflags(vcpu, ctxt->eflags);
  5268. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5269. return EMULATE_DONE;
  5270. }
  5271. EXPORT_SYMBOL_GPL(kvm_task_switch);
  5272. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  5273. struct kvm_sregs *sregs)
  5274. {
  5275. int mmu_reset_needed = 0;
  5276. int pending_vec, max_bits, idx;
  5277. struct desc_ptr dt;
  5278. dt.size = sregs->idt.limit;
  5279. dt.address = sregs->idt.base;
  5280. kvm_x86_ops->set_idt(vcpu, &dt);
  5281. dt.size = sregs->gdt.limit;
  5282. dt.address = sregs->gdt.base;
  5283. kvm_x86_ops->set_gdt(vcpu, &dt);
  5284. vcpu->arch.cr2 = sregs->cr2;
  5285. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  5286. vcpu->arch.cr3 = sregs->cr3;
  5287. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  5288. kvm_set_cr8(vcpu, sregs->cr8);
  5289. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  5290. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  5291. kvm_set_apic_base(vcpu, sregs->apic_base);
  5292. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  5293. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  5294. vcpu->arch.cr0 = sregs->cr0;
  5295. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  5296. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  5297. if (sregs->cr4 & X86_CR4_OSXSAVE)
  5298. update_cpuid(vcpu);
  5299. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5300. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  5301. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  5302. mmu_reset_needed = 1;
  5303. }
  5304. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5305. if (mmu_reset_needed)
  5306. kvm_mmu_reset_context(vcpu);
  5307. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  5308. pending_vec = find_first_bit(
  5309. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  5310. if (pending_vec < max_bits) {
  5311. kvm_queue_interrupt(vcpu, pending_vec, false);
  5312. pr_debug("Set back pending irq %d\n", pending_vec);
  5313. }
  5314. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5315. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5316. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5317. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5318. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5319. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5320. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5321. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5322. update_cr8_intercept(vcpu);
  5323. /* Older userspace won't unhalt the vcpu on reset. */
  5324. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  5325. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  5326. !is_protmode(vcpu))
  5327. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5328. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5329. return 0;
  5330. }
  5331. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  5332. struct kvm_guest_debug *dbg)
  5333. {
  5334. unsigned long rflags;
  5335. int i, r;
  5336. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  5337. r = -EBUSY;
  5338. if (vcpu->arch.exception.pending)
  5339. goto out;
  5340. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  5341. kvm_queue_exception(vcpu, DB_VECTOR);
  5342. else
  5343. kvm_queue_exception(vcpu, BP_VECTOR);
  5344. }
  5345. /*
  5346. * Read rflags as long as potentially injected trace flags are still
  5347. * filtered out.
  5348. */
  5349. rflags = kvm_get_rflags(vcpu);
  5350. vcpu->guest_debug = dbg->control;
  5351. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  5352. vcpu->guest_debug = 0;
  5353. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  5354. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  5355. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  5356. vcpu->arch.switch_db_regs =
  5357. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  5358. } else {
  5359. for (i = 0; i < KVM_NR_DB_REGS; i++)
  5360. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  5361. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  5362. }
  5363. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5364. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  5365. get_segment_base(vcpu, VCPU_SREG_CS);
  5366. /*
  5367. * Trigger an rflags update that will inject or remove the trace
  5368. * flags.
  5369. */
  5370. kvm_set_rflags(vcpu, rflags);
  5371. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  5372. r = 0;
  5373. out:
  5374. return r;
  5375. }
  5376. /*
  5377. * Translate a guest virtual address to a guest physical address.
