ide-dma.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874
  1. /*
  2. * IDE DMA support (including IDE PCI BM-DMA).
  3. *
  4. * Copyright (C) 1995-1998 Mark Lord
  5. * Copyright (C) 1999-2000 Andre Hedrick <andre@linux-ide.org>
  6. * Copyright (C) 2004, 2007 Bartlomiej Zolnierkiewicz
  7. *
  8. * May be copied or modified under the terms of the GNU General Public License
  9. *
  10. * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
  11. */
  12. /*
  13. * Special Thanks to Mark for his Six years of work.
  14. */
  15. /*
  16. * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
  17. * fixing the problem with the BIOS on some Acer motherboards.
  18. *
  19. * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
  20. * "TX" chipset compatibility and for providing patches for the "TX" chipset.
  21. *
  22. * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
  23. * at generic DMA -- his patches were referred to when preparing this code.
  24. *
  25. * Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
  26. * for supplying a Promise UDMA board & WD UDMA drive for this work!
  27. */
  28. #include <linux/types.h>
  29. #include <linux/kernel.h>
  30. #include <linux/ide.h>
  31. #include <linux/scatterlist.h>
  32. #include <linux/dma-mapping.h>
  33. #include <asm/io.h>
  34. static const struct drive_list_entry drive_whitelist [] = {
  35. { "Micropolis 2112A" , NULL },
  36. { "CONNER CTMA 4000" , NULL },
  37. { "CONNER CTT8000-A" , NULL },
  38. { "ST34342A" , NULL },
  39. { NULL , NULL }
  40. };
  41. static const struct drive_list_entry drive_blacklist [] = {
  42. { "WDC AC11000H" , NULL },
  43. { "WDC AC22100H" , NULL },
  44. { "WDC AC32500H" , NULL },
  45. { "WDC AC33100H" , NULL },
  46. { "WDC AC31600H" , NULL },
  47. { "WDC AC32100H" , "24.09P07" },
  48. { "WDC AC23200L" , "21.10N21" },
  49. { "Compaq CRD-8241B" , NULL },
  50. { "CRD-8400B" , NULL },
  51. { "CRD-8480B", NULL },
  52. { "CRD-8482B", NULL },
  53. { "CRD-84" , NULL },
  54. { "SanDisk SDP3B" , NULL },
  55. { "SanDisk SDP3B-64" , NULL },
  56. { "SANYO CD-ROM CRD" , NULL },
  57. { "HITACHI CDR-8" , NULL },
  58. { "HITACHI CDR-8335" , NULL },
  59. { "HITACHI CDR-8435" , NULL },
  60. { "Toshiba CD-ROM XM-6202B" , NULL },
  61. { "TOSHIBA CD-ROM XM-1702BC", NULL },
  62. { "CD-532E-A" , NULL },
  63. { "E-IDE CD-ROM CR-840", NULL },
  64. { "CD-ROM Drive/F5A", NULL },
  65. { "WPI CDD-820", NULL },
  66. { "SAMSUNG CD-ROM SC-148C", NULL },
  67. { "SAMSUNG CD-ROM SC", NULL },
  68. { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL },
  69. { "_NEC DV5800A", NULL },
  70. { "SAMSUNG CD-ROM SN-124", "N001" },
  71. { "Seagate STT20000A", NULL },
  72. { "CD-ROM CDR_U200", "1.09" },
  73. { NULL , NULL }
  74. };
  75. /**
  76. * ide_dma_intr - IDE DMA interrupt handler
  77. * @drive: the drive the interrupt is for
  78. *
  79. * Handle an interrupt completing a read/write DMA transfer on an
  80. * IDE device
  81. */
  82. ide_startstop_t ide_dma_intr (ide_drive_t *drive)
  83. {
  84. ide_hwif_t *hwif = drive->hwif;
  85. u8 stat = 0, dma_stat = 0;
  86. dma_stat = hwif->dma_ops->dma_end(drive);
  87. stat = hwif->tp_ops->read_status(hwif);
  88. if (OK_STAT(stat, DRIVE_READY, drive->bad_wstat | ATA_DRQ)) {
  89. if (!dma_stat) {
  90. struct request *rq = HWGROUP(drive)->rq;
  91. task_end_request(drive, rq, stat);
  92. return ide_stopped;
  93. }
  94. printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n",
  95. drive->name, dma_stat);
  96. }
  97. return ide_error(drive, "dma_intr", stat);
  98. }
  99. EXPORT_SYMBOL_GPL(ide_dma_intr);
  100. static int ide_dma_good_drive(ide_drive_t *drive)
  101. {
  102. return ide_in_drive_list(drive->id, drive_whitelist);
  103. }
  104. /**
  105. * ide_build_sglist - map IDE scatter gather for DMA I/O
  106. * @drive: the drive to build the DMA table for
  107. * @rq: the request holding the sg list
  108. *
  109. * Perform the DMA mapping magic necessary to access the source or
  110. * target buffers of a request via DMA. The lower layers of the
  111. * kernel provide the necessary cache management so that we can
  112. * operate in a portable fashion.
