core.c 198 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. *
  311. * Its all a bit involved since we cannot program an hrt while holding the
  312. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  313. * reschedule event.
  314. *
  315. * When we get rescheduled we reprogram the hrtick_timer outside of the
  316. * rq->lock.
  317. */
  318. static void hrtick_clear(struct rq *rq)
  319. {
  320. if (hrtimer_active(&rq->hrtick_timer))
  321. hrtimer_cancel(&rq->hrtick_timer);
  322. }
  323. /*
  324. * High-resolution timer tick.
  325. * Runs from hardirq context with interrupts disabled.
  326. */
  327. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  328. {
  329. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  330. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  331. raw_spin_lock(&rq->lock);
  332. update_rq_clock(rq);
  333. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  334. raw_spin_unlock(&rq->lock);
  335. return HRTIMER_NORESTART;
  336. }
  337. #ifdef CONFIG_SMP
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. hrtimer_restart(&rq->hrtick_timer);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. hrtimer_restart(timer);
  361. } else if (!rq->hrtick_csd_pending) {
  362. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * resched_task - mark a task 'to be rescheduled now'.
  425. *
  426. * On UP this means the setting of the need_resched flag, on SMP it
  427. * might also involve a cross-CPU call to trigger the scheduler on
  428. * the target CPU.
  429. */
  430. #ifdef CONFIG_SMP
  431. #ifndef tsk_is_polling
  432. #define tsk_is_polling(t) 0
  433. #endif
  434. void resched_task(struct task_struct *p)
  435. {
  436. int cpu;
  437. assert_raw_spin_locked(&task_rq(p)->lock);
  438. if (test_tsk_need_resched(p))
  439. return;
  440. set_tsk_need_resched(p);
  441. cpu = task_cpu(p);
  442. if (cpu == smp_processor_id())
  443. return;
  444. /* NEED_RESCHED must be visible before we test polling */
  445. smp_mb();
  446. if (!tsk_is_polling(p))
  447. smp_send_reschedule(cpu);
  448. }
  449. void resched_cpu(int cpu)
  450. {
  451. struct rq *rq = cpu_rq(cpu);
  452. unsigned long flags;
  453. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  454. return;
  455. resched_task(cpu_curr(cpu));
  456. raw_spin_unlock_irqrestore(&rq->lock, flags);
  457. }
  458. #ifdef CONFIG_NO_HZ
  459. /*
  460. * In the semi idle case, use the nearest busy cpu for migrating timers
  461. * from an idle cpu. This is good for power-savings.
  462. *
  463. * We don't do similar optimization for completely idle system, as
  464. * selecting an idle cpu will add more delays to the timers than intended
  465. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  466. */
  467. int get_nohz_timer_target(void)
  468. {
  469. int cpu = smp_processor_id();
  470. int i;
  471. struct sched_domain *sd;
  472. rcu_read_lock();
  473. for_each_domain(cpu, sd) {
  474. for_each_cpu(i, sched_domain_span(sd)) {
  475. if (!idle_cpu(i)) {
  476. cpu = i;
  477. goto unlock;
  478. }
  479. }
  480. }
  481. unlock:
  482. rcu_read_unlock();
  483. return cpu;
  484. }
  485. /*
  486. * When add_timer_on() enqueues a timer into the timer wheel of an
  487. * idle CPU then this timer might expire before the next timer event
  488. * which is scheduled to wake up that CPU. In case of a completely
  489. * idle system the next event might even be infinite time into the
  490. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  491. * leaves the inner idle loop so the newly added timer is taken into
  492. * account when the CPU goes back to idle and evaluates the timer
  493. * wheel for the next timer event.
  494. */
  495. void wake_up_idle_cpu(int cpu)
  496. {
  497. struct rq *rq = cpu_rq(cpu);
  498. if (cpu == smp_processor_id())
  499. return;
  500. /*
  501. * This is safe, as this function is called with the timer
  502. * wheel base lock of (cpu) held. When the CPU is on the way
  503. * to idle and has not yet set rq->curr to idle then it will
  504. * be serialized on the timer wheel base lock and take the new
  505. * timer into account automatically.
  506. */
  507. if (rq->curr != rq->idle)
  508. return;
  509. /*
  510. * We can set TIF_RESCHED on the idle task of the other CPU
  511. * lockless. The worst case is that the other CPU runs the
  512. * idle task through an additional NOOP schedule()
  513. */
  514. set_tsk_need_resched(rq->idle);
  515. /* NEED_RESCHED must be visible before we test polling */
  516. smp_mb();
  517. if (!tsk_is_polling(rq->idle))
  518. smp_send_reschedule(cpu);
  519. }
  520. static inline bool got_nohz_idle_kick(void)
  521. {
  522. int cpu = smp_processor_id();
  523. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  524. }
  525. #else /* CONFIG_NO_HZ */
  526. static inline bool got_nohz_idle_kick(void)
  527. {
  528. return false;
  529. }
  530. #endif /* CONFIG_NO_HZ */
  531. void sched_avg_update(struct rq *rq)
  532. {
  533. s64 period = sched_avg_period();
  534. while ((s64)(rq->clock - rq->age_stamp) > period) {
  535. /*
  536. * Inline assembly required to prevent the compiler
  537. * optimising this loop into a divmod call.
  538. * See __iter_div_u64_rem() for another example of this.
  539. */
  540. asm("" : "+rm" (rq->age_stamp));
  541. rq->age_stamp += period;
  542. rq->rt_avg /= 2;
  543. }
  544. }
  545. #else /* !CONFIG_SMP */
  546. void resched_task(struct task_struct *p)
  547. {
  548. assert_raw_spin_locked(&task_rq(p)->lock);
  549. set_tsk_need_resched(p);
  550. }
  551. #endif /* CONFIG_SMP */
  552. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  553. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  554. /*
  555. * Iterate task_group tree rooted at *from, calling @down when first entering a
  556. * node and @up when leaving it for the final time.
  557. *
  558. * Caller must hold rcu_lock or sufficient equivalent.
  559. */
  560. int walk_tg_tree_from(struct task_group *from,
  561. tg_visitor down, tg_visitor up, void *data)
  562. {
  563. struct task_group *parent, *child;
  564. int ret;
  565. parent = from;
  566. down:
  567. ret = (*down)(parent, data);
  568. if (ret)
  569. goto out;
  570. list_for_each_entry_rcu(child, &parent->children, siblings) {
  571. parent = child;
  572. goto down;
  573. up:
  574. continue;
  575. }
  576. ret = (*up)(parent, data);
  577. if (ret || parent == from)
  578. goto out;
  579. child = parent;
  580. parent = parent->parent;
  581. if (parent)
  582. goto up;
  583. out:
  584. return ret;
  585. }
  586. int tg_nop(struct task_group *tg, void *data)
  587. {
  588. return 0;
  589. }
  590. #endif
  591. static void set_load_weight(struct task_struct *p)
  592. {
  593. int prio = p->static_prio - MAX_RT_PRIO;
  594. struct load_weight *load = &p->se.load;
  595. /*
  596. * SCHED_IDLE tasks get minimal weight:
  597. */
  598. if (p->policy == SCHED_IDLE) {
  599. load->weight = scale_load(WEIGHT_IDLEPRIO);
  600. load->inv_weight = WMULT_IDLEPRIO;
  601. return;
  602. }
  603. load->weight = scale_load(prio_to_weight[prio]);
  604. load->inv_weight = prio_to_wmult[prio];
  605. }
  606. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_queued(p);
  610. p->sched_class->enqueue_task(rq, p, flags);
  611. }
  612. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. update_rq_clock(rq);
  615. sched_info_dequeued(p);
  616. p->sched_class->dequeue_task(rq, p, flags);
  617. }
  618. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible--;
  622. enqueue_task(rq, p, flags);
  623. }
  624. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  625. {
  626. if (task_contributes_to_load(p))
  627. rq->nr_uninterruptible++;
  628. dequeue_task(rq, p, flags);
  629. }
  630. static void update_rq_clock_task(struct rq *rq, s64 delta)
  631. {
  632. /*
  633. * In theory, the compile should just see 0 here, and optimize out the call
  634. * to sched_rt_avg_update. But I don't trust it...
  635. */
  636. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  637. s64 steal = 0, irq_delta = 0;
  638. #endif
  639. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  640. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  641. /*
  642. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  643. * this case when a previous update_rq_clock() happened inside a
  644. * {soft,}irq region.
  645. *
  646. * When this happens, we stop ->clock_task and only update the
  647. * prev_irq_time stamp to account for the part that fit, so that a next
  648. * update will consume the rest. This ensures ->clock_task is
  649. * monotonic.
  650. *
  651. * It does however cause some slight miss-attribution of {soft,}irq
  652. * time, a more accurate solution would be to update the irq_time using
  653. * the current rq->clock timestamp, except that would require using
  654. * atomic ops.
  655. */
  656. if (irq_delta > delta)
  657. irq_delta = delta;
  658. rq->prev_irq_time += irq_delta;
  659. delta -= irq_delta;
  660. #endif
  661. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  662. if (static_key_false((&paravirt_steal_rq_enabled))) {
  663. u64 st;
  664. steal = paravirt_steal_clock(cpu_of(rq));
  665. steal -= rq->prev_steal_time_rq;
  666. if (unlikely(steal > delta))
  667. steal = delta;
  668. st = steal_ticks(steal);
  669. steal = st * TICK_NSEC;
  670. rq->prev_steal_time_rq += steal;
  671. delta -= steal;
  672. }
  673. #endif
  674. rq->clock_task += delta;
  675. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  676. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  677. sched_rt_avg_update(rq, irq_delta + steal);
  678. #endif
  679. }
  680. void sched_set_stop_task(int cpu, struct task_struct *stop)
  681. {
  682. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  683. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  684. if (stop) {
  685. /*
  686. * Make it appear like a SCHED_FIFO task, its something
  687. * userspace knows about and won't get confused about.
  688. *
  689. * Also, it will make PI more or less work without too
  690. * much confusion -- but then, stop work should not
  691. * rely on PI working anyway.
  692. */
  693. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  694. stop->sched_class = &stop_sched_class;
  695. }
  696. cpu_rq(cpu)->stop = stop;
  697. if (old_stop) {
  698. /*
  699. * Reset it back to a normal scheduling class so that
  700. * it can die in pieces.