  5378. */
  5379. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  5380. struct kvm_translation *tr)
  5381. {
  5382. unsigned long vaddr = tr->linear_address;
  5383. gpa_t gpa;
  5384. int idx;
  5385. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5386. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  5387. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5388. tr->physical_address = gpa;
  5389. tr->valid = gpa != UNMAPPED_GVA;
  5390. tr->writeable = 1;
  5391. tr->usermode = 0;
  5392. return 0;
  5393. }
  5394. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5395. {
  5396. struct i387_fxsave_struct *fxsave =
  5397. &vcpu->arch.guest_fpu.state->fxsave;
  5398. memcpy(fpu->fpr, fxsave->st_space, 128);
  5399. fpu->fcw = fxsave->cwd;
  5400. fpu->fsw = fxsave->swd;
  5401. fpu->ftwx = fxsave->twd;
  5402. fpu->last_opcode = fxsave->fop;
  5403. fpu->last_ip = fxsave->rip;
  5404. fpu->last_dp = fxsave->rdp;
  5405. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  5406. return 0;
  5407. }
  5408. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5409. {
  5410. struct i387_fxsave_struct *fxsave =
  5411. &vcpu->arch.guest_fpu.state->fxsave;
  5412. memcpy(fxsave->st_space, fpu->fpr, 128);
  5413. fxsave->cwd = fpu->fcw;
  5414. fxsave->swd = fpu->fsw;
  5415. fxsave->twd = fpu->ftwx;
  5416. fxsave->fop = fpu->last_opcode;
  5417. fxsave->rip = fpu->last_ip;
  5418. fxsave->rdp = fpu->last_dp;
  5419. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5420. return 0;
  5421. }
  5422. int fx_init(struct kvm_vcpu *vcpu)
  5423. {
  5424. int err;
  5425. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5426. if (err)
  5427. return err;
  5428. fpu_finit(&vcpu->arch.guest_fpu);
  5429. /*
  5430. * Ensure guest xcr0 is valid for loading
  5431. */
  5432. vcpu->arch.xcr0 = XSTATE_FP;
  5433. vcpu->arch.cr0 |= X86_CR0_ET;
  5434. return 0;
  5435. }
  5436. EXPORT_SYMBOL_GPL(fx_init);
  5437. static void fx_free(struct kvm_vcpu *vcpu)
  5438. {
  5439. fpu_free(&vcpu->arch.guest_fpu);
  5440. }
  5441. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5442. {
  5443. if (vcpu->guest_fpu_loaded)
  5444. return;
  5445. /*
  5446. * Restore all possible states in the guest,
  5447. * and assume host would use all available bits.
  5448. * Guest xcr0 would be loaded later.
  5449. */
  5450. kvm_put_guest_xcr0(vcpu);
  5451. vcpu->guest_fpu_loaded = 1;
  5452. unlazy_fpu(current);
  5453. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5454. trace_kvm_fpu(1);
  5455. }
  5456. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5457. {
  5458. kvm_put_guest_xcr0(vcpu);
  5459. if (!vcpu->guest_fpu_loaded)
  5460. return;
  5461. vcpu->guest_fpu_loaded = 0;
  5462. fpu_save_init(&vcpu->arch.guest_fpu);
  5463. ++vcpu->stat.fpu_reload;
  5464. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5465. trace_kvm_fpu(0);
  5466. }
  5467. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5468. {
  5469. kvmclock_reset(vcpu);
  5470. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5471. fx_free(vcpu);
  5472. kvm_x86_ops->vcpu_free(vcpu);
  5473. }
  5474. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5475. unsigned int id)
  5476. {
  5477. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5478. printk_once(KERN_WARNING
  5479. "kvm: SMP vm created on host with unstable TSC; "
  5480. "guest TSC will not be reliable\n");
  5481. return kvm_x86_ops->vcpu_create(kvm, id);
  5482. }
  5483. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5484. {
  5485. int r;
  5486. vcpu->arch.mtrr_state.have_fixed = 1;
  5487. vcpu_load(vcpu);
  5488. r = kvm_arch_vcpu_reset(vcpu);
  5489. if (r == 0)
  5490. r = kvm_mmu_setup(vcpu);
  5491. vcpu_put(vcpu);
  5492. return r;
  5493. }
  5494. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5495. {
  5496. vcpu->arch.apf.msr_val = 0;
  5497. vcpu_load(vcpu);
  5498. kvm_mmu_unload(vcpu);
  5499. vcpu_put(vcpu);
  5500. fx_free(vcpu);
  5501. kvm_x86_ops->vcpu_free(vcpu);
  5502. }
  5503. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5504. {
  5505. vcpu->arch.nmi_pending = false;
  5506. vcpu->arch.nmi_injected = false;
  5507. vcpu->arch.switch_db_regs = 0;
