security.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. security_fixup_ops(&default_security_ops);
  52. security_ops = &default_security_ops;
  53. do_security_initcalls();
  54. return 0;
  55. }
  56. /* Save user chosen LSM */
  57. static int __init choose_lsm(char *str)
  58. {
  59. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  60. return 1;
  61. }
  62. __setup("security=", choose_lsm);
  63. /**
  64. * security_module_enable - Load given security module on boot ?
  65. * @ops: a pointer to the struct security_operations that is to be checked.
  66. *
  67. * Each LSM must pass this method before registering its own operations
  68. * to avoid security registration races. This method may also be used
  69. * to check if your LSM is currently loaded during kernel initialization.
  70. *
  71. * Return true if:
  72. * -The passed LSM is the one chosen by user at boot time,
  73. * -or user didn't specify a specific LSM and we're the first to ask
  74. * for registration permission,
  75. * -or the passed LSM is currently loaded.
  76. * Otherwise, return false.
  77. */
  78. int __init security_module_enable(struct security_operations *ops)
  79. {
  80. if (!*chosen_lsm)
  81. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  82. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  83. return 0;
  84. return 1;
  85. }
  86. /**
  87. * register_security - registers a security framework with the kernel
  88. * @ops: a pointer to the struct security_options that is to be registered
  89. *
  90. * This function allows a security module to register itself with the
  91. * kernel security subsystem. Some rudimentary checking is done on the @ops
  92. * value passed to this function. You'll need to check first if your LSM
  93. * is allowed to register its @ops by calling security_module_enable(@ops).
  94. *
  95. * If there is already a security module registered with the kernel,
  96. * an error will be returned. Otherwise %0 is returned on success.
  97. */
  98. int register_security(struct security_operations *ops)
  99. {
  100. if (verify(ops)) {
  101. printk(KERN_DEBUG "%s could not verify "
  102. "security_operations structure.\n", __func__);
  103. return -EINVAL;
  104. }
  105. if (security_ops != &default_security_ops)
  106. return -EAGAIN;
  107. security_ops = ops;
  108. return 0;
  109. }
  110. /* Security operations */
  111. int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
  112. {
  113. return security_ops->ptrace_may_access(child, mode);
  114. }
  115. int security_ptrace_traceme(struct task_struct *parent)
  116. {
  117. return security_ops->ptrace_traceme(parent);
  118. }
  119. int security_capget(struct task_struct *target,
  120. kernel_cap_t *effective,
  121. kernel_cap_t *inheritable,
  122. kernel_cap_t *permitted)
  123. {
  124. return security_ops->capget(target, effective, inheritable, permitted);
  125. }
  126. int security_capset(struct cred *new, const struct cred *old,
  127. const kernel_cap_t *effective,
  128. const kernel_cap_t *inheritable,
  129. const kernel_cap_t *permitted)
  130. {
  131. return security_ops->capset(new, old,
  132. effective, inheritable, permitted);
  133. }
  134. int security_capable(int cap)
  135. {
  136. return security_ops->capable(cap, SECURITY_CAP_AUDIT);
  137. }
  138. int security_task_capable(struct task_struct *tsk, int cap)
  139. {
  140. const struct cred *cred;
  141. int ret;
  142. cred = get_task_cred(tsk);
  143. ret = security_ops->task_capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
  144. put_cred(cred);
  145. return ret;
  146. }
  147. int security_task_capable_noaudit(struct task_struct *tsk, int cap)
  148. {
  149. const struct cred *cred;
  150. int ret;
  151. cred = get_task_cred(tsk);
  152. ret = security_ops->task_capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
  153. put_cred(cred);
  154. return ret;
  155. }
  156. int security_acct(struct file *file)
  157. {
  158. return security_ops->acct(file);
  159. }
  160. int security_sysctl(struct ctl_table *table, int op)
  161. {
  162. return security_ops->sysctl(table, op);
  163. }
  164. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  165. {
  166. return security_ops->quotactl(cmds, type, id, sb);
  167. }
  168. int security_quota_on(struct dentry *dentry)
  169. {
  170. return security_ops->quota_on(dentry);
  171. }
  172. int security_syslog(int type)
  173. {
  174. return security_ops->syslog(type);
  175. }
  176. int security_settime(struct timespec *ts, struct timezone *tz)