  113. */
  114. int ide_build_sglist(ide_drive_t *drive, struct request *rq)
  115. {
  116. ide_hwif_t *hwif = HWIF(drive);
  117. struct scatterlist *sg = hwif->sg_table;
  118. ide_map_sg(drive, rq);
  119. if (rq_data_dir(rq) == READ)
  120. hwif->sg_dma_direction = DMA_FROM_DEVICE;
  121. else
  122. hwif->sg_dma_direction = DMA_TO_DEVICE;
  123. return dma_map_sg(hwif->dev, sg, hwif->sg_nents,
  124. hwif->sg_dma_direction);
  125. }
  126. EXPORT_SYMBOL_GPL(ide_build_sglist);
  127. #ifdef CONFIG_BLK_DEV_IDEDMA_SFF
  128. /**
  129. * ide_build_dmatable - build IDE DMA table
  130. *
  131. * ide_build_dmatable() prepares a dma request. We map the command
  132. * to get the pci bus addresses of the buffers and then build up
  133. * the PRD table that the IDE layer wants to be fed.
  134. *
  135. * Most chipsets correctly interpret a length of 0x0000 as 64KB,
  136. * but at least one (e.g. CS5530) misinterprets it as zero (!).
  137. * So we break the 64KB entry into two 32KB entries instead.
  138. *
  139. * Returns the number of built PRD entries if all went okay,
  140. * returns 0 otherwise.
  141. *
  142. * May also be invoked from trm290.c
  143. */
  144. int ide_build_dmatable (ide_drive_t *drive, struct request *rq)
  145. {
  146. ide_hwif_t *hwif = HWIF(drive);
  147. __le32 *table = (__le32 *)hwif->dmatable_cpu;
  148. unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0;
  149. unsigned int count = 0;
  150. int i;
  151. struct scatterlist *sg;
  152. hwif->sg_nents = ide_build_sglist(drive, rq);
  153. if (hwif->sg_nents == 0)
  154. return 0;
  155. for_each_sg(hwif->sg_table, sg, hwif->sg_nents, i) {
  156. u32 cur_addr, cur_len, xcount, bcount;
  157. cur_addr = sg_dma_address(sg);
  158. cur_len = sg_dma_len(sg);
  159. /*
  160. * Fill in the dma table, without crossing any 64kB boundaries.
  161. * Most hardware requires 16-bit alignment of all blocks,
  162. * but the trm290 requires 32-bit alignment.
  163. */
  164. while (cur_len) {
  165. if (count++ >= PRD_ENTRIES)
  166. goto use_pio_instead;
  167. bcount = 0x10000 - (cur_addr & 0xffff);
  168. if (bcount > cur_len)
  169. bcount = cur_len;
  170. *table++ = cpu_to_le32(cur_addr);
  171. xcount = bcount & 0xffff;
  172. if (is_trm290)
  173. xcount = ((xcount >> 2) - 1) << 16;
  174. if (xcount == 0x0000) {
  175. if (count++ >= PRD_ENTRIES)
  176. goto use_pio_instead;
  177. *table++ = cpu_to_le32(0x8000);
  178. *table++ = cpu_to_le32(cur_addr + 0x8000);
  179. xcount = 0x8000;
  180. }
  181. *table++ = cpu_to_le32(xcount);
  182. cur_addr += bcount;
  183. cur_len -= bcount;
  184. }
  185. }
  186. if (count) {
  187. if (!is_trm290)
  188. *--table |= cpu_to_le32(0x80000000);
  189. return count;
  190. }
  191. use_pio_instead:
  192. printk(KERN_ERR "%s: %s\n", drive->name,
  193. count ? "DMA table too small" : "empty DMA table?");
  194. ide_destroy_dmatable(drive);
  195. return 0; /* revert to PIO for this request */
  196. }
  197. EXPORT_SYMBOL_GPL(ide_build_dmatable);
  198. #endif
  199. /**
  200. * ide_destroy_dmatable - clean up DMA mapping
  201. * @drive: The drive to unmap
  202. *
  203. * Teardown mappings after DMA has completed. This must be called
  204. * after the completion of each use of ide_build_dmatable and before
  205. * the next use of ide_build_dmatable. Failure to do so will cause
  206. * an oops as only one mapping can be live for each target at a given
  207. * time.
  208. */
  209. void ide_destroy_dmatable (ide_drive_t *drive)
  210. {
  211. ide_hwif_t *hwif = drive->hwif;
  212. dma_unmap_sg(hwif->dev, hwif->sg_table, hwif->sg_nents,
  213. hwif->sg_dma_direction);
  214. }
  215. EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
  216. #ifdef CONFIG_BLK_DEV_IDEDMA_SFF
  217. /**
  218. * config_drive_for_dma - attempt to activate IDE DMA
  219. * @drive: the drive to place in DMA mode
  220. *
  221. * If the drive supports at least mode 2 DMA or UDMA of any kind
  222. * then attempt to place it into DMA mode. Drives that are known to
  223. * support DMA but predate the DMA properties or that are known
  224. * to have DMA handling bugs are also set up appropriately based
  225. * on the good/bad drive lists.
  226. */
  227. static int config_drive_for_dma (ide_drive_t *drive)
  228. {
  229. ide_hwif_t *hwif = drive->hwif;
  230. u16 *id = drive->id;
  231. if (drive->media != ide_disk) {
  232. if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
  233. return 0;
  234. }
  235. /*
  236. * Enable DMA on any drive that has
  237. * UltraDMA (mode 0/1/2/3/4/5/6) enabled
  238. */
  239. if ((id[ATA_ID_FIELD_VALID] & 4) &&
  240. ((id[ATA_ID_UDMA_MODES] >> 8) & 0x7f))
  241. return 1;
  242. /*
  243. * Enable DMA on any drive that has mode2 DMA
  244. * (multi or single) enabled
  245. */
  246. if (id[ATA_ID_FIELD_VALID] & 2) /* regular DMA */
  247. if ((id[ATA_ID_MWDMA_MODES] & 0x404) == 0x404 ||
  248. (id[ATA_ID_SWDMA_MODES] & 0x404) == 0x404)
  249. return 1;
  250. /* Consult the list of known "good" drives */
  251. if (ide_dma_good_drive(drive))
  252. return 1;
  253. return 0;
  254. }
  255. /**
  256. * dma_timer_expiry - handle a DMA timeout
  257. * @drive: Drive that timed out
  258. *
  259. * An IDE DMA transfer timed out. In the event of an error we ask
  260. * the driver to resolve the problem, if a DMA transfer is still
  261. * in progress we continue to wait (arguably we need to add a
  262. * secondary 'I don't care what the drive thinks' timeout here)
  263. * Finally if we have an interrupt we let it complete the I/O.
  264. * But only one time - we clear expiry and if it's still not
  265. * completed after WAIT_CMD, we error and retry in PIO.
  266. * This can occur if an interrupt is lost or due to hang or bugs.
  267. */
  268. static int dma_timer_expiry (ide_drive_t *drive)
  269. {
  270. ide_hwif_t *hwif = HWIF(drive);
  271. u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  272. printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n",
  273. drive->name, dma_stat);
  274. if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */
  275. return WAIT_CMD;
  276. HWGROUP(drive)->expiry = NULL; /* one free ride for now */
  277. /* 1 dmaing, 2 error, 4 intr */
  278. if (dma_stat & 2) /* ERROR */
  279. return -1;
  280. if (dma_stat & 1) /* DMAing */
  281. return WAIT_CMD;
  282. if (dma_stat & 4) /* Got an Interrupt */
  283. return WAIT_CMD;
  284. return 0; /* Status is unknown -- reset the bus */
  285. }
  286. /**
  287. * ide_dma_host_set - Enable/disable DMA on a host
  288. * @drive: drive to control
  289. *
  290. * Enable/disable DMA on an IDE controller following generic
  291. * bus-mastering IDE controller behaviour.