  5508. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5509. vcpu->arch.dr6 = DR6_FIXED_1;
  5510. vcpu->arch.dr7 = DR7_FIXED_1;
  5511. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5512. vcpu->arch.apf.msr_val = 0;
  5513. vcpu->arch.st.msr_val = 0;
  5514. kvmclock_reset(vcpu);
  5515. kvm_clear_async_pf_completion_queue(vcpu);
  5516. kvm_async_pf_hash_reset(vcpu);
  5517. vcpu->arch.apf.halted = false;
  5518. return kvm_x86_ops->vcpu_reset(vcpu);
  5519. }
  5520. int kvm_arch_hardware_enable(void *garbage)
  5521. {
  5522. struct kvm *kvm;
  5523. struct kvm_vcpu *vcpu;
  5524. int i;
  5525. kvm_shared_msr_cpu_online();
  5526. list_for_each_entry(kvm, &vm_list, vm_list)
  5527. kvm_for_each_vcpu(i, vcpu, kvm)
  5528. if (vcpu->cpu == smp_processor_id())
  5529. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5530. return kvm_x86_ops->hardware_enable(garbage);
  5531. }
  5532. void kvm_arch_hardware_disable(void *garbage)
  5533. {
  5534. kvm_x86_ops->hardware_disable(garbage);
  5535. drop_user_return_notifiers(garbage);
  5536. }
  5537. int kvm_arch_hardware_setup(void)
  5538. {
  5539. return kvm_x86_ops->hardware_setup();
  5540. }
  5541. void kvm_arch_hardware_unsetup(void)
  5542. {
  5543. kvm_x86_ops->hardware_unsetup();
  5544. }
  5545. void kvm_arch_check_processor_compat(void *rtn)
  5546. {
  5547. kvm_x86_ops->check_processor_compatibility(rtn);
  5548. }
  5549. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5550. {
  5551. struct page *page;
  5552. struct kvm *kvm;
  5553. int r;
  5554. BUG_ON(vcpu->kvm == NULL);
  5555. kvm = vcpu->kvm;
  5556. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5557. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5558. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5559. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5560. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5561. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5562. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5563. else
  5564. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5565. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5566. if (!page) {
  5567. r = -ENOMEM;
  5568. goto fail;
  5569. }
  5570. vcpu->arch.pio_data = page_address(page);
  5571. kvm_init_tsc_catchup(vcpu, max_tsc_khz);
  5572. r = kvm_mmu_create(vcpu);
  5573. if (r < 0)
  5574. goto fail_free_pio_data;
  5575. if (irqchip_in_kernel(kvm)) {
  5576. r = kvm_create_lapic(vcpu);
  5577. if (r < 0)
  5578. goto fail_mmu_destroy;
  5579. }
  5580. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5581. GFP_KERNEL);
  5582. if (!vcpu->arch.mce_banks) {
  5583. r = -ENOMEM;
  5584. goto fail_free_lapic;
  5585. }
  5586. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5587. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5588. goto fail_free_mce_banks;
  5589. kvm_async_pf_hash_reset(vcpu);
  5590. return 0;
  5591. fail_free_mce_banks:
  5592. kfree(vcpu->arch.mce_banks);
  5593. fail_free_lapic:
  5594. kvm_free_lapic(vcpu);
  5595. fail_mmu_destroy:
  5596. kvm_mmu_destroy(vcpu);
  5597. fail_free_pio_data:
  5598. free_page((unsigned long)vcpu->arch.pio_data);
  5599. fail:
  5600. return r;
  5601. }
  5602. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5603. {
  5604. int idx;
  5605. kfree(vcpu->arch.mce_banks);
  5606. kvm_free_lapic(vcpu);
  5607. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5608. kvm_mmu_destroy(vcpu);
  5609. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5610. free_page((unsigned long)vcpu->arch.pio_data);
  5611. }
  5612. int kvm_arch_init_vm(struct kvm *kvm)
  5613. {
  5614. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5615. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5616. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5617. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5618. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5619. return 0;
  5620. }
  5621. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5622. {
  5623. vcpu_load(vcpu);
  5624. kvm_mmu_unload(vcpu);
  5625. vcpu_put(vcpu);
  5626. }
  5627. static void kvm_free_vcpus(struct kvm *kvm)
  5628. {
  5629. unsigned int i;
  5630. struct kvm_vcpu *vcpu;
  5631. /*
  5632. * Unpin any mmu pages first.