  177. {
  178. return security_ops->settime(ts, tz);
  179. }
  180. int security_vm_enough_memory(long pages)
  181. {
  182. WARN_ON(current->mm == NULL);
  183. return security_ops->vm_enough_memory(current->mm, pages);
  184. }
  185. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  186. {
  187. WARN_ON(mm == NULL);
  188. return security_ops->vm_enough_memory(mm, pages);
  189. }
  190. int security_vm_enough_memory_kern(long pages)
  191. {
  192. /* If current->mm is a kernel thread then we will pass NULL,
  193. for this specific case that is fine */
  194. return security_ops->vm_enough_memory(current->mm, pages);
  195. }
  196. int security_bprm_set_creds(struct linux_binprm *bprm)
  197. {
  198. return security_ops->bprm_set_creds(bprm);
  199. }
  200. int security_bprm_check(struct linux_binprm *bprm)
  201. {
  202. return security_ops->bprm_check_security(bprm);
  203. }
  204. void security_bprm_committing_creds(struct linux_binprm *bprm)
  205. {
  206. security_ops->bprm_committing_creds(bprm);
  207. }
  208. void security_bprm_committed_creds(struct linux_binprm *bprm)
  209. {
  210. security_ops->bprm_committed_creds(bprm);
  211. }
  212. int security_bprm_secureexec(struct linux_binprm *bprm)
  213. {
  214. return security_ops->bprm_secureexec(bprm);
  215. }
  216. int security_sb_alloc(struct super_block *sb)
  217. {
  218. return security_ops->sb_alloc_security(sb);
  219. }
  220. void security_sb_free(struct super_block *sb)
  221. {
  222. security_ops->sb_free_security(sb);
  223. }
  224. int security_sb_copy_data(char *orig, char *copy)
  225. {
  226. return security_ops->sb_copy_data(orig, copy);
  227. }
  228. EXPORT_SYMBOL(security_sb_copy_data);
  229. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  230. {
  231. return security_ops->sb_kern_mount(sb, flags, data);
  232. }
  233. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  234. {
  235. return security_ops->sb_show_options(m, sb);
  236. }
  237. int security_sb_statfs(struct dentry *dentry)
  238. {
  239. return security_ops->sb_statfs(dentry);
  240. }
  241. int security_sb_mount(char *dev_name, struct path *path,
  242. char *type, unsigned long flags, void *data)
  243. {
  244. return security_ops->sb_mount(dev_name, path, type, flags, data);
  245. }
  246. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  247. {
  248. return security_ops->sb_check_sb(mnt, path);
  249. }
  250. int security_sb_umount(struct vfsmount *mnt, int flags)
  251. {
  252. return security_ops->sb_umount(mnt, flags);
  253. }
  254. void security_sb_umount_close(struct vfsmount *mnt)
  255. {
  256. security_ops->sb_umount_close(mnt);
  257. }
  258. void security_sb_umount_busy(struct vfsmount *mnt)
  259. {
  260. security_ops->sb_umount_busy(mnt);
  261. }
  262. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  263. {
  264. security_ops->sb_post_remount(mnt, flags, data);
  265. }
  266. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  267. {
  268. security_ops->sb_post_addmount(mnt, mountpoint);
  269. }
  270. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  271. {
  272. return security_ops->sb_pivotroot(old_path, new_path);
  273. }
  274. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  275. {
  276. security_ops->sb_post_pivotroot(old_path, new_path);
  277. }
  278. int security_sb_set_mnt_opts(struct super_block *sb,
  279. struct security_mnt_opts *opts)
  280. {
  281. return security_ops->sb_set_mnt_opts(sb, opts);
  282. }
  283. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  284. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  285. struct super_block *newsb)
  286. {
  287. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  288. }
  289. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  290. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  291. {
  292. return security_ops->sb_parse_opts_str(options, opts);
  293. }
  294. EXPORT_SYMBOL(security_sb_parse_opts_str);
  295. int security_inode_alloc(struct inode *inode)
  296. {
  297. inode->i_security = NULL;
  298. return security_ops->inode_alloc_security(inode);
  299. }
  300. void security_inode_free(struct inode *inode)
  301. {
  302. security_ops->inode_free_security(inode);
  303. }
  304. int security_inode_init_security(struct inode *inode, struct inode *dir,
  305. char **name, void **value, size_t *len)
  306. {
  307. if (unlikely(IS_PRIVATE(inode)))
  308. return -EOPNOTSUPP;
  309. return security_ops->inode_init_security(inode, dir, name, value, len);
  310. }