  292. */
  293. void ide_dma_host_set(ide_drive_t *drive, int on)
  294. {
  295. ide_hwif_t *hwif = HWIF(drive);
  296. u8 unit = drive->dn & 1;
  297. u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  298. if (on)
  299. dma_stat |= (1 << (5 + unit));
  300. else
  301. dma_stat &= ~(1 << (5 + unit));
  302. if (hwif->host_flags & IDE_HFLAG_MMIO)
  303. writeb(dma_stat,
  304. (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
  305. else
  306. outb(dma_stat, hwif->dma_base + ATA_DMA_STATUS);
  307. }
  308. EXPORT_SYMBOL_GPL(ide_dma_host_set);
  309. #endif /* CONFIG_BLK_DEV_IDEDMA_SFF */
  310. /**
  311. * ide_dma_off_quietly - Generic DMA kill
  312. * @drive: drive to control
  313. *
  314. * Turn off the current DMA on this IDE controller.
  315. */
  316. void ide_dma_off_quietly(ide_drive_t *drive)
  317. {
  318. drive->dev_flags &= ~IDE_DFLAG_USING_DMA;
  319. ide_toggle_bounce(drive, 0);
  320. drive->hwif->dma_ops->dma_host_set(drive, 0);
  321. }
  322. EXPORT_SYMBOL(ide_dma_off_quietly);
  323. /**
  324. * ide_dma_off - disable DMA on a device
  325. * @drive: drive to disable DMA on
  326. *
  327. * Disable IDE DMA for a device on this IDE controller.
  328. * Inform the user that DMA has been disabled.
  329. */
  330. void ide_dma_off(ide_drive_t *drive)
  331. {
  332. printk(KERN_INFO "%s: DMA disabled\n", drive->name);
  333. ide_dma_off_quietly(drive);
  334. }
  335. EXPORT_SYMBOL(ide_dma_off);
  336. /**
  337. * ide_dma_on - Enable DMA on a device
  338. * @drive: drive to enable DMA on
  339. *
  340. * Enable IDE DMA for a device on this IDE controller.
  341. */
  342. void ide_dma_on(ide_drive_t *drive)
  343. {
  344. drive->dev_flags |= IDE_DFLAG_USING_DMA;
  345. ide_toggle_bounce(drive, 1);
  346. drive->hwif->dma_ops->dma_host_set(drive, 1);
  347. }
  348. #ifdef CONFIG_BLK_DEV_IDEDMA_SFF
  349. /**
  350. * ide_dma_setup - begin a DMA phase
  351. * @drive: target device
  352. *
  353. * Build an IDE DMA PRD (IDE speak for scatter gather table)
  354. * and then set up the DMA transfer registers for a device
  355. * that follows generic IDE PCI DMA behaviour. Controllers can
  356. * override this function if they need to
  357. *
  358. * Returns 0 on success. If a PIO fallback is required then 1
  359. * is returned.
  360. */
  361. int ide_dma_setup(ide_drive_t *drive)
  362. {
  363. ide_hwif_t *hwif = drive->hwif;
  364. struct request *rq = HWGROUP(drive)->rq;
  365. unsigned int reading;
  366. u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
  367. u8 dma_stat;
  368. if (rq_data_dir(rq))
  369. reading = 0;
  370. else
  371. reading = 1 << 3;
  372. /* fall back to pio! */
  373. if (!ide_build_dmatable(drive, rq)) {
  374. ide_map_sg(drive, rq);
  375. return 1;
  376. }
  377. /* PRD table */
  378. if (hwif->host_flags & IDE_HFLAG_MMIO)
  379. writel(hwif->dmatable_dma,
  380. (void __iomem *)(hwif->dma_base + ATA_DMA_TABLE_OFS));
  381. else
  382. outl(hwif->dmatable_dma, hwif->dma_base + ATA_DMA_TABLE_OFS);
  383. /* specify r/w */
  384. if (mmio)
  385. writeb(reading, (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  386. else
  387. outb(reading, hwif->dma_base + ATA_DMA_CMD);
  388. /* read DMA status for INTR & ERROR flags */
  389. dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  390. /* clear INTR & ERROR flags */
  391. if (mmio)
  392. writeb(dma_stat | 6,
  393. (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
  394. else
  395. outb(dma_stat | 6, hwif->dma_base + ATA_DMA_STATUS);
  396. drive->waiting_for_dma = 1;
  397. return 0;
  398. }
  399. EXPORT_SYMBOL_GPL(ide_dma_setup);
  400. void ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  401. {
  402. /* issue cmd to drive */
  403. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry);
  404. }
  405. EXPORT_SYMBOL_GPL(ide_dma_exec_cmd);
  406. void ide_dma_start(ide_drive_t *drive)
  407. {
  408. ide_hwif_t *hwif = drive->hwif;
  409. u8 dma_cmd;
  410. /* Note that this is done *after* the cmd has
  411. * been issued to the drive, as per the BM-IDE spec.
  412. * The Promise Ultra33 doesn't work correctly when
  413. * we do this part before issuing the drive cmd.
  414. */
  415. if (hwif->host_flags & IDE_HFLAG_MMIO) {
  416. dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  417. /* start DMA */
  418. writeb(dma_cmd | 1,
  419. (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  420. } else {
  421. dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
  422. outb(dma_cmd | 1, hwif->dma_base + ATA_DMA_CMD);
  423. }
  424. wmb();
  425. }
  426. EXPORT_SYMBOL_GPL(ide_dma_start);
  427. /* returns 1 on error, 0 otherwise */
  428. int ide_dma_end(ide_drive_t *drive)
  429. {
  430. ide_hwif_t *hwif = drive->hwif;
  431. u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
  432. u8 dma_stat = 0, dma_cmd = 0;
  433. drive->waiting_for_dma = 0;
  434. if (mmio) {
  435. /* get DMA command mode */
  436. dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  437. /* stop DMA */
  438. writeb(dma_cmd & ~1,
  439. (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  440. } else {
  441. dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
  442. outb(dma_cmd & ~1, hwif->dma_base + ATA_DMA_CMD);
  443. }
  444. /* get DMA status */
  445. dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  446. if (mmio)
  447. /* clear the INTR & ERROR bits */
  448. writeb(dma_stat | 6,
  449. (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
  450. else
  451. outb(dma_stat | 6, hwif->dma_base + ATA_DMA_STATUS);
  452. /* purge DMA mappings */
  453. ide_destroy_dmatable(drive);
  454. /* verify good DMA status */
  455. wmb();
  456. return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0;
  457. }
  458. EXPORT_SYMBOL_GPL(ide_dma_end);
  459. /* returns 1 if dma irq issued, 0 otherwise */
  460. int ide_dma_test_irq(ide_drive_t *drive)
  461. {
  462. ide_hwif_t *hwif = HWIF(drive);
  463. u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  464. /* return 1 if INTR asserted */
  465. if ((dma_stat & 4) == 4)
  466. return 1;
  467. return 0;
  468. }
  469. EXPORT_SYMBOL_GPL(ide_dma_test_irq);
  470. #else
  471. static inline int config_drive_for_dma(ide_drive_t *drive) { return 0; }
  472. #endif /* CONFIG_BLK_DEV_IDEDMA_SFF */
  473. int __ide_dma_bad_drive (ide_drive_t *drive)
  474. {
  475. u16 *id = drive->id;
  476. int blacklist = ide_in_drive_list(id, drive_blacklist);
  477. if (blacklist) {
  478. printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
  479. drive->name, (char *)&id[ATA_ID_PROD]);
  480. return blacklist;
  481. }
  482. return 0;
  483. }
  484. EXPORT_SYMBOL(__ide_dma_bad_drive);
  485. static const u8 xfer_mode_bases[] = {
  486. XFER_UDMA_0,
  487. XFER_MW_DMA_0,
  488. XFER_SW_DMA_0,
  489. };
  490. static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode)
  491. {
  492. u16 *id = drive->id;
  493. ide_hwif_t *hwif = drive->hwif;
  494. const struct ide_port_ops *port_ops = hwif->port_ops;
  495. unsigned int mask = 0;
  496. switch(base) {
  497. case XFER_UDMA_0:
  498. if ((id[ATA_ID_FIELD_VALID] & 4) == 0)
  499. break;
  500. if (port_ops && port_ops->udma_filter)
  501. mask = port_ops->udma_filter(drive);
  502. else
  503. mask = hwif->ultra_mask;
  504. mask &= id[ATA_ID_UDMA_MODES];
  505. /*
  506. * avoid false cable warning from eighty_ninty_three()
  507. */
  508. if (req_mode > XFER_UDMA_2) {
  509. if ((mask & 0x78) && (eighty_ninty_three(drive) == 0))
  510. mask &= 0x07;
  511. }
  512. break;
  513. case XFER_MW_DMA_0:
  514. if ((id[ATA_ID_FIELD_VALID] & 2) == 0)
  515. break;
  516. if (port_ops && port_ops->mdma_filter)
  517. mask = port_ops->mdma_filter(drive);
  518. else
  519. mask = hwif->mwdma_mask;
  520. mask &= id[ATA_ID_MWDMA_MODES];
  521. break;
  522. case XFER_SW_DMA_0:
  523. if (id[ATA_ID_FIELD_VALID] & 2) {
  524. mask = id[ATA_ID_SWDMA_MODES] & hwif->swdma_mask;
  525. } else if (id[ATA_ID_OLD_DMA_MODES] >> 8) {
  526. u8 mode = id[ATA_ID_OLD_DMA_MODES] >> 8;
  527. /*
  528. * if the mode is valid convert it to the mask
  529. * (the maximum allowed mode is XFER_SW_DMA_2)
  530. */
  531. if (mode <= 2)
  532. mask = ((2 << mode) - 1) & hwif->swdma_mask;
  533. }
  534. break;
  535. default:
  536. BUG();
  537. break;
  538. }
  539. return mask;
  540. }
  541. /**
  542. * ide_find_dma_mode - compute DMA speed
  543. * @drive: IDE device
  544. * @req_mode: requested mode
  545. *
  546. * Checks the drive/host capabilities and finds the speed to use for
  547. * the DMA transfer. The speed is then limited by the requested mode.
  548. *
  549. * Returns 0 if the drive/host combination is incapable of DMA transfers
  550. * or if the requested mode is not a DMA mode.
  551. */
  552. u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode)
  553. {
  554. ide_hwif_t *hwif = drive->hwif;
  555. unsigned int mask;
  556. int x, i;
  557. u8 mode = 0;
  558. if (drive->media != ide_disk) {
  559. if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
  560. return 0;
  561. }
  562. for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) {
  563. if (req_mode < xfer_mode_bases[i])
  564. continue;
  565. mask = ide_get_mode_mask(drive, xfer_mode_bases[i], req_mode);
  566. x = fls(mask) - 1;
  567. if (x >= 0) {
  568. mode = xfer_mode_bases[i] + x;
  569. break;
  570. }
  571. }
  572. if (hwif->chipset == ide_acorn && mode == 0) {
  573. /*
  574. * is this correct?
  575. */
  576. if (ide_dma_good_drive(drive) &&
  577. drive->id[ATA_ID_EIDE_DMA_TIME] < 150)
  578. mode = XFER_MW_DMA_1;
  579. }
  580. mode = min(mode, req_mode);
  581. printk(KERN_INFO "%s: %s mode selected\n", drive->name,
  582. mode ? ide_xfer_verbose(mode) : "no DMA");
  583. return mode;
  584. }
  585. EXPORT_SYMBOL_GPL(ide_find_dma_mode);
  586. static int ide_tune_dma(ide_drive_t *drive)
  587. {
  588. ide_hwif_t *hwif = drive->hwif;
  589. u8 speed;
  590. if (ata_id_has_dma(drive->id) == 0 ||
  591. (drive->dev_flags & IDE_DFLAG_NODMA))
  592. return 0;
  593. /* consult the list of known "bad" drives */
  594. if (__ide_dma_bad_drive(drive))
  595. return 0;
  596. if (ide_id_dma_bug(drive))
  597. return 0;
  598. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  599. return config_drive_for_dma(drive);
  600. speed = ide_max_dma_mode(drive);
  601. if (!speed)
  602. return 0;
  603. if (ide_set_dma_mode(drive, speed))
  604. return 0;
  605. return 1;
  606. }
  607. static int ide_dma_check(ide_drive_t *drive)
  608. {
  609. ide_hwif_t *hwif = drive->hwif;
  610. if (ide_tune_dma(drive))
  611. return 0;
  612. /* TODO: always do PIO fallback */
  613. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  614. return -1;
  615. ide_set_max_pio(drive);
  616. return -1;
  617. }
  618. int ide_id_dma_bug(ide_drive_t *drive)
  619. {
  620. u16 *id = drive->id;
  621. if (id[ATA_ID_FIELD_VALID] & 4) {
  622. if ((id[ATA_ID_UDMA_MODES] >> 8) &&
  623. (id[ATA_ID_MWDMA_MODES] >> 8))
  624. goto err_out;
  625. } else if (id[ATA_ID_FIELD_VALID] & 2) {
  626. if ((id[ATA_ID_MWDMA_MODES] >> 8) &&
  627. (id[ATA_ID_SWDMA_MODES] >> 8))
  628. goto err_out;
  629. }
  630. return 0;
  631. err_out:
  632. printk(KERN_ERR "%s: bad DMA info in identify block\n", drive->name);
  633. return 1;
  634. }
  635. int ide_set_dma(ide_drive_t *drive)
  636. {
  637. int rc;
  638. /*
  639. * Force DMAing for the beginning of the check.
  640. * Some chipsets appear to do interesting
  641. * things, if not checked and cleared.
  642. * PARANOIA!!!
  643. */
  644. ide_dma_off_quietly(drive);
  645. rc = ide_dma_check(drive);
  646. if (rc)
  647. return rc;
  648. ide_dma_on(drive);
  649. return 0;
  650. }
  651. void ide_check_dma_crc(ide_drive_t *drive)
  652. {
  653. u8 mode;
  654. ide_dma_off_quietly(drive);
  655. drive->crc_count = 0;
  656. mode = drive->current_speed;
  657. /*
  658. * Don't try non Ultra-DMA modes without iCRC's. Force the
  659. * device to PIO and make the user enable SWDMA/MWDMA modes.
  660. */
  661. if (mode > XFER_UDMA_0 && mode <= XFER_UDMA_7)
  662. mode--;
  663. else
  664. mode = XFER_PIO_4;
  665. ide_set_xfer_rate(drive, mode);
  666. if (drive->current_speed >= XFER_SW_DMA_0)
  667. ide_dma_on(drive);
  668. }
  669. void ide_dma_lost_irq(ide_drive_t *drive)
  670. {
  671. printk(KERN_ERR "%s: DMA interrupt recovery\n", drive->name);
  672. }
  673. EXPORT_SYMBOL_GPL(ide_dma_lost_irq);
  674. void ide_dma_timeout(ide_drive_t *drive)
  675. {
  676. ide_hwif_t *hwif = HWIF(drive);
  677. printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
  678. if (hwif->dma_ops->dma_test_irq(drive))
  679. return;
  680. ide_dump_status(drive, "DMA timeout", hwif->tp_ops->read_status(hwif));
  681. hwif->dma_ops->dma_end(drive);
  682. }
  683. EXPORT_SYMBOL_GPL(ide_dma_timeout);
  684. void ide_release_dma_engine(ide_hwif_t *hwif)
  685. {
  686. if (hwif->dmatable_cpu) {
  687. int prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
  688. dma_free_coherent(hwif->dev, prd_size,
  689. hwif->dmatable_cpu, hwif->dmatable_dma);
  690. hwif->dmatable_cpu = NULL;
  691. }
  692. }
  693. EXPORT_SYMBOL_GPL(ide_release_dma_engine);
  694. int ide_allocate_dma_engine(ide_hwif_t *hwif)
  695. {
  696. int prd_size;
  697. if (hwif->prd_max_nents == 0)
  698. hwif->prd_max_nents = PRD_ENTRIES;
  699. if (hwif->prd_ent_size == 0)
  700. hwif->prd_ent_size = PRD_BYTES;
  701. prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
  702. hwif->dmatable_cpu = dma_alloc_coherent(hwif->dev, prd_size,
  703. &hwif->dmatable_dma,
  704. GFP_ATOMIC);
  705. if (hwif->dmatable_cpu == NULL) {
  706. printk(KERN_ERR "%s: unable to allocate PRD table\n",
  707. hwif->name);
  708. return -ENOMEM;
  709. }
  710. return 0;
  711. }
  712. EXPORT_SYMBOL_GPL(ide_allocate_dma_engine);
  713. #ifdef CONFIG_BLK_DEV_IDEDMA_SFF
  714. const struct ide_dma_ops sff_dma_ops = {
  715. .dma_host_set = ide_dma_host_set,
  716. .dma_setup = ide_dma_setup,
  717. .dma_exec_cmd = ide_dma_exec_cmd,
  718. .dma_start = ide_dma_start,
  719. .dma_end = ide_dma_end,
  720. .dma_test_irq = ide_dma_test_irq,
  721. .dma_timeout = ide_dma_timeout,
  722. .dma_lost_irq = ide_dma_lost_irq,
  723. };
  724. EXPORT_SYMBOL_GPL(sff_dma_ops);
  725. #endif /* CONFIG_BLK_DEV_IDEDMA_SFF */