  5633. */
  5634. kvm_for_each_vcpu(i, vcpu, kvm) {
  5635. kvm_clear_async_pf_completion_queue(vcpu);
  5636. kvm_unload_vcpu_mmu(vcpu);
  5637. }
  5638. kvm_for_each_vcpu(i, vcpu, kvm)
  5639. kvm_arch_vcpu_free(vcpu);
  5640. mutex_lock(&kvm->lock);
  5641. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5642. kvm->vcpus[i] = NULL;
  5643. atomic_set(&kvm->online_vcpus, 0);
  5644. mutex_unlock(&kvm->lock);
  5645. }
  5646. void kvm_arch_sync_events(struct kvm *kvm)
  5647. {
  5648. kvm_free_all_assigned_devices(kvm);
  5649. kvm_free_pit(kvm);
  5650. }
  5651. void kvm_arch_destroy_vm(struct kvm *kvm)
  5652. {
  5653. kvm_iommu_unmap_guest(kvm);
  5654. kfree(kvm->arch.vpic);
  5655. kfree(kvm->arch.vioapic);
  5656. kvm_free_vcpus(kvm);
  5657. if (kvm->arch.apic_access_page)
  5658. put_page(kvm->arch.apic_access_page);
  5659. if (kvm->arch.ept_identity_pagetable)
  5660. put_page(kvm->arch.ept_identity_pagetable);
  5661. }
  5662. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5663. struct kvm_memory_slot *memslot,
  5664. struct kvm_memory_slot old,
  5665. struct kvm_userspace_memory_region *mem,
  5666. int user_alloc)
  5667. {
  5668. int npages = memslot->npages;
  5669. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5670. /* Prevent internal slot pages from being moved by fork()/COW. */
  5671. if (memslot->id >= KVM_MEMORY_SLOTS)
  5672. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5673. /*To keep backward compatibility with older userspace,
  5674. *x86 needs to hanlde !user_alloc case.
  5675. */
  5676. if (!user_alloc) {
  5677. if (npages && !old.rmap) {
  5678. unsigned long userspace_addr;
  5679. down_write(&current->mm->mmap_sem);
  5680. userspace_addr = do_mmap(NULL, 0,
  5681. npages * PAGE_SIZE,
  5682. PROT_READ | PROT_WRITE,
  5683. map_flags,
  5684. 0);
  5685. up_write(&current->mm->mmap_sem);
  5686. if (IS_ERR((void *)userspace_addr))
  5687. return PTR_ERR((void *)userspace_addr);
  5688. memslot->userspace_addr = userspace_addr;
  5689. }
  5690. }
  5691. return 0;
  5692. }
  5693. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5694. struct kvm_userspace_memory_region *mem,
  5695. struct kvm_memory_slot old,
  5696. int user_alloc)
  5697. {
  5698. int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
  5699. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5700. int ret;
  5701. down_write(&current->mm->mmap_sem);
  5702. ret = do_munmap(current->mm, old.userspace_addr,
  5703. old.npages * PAGE_SIZE);
  5704. up_write(&current->mm->mmap_sem);
  5705. if (ret < 0)
  5706. printk(KERN_WARNING
  5707. "kvm_vm_ioctl_set_memory_region: "
  5708. "failed to munmap memory\n");
  5709. }
  5710. if (!kvm->arch.n_requested_mmu_pages)
  5711. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5712. spin_lock(&kvm->mmu_lock);
  5713. if (nr_mmu_pages)
  5714. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5715. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5716. spin_unlock(&kvm->mmu_lock);
  5717. }
  5718. void kvm_arch_flush_shadow(struct kvm *kvm)
  5719. {
  5720. kvm_mmu_zap_all(kvm);
  5721. kvm_reload_remote_mmus(kvm);
  5722. }
  5723. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5724. {
  5725. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5726. !vcpu->arch.apf.halted)
  5727. || !list_empty_careful(&vcpu->async_pf.done)
  5728. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5729. || vcpu->arch.nmi_pending ||
  5730. (kvm_arch_interrupt_allowed(vcpu) &&
  5731. kvm_cpu_has_interrupt(vcpu));
  5732. }
  5733. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5734. {
  5735. int me;
  5736. int cpu = vcpu->cpu;
  5737. if (waitqueue_active(&vcpu->wq)) {
  5738. wake_up_interruptible(&vcpu->wq);
  5739. ++vcpu->stat.halt_wakeup;
  5740. }
  5741. me = get_cpu();
  5742. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5743. if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
  5744. smp_send_reschedule(cpu);
  5745. put_cpu();
  5746. }
  5747. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5748. {
  5749. return kvm_x86_ops->interrupt_allowed(vcpu);
  5750. }
  5751. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5752. {
  5753. unsigned long current_rip = kvm_rip_read(vcpu) +
  5754. get_segment_base(vcpu, VCPU_SREG_CS);
  5755. return current_rip == linear_rip;
  5756. }
  5757. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5758. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5759. {
  5760. unsigned long rflags;
  5761. rflags = kvm_x86_ops->get_rflags(vcpu);
  5762. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5763. rflags &= ~X86_EFLAGS_TF;
  5764. return rflags;
  5765. }
  5766. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5767. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5768. {
  5769. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5770. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5771. rflags |= X86_EFLAGS_TF;