  311. EXPORT_SYMBOL(security_inode_init_security);
  312. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  313. {
  314. if (unlikely(IS_PRIVATE(dir)))
  315. return 0;
  316. return security_ops->inode_create(dir, dentry, mode);
  317. }
  318. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  319. struct dentry *new_dentry)
  320. {
  321. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  322. return 0;
  323. return security_ops->inode_link(old_dentry, dir, new_dentry);
  324. }
  325. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  326. {
  327. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  328. return 0;
  329. return security_ops->inode_unlink(dir, dentry);
  330. }
  331. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  332. const char *old_name)
  333. {
  334. if (unlikely(IS_PRIVATE(dir)))
  335. return 0;
  336. return security_ops->inode_symlink(dir, dentry, old_name);
  337. }
  338. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  339. {
  340. if (unlikely(IS_PRIVATE(dir)))
  341. return 0;
  342. return security_ops->inode_mkdir(dir, dentry, mode);
  343. }
  344. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  345. {
  346. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  347. return 0;
  348. return security_ops->inode_rmdir(dir, dentry);
  349. }
  350. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  351. {
  352. if (unlikely(IS_PRIVATE(dir)))
  353. return 0;
  354. return security_ops->inode_mknod(dir, dentry, mode, dev);
  355. }
  356. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  357. struct inode *new_dir, struct dentry *new_dentry)
  358. {
  359. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  360. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  361. return 0;
  362. return security_ops->inode_rename(old_dir, old_dentry,
  363. new_dir, new_dentry);
  364. }
  365. int security_inode_readlink(struct dentry *dentry)
  366. {
  367. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  368. return 0;
  369. return security_ops->inode_readlink(dentry);
  370. }
  371. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  372. {
  373. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  374. return 0;
  375. return security_ops->inode_follow_link(dentry, nd);
  376. }
  377. int security_inode_permission(struct inode *inode, int mask)
  378. {
  379. if (unlikely(IS_PRIVATE(inode)))
  380. return 0;
  381. return security_ops->inode_permission(inode, mask);
  382. }
  383. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  384. {
  385. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  386. return 0;
  387. return security_ops->inode_setattr(dentry, attr);
  388. }
  389. EXPORT_SYMBOL_GPL(security_inode_setattr);
  390. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  391. {
  392. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  393. return 0;
  394. return security_ops->inode_getattr(mnt, dentry);
  395. }
  396. void security_inode_delete(struct inode *inode)
  397. {
  398. if (unlikely(IS_PRIVATE(inode)))
  399. return;
  400. security_ops->inode_delete(inode);
  401. }
  402. int security_inode_setxattr(struct dentry *dentry, const char *name,
  403. const void *value, size_t size, int flags)
  404. {
  405. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  406. return 0;
  407. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  408. }
  409. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  410. const void *value, size_t size, int flags)
  411. {
  412. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  413. return;
  414. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  415. }
  416. int security_inode_getxattr(struct dentry *dentry, const char *name)
  417. {
  418. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  419. return 0;
  420. return security_ops->inode_getxattr(dentry, name);
  421. }
  422. int security_inode_listxattr(struct dentry *dentry)
  423. {
  424. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  425. return 0;
  426. return security_ops->inode_listxattr(dentry);
  427. }
  428. int security_inode_removexattr(struct dentry *dentry, const char *name)
  429. {
  430. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  431. return 0;
  432. return security_ops->inode_removexattr(dentry, name);
  433. }
  434. int security_inode_need_killpriv(struct dentry *dentry)
  435. {
  436. return security_ops->inode_need_killpriv(dentry);
  437. }
  438. int security_inode_killpriv(struct dentry *dentry)
  439. {
  440. return security_ops->inode_killpriv(dentry);
  441. }
  442. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  443. {
  444. if (unlikely(IS_PRIVATE(inode)))
  445. return 0;
  446. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  447. }
  448. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  449. {
  450. if (unlikely(IS_PRIVATE(inode)))
  451. return 0;
  452. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  453. }
  454. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  455. {
  456. if (unlikely(IS_PRIVATE(inode)))
  457. return 0;
  458. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  459. }
  460. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  461. {
  462. security_ops->inode_getsecid(inode, secid);
  463. }
  464. int security_file_permission(struct file *file, int mask)
  465. {
  466. return security_ops->file_permission(file, mask);
  467. }
  468. int security_file_alloc(struct file *file)
  469. {
  470. return security_ops->file_alloc_security(file);
  471. }
  472. void security_file_free(struct file *file)
  473. {
  474. security_ops->file_free_security(file);
  475. }
  476. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  477. {
  478. return security_ops->file_ioctl(file, cmd, arg);
  479. }
  480. int security_file_mmap(struct file *file, unsigned long reqprot,
  481. unsigned long prot, unsigned long flags,
  482. unsigned long addr, unsigned long addr_only)
  483. {
  484. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  485. }
  486. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  487. unsigned long prot)
  488. {
  489. return security_ops->file_mprotect(vma, reqprot, prot);
  490. }
  491. int security_file_lock(struct file *file, unsigned int cmd)
  492. {
  493. return security_ops->file_lock(file, cmd);
  494. }
  495. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  496. {
  497. return security_ops->file_fcntl(file, cmd, arg);
  498. }
  499. int security_file_set_fowner(struct file *file)
  500. {
  501. return security_ops->file_set_fowner(file);
  502. }
  503. int security_file_send_sigiotask(struct task_struct *tsk,
  504. struct fown_struct *fown, int sig)
  505. {
  506. return security_ops->file_send_sigiotask(tsk, fown, sig);
  507. }
  508. int security_file_receive(struct file *file)
  509. {
  510. return security_ops->file_receive(file);
  511. }
  512. int security_dentry_open(struct file *file, const struct cred *cred)
  513. {
  514. return security_ops->dentry_open(file, cred);
  515. }
  516. int security_task_create(unsigned long clone_flags)
  517. {
  518. return security_ops->task_create(clone_flags);
  519. }
  520. void security_cred_free(struct cred *cred)
  521. {
  522. security_ops->cred_free(cred);
  523. }
  524. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  525. {
  526. return security_ops->cred_prepare(new, old, gfp);
  527. }
  528. void security_commit_creds(struct cred *new, const struct cred *old)
  529. {
  530. security_ops->cred_commit(new, old);
  531. }
  532. int security_kernel_act_as(struct cred *new, u32 secid)
  533. {
  534. return security_ops->kernel_act_as(new, secid);
  535. }
  536. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  537. {
  538. return security_ops->kernel_create_files_as(new, inode);
  539. }
  540. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  541. {
  542. return security_ops->task_setuid(id0, id1, id2, flags);
  543. }
  544. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  545. int flags)
  546. {
  547. return security_ops->task_fix_setuid(new, old, flags);
  548. }
  549. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  550. {
  551. return security_ops->task_setgid(id0, id1, id2, flags);
  552. }
  553. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  554. {
  555. return security_ops->task_setpgid(p, pgid);
  556. }
  557. int security_task_getpgid(struct task_struct *p)
  558. {
  559. return security_ops->task_getpgid(p);
  560. }
  561. int security_task_getsid(struct task_struct *p)
  562. {
  563. return security_ops->task_getsid(p);
  564. }
  565. void security_task_getsecid(struct task_struct *p, u32 *secid)
  566. {
  567. security_ops->task_getsecid(p, secid);
  568. }
  569. EXPORT_SYMBOL(security_task_getsecid);
  570. int security_task_setgroups(struct group_info *group_info)
  571. {
  572. return security_ops->task_setgroups(group_info);
  573. }
  574. int security_task_setnice(struct task_struct *p, int nice)
  575. {
  576. return security_ops->task_setnice(p, nice);
  577. }
  578. int security_task_setioprio(struct task_struct *p, int ioprio)
  579. {
  580. return security_ops->task_setioprio(p, ioprio);
  581. }
  582. int security_task_getioprio(struct task_struct *p)
  583. {
  584. return security_ops->task_getioprio(p);
  585. }
  586. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  587. {
  588. return security_ops->task_setrlimit(resource, new_rlim);
  589. }
  590. int security_task_setscheduler(struct task_struct *p,
  591. int policy, struct sched_param *lp)
  592. {
  593. return security_ops->task_setscheduler(p, policy, lp);
  594. }
  595. int security_task_getscheduler(struct task_struct *p)
  596. {
  597. return security_ops->task_getscheduler(p);
  598. }
  599. int security_task_movememory(struct task_struct *p)
  600. {
  601. return security_ops->task_movememory(p);
  602. }
  603. int security_task_kill(struct task_struct *p, struct siginfo *info,
  604. int sig, u32 secid)
  605. {
  606. return security_ops->task_kill(p, info, sig, secid);
  607. }
  608. int security_task_wait(struct task_struct *p)
  609. {
  610. return security_ops->task_wait(p);
  611. }
  612. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  613. unsigned long arg4, unsigned long arg5)
  614. {
  615. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  616. }
  617. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  618. {
  619. security_ops->task_to_inode(p, inode);
  620. }
  621. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  622. {
  623. return security_ops->ipc_permission(ipcp, flag);
  624. }
  625. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  626. {
  627. security_ops->ipc_getsecid(ipcp, secid);
  628. }
  629. int security_msg_msg_alloc(struct msg_msg *msg)
  630. {
  631. return security_ops->msg_msg_alloc_security(msg);
  632. }
  633. void security_msg_msg_free(struct msg_msg *msg)
  634. {
  635. security_ops->msg_msg_free_security(msg);
  636. }
  637. int security_msg_queue_alloc(struct msg_queue *msq)
  638. {
  639. return security_ops->msg_queue_alloc_security(msq);
  640. }
  641. void security_msg_queue_free(struct msg_queue *msq)
  642. {
  643. security_ops->msg_queue_free_security(msq);
  644. }
  645. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  646. {
  647. return security_ops->msg_queue_associate(msq, msqflg);
  648. }
  649. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  650. {
  651. return security_ops->msg_queue_msgctl(msq, cmd);
  652. }
  653. int security_msg_queue_msgsnd(struct msg_queue *msq,
  654. struct msg_msg *msg, int msqflg)
  655. {
  656. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  657. }
  658. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  659. struct task_struct *target, long type, int mode)
  660. {
  661. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  662. }
  663. int security_shm_alloc(struct shmid_kernel *shp)
  664. {
  665. return security_ops->shm_alloc_security(shp);
  666. }
  667. void security_shm_free(struct shmid_kernel *shp)
  668. {
  669. security_ops->shm_free_security(shp);
  670. }
  671. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  672. {
  673. return security_ops->shm_associate(shp, shmflg);
  674. }
  675. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  676. {
  677. return security_ops->shm_shmctl(shp, cmd);
  678. }
  679. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  680. {
  681. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  682. }
  683. int security_sem_alloc(struct sem_array *sma)
  684. {
  685. return security_ops->sem_alloc_security(sma);
  686. }
  687. void security_sem_free(struct sem_array *sma)
  688. {
  689. security_ops->sem_free_security(sma);
  690. }
  691. int security_sem_associate(struct sem_array *sma, int semflg)
  692. {
  693. return security_ops->sem_associate(sma, semflg);
  694. }
  695. int security_sem_semctl(struct sem_array *sma, int cmd)
  696. {
  697. return security_ops->sem_semctl(sma, cmd);
  698. }
  699. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  700. unsigned nsops, int alter)
  701. {
  702. return security_ops->sem_semop(sma, sops, nsops, alter);
  703. }
  704. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  705. {
  706. if (unlikely(inode && IS_PRIVATE(inode)))
  707. return;
  708. security_ops->d_instantiate(dentry, inode);
  709. }
  710. EXPORT_SYMBOL(security_d_instantiate);
  711. int security_getprocattr(struct task_struct *p, char *name, char **value)
  712. {
  713. return security_ops->getprocattr(p, name, value);
  714. }
  715. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  716. {
  717. return security_ops->setprocattr(p, name, value, size);
  718. }
  719. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  720. {
  721. return security_ops->netlink_send(sk, skb);
  722. }
  723. int security_netlink_recv(struct sk_buff *skb, int cap)
  724. {
  725. return security_ops->netlink_recv(skb, cap);
  726. }
  727. EXPORT_SYMBOL(security_netlink_recv);
  728. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  729. {
  730. return security_ops->secid_to_secctx(secid, secdata, seclen);
  731. }
  732. EXPORT_SYMBOL(security_secid_to_secctx);
  733. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  734. {
  735. return security_ops->secctx_to_secid(secdata, seclen, secid);
  736. }
  737. EXPORT_SYMBOL(security_secctx_to_secid);
  738. void security_release_secctx(char *secdata, u32 seclen)
  739. {
  740. security_ops->release_secctx(secdata, seclen);
  741. }
  742. EXPORT_SYMBOL(security_release_secctx);
  743. #ifdef CONFIG_SECURITY_NETWORK
  744. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  745. struct sock *newsk)
  746. {
  747. return security_ops->unix_stream_connect(sock, other, newsk);
  748. }
  749. EXPORT_SYMBOL(security_unix_stream_connect);
  750. int security_unix_may_send(struct socket *sock, struct socket *other)
  751. {
  752. return security_ops->unix_may_send(sock, other);
  753. }
  754. EXPORT_SYMBOL(security_unix_may_send);
  755. int security_socket_create(int family, int type, int protocol, int kern)
  756. {
  757. return security_ops->socket_create(family, type, protocol, kern);
  758. }
  759. int security_socket_post_create(struct socket *sock, int family,
  760. int type, int protocol, int kern)
  761. {
  762. return security_ops->socket_post_create(sock, family, type,
  763. protocol, kern);
  764. }
  765. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  766. {
  767. return security_ops->socket_bind(sock, address, addrlen);
  768. }
  769. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  770. {
  771. return security_ops->socket_connect(sock, address, addrlen);
  772. }
  773. int security_socket_listen(struct socket *sock, int backlog)
  774. {
  775. return security_ops->socket_listen(sock, backlog);
  776. }
  777. int security_socket_accept(struct socket *sock, struct socket *newsock)
  778. {
  779. return security_ops->socket_accept(sock, newsock);
  780. }
  781. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  782. {
  783. security_ops->socket_post_accept(sock, newsock);
  784. }
  785. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  786. {
  787. return security_ops->socket_sendmsg(sock, msg, size);
  788. }
  789. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  790. int size, int flags)
  791. {
  792. return security_ops->socket_recvmsg(sock, msg, size, flags);
  793. }
  794. int security_socket_getsockname(struct socket *sock)
  795. {
  796. return security_ops->socket_getsockname(sock);
  797. }
  798. int security_socket_getpeername(struct socket *sock)
  799. {
  800. return security_ops->socket_getpeername(sock);
  801. }
  802. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  803. {
  804. return security_ops->socket_getsockopt(sock, level, optname);
  805. }
  806. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  807. {
  808. return security_ops->socket_setsockopt(sock, level, optname);
  809. }
  810. int security_socket_shutdown(struct socket *sock, int how)
  811. {
  812. return security_ops->socket_shutdown(sock, how);
  813. }
  814. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  815. {
  816. return security_ops->socket_sock_rcv_skb(sk, skb);
  817. }
  818. EXPORT_SYMBOL(security_sock_rcv_skb);
  819. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  820. int __user *optlen, unsigned len)
  821. {
  822. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  823. }
  824. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  825. {
  826. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  827. }
  828. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  829. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  830. {
  831. return security_ops->sk_alloc_security(sk, family, priority);
  832. }
  833. void security_sk_free(struct sock *sk)
  834. {
  835. security_ops->sk_free_security(sk);
  836. }
  837. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  838. {
  839. security_ops->sk_clone_security(sk, newsk);
  840. }
  841. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  842. {
  843. security_ops->sk_getsecid(sk, &fl->secid);
  844. }
  845. EXPORT_SYMBOL(security_sk_classify_flow);
  846. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  847. {
  848. security_ops->req_classify_flow(req, fl);
  849. }
  850. EXPORT_SYMBOL(security_req_classify_flow);
  851. void security_sock_graft(struct sock *sk, struct socket *parent)
  852. {
  853. security_ops->sock_graft(sk, parent);
  854. }
  855. EXPORT_SYMBOL(security_sock_graft);
  856. int security_inet_conn_request(struct sock *sk,
  857. struct sk_buff *skb, struct request_sock *req)
  858. {
  859. return security_ops->inet_conn_request(sk, skb, req);
  860. }
  861. EXPORT_SYMBOL(security_inet_conn_request);
  862. void security_inet_csk_clone(struct sock *newsk,
  863. const struct request_sock *req)
  864. {
  865. security_ops->inet_csk_clone(newsk, req);
  866. }
  867. void security_inet_conn_established(struct sock *sk,
  868. struct sk_buff *skb)
  869. {
  870. security_ops->inet_conn_established(sk, skb);
  871. }
  872. #endif /* CONFIG_SECURITY_NETWORK */
  873. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  874. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  875. {
  876. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  877. }
  878. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  879. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  880. struct xfrm_sec_ctx **new_ctxp)
  881. {
  882. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  883. }
  884. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  885. {
  886. security_ops->xfrm_policy_free_security(ctx);
  887. }
  888. EXPORT_SYMBOL(security_xfrm_policy_free);
  889. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  890. {
  891. return security_ops->xfrm_policy_delete_security(ctx);
  892. }
  893. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  894. {
  895. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  896. }
  897. EXPORT_SYMBOL(security_xfrm_state_alloc);
  898. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  899. struct xfrm_sec_ctx *polsec, u32 secid)
  900. {
  901. if (!polsec)
  902. return 0;
  903. /*
  904. * We want the context to be taken from secid which is usually
  905. * from the sock.
  906. */
  907. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  908. }
  909. int security_xfrm_state_delete(struct xfrm_state *x)
  910. {
  911. return security_ops->xfrm_state_delete_security(x);
  912. }
  913. EXPORT_SYMBOL(security_xfrm_state_delete);
  914. void security_xfrm_state_free(struct xfrm_state *x)
  915. {
  916. security_ops->xfrm_state_free_security(x);
  917. }
  918. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  919. {
  920. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  921. }
  922. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  923. struct xfrm_policy *xp, struct flowi *fl)
  924. {
  925. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  926. }
  927. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  928. {
  929. return security_ops->xfrm_decode_session(skb, secid, 1);
  930. }
  931. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  932. {
  933. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  934. BUG_ON(rc);
  935. }
  936. EXPORT_SYMBOL(security_skb_classify_flow);
  937. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  938. #ifdef CONFIG_KEYS
  939. int security_key_alloc(struct key *key, const struct cred *cred,
  940. unsigned long flags)
  941. {
  942. return security_ops->key_alloc(key, cred, flags);
  943. }
  944. void security_key_free(struct key *key)
  945. {
  946. security_ops->key_free(key);
  947. }
  948. int security_key_permission(key_ref_t key_ref,
  949. const struct cred *cred, key_perm_t perm)
  950. {
  951. return security_ops->key_permission(key_ref, cred, perm);
  952. }
  953. int security_key_getsecurity(struct key *key, char **_buffer)
  954. {
  955. return security_ops->key_getsecurity(key, _buffer);
  956. }
  957. #endif /* CONFIG_KEYS */
  958. #ifdef CONFIG_AUDIT
  959. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  960. {
  961. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  962. }
  963. int security_audit_rule_known(struct audit_krule *krule)
  964. {
  965. return security_ops->audit_rule_known(krule);
  966. }
  967. void security_audit_rule_free(void *lsmrule)
  968. {
  969. security_ops->audit_rule_free(lsmrule);
  970. }
  971. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  972. struct audit_context *actx)
  973. {
  974. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  975. }
  976. #endif /* CONFIG_AUDIT */