  701. */
  702. old_stop->sched_class = &rt_sched_class;
  703. }
  704. }
  705. /*
  706. * __normal_prio - return the priority that is based on the static prio
  707. */
  708. static inline int __normal_prio(struct task_struct *p)
  709. {
  710. return p->static_prio;
  711. }
  712. /*
  713. * Calculate the expected normal priority: i.e. priority
  714. * without taking RT-inheritance into account. Might be
  715. * boosted by interactivity modifiers. Changes upon fork,
  716. * setprio syscalls, and whenever the interactivity
  717. * estimator recalculates.
  718. */
  719. static inline int normal_prio(struct task_struct *p)
  720. {
  721. int prio;
  722. if (task_has_rt_policy(p))
  723. prio = MAX_RT_PRIO-1 - p->rt_priority;
  724. else
  725. prio = __normal_prio(p);
  726. return prio;
  727. }
  728. /*
  729. * Calculate the current priority, i.e. the priority
  730. * taken into account by the scheduler. This value might
  731. * be boosted by RT tasks, or might be boosted by
  732. * interactivity modifiers. Will be RT if the task got
  733. * RT-boosted. If not then it returns p->normal_prio.
  734. */
  735. static int effective_prio(struct task_struct *p)
  736. {
  737. p->normal_prio = normal_prio(p);
  738. /*
  739. * If we are RT tasks or we were boosted to RT priority,
  740. * keep the priority unchanged. Otherwise, update priority
  741. * to the normal priority:
  742. */
  743. if (!rt_prio(p->prio))
  744. return p->normal_prio;
  745. return p->prio;
  746. }
  747. /**
  748. * task_curr - is this task currently executing on a CPU?
  749. * @p: the task in question.
  750. */
  751. inline int task_curr(const struct task_struct *p)
  752. {
  753. return cpu_curr(task_cpu(p)) == p;
  754. }
  755. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  756. const struct sched_class *prev_class,
  757. int oldprio)
  758. {
  759. if (prev_class != p->sched_class) {
  760. if (prev_class->switched_from)
  761. prev_class->switched_from(rq, p);
  762. p->sched_class->switched_to(rq, p);
  763. } else if (oldprio != p->prio)
  764. p->sched_class->prio_changed(rq, p, oldprio);
  765. }
  766. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  767. {
  768. const struct sched_class *class;
  769. if (p->sched_class == rq->curr->sched_class) {
  770. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  771. } else {
  772. for_each_class(class) {
  773. if (class == rq->curr->sched_class)
  774. break;
  775. if (class == p->sched_class) {
  776. resched_task(rq->curr);
  777. break;
  778. }
  779. }
  780. }
  781. /*
  782. * A queue event has occurred, and we're going to schedule. In
  783. * this case, we can save a useless back to back clock update.
  784. */
  785. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  786. rq->skip_clock_update = 1;
  787. }
  788. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  789. void register_task_migration_notifier(struct notifier_block *n)
  790. {
  791. atomic_notifier_chain_register(&task_migration_notifier, n);
  792. }
  793. #ifdef CONFIG_SMP
  794. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  795. {
  796. #ifdef CONFIG_SCHED_DEBUG
  797. /*
  798. * We should never call set_task_cpu() on a blocked task,
  799. * ttwu() will sort out the placement.
  800. */
  801. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  802. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  803. #ifdef CONFIG_LOCKDEP
  804. /*
  805. * The caller should hold either p->pi_lock or rq->lock, when changing
  806. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  807. *
  808. * sched_move_task() holds both and thus holding either pins the cgroup,
  809. * see task_group().
  810. *
  811. * Furthermore, all task_rq users should acquire both locks, see
  812. * task_rq_lock().
  813. */
  814. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  815. lockdep_is_held(&task_rq(p)->lock)));
  816. #endif
  817. #endif
  818. trace_sched_migrate_task(p, new_cpu);
  819. if (task_cpu(p) != new_cpu) {
  820. struct task_migration_notifier tmn;
  821. if (p->sched_class->migrate_task_rq)
  822. p->sched_class->migrate_task_rq(p, new_cpu);
  823. p->se.nr_migrations++;
  824. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  825. tmn.task = p;
  826. tmn.from_cpu = task_cpu(p);
  827. tmn.to_cpu = new_cpu;
  828. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  829. }
  830. __set_task_cpu(p, new_cpu);
  831. }
  832. struct migration_arg {
  833. struct task_struct *task;
  834. int dest_cpu;
  835. };
  836. static int migration_cpu_stop(void *data);
  837. /*
  838. * wait_task_inactive - wait for a thread to unschedule.
  839. *
  840. * If @match_state is nonzero, it's the @p->state value just checked and
  841. * not expected to change. If it changes, i.e. @p might have woken up,
  842. * then return zero. When we succeed in waiting for @p to be off its CPU,
  843. * we return a positive number (its total switch count). If a second call
  844. * a short while later returns the same number, the caller can be sure that
  845. * @p has remained unscheduled the whole time.
  846. *
  847. * The caller must ensure that the task *will* unschedule sometime soon,
  848. * else this function might spin for a *long* time. This function can't
  849. * be called with interrupts off, or it may introduce deadlock with
  850. * smp_call_function() if an IPI is sent by the same process we are
  851. * waiting to become inactive.
  852. */
  853. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  854. {
  855. unsigned long flags;
  856. int running, on_rq;
  857. unsigned long ncsw;
  858. struct rq *rq;
  859. for (;;) {
  860. /*
  861. * We do the initial early heuristics without holding
  862. * any task-queue locks at all. We'll only try to get
  863. * the runqueue lock when things look like they will
  864. * work out!
  865. */
  866. rq = task_rq(p);
  867. /*
  868. * If the task is actively running on another CPU
  869. * still, just relax and busy-wait without holding
  870. * any locks.
  871. *
  872. * NOTE! Since we don't hold any locks, it's not
  873. * even sure that "rq" stays as the right runqueue!
  874. * But we don't care, since "task_running()" will
  875. * return false if the runqueue has changed and p
  876. * is actually now running somewhere else!
  877. */
  878. while (task_running(rq, p)) {
  879. if (match_state && unlikely(p->state != match_state))
  880. return 0;
  881. cpu_relax();
  882. }
  883. /*
  884. * Ok, time to look more closely! We need the rq
  885. * lock now, to be *sure*. If we're wrong, we'll
  886. * just go back and repeat.
  887. */
  888. rq = task_rq_lock(p, &flags);
  889. trace_sched_wait_task(p);
  890. running = task_running(rq, p);
  891. on_rq = p->on_rq;
  892. ncsw = 0;
  893. if (!match_state || p->state == match_state)
  894. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  895. task_rq_unlock(rq, p, &flags);
  896. /*
  897. * If it changed from the expected state, bail out now.
  898. */
  899. if (unlikely(!ncsw))
  900. break;
  901. /*
  902. * Was it really running after all now that we
  903. * checked with the proper locks actually held?
  904. *
  905. * Oops. Go back and try again..
  906. */
  907. if (unlikely(running)) {
  908. cpu_relax();
  909. continue;
  910. }
  911. /*
  912. * It's not enough that it's not actively running,
  913. * it must be off the runqueue _entirely_, and not
  914. * preempted!
  915. *
  916. * So if it was still runnable (but just not actively
  917. * running right now), it's preempted, and we should
  918. * yield - it could be a while.
  919. */
  920. if (unlikely(on_rq)) {
  921. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  922. set_current_state(TASK_UNINTERRUPTIBLE);
  923. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  924. continue;
  925. }
  926. /*
  927. * Ahh, all good. It wasn't running, and it wasn't
  928. * runnable, which means that it will never become
  929. * running in the future either. We're all done!
  930. */
  931. break;
  932. }
  933. return ncsw;
  934. }
  935. /***
  936. * kick_process - kick a running thread to enter/exit the kernel
  937. * @p: the to-be-kicked thread
  938. *
  939. * Cause a process which is running on another CPU to enter
  940. * kernel-mode, without any delay. (to get signals handled.)
  941. *
  942. * NOTE: this function doesn't have to take the runqueue lock,
  943. * because all it wants to ensure is that the remote task enters
  944. * the kernel. If the IPI races and the task has been migrated
  945. * to another CPU then no harm is done and the purpose has been
  946. * achieved as well.
  947. */
  948. void kick_process(struct task_struct *p)
  949. {
  950. int cpu;
  951. preempt_disable();
  952. cpu = task_cpu(p);
  953. if ((cpu != smp_processor_id()) && task_curr(p))
  954. smp_send_reschedule(cpu);
  955. preempt_enable();
  956. }
  957. EXPORT_SYMBOL_GPL(kick_process);
  958. #endif /* CONFIG_SMP */
  959. #ifdef CONFIG_SMP
  960. /*
  961. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  962. */
  963. static int select_fallback_rq(int cpu, struct task_struct *p)
  964. {
  965. int nid = cpu_to_node(cpu);
  966. const struct cpumask *nodemask = NULL;
  967. enum { cpuset, possible, fail } state = cpuset;
  968. int dest_cpu;
  969. /*
  970. * If the node that the cpu is on has been offlined, cpu_to_node()
  971. * will return -1. There is no cpu on the node, and we should
  972. * select the cpu on the other node.
  973. */
  974. if (nid != -1) {
  975. nodemask = cpumask_of_node(nid);
  976. /* Look for allowed, online CPU in same node. */
  977. for_each_cpu(dest_cpu, nodemask) {
  978. if (!cpu_online(dest_cpu))
  979. continue;
  980. if (!cpu_active(dest_cpu))
  981. continue;
  982. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  983. return dest_cpu;
  984. }
  985. }
  986. for (;;) {
  987. /* Any allowed, online CPU? */
  988. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  989. if (!cpu_online(dest_cpu))
  990. continue;
  991. if (!cpu_active(dest_cpu))
  992. continue;
  993. goto out;
  994. }
  995. switch (state) {
  996. case cpuset:
  997. /* No more Mr. Nice Guy. */
  998. cpuset_cpus_allowed_fallback(p);
  999. state = possible;
  1000. break;
  1001. case possible:
  1002. do_set_cpus_allowed(p, cpu_possible_mask);
  1003. state = fail;
  1004. break;
  1005. case fail:
  1006. BUG();
  1007. break;
  1008. }
  1009. }
  1010. out:
  1011. if (state != cpuset) {
  1012. /*
  1013. * Don't tell them about moving exiting tasks or
  1014. * kernel threads (both mm NULL), since they never
  1015. * leave kernel.
  1016. */
  1017. if (p->mm && printk_ratelimit()) {
  1018. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1019. task_pid_nr(p), p->comm, cpu);
  1020. }
  1021. }
  1022. return dest_cpu;
  1023. }
  1024. /*
  1025. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1026. */
  1027. static inline
  1028. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1029. {
  1030. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1031. /*
  1032. * In order not to call set_task_cpu() on a blocking task we need
  1033. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1034. * cpu.
  1035. *
  1036. * Since this is common to all placement strategies, this lives here.
  1037. *
  1038. * [ this allows ->select_task() to simply return task_cpu(p) and
  1039. * not worry about this generic constraint ]
  1040. */
  1041. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1042. !cpu_online(cpu)))
  1043. cpu = select_fallback_rq(task_cpu(p), p);
  1044. return cpu;
  1045. }
  1046. static void update_avg(u64 *avg, u64 sample)
  1047. {
  1048. s64 diff = sample - *avg;
  1049. *avg += diff >> 3;
  1050. }
  1051. #endif
  1052. static void
  1053. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1054. {
  1055. #ifdef CONFIG_SCHEDSTATS
  1056. struct rq *rq = this_rq();
  1057. #ifdef CONFIG_SMP
  1058. int this_cpu = smp_processor_id();
  1059. if (cpu == this_cpu) {
  1060. schedstat_inc(rq, ttwu_local);
  1061. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1062. } else {
  1063. struct sched_domain *sd;
  1064. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1065. rcu_read_lock();
  1066. for_each_domain(this_cpu, sd) {
  1067. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1068. schedstat_inc(sd, ttwu_wake_remote);
  1069. break;
  1070. }
  1071. }
  1072. rcu_read_unlock();
  1073. }
  1074. if (wake_flags & WF_MIGRATED)
  1075. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1076. #endif /* CONFIG_SMP */
  1077. schedstat_inc(rq, ttwu_count);
  1078. schedstat_inc(p, se.statistics.nr_wakeups);
  1079. if (wake_flags & WF_SYNC)
  1080. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1081. #endif /* CONFIG_SCHEDSTATS */
  1082. }
  1083. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1084. {
  1085. activate_task(rq, p, en_flags);
  1086. p->on_rq = 1;
  1087. /* if a worker is waking up, notify workqueue */
  1088. if (p->flags & PF_WQ_WORKER)
  1089. wq_worker_waking_up(p, cpu_of(rq));
  1090. }
  1091. /*
  1092. * Mark the task runnable and perform wakeup-preemption.
  1093. */
  1094. static void
  1095. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1096. {
  1097. trace_sched_wakeup(p, true);
  1098. check_preempt_curr(rq, p, wake_flags);
  1099. p->state = TASK_RUNNING;
  1100. #ifdef CONFIG_SMP
  1101. if (p->sched_class->task_woken)
  1102. p->sched_class->task_woken(rq, p);
  1103. if (rq->idle_stamp) {
  1104. u64 delta = rq->clock - rq->idle_stamp;
  1105. u64 max = 2*sysctl_sched_migration_cost;
  1106. if (delta > max)
  1107. rq->avg_idle = max;
  1108. else
  1109. update_avg(&rq->avg_idle, delta);
  1110. rq->idle_stamp = 0;
  1111. }
  1112. #endif
  1113. }
  1114. static void
  1115. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1116. {
  1117. #ifdef CONFIG_SMP
  1118. if (p->sched_contributes_to_load)
  1119. rq->nr_uninterruptible--;
  1120. #endif
  1121. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1122. ttwu_do_wakeup(rq, p, wake_flags);
  1123. }
  1124. /*
  1125. * Called in case the task @p isn't fully descheduled from its runqueue,
  1126. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1127. * since all we need to do is flip p->state to TASK_RUNNING, since
  1128. * the task is still ->on_rq.
  1129. */
  1130. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1131. {
  1132. struct rq *rq;
  1133. int ret = 0;
  1134. rq = __task_rq_lock(p);
  1135. if (p->on_rq) {
  1136. ttwu_do_wakeup(rq, p, wake_flags);
  1137. ret = 1;
  1138. }
  1139. __task_rq_unlock(rq);
  1140. return ret;
  1141. }
  1142. #ifdef CONFIG_SMP
  1143. static void sched_ttwu_pending(void)
  1144. {
  1145. struct rq *rq = this_rq();
  1146. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1147. struct task_struct *p;
  1148. raw_spin_lock(&rq->lock);
  1149. while (llist) {
  1150. p = llist_entry(llist, struct task_struct, wake_entry);
  1151. llist = llist_next(llist);
  1152. ttwu_do_activate(rq, p, 0);
  1153. }
  1154. raw_spin_unlock(&rq->lock);
  1155. }
  1156. void scheduler_ipi(void)
  1157. {
  1158. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1159. return;
  1160. /*
  1161. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1162. * traditionally all their work was done from the interrupt return
  1163. * path. Now that we actually do some work, we need to make sure
  1164. * we do call them.
  1165. *
  1166. * Some archs already do call them, luckily irq_enter/exit nest
  1167. * properly.
  1168. *
  1169. * Arguably we should visit all archs and update all handlers,
  1170. * however a fair share of IPIs are still resched only so this would
  1171. * somewhat pessimize the simple resched case.
  1172. */
  1173. irq_enter();
  1174. sched_ttwu_pending();
  1175. /*
  1176. * Check if someone kicked us for doing the nohz idle load balance.
  1177. */
  1178. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1179. this_rq()->idle_balance = 1;
  1180. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1181. }
  1182. irq_exit();
  1183. }
  1184. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1185. {
  1186. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1187. smp_send_reschedule(cpu);
  1188. }
  1189. bool cpus_share_cache(int this_cpu, int that_cpu)
  1190. {
  1191. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1192. }
  1193. #endif /* CONFIG_SMP */
  1194. static void ttwu_queue(struct task_struct *p, int cpu)
  1195. {
  1196. struct rq *rq = cpu_rq(cpu);
  1197. #if defined(CONFIG_SMP)
  1198. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1199. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1200. ttwu_queue_remote(p, cpu);
  1201. return;
  1202. }
  1203. #endif
  1204. raw_spin_lock(&rq->lock);
  1205. ttwu_do_activate(rq, p, 0);
  1206. raw_spin_unlock(&rq->lock);
  1207. }
  1208. /**
  1209. * try_to_wake_up - wake up a thread
  1210. * @p: the thread to be awakened
  1211. * @state: the mask of task states that can be woken
  1212. * @wake_flags: wake modifier flags (WF_*)
  1213. *
  1214. * Put it on the run-queue if it's not already there. The "current"
  1215. * thread is always on the run-queue (except when the actual
  1216. * re-schedule is in progress), and as such you're allowed to do
  1217. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1218. * runnable without the overhead of this.
  1219. *
  1220. * Returns %true if @p was woken up, %false if it was already running
  1221. * or @state didn't match @p's state.
  1222. */
  1223. static int
  1224. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1225. {
  1226. unsigned long flags;
  1227. int cpu, success = 0;
  1228. smp_wmb();
  1229. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1230. if (!(p->state & state))
  1231. goto out;
  1232. success = 1; /* we're going to change ->state */
  1233. cpu = task_cpu(p);
  1234. if (p->on_rq && ttwu_remote(p, wake_flags))
  1235. goto stat;
  1236. #ifdef CONFIG_SMP
  1237. /*
  1238. * If the owning (remote) cpu is still in the middle of schedule() with
  1239. * this task as prev, wait until its done referencing the task.
  1240. */
  1241. while (p->on_cpu)
  1242. cpu_relax();
  1243. /*
  1244. * Pairs with the smp_wmb() in finish_lock_switch().
  1245. */
  1246. smp_rmb();
  1247. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1248. p->state = TASK_WAKING;
  1249. if (p->sched_class->task_waking)
  1250. p->sched_class->task_waking(p);
  1251. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1252. if (task_cpu(p) != cpu) {
  1253. wake_flags |= WF_MIGRATED;
  1254. set_task_cpu(p, cpu);
  1255. }
  1256. #endif /* CONFIG_SMP */
  1257. ttwu_queue(p, cpu);
  1258. stat:
  1259. ttwu_stat(p, cpu, wake_flags);
  1260. out:
  1261. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1262. return success;
  1263. }
  1264. /**
  1265. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1266. * @p: the thread to be awakened
  1267. *
  1268. * Put @p on the run-queue if it's not already there. The caller must
  1269. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1270. * the current task.
  1271. */
  1272. static void try_to_wake_up_local(struct task_struct *p)
  1273. {
  1274. struct rq *rq = task_rq(p);
  1275. BUG_ON(rq != this_rq());
  1276. BUG_ON(p == current);
  1277. lockdep_assert_held(&rq->lock);
  1278. if (!raw_spin_trylock(&p->pi_lock)) {
  1279. raw_spin_unlock(&rq->lock);
  1280. raw_spin_lock(&p->pi_lock);
  1281. raw_spin_lock(&rq->lock);
  1282. }
  1283. if (!(p->state & TASK_NORMAL))
  1284. goto out;
  1285. if (!p->on_rq)
  1286. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1287. ttwu_do_wakeup(rq, p, 0);
  1288. ttwu_stat(p, smp_processor_id(), 0);
  1289. out:
  1290. raw_spin_unlock(&p->pi_lock);
  1291. }
  1292. /**
  1293. * wake_up_process - Wake up a specific process
  1294. * @p: The process to be woken up.
  1295. *
  1296. * Attempt to wake up the nominated process and move it to the set of runnable
  1297. * processes. Returns 1 if the process was woken up, 0 if it was already
  1298. * running.
  1299. *
  1300. * It may be assumed that this function implies a write memory barrier before
  1301. * changing the task state if and only if any tasks are woken up.
  1302. */
  1303. int wake_up_process(struct task_struct *p)
  1304. {
  1305. WARN_ON(task_is_stopped_or_traced(p));
  1306. return try_to_wake_up(p, TASK_NORMAL, 0);
  1307. }
  1308. EXPORT_SYMBOL(wake_up_process);
  1309. int wake_up_state(struct task_struct *p, unsigned int state)
  1310. {
  1311. return try_to_wake_up(p, state, 0);
  1312. }
  1313. /*
  1314. * Perform scheduler related setup for a newly forked process p.
  1315. * p is forked by current.
  1316. *
  1317. * __sched_fork() is basic setup used by init_idle() too:
  1318. */
  1319. static void __sched_fork(struct task_struct *p)
  1320. {
  1321. p->on_rq = 0;
  1322. p->se.on_rq = 0;
  1323. p->se.exec_start = 0;
  1324. p->se.sum_exec_runtime = 0;
  1325. p->se.prev_sum_exec_runtime = 0;
  1326. p->se.nr_migrations = 0;
  1327. p->se.vruntime = 0;
  1328. INIT_LIST_HEAD(&p->se.group_node);
  1329. /*
  1330. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  1331. * removed when useful for applications beyond shares distribution (e.g.
  1332. * load-balance).
  1333. */
  1334. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  1335. p->se.avg.runnable_avg_period = 0;
  1336. p->se.avg.runnable_avg_sum = 0;
  1337. #endif
  1338. #ifdef CONFIG_SCHEDSTATS
  1339. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1340. #endif
  1341. INIT_LIST_HEAD(&p->rt.run_list);
  1342. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1343. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1344. #endif
  1345. #ifdef CONFIG_NUMA_BALANCING
  1346. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1347. p->mm->numa_next_scan = jiffies;
  1348. p->mm->numa_next_reset = jiffies;
  1349. p->mm->numa_scan_seq = 0;
  1350. }
  1351. p->node_stamp = 0ULL;
  1352. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1353. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1354. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1355. p->numa_work.next = &p->numa_work;
  1356. #endif /* CONFIG_NUMA_BALANCING */
  1357. }
  1358. #ifdef CONFIG_NUMA_BALANCING
  1359. #ifdef CONFIG_SCHED_DEBUG
  1360. void set_numabalancing_state(bool enabled)
  1361. {
  1362. if (enabled)
  1363. sched_feat_set("NUMA");
  1364. else
  1365. sched_feat_set("NO_NUMA");
  1366. }
  1367. #else
  1368. __read_mostly bool numabalancing_enabled;
  1369. void set_numabalancing_state(bool enabled)
  1370. {
  1371. numabalancing_enabled = enabled;
  1372. }
  1373. #endif /* CONFIG_SCHED_DEBUG */
  1374. #endif /* CONFIG_NUMA_BALANCING */
  1375. /*
  1376. * fork()/clone()-time setup:
  1377. */
  1378. void sched_fork(struct task_struct *p)
  1379. {
  1380. unsigned long flags;
  1381. int cpu = get_cpu();
  1382. __sched_fork(p);
  1383. /*
  1384. * We mark the process as running here. This guarantees that
  1385. * nobody will actually run it, and a signal or other external
  1386. * event cannot wake it up and insert it on the runqueue either.
  1387. */
  1388. p->state = TASK_RUNNING;
  1389. /*
  1390. * Make sure we do not leak PI boosting priority to the child.
  1391. */
  1392. p->prio = current->normal_prio;
  1393. /*
  1394. * Revert to default priority/policy on fork if requested.
  1395. */
  1396. if (unlikely(p->sched_reset_on_fork)) {
  1397. if (task_has_rt_policy(p)) {
  1398. p->policy = SCHED_NORMAL;
  1399. p->static_prio = NICE_TO_PRIO(0);
  1400. p->rt_priority = 0;
  1401. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1402. p->static_prio = NICE_TO_PRIO(0);
  1403. p->prio = p->normal_prio = __normal_prio(p);
  1404. set_load_weight(p);
  1405. /*
  1406. * We don't need the reset flag anymore after the fork. It has
  1407. * fulfilled its duty:
  1408. */
  1409. p->sched_reset_on_fork = 0;
  1410. }
  1411. if (!rt_prio(p->prio))
  1412. p->sched_class = &fair_sched_class;
  1413. if (p->sched_class->task_fork)
  1414. p->sched_class->task_fork(p);
  1415. /*
  1416. * The child is not yet in the pid-hash so no cgroup attach races,
  1417. * and the cgroup is pinned to this child due to cgroup_fork()
  1418. * is ran before sched_fork().
  1419. *
  1420. * Silence PROVE_RCU.
  1421. */
  1422. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1423. set_task_cpu(p, cpu);
  1424. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1425. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1426. if (likely(sched_info_on()))
  1427. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1428. #endif
  1429. #if defined(CONFIG_SMP)
  1430. p->on_cpu = 0;
  1431. #endif
  1432. #ifdef CONFIG_PREEMPT_COUNT
  1433. /* Want to start with kernel preemption disabled. */
  1434. task_thread_info(p)->preempt_count = 1;
  1435. #endif
  1436. #ifdef CONFIG_SMP
  1437. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1438. #endif
  1439. put_cpu();
  1440. }
  1441. /*
  1442. * wake_up_new_task - wake up a newly created task for the first time.
  1443. *
  1444. * This function will do some initial scheduler statistics housekeeping
  1445. * that must be done for every newly created context, then puts the task
  1446. * on the runqueue and wakes it.
  1447. */
  1448. void wake_up_new_task(struct task_struct *p)
  1449. {
  1450. unsigned long flags;
  1451. struct rq *rq;
  1452. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1453. #ifdef CONFIG_SMP
  1454. /*
  1455. * Fork balancing, do it here and not earlier because:
  1456. * - cpus_allowed can change in the fork path
  1457. * - any previously selected cpu might disappear through hotplug
  1458. */
  1459. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1460. #endif
  1461. rq = __task_rq_lock(p);
  1462. activate_task(rq, p, 0);
  1463. p->on_rq = 1;
  1464. trace_sched_wakeup_new(p, true);
  1465. check_preempt_curr(rq, p, WF_FORK);
  1466. #ifdef CONFIG_SMP
  1467. if (p->sched_class->task_woken)
  1468. p->sched_class->task_woken(rq, p);
  1469. #endif
  1470. task_rq_unlock(rq, p, &flags);
  1471. }
  1472. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1473. /**
  1474. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1475. * @notifier: notifier struct to register
  1476. */
  1477. void preempt_notifier_register(struct preempt_notifier *notifier)
  1478. {
  1479. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1480. }
  1481. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1482. /**
  1483. * preempt_notifier_unregister - no longer interested in preemption notifications
  1484. * @notifier: notifier struct to unregister
  1485. *
  1486. * This is safe to call from within a preemption notifier.
  1487. */
  1488. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1489. {
  1490. hlist_del(&notifier->link);
  1491. }
  1492. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1493. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1494. {
  1495. struct preempt_notifier *notifier;
  1496. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1497. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1498. }
  1499. static void
  1500. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1501. struct task_struct *next)
  1502. {
  1503. struct preempt_notifier *notifier;
  1504. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1505. notifier->ops->sched_out(notifier, next);
  1506. }
  1507. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1508. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1509. {
  1510. }
  1511. static void
  1512. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1513. struct task_struct *next)
  1514. {
  1515. }
  1516. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1517. /**
  1518. * prepare_task_switch - prepare to switch tasks
  1519. * @rq: the runqueue preparing to switch
  1520. * @prev: the current task that is being switched out
  1521. * @next: the task we are going to switch to.
  1522. *
  1523. * This is called with the rq lock held and interrupts off. It must
  1524. * be paired with a subsequent finish_task_switch after the context
  1525. * switch.
  1526. *
  1527. * prepare_task_switch sets up locking and calls architecture specific
  1528. * hooks.
  1529. */
  1530. static inline void
  1531. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1532. struct task_struct *next)
  1533. {
  1534. trace_sched_switch(prev, next);
  1535. sched_info_switch(prev, next);
  1536. perf_event_task_sched_out(prev, next);
  1537. fire_sched_out_preempt_notifiers(prev, next);
  1538. prepare_lock_switch(rq, next);
  1539. prepare_arch_switch(next);
  1540. }
  1541. /**
  1542. * finish_task_switch - clean up after a task-switch
  1543. * @rq: runqueue associated with task-switch
  1544. * @prev: the thread we just switched away from.
  1545. *
  1546. * finish_task_switch must be called after the context switch, paired
  1547. * with a prepare_task_switch call before the context switch.
  1548. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1549. * and do any other architecture-specific cleanup actions.
  1550. *
  1551. * Note that we may have delayed dropping an mm in context_switch(). If
  1552. * so, we finish that here outside of the runqueue lock. (Doing it
  1553. * with the lock held can cause deadlocks; see schedule() for
  1554. * details.)
  1555. */
  1556. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1557. __releases(rq->lock)
  1558. {
  1559. struct mm_struct *mm = rq->prev_mm;
  1560. long prev_state;
  1561. rq->prev_mm = NULL;
  1562. /*
  1563. * A task struct has one reference for the use as "current".
  1564. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1565. * schedule one last time. The schedule call will never return, and
  1566. * the scheduled task must drop that reference.
  1567. * The test for TASK_DEAD must occur while the runqueue locks are
  1568. * still held, otherwise prev could be scheduled on another cpu, die
  1569. * there before we look at prev->state, and then the reference would
  1570. * be dropped twice.
  1571. * Manfred Spraul <manfred@colorfullife.com>
  1572. */
  1573. prev_state = prev->state;
  1574. vtime_task_switch(prev);
  1575. finish_arch_switch(prev);
  1576. perf_event_task_sched_in(prev, current);
  1577. finish_lock_switch(rq, prev);
  1578. finish_arch_post_lock_switch();
  1579. fire_sched_in_preempt_notifiers(current);
  1580. if (mm)
  1581. mmdrop(mm);
  1582. if (unlikely(prev_state == TASK_DEAD)) {
  1583. /*
  1584. * Remove function-return probe instances associated with this
  1585. * task and put them back on the free list.
  1586. */
  1587. kprobe_flush_task(prev);
  1588. put_task_struct(prev);
  1589. }
  1590. }
  1591. #ifdef CONFIG_SMP
  1592. /* assumes rq->lock is held */
  1593. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1594. {
  1595. if (prev->sched_class->pre_schedule)
  1596. prev->sched_class->pre_schedule(rq, prev);
  1597. }
  1598. /* rq->lock is NOT held, but preemption is disabled */
  1599. static inline void post_schedule(struct rq *rq)
  1600. {
  1601. if (rq->post_schedule) {
  1602. unsigned long flags;
  1603. raw_spin_lock_irqsave(&rq->lock, flags);
  1604. if (rq->curr->sched_class->post_schedule)
  1605. rq->curr->sched_class->post_schedule(rq);
  1606. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1607. rq->post_schedule = 0;
  1608. }
  1609. }
  1610. #else
  1611. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1612. {
  1613. }
  1614. static inline void post_schedule(struct rq *rq)
  1615. {
  1616. }
  1617. #endif
  1618. /**
  1619. * schedule_tail - first thing a freshly forked thread must call.
  1620. * @prev: the thread we just switched away from.
  1621. */
  1622. asmlinkage void schedule_tail(struct task_struct *prev)
  1623. __releases(rq->lock)
  1624. {
  1625. struct rq *rq = this_rq();
  1626. finish_task_switch(rq, prev);
  1627. /*
  1628. * FIXME: do we need to worry about rq being invalidated by the
  1629. * task_switch?
  1630. */
  1631. post_schedule(rq);
  1632. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1633. /* In this case, finish_task_switch does not reenable preemption */
  1634. preempt_enable();
  1635. #endif
  1636. if (current->set_child_tid)
  1637. put_user(task_pid_vnr(current), current->set_child_tid);
  1638. }
  1639. /*
  1640. * context_switch - switch to the new MM and the new
  1641. * thread's register state.
  1642. */
  1643. static inline void
  1644. context_switch(struct rq *rq, struct task_struct *prev,
  1645. struct task_struct *next)
  1646. {
  1647. struct mm_struct *mm, *oldmm;
  1648. prepare_task_switch(rq, prev, next);
  1649. mm = next->mm;
  1650. oldmm = prev->active_mm;
  1651. /*
  1652. * For paravirt, this is coupled with an exit in switch_to to
  1653. * combine the page table reload and the switch backend into
  1654. * one hypercall.
  1655. */
  1656. arch_start_context_switch(prev);
  1657. if (!mm) {
  1658. next->active_mm = oldmm;
  1659. atomic_inc(&oldmm->mm_count);
  1660. enter_lazy_tlb(oldmm, next);
  1661. } else
  1662. switch_mm(oldmm, mm, next);
  1663. if (!prev->mm) {
  1664. prev->active_mm = NULL;
  1665. rq->prev_mm = oldmm;
  1666. }
  1667. /*
  1668. * Since the runqueue lock will be released by the next
  1669. * task (which is an invalid locking op but in the case
  1670. * of the scheduler it's an obvious special-case), so we
  1671. * do an early lockdep release here:
  1672. */
  1673. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1674. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1675. #endif
  1676. context_tracking_task_switch(prev, next);
  1677. /* Here we just switch the register state and the stack. */
  1678. switch_to(prev, next, prev);
  1679. barrier();
  1680. /*
  1681. * this_rq must be evaluated again because prev may have moved
  1682. * CPUs since it called schedule(), thus the 'rq' on its stack
  1683. * frame will be invalid.
  1684. */
  1685. finish_task_switch(this_rq(), prev);
  1686. }
  1687. /*
  1688. * nr_running and nr_context_switches:
  1689. *
  1690. * externally visible scheduler statistics: current number of runnable
  1691. * threads, total number of context switches performed since bootup.
  1692. */
  1693. unsigned long nr_running(void)
  1694. {
  1695. unsigned long i, sum = 0;
  1696. for_each_online_cpu(i)
  1697. sum += cpu_rq(i)->nr_running;
  1698. return sum;
  1699. }
  1700. unsigned long long nr_context_switches(void)
  1701. {
  1702. int i;
  1703. unsigned long long sum = 0;
  1704. for_each_possible_cpu(i)
  1705. sum += cpu_rq(i)->nr_switches;
  1706. return sum;
  1707. }
  1708. unsigned long nr_iowait(void)
  1709. {
  1710. unsigned long i, sum = 0;
  1711. for_each_possible_cpu(i)
  1712. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1713. return sum;
  1714. }
  1715. unsigned long nr_iowait_cpu(int cpu)
  1716. {
  1717. struct rq *this = cpu_rq(cpu);
  1718. return atomic_read(&this->nr_iowait);
  1719. }
  1720. unsigned long this_cpu_load(void)
  1721. {
  1722. struct rq *this = this_rq();
  1723. return this->cpu_load[0];
  1724. }
  1725. /*
  1726. * Global load-average calculations
  1727. *
  1728. * We take a distributed and async approach to calculating the global load-avg
  1729. * in order to minimize overhead.
  1730. *
  1731. * The global load average is an exponentially decaying average of nr_running +
  1732. * nr_uninterruptible.
  1733. *
  1734. * Once every LOAD_FREQ:
  1735. *
  1736. * nr_active = 0;
  1737. * for_each_possible_cpu(cpu)
  1738. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1739. *
  1740. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1741. *
  1742. * Due to a number of reasons the above turns in the mess below:
  1743. *
  1744. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1745. * serious number of cpus, therefore we need to take a distributed approach
  1746. * to calculating nr_active.
  1747. *
  1748. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1749. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1750. *
  1751. * So assuming nr_active := 0 when we start out -- true per definition, we
  1752. * can simply take per-cpu deltas and fold those into a global accumulate
  1753. * to obtain the same result. See calc_load_fold_active().
  1754. *
  1755. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1756. * across the machine, we assume 10 ticks is sufficient time for every
  1757. * cpu to have completed this task.
  1758. *
  1759. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1760. * again, being late doesn't loose the delta, just wrecks the sample.
  1761. *
  1762. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1763. * this would add another cross-cpu cacheline miss and atomic operation
  1764. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1765. * when it went into uninterruptible state and decrement on whatever cpu
  1766. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1767. * all cpus yields the correct result.
  1768. *
  1769. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1770. */
  1771. /* Variables and functions for calc_load */
  1772. static atomic_long_t calc_load_tasks;
  1773. static unsigned long calc_load_update;
  1774. unsigned long avenrun[3];
  1775. EXPORT_SYMBOL(avenrun); /* should be removed */
  1776. /**
  1777. * get_avenrun - get the load average array
  1778. * @loads: pointer to dest load array
  1779. * @offset: offset to add
  1780. * @shift: shift count to shift the result left
  1781. *
  1782. * These values are estimates at best, so no need for locking.
  1783. */
  1784. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1785. {
  1786. loads[0] = (avenrun[0] + offset) << shift;
  1787. loads[1] = (avenrun[1] + offset) << shift;
  1788. loads[2] = (avenrun[2] + offset) << shift;
  1789. }
  1790. static long calc_load_fold_active(struct rq *this_rq)
  1791. {
  1792. long nr_active, delta = 0;
  1793. nr_active = this_rq->nr_running;
  1794. nr_active += (long) this_rq->nr_uninterruptible;
  1795. if (nr_active != this_rq->calc_load_active) {
  1796. delta = nr_active - this_rq->calc_load_active;
  1797. this_rq->calc_load_active = nr_active;
  1798. }
  1799. return delta;
  1800. }
  1801. /*
  1802. * a1 = a0 * e + a * (1 - e)
  1803. */
  1804. static unsigned long
  1805. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1806. {
  1807. load *= exp;
  1808. load += active * (FIXED_1 - exp);
  1809. load += 1UL << (FSHIFT - 1);
  1810. return load >> FSHIFT;
  1811. }
  1812. #ifdef CONFIG_NO_HZ
  1813. /*
  1814. * Handle NO_HZ for the global load-average.
  1815. *
  1816. * Since the above described distributed algorithm to compute the global
  1817. * load-average relies on per-cpu sampling from the tick, it is affected by
  1818. * NO_HZ.
  1819. *
  1820. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1821. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1822. * when we read the global state.
  1823. *
  1824. * Obviously reality has to ruin such a delightfully simple scheme:
  1825. *
  1826. * - When we go NO_HZ idle during the window, we can negate our sample
  1827. * contribution, causing under-accounting.
  1828. *
  1829. * We avoid this by keeping two idle-delta counters and flipping them
  1830. * when the window starts, thus separating old and new NO_HZ load.
  1831. *
  1832. * The only trick is the slight shift in index flip for read vs write.
  1833. *
  1834. * 0s 5s 10s 15s
  1835. * +10 +10 +10 +10
  1836. * |-|-----------|-|-----------|-|-----------|-|
  1837. * r:0 0 1 1 0 0 1 1 0
  1838. * w:0 1 1 0 0 1 1 0 0
  1839. *
  1840. * This ensures we'll fold the old idle contribution in this window while
  1841. * accumlating the new one.
  1842. *
  1843. * - When we wake up from NO_HZ idle during the window, we push up our
  1844. * contribution, since we effectively move our sample point to a known
  1845. * busy state.
  1846. *
  1847. * This is solved by pushing the window forward, and thus skipping the
  1848. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1849. * was in effect at the time the window opened). This also solves the issue
  1850. * of having to deal with a cpu having been in NOHZ idle for multiple
  1851. * LOAD_FREQ intervals.
  1852. *
  1853. * When making the ILB scale, we should try to pull this in as well.
  1854. */
  1855. static atomic_long_t calc_load_idle[2];
  1856. static int calc_load_idx;
  1857. static inline int calc_load_write_idx(void)
  1858. {
  1859. int idx = calc_load_idx;
  1860. /*
  1861. * See calc_global_nohz(), if we observe the new index, we also
  1862. * need to observe the new update time.
  1863. */
  1864. smp_rmb();
  1865. /*
  1866. * If the folding window started, make sure we start writing in the
  1867. * next idle-delta.
  1868. */
  1869. if (!time_before(jiffies, calc_load_update))
  1870. idx++;
  1871. return idx & 1;
  1872. }
  1873. static inline int calc_load_read_idx(void)
  1874. {
  1875. return calc_load_idx & 1;
  1876. }
  1877. void calc_load_enter_idle(void)
  1878. {
  1879. struct rq *this_rq = this_rq();
  1880. long delta;
  1881. /*
  1882. * We're going into NOHZ mode, if there's any pending delta, fold it
  1883. * into the pending idle delta.
  1884. */
  1885. delta = calc_load_fold_active(this_rq);
  1886. if (delta) {
  1887. int idx = calc_load_write_idx();
  1888. atomic_long_add(delta, &calc_load_idle[idx]);
  1889. }
  1890. }
  1891. void calc_load_exit_idle(void)
  1892. {
  1893. struct rq *this_rq = this_rq();
  1894. /*
  1895. * If we're still before the sample window, we're done.
  1896. */
  1897. if (time_before(jiffies, this_rq->calc_load_update))
  1898. return;
  1899. /*
  1900. * We woke inside or after the sample window, this means we're already
  1901. * accounted through the nohz accounting, so skip the entire deal and
  1902. * sync up for the next window.
  1903. */
  1904. this_rq->calc_load_update = calc_load_update;
  1905. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1906. this_rq->calc_load_update += LOAD_FREQ;
  1907. }
  1908. static long calc_load_fold_idle(void)
  1909. {
  1910. int idx = calc_load_read_idx();
  1911. long delta = 0;
  1912. if (atomic_long_read(&calc_load_idle[idx]))
  1913. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1914. return delta;
  1915. }
  1916. /**
  1917. * fixed_power_int - compute: x^n, in O(log n) time
  1918. *
  1919. * @x: base of the power
  1920. * @frac_bits: fractional bits of @x
  1921. * @n: power to raise @x to.
  1922. *
  1923. * By exploiting the relation between the definition of the natural power
  1924. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1925. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1926. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1927. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1928. * of course trivially computable in O(log_2 n), the length of our binary
  1929. * vector.
  1930. */
  1931. static unsigned long
  1932. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1933. {
  1934. unsigned long result = 1UL << frac_bits;
  1935. if (n) for (;;) {
  1936. if (n & 1) {
  1937. result *= x;
  1938. result += 1UL << (frac_bits - 1);
  1939. result >>= frac_bits;
  1940. }
  1941. n >>= 1;
  1942. if (!n)
  1943. break;
  1944. x *= x;
  1945. x += 1UL << (frac_bits - 1);
  1946. x >>= frac_bits;
  1947. }
  1948. return result;
  1949. }
  1950. /*
  1951. * a1 = a0 * e + a * (1 - e)
  1952. *
  1953. * a2 = a1 * e + a * (1 - e)
  1954. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1955. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1956. *
  1957. * a3 = a2 * e + a * (1 - e)
  1958. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1959. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1960. *
  1961. * ...
  1962. *
  1963. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1964. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1965. * = a0 * e^n + a * (1 - e^n)
  1966. *
  1967. * [1] application of the geometric series:
  1968. *
  1969. * n 1 - x^(n+1)
  1970. * S_n := \Sum x^i = -------------
  1971. * i=0 1 - x
  1972. */
  1973. static unsigned long
  1974. calc_load_n(unsigned long load, unsigned long exp,
  1975. unsigned long active, unsigned int n)
  1976. {
  1977. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1978. }
  1979. /*
  1980. * NO_HZ can leave us missing all per-cpu ticks calling
  1981. * calc_load_account_active(), but since an idle CPU folds its delta into
  1982. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1983. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1984. *
  1985. * Once we've updated the global active value, we need to apply the exponential
  1986. * weights adjusted to the number of cycles missed.
  1987. */
  1988. static void calc_global_nohz(void)
  1989. {
  1990. long delta, active, n;
  1991. if (!time_before(jiffies, calc_load_update + 10)) {
  1992. /*
  1993. * Catch-up, fold however many we are behind still
  1994. */
  1995. delta = jiffies - calc_load_update - 10;
  1996. n = 1 + (delta / LOAD_FREQ);
  1997. active = atomic_long_read(&calc_load_tasks);
  1998. active = active > 0 ? active * FIXED_1 : 0;
  1999. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2000. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2001. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2002. calc_load_update += n * LOAD_FREQ;
  2003. }
  2004. /*
  2005. * Flip the idle index...
  2006. *
  2007. * Make sure we first write the new time then flip the index, so that
  2008. * calc_load_write_idx() will see the new time when it reads the new
  2009. * index, this avoids a double flip messing things up.
  2010. */
  2011. smp_wmb();
  2012. calc_load_idx++;
  2013. }
  2014. #else /* !CONFIG_NO_HZ */
  2015. static inline long calc_load_fold_idle(void) { return 0; }
  2016. static inline void calc_global_nohz(void) { }
  2017. #endif /* CONFIG_NO_HZ */
  2018. /*
  2019. * calc_load - update the avenrun load estimates 10 ticks after the
  2020. * CPUs have updated calc_load_tasks.
  2021. */
  2022. void calc_global_load(unsigned long ticks)
  2023. {
  2024. long active, delta;
  2025. if (time_before(jiffies, calc_load_update + 10))
  2026. return;
  2027. /*
  2028. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2029. */
  2030. delta = calc_load_fold_idle();
  2031. if (delta)
  2032. atomic_long_add(delta, &calc_load_tasks);
  2033. active = atomic_long_read(&calc_load_tasks);
  2034. active = active > 0 ? active * FIXED_1 : 0;
  2035. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2036. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2037. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2038. calc_load_update += LOAD_FREQ;
  2039. /*
  2040. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2041. */
  2042. calc_global_nohz();
  2043. }
  2044. /*
  2045. * Called from update_cpu_load() to periodically update this CPU's
  2046. * active count.
  2047. */
  2048. static void calc_load_account_active(struct rq *this_rq)
  2049. {
  2050. long delta;
  2051. if (time_before(jiffies, this_rq->calc_load_update))
  2052. return;
  2053. delta = calc_load_fold_active(this_rq);
  2054. if (delta)
  2055. atomic_long_add(delta, &calc_load_tasks);
  2056. this_rq->calc_load_update += LOAD_FREQ;
  2057. }
  2058. /*
  2059. * End of global load-average stuff
  2060. */
  2061. /*
  2062. * The exact cpuload at various idx values, calculated at every tick would be
  2063. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2064. *
  2065. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2066. * on nth tick when cpu may be busy, then we have:
  2067. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2068. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2069. *
  2070. * decay_load_missed() below does efficient calculation of
  2071. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2072. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2073. *
  2074. * The calculation is approximated on a 128 point scale.
  2075. * degrade_zero_ticks is the number of ticks after which load at any
  2076. * particular idx is approximated to be zero.
  2077. * degrade_factor is a precomputed table, a row for each load idx.
  2078. * Each column corresponds to degradation factor for a power of two ticks,
  2079. * based on 128 point scale.
  2080. * Example:
  2081. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2082. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2083. *
  2084. * With this power of 2 load factors, we can degrade the load n times
  2085. * by looking at 1 bits in n and doing as many mult/shift instead of
  2086. * n mult/shifts needed by the exact degradation.
  2087. */
  2088. #define DEGRADE_SHIFT 7
  2089. static const unsigned char
  2090. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2091. static const unsigned char
  2092. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2093. {0, 0, 0, 0, 0, 0, 0, 0},
  2094. {64, 32, 8, 0, 0, 0, 0, 0},
  2095. {96, 72, 40, 12, 1, 0, 0},
  2096. {112, 98, 75, 43, 15, 1, 0},
  2097. {120, 112, 98, 76, 45, 16, 2} };
  2098. /*
  2099. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2100. * would be when CPU is idle and so we just decay the old load without
  2101. * adding any new load.
  2102. */
  2103. static unsigned long
  2104. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2105. {
  2106. int j = 0;
  2107. if (!missed_updates)
  2108. return load;
  2109. if (missed_updates >= degrade_zero_ticks[idx])
  2110. return 0;
  2111. if (idx == 1)
  2112. return load >> missed_updates;
  2113. while (missed_updates) {
  2114. if (missed_updates % 2)
  2115. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2116. missed_updates >>= 1;
  2117. j++;
  2118. }
  2119. return load;
  2120. }
  2121. /*
  2122. * Update rq->cpu_load[] statistics. This function is usually called every
  2123. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2124. * every tick. We fix it up based on jiffies.
  2125. */
  2126. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2127. unsigned long pending_updates)
  2128. {
  2129. int i, scale;
  2130. this_rq->nr_load_updates++;
  2131. /* Update our load: */
  2132. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2133. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2134. unsigned long old_load, new_load;
  2135. /* scale is effectively 1 << i now, and >> i divides by scale */
  2136. old_load = this_rq->cpu_load[i];
  2137. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2138. new_load = this_load;
  2139. /*
  2140. * Round up the averaging division if load is increasing. This
  2141. * prevents us from getting stuck on 9 if the load is 10, for
  2142. * example.
  2143. */
  2144. if (new_load > old_load)
  2145. new_load += scale - 1;
  2146. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2147. }
  2148. sched_avg_update(this_rq);
  2149. }
  2150. #ifdef CONFIG_NO_HZ
  2151. /*
  2152. * There is no sane way to deal with nohz on smp when using jiffies because the
  2153. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2154. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2155. *
  2156. * Therefore we cannot use the delta approach from the regular tick since that
  2157. * would seriously skew the load calculation. However we'll make do for those
  2158. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2159. * (tick_nohz_idle_exit).
  2160. *
  2161. * This means we might still be one tick off for nohz periods.
  2162. */
  2163. /*
  2164. * Called from nohz_idle_balance() to update the load ratings before doing the
  2165. * idle balance.
  2166. */
  2167. void update_idle_cpu_load(struct rq *this_rq)
  2168. {
  2169. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2170. unsigned long load = this_rq->load.weight;
  2171. unsigned long pending_updates;
  2172. /*
  2173. * bail if there's load or we're actually up-to-date.
  2174. */
  2175. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2176. return;
  2177. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2178. this_rq->last_load_update_tick = curr_jiffies;
  2179. __update_cpu_load(this_rq, load, pending_updates);
  2180. }
  2181. /*
  2182. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2183. */
  2184. void update_cpu_load_nohz(void)
  2185. {
  2186. struct rq *this_rq = this_rq();
  2187. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2188. unsigned long pending_updates;
  2189. if (curr_jiffies == this_rq->last_load_update_tick)
  2190. return;
  2191. raw_spin_lock(&this_rq->lock);
  2192. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2193. if (pending_updates) {
  2194. this_rq->last_load_update_tick = curr_jiffies;
  2195. /*
  2196. * We were idle, this means load 0, the current load might be
  2197. * !0 due to remote wakeups and the sort.
  2198. */
  2199. __update_cpu_load(this_rq, 0, pending_updates);
  2200. }
  2201. raw_spin_unlock(&this_rq->lock);
  2202. }
  2203. #endif /* CONFIG_NO_HZ */
  2204. /*
  2205. * Called from scheduler_tick()
  2206. */
  2207. static void update_cpu_load_active(struct rq *this_rq)
  2208. {
  2209. /*
  2210. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2211. */
  2212. this_rq->last_load_update_tick = jiffies;
  2213. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2214. calc_load_account_active(this_rq);
  2215. }
  2216. #ifdef CONFIG_SMP
  2217. /*
  2218. * sched_exec - execve() is a valuable balancing opportunity, because at
  2219. * this point the task has the smallest effective memory and cache footprint.
  2220. */
  2221. void sched_exec(void)
  2222. {
  2223. struct task_struct *p = current;
  2224. unsigned long flags;
  2225. int dest_cpu;
  2226. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2227. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2228. if (dest_cpu == smp_processor_id())
  2229. goto unlock;
  2230. if (likely(cpu_active(dest_cpu))) {
  2231. struct migration_arg arg = { p, dest_cpu };
  2232. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2233. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2234. return;
  2235. }
  2236. unlock:
  2237. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2238. }
  2239. #endif
  2240. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2241. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2242. EXPORT_PER_CPU_SYMBOL(kstat);
  2243. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2244. /*
  2245. * Return any ns on the sched_clock that have not yet been accounted in
  2246. * @p in case that task is currently running.
  2247. *
  2248. * Called with task_rq_lock() held on @rq.
  2249. */
  2250. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2251. {
  2252. u64 ns = 0;
  2253. if (task_current(rq, p)) {
  2254. update_rq_clock(rq);
  2255. ns = rq->clock_task - p->se.exec_start;
  2256. if ((s64)ns < 0)
  2257. ns = 0;
  2258. }
  2259. return ns;
  2260. }
  2261. unsigned long long task_delta_exec(struct task_struct *p)
  2262. {
  2263. unsigned long flags;
  2264. struct rq *rq;
  2265. u64 ns = 0;
  2266. rq = task_rq_lock(p, &flags);
  2267. ns = do_task_delta_exec(p, rq);
  2268. task_rq_unlock(rq, p, &flags);
  2269. return ns;
  2270. }
  2271. /*
  2272. * Return accounted runtime for the task.
  2273. * In case the task is currently running, return the runtime plus current's
  2274. * pending runtime that have not been accounted yet.
  2275. */
  2276. unsigned long long task_sched_runtime(struct task_struct *p)
  2277. {
  2278. unsigned long flags;
  2279. struct rq *rq;
  2280. u64 ns = 0;
  2281. rq = task_rq_lock(p, &flags);
  2282. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2283. task_rq_unlock(rq, p, &flags);
  2284. return ns;
  2285. }
  2286. /*
  2287. * This function gets called by the timer code, with HZ frequency.
  2288. * We call it with interrupts disabled.
  2289. */
  2290. void scheduler_tick(void)
  2291. {
  2292. int cpu = smp_processor_id();
  2293. struct rq *rq = cpu_rq(cpu);
  2294. struct task_struct *curr = rq->curr;
  2295. sched_clock_tick();
  2296. raw_spin_lock(&rq->lock);
  2297. update_rq_clock(rq);
  2298. update_cpu_load_active(rq);
  2299. curr->sched_class->task_tick(rq, curr, 0);
  2300. raw_spin_unlock(&rq->lock);
  2301. perf_event_task_tick();
  2302. #ifdef CONFIG_SMP
  2303. rq->idle_balance = idle_cpu(cpu);
  2304. trigger_load_balance(rq, cpu);
  2305. #endif
  2306. }
  2307. notrace unsigned long get_parent_ip(unsigned long addr)
  2308. {
  2309. if (in_lock_functions(addr)) {
  2310. addr = CALLER_ADDR2;
  2311. if (in_lock_functions(addr))
  2312. addr = CALLER_ADDR3;
  2313. }
  2314. return addr;
  2315. }
  2316. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2317. defined(CONFIG_PREEMPT_TRACER))
  2318. void __kprobes add_preempt_count(int val)
  2319. {
  2320. #ifdef CONFIG_DEBUG_PREEMPT
  2321. /*
  2322. * Underflow?
  2323. */
  2324. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2325. return;
  2326. #endif
  2327. preempt_count() += val;
  2328. #ifdef CONFIG_DEBUG_PREEMPT
  2329. /*
  2330. * Spinlock count overflowing soon?
  2331. */
  2332. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2333. PREEMPT_MASK - 10);
  2334. #endif
  2335. if (preempt_count() == val)
  2336. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2337. }
  2338. EXPORT_SYMBOL(add_preempt_count);
  2339. void __kprobes sub_preempt_count(int val)
  2340. {
  2341. #ifdef CONFIG_DEBUG_PREEMPT
  2342. /*
  2343. * Underflow?
  2344. */
  2345. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2346. return;
  2347. /*
  2348. * Is the spinlock portion underflowing?
  2349. */
  2350. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2351. !(preempt_count() & PREEMPT_MASK)))
  2352. return;
  2353. #endif
  2354. if (preempt_count() == val)
  2355. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2356. preempt_count() -= val;
  2357. }
  2358. EXPORT_SYMBOL(sub_preempt_count);
  2359. #endif
  2360. /*
  2361. * Print scheduling while atomic bug:
  2362. */
  2363. static noinline void __schedule_bug(struct task_struct *prev)
  2364. {
  2365. if (oops_in_progress)
  2366. return;
  2367. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2368. prev->comm, prev->pid, preempt_count());
  2369. debug_show_held_locks(prev);
  2370. print_modules();
  2371. if (irqs_disabled())
  2372. print_irqtrace_events(prev);
  2373. dump_stack();
  2374. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2375. }
  2376. /*
  2377. * Various schedule()-time debugging checks and statistics:
  2378. */
  2379. static inline void schedule_debug(struct task_struct *prev)
  2380. {
  2381. /*
  2382. * Test if we are atomic. Since do_exit() needs to call into
  2383. * schedule() atomically, we ignore that path for now.
  2384. * Otherwise, whine if we are scheduling when we should not be.
  2385. */
  2386. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2387. __schedule_bug(prev);
  2388. rcu_sleep_check();
  2389. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2390. schedstat_inc(this_rq(), sched_count);
  2391. }
  2392. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2393. {
  2394. if (prev->on_rq || rq->skip_clock_update < 0)
  2395. update_rq_clock(rq);
  2396. prev->sched_class->put_prev_task(rq, prev);
  2397. }
  2398. /*
  2399. * Pick up the highest-prio task:
  2400. */
  2401. static inline struct task_struct *
  2402. pick_next_task(struct rq *rq)
  2403. {
  2404. const struct sched_class *class;
  2405. struct task_struct *p;
  2406. /*
  2407. * Optimization: we know that if all tasks are in
  2408. * the fair class we can call that function directly:
  2409. */
  2410. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2411. p = fair_sched_class.pick_next_task(rq);
  2412. if (likely(p))
  2413. return p;
  2414. }
  2415. for_each_class(class) {
  2416. p = class->pick_next_task(rq);
  2417. if (p)
  2418. return p;
  2419. }
  2420. BUG(); /* the idle class will always have a runnable task */
  2421. }
  2422. /*
  2423. * __schedule() is the main scheduler function.
  2424. *
  2425. * The main means of driving the scheduler and thus entering this function are:
  2426. *
  2427. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2428. *
  2429. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2430. * paths. For example, see arch/x86/entry_64.S.
  2431. *
  2432. * To drive preemption between tasks, the scheduler sets the flag in timer
  2433. * interrupt handler scheduler_tick().
  2434. *
  2435. * 3. Wakeups don't really cause entry into schedule(). They add a
  2436. * task to the run-queue and that's it.
  2437. *
  2438. * Now, if the new task added to the run-queue preempts the current
  2439. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2440. * called on the nearest possible occasion:
  2441. *
  2442. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2443. *
  2444. * - in syscall or exception context, at the next outmost
  2445. * preempt_enable(). (this might be as soon as the wake_up()'s
  2446. * spin_unlock()!)
  2447. *
  2448. * - in IRQ context, return from interrupt-handler to
  2449. * preemptible context
  2450. *
  2451. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2452. * then at the next:
  2453. *
  2454. * - cond_resched() call
  2455. * - explicit schedule() call
  2456. * - return from syscall or exception to user-space
  2457. * - return from interrupt-handler to user-space
  2458. */
  2459. static void __sched __schedule(void)
  2460. {
  2461. struct task_struct *prev, *next;
  2462. unsigned long *switch_count;
  2463. struct rq *rq;
  2464. int cpu;
  2465. need_resched:
  2466. preempt_disable();
  2467. cpu = smp_processor_id();
  2468. rq = cpu_rq(cpu);
  2469. rcu_note_context_switch(cpu);
  2470. prev = rq->curr;
  2471. schedule_debug(prev);
  2472. if (sched_feat(HRTICK))
  2473. hrtick_clear(rq);
  2474. raw_spin_lock_irq(&rq->lock);
  2475. switch_count = &prev->nivcsw;
  2476. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2477. if (unlikely(signal_pending_state(prev->state, prev))) {
  2478. prev->state = TASK_RUNNING;
  2479. } else {
  2480. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2481. prev->on_rq = 0;
  2482. /*
  2483. * If a worker went to sleep, notify and ask workqueue
  2484. * whether it wants to wake up a task to maintain
  2485. * concurrency.
  2486. */
  2487. if (prev->flags & PF_WQ_WORKER) {
  2488. struct task_struct *to_wakeup;
  2489. to_wakeup = wq_worker_sleeping(prev, cpu);
  2490. if (to_wakeup)
  2491. try_to_wake_up_local(to_wakeup);
  2492. }
  2493. }
  2494. switch_count = &prev->nvcsw;
  2495. }
  2496. pre_schedule(rq, prev);
  2497. if (unlikely(!rq->nr_running))
  2498. idle_balance(cpu, rq);
  2499. put_prev_task(rq, prev);
  2500. next = pick_next_task(rq);
  2501. clear_tsk_need_resched(prev);
  2502. rq->skip_clock_update = 0;
  2503. if (likely(prev != next)) {
  2504. rq->nr_switches++;
  2505. rq->curr = next;
  2506. ++*switch_count;
  2507. context_switch(rq, prev, next); /* unlocks the rq */
  2508. /*
  2509. * The context switch have flipped the stack from under us
  2510. * and restored the local variables which were saved when
  2511. * this task called schedule() in the past. prev == current
  2512. * is still correct, but it can be moved to another cpu/rq.
  2513. */
  2514. cpu = smp_processor_id();
  2515. rq = cpu_rq(cpu);
  2516. } else
  2517. raw_spin_unlock_irq(&rq->lock);
  2518. post_schedule(rq);
  2519. sched_preempt_enable_no_resched();
  2520. if (need_resched())
  2521. goto need_resched;
  2522. }
  2523. static inline void sched_submit_work(struct task_struct *tsk)
  2524. {
  2525. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2526. return;
  2527. /*
  2528. * If we are going to sleep and we have plugged IO queued,
  2529. * make sure to submit it to avoid deadlocks.
  2530. */
  2531. if (blk_needs_flush_plug(tsk))
  2532. blk_schedule_flush_plug(tsk);
  2533. }
  2534. asmlinkage void __sched schedule(void)
  2535. {
  2536. struct task_struct *tsk = current;
  2537. sched_submit_work(tsk);
  2538. __schedule();
  2539. }
  2540. EXPORT_SYMBOL(schedule);
  2541. #ifdef CONFIG_CONTEXT_TRACKING
  2542. asmlinkage void __sched schedule_user(void)
  2543. {
  2544. /*
  2545. * If we come here after a random call to set_need_resched(),
  2546. * or we have been woken up remotely but the IPI has not yet arrived,
  2547. * we haven't yet exited the RCU idle mode. Do it here manually until
  2548. * we find a better solution.
  2549. */
  2550. user_exit();
  2551. schedule();
  2552. user_enter();
  2553. }
  2554. #endif
  2555. /**
  2556. * schedule_preempt_disabled - called with preemption disabled
  2557. *
  2558. * Returns with preemption disabled. Note: preempt_count must be 1
  2559. */
  2560. void __sched schedule_preempt_disabled(void)
  2561. {
  2562. sched_preempt_enable_no_resched();
  2563. schedule();
  2564. preempt_disable();
  2565. }
  2566. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2567. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2568. {
  2569. if (lock->owner != owner)
  2570. return false;
  2571. /*
  2572. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2573. * lock->owner still matches owner, if that fails, owner might
  2574. * point to free()d memory, if it still matches, the rcu_read_lock()
  2575. * ensures the memory stays valid.
  2576. */
  2577. barrier();
  2578. return owner->on_cpu;
  2579. }
  2580. /*
  2581. * Look out! "owner" is an entirely speculative pointer
  2582. * access and not reliable.
  2583. */
  2584. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2585. {
  2586. if (!sched_feat(OWNER_SPIN))
  2587. return 0;
  2588. rcu_read_lock();
  2589. while (owner_running(lock, owner)) {
  2590. if (need_resched())
  2591. break;
  2592. arch_mutex_cpu_relax();
  2593. }
  2594. rcu_read_unlock();
  2595. /*
  2596. * We break out the loop above on need_resched() and when the
  2597. * owner changed, which is a sign for heavy contention. Return
  2598. * success only when lock->owner is NULL.
  2599. */
  2600. return lock->owner == NULL;
  2601. }
  2602. #endif
  2603. #ifdef CONFIG_PREEMPT
  2604. /*
  2605. * this is the entry point to schedule() from in-kernel preemption
  2606. * off of preempt_enable. Kernel preemptions off return from interrupt
  2607. * occur there and call schedule directly.
  2608. */
  2609. asmlinkage void __sched notrace preempt_schedule(void)
  2610. {
  2611. struct thread_info *ti = current_thread_info();
  2612. /*
  2613. * If there is a non-zero preempt_count or interrupts are disabled,
  2614. * we do not want to preempt the current task. Just return..
  2615. */
  2616. if (likely(ti->preempt_count || irqs_disabled()))
  2617. return;
  2618. do {
  2619. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2620. __schedule();
  2621. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2622. /*
  2623. * Check again in case we missed a preemption opportunity
  2624. * between schedule and now.
  2625. */
  2626. barrier();
  2627. } while (need_resched());
  2628. }
  2629. EXPORT_SYMBOL(preempt_schedule);
  2630. /*
  2631. * this is the entry point to schedule() from kernel preemption
  2632. * off of irq context.
  2633. * Note, that this is called and return with irqs disabled. This will
  2634. * protect us against recursive calling from irq.
  2635. */
  2636. asmlinkage void __sched preempt_schedule_irq(void)
  2637. {
  2638. struct thread_info *ti = current_thread_info();
  2639. /* Catch callers which need to be fixed */
  2640. BUG_ON(ti->preempt_count || !irqs_disabled());
  2641. user_exit();
  2642. do {
  2643. add_preempt_count(PREEMPT_ACTIVE);
  2644. local_irq_enable();
  2645. __schedule();
  2646. local_irq_disable();
  2647. sub_preempt_count(PREEMPT_ACTIVE);
  2648. /*
  2649. * Check again in case we missed a preemption opportunity
  2650. * between schedule and now.
  2651. */
  2652. barrier();
  2653. } while (need_resched());
  2654. }
  2655. #endif /* CONFIG_PREEMPT */
  2656. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2657. void *key)
  2658. {
  2659. return try_to_wake_up(curr->private, mode, wake_flags);
  2660. }
  2661. EXPORT_SYMBOL(default_wake_function);
  2662. /*
  2663. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2664. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2665. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2666. *
  2667. * There are circumstances in which we can try to wake a task which has already
  2668. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2669. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2670. */
  2671. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2672. int nr_exclusive, int wake_flags, void *key)
  2673. {
  2674. wait_queue_t *curr, *next;
  2675. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2676. unsigned flags = curr->flags;
  2677. if (curr->func(curr, mode, wake_flags, key) &&
  2678. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2679. break;
  2680. }
  2681. }
  2682. /**
  2683. * __wake_up - wake up threads blocked on a waitqueue.
  2684. * @q: the waitqueue
  2685. * @mode: which threads
  2686. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2687. * @key: is directly passed to the wakeup function
  2688. *
  2689. * It may be assumed that this function implies a write memory barrier before
  2690. * changing the task state if and only if any tasks are woken up.
  2691. */
  2692. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2693. int nr_exclusive, void *key)
  2694. {
  2695. unsigned long flags;
  2696. spin_lock_irqsave(&q->lock, flags);
  2697. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2698. spin_unlock_irqrestore(&q->lock, flags);
  2699. }
  2700. EXPORT_SYMBOL(__wake_up);
  2701. /*
  2702. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2703. */
  2704. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2705. {
  2706. __wake_up_common(q, mode, nr, 0, NULL);
  2707. }
  2708. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2709. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2710. {
  2711. __wake_up_common(q, mode, 1, 0, key);
  2712. }
  2713. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2714. /**
  2715. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2716. * @q: the waitqueue
  2717. * @mode: which threads
  2718. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2719. * @key: opaque value to be passed to wakeup targets
  2720. *
  2721. * The sync wakeup differs that the waker knows that it will schedule
  2722. * away soon, so while the target thread will be woken up, it will not
  2723. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2724. * with each other. This can prevent needless bouncing between CPUs.
  2725. *
  2726. * On UP it can prevent extra preemption.
  2727. *
  2728. * It may be assumed that this function implies a write memory barrier before
  2729. * changing the task state if and only if any tasks are woken up.
  2730. */
  2731. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2732. int nr_exclusive, void *key)
  2733. {
  2734. unsigned long flags;
  2735. int wake_flags = WF_SYNC;
  2736. if (unlikely(!q))
  2737. return;
  2738. if (unlikely(!nr_exclusive))
  2739. wake_flags = 0;
  2740. spin_lock_irqsave(&q->lock, flags);
  2741. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2742. spin_unlock_irqrestore(&q->lock, flags);
  2743. }
  2744. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2745. /*
  2746. * __wake_up_sync - see __wake_up_sync_key()
  2747. */
  2748. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2749. {
  2750. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2751. }
  2752. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2753. /**
  2754. * complete: - signals a single thread waiting on this completion
  2755. * @x: holds the state of this particular completion
  2756. *
  2757. * This will wake up a single thread waiting on this completion. Threads will be
  2758. * awakened in the same order in which they were queued.
  2759. *
  2760. * See also complete_all(), wait_for_completion() and related routines.
  2761. *
  2762. * It may be assumed that this function implies a write memory barrier before
  2763. * changing the task state if and only if any tasks are woken up.
  2764. */
  2765. void complete(struct completion *x)
  2766. {
  2767. unsigned long flags;
  2768. spin_lock_irqsave(&x->wait.lock, flags);
  2769. x->done++;
  2770. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2771. spin_unlock_irqrestore(&x->wait.lock, flags);
  2772. }
  2773. EXPORT_SYMBOL(complete);
  2774. /**
  2775. * complete_all: - signals all threads waiting on this completion
  2776. * @x: holds the state of this particular completion
  2777. *
  2778. * This will wake up all threads waiting on this particular completion event.
  2779. *
  2780. * It may be assumed that this function implies a write memory barrier before
  2781. * changing the task state if and only if any tasks are woken up.
  2782. */
  2783. void complete_all(struct completion *x)
  2784. {
  2785. unsigned long flags;
  2786. spin_lock_irqsave(&x->wait.lock, flags);
  2787. x->done += UINT_MAX/2;
  2788. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2789. spin_unlock_irqrestore(&x->wait.lock, flags);
  2790. }
  2791. EXPORT_SYMBOL(complete_all);
  2792. static inline long __sched
  2793. do_wait_for_common(struct completion *x,
  2794. long (*action)(long), long timeout, int state)
  2795. {
  2796. if (!x->done) {
  2797. DECLARE_WAITQUEUE(wait, current);
  2798. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2799. do {
  2800. if (signal_pending_state(state, current)) {
  2801. timeout = -ERESTARTSYS;
  2802. break;
  2803. }
  2804. __set_current_state(state);
  2805. spin_unlock_irq(&x->wait.lock);
  2806. timeout = action(timeout);
  2807. spin_lock_irq(&x->wait.lock);
  2808. } while (!