  5772. kvm_x86_ops->set_rflags(vcpu, rflags);
  5773. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5774. }
  5775. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5776. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5777. {
  5778. int r;
  5779. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5780. is_error_page(work->page))
  5781. return;
  5782. r = kvm_mmu_reload(vcpu);
  5783. if (unlikely(r))
  5784. return;
  5785. if (!vcpu->arch.mmu.direct_map &&
  5786. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  5787. return;
  5788. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5789. }
  5790. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5791. {
  5792. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5793. }
  5794. static inline u32 kvm_async_pf_next_probe(u32 key)
  5795. {
  5796. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5797. }
  5798. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5799. {
  5800. u32 key = kvm_async_pf_hash_fn(gfn);
  5801. while (vcpu->arch.apf.gfns[key] != ~0)
  5802. key = kvm_async_pf_next_probe(key);
  5803. vcpu->arch.apf.gfns[key] = gfn;
  5804. }
  5805. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5806. {
  5807. int i;
  5808. u32 key = kvm_async_pf_hash_fn(gfn);
  5809. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5810. (vcpu->arch.apf.gfns[key] != gfn &&
  5811. vcpu->arch.apf.gfns[key] != ~0); i++)
  5812. key = kvm_async_pf_next_probe(key);
  5813. return key;
  5814. }
  5815. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5816. {
  5817. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5818. }
  5819. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5820. {
  5821. u32 i, j, k;
  5822. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5823. while (true) {
  5824. vcpu->arch.apf.gfns[i] = ~0;
  5825. do {
  5826. j = kvm_async_pf_next_probe(j);
  5827. if (vcpu->arch.apf.gfns[j] == ~0)
  5828. return;
  5829. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5830. /*
  5831. * k lies cyclically in ]i,j]
  5832. * | i.k.j |
  5833. * |....j i.k.| or |.k..j i...|
  5834. */
  5835. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5836. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5837. i = j;
  5838. }
  5839. }
  5840. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5841. {
  5842. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5843. sizeof(val));
  5844. }
  5845. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5846. struct kvm_async_pf *work)
  5847. {
  5848. struct x86_exception fault;
  5849. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5850. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5851. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5852. (vcpu->arch.apf.send_user_only &&
  5853. kvm_x86_ops->get_cpl(vcpu) == 0))
  5854. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5855. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5856. fault.vector = PF_VECTOR;
  5857. fault.error_code_valid = true;
  5858. fault.error_code = 0;
  5859. fault.nested_page_fault = false;
  5860. fault.address = work->arch.token;
  5861. kvm_inject_page_fault(vcpu, &fault);
  5862. }
  5863. }
  5864. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5865. struct kvm_async_pf *work)
  5866. {
  5867. struct x86_exception fault;
  5868. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5869. if (is_error_page(work->page))
  5870. work->arch.token = ~0; /* broadcast wakeup */
  5871. else
  5872. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5873. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5874. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5875. fault.vector = PF_VECTOR;
  5876. fault.error_code_valid = true;
  5877. fault.error_code = 0;
  5878. fault.nested_page_fault = false;
  5879. fault.address = work->arch.token;
  5880. kvm_inject_page_fault(vcpu, &fault);
  5881. }
  5882. vcpu->arch.apf.halted = false;
  5883. }
  5884. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5885. {
  5886. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5887. return true;
  5888. else
  5889. return !kvm_event_needs_reinjection(vcpu) &&
  5890. kvm_x86_ops->interrupt_allowed(vcpu);
  5891. }
  5892. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5893. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5894. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5895. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5896. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5897. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5898. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5899. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5900. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5901. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5902. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5903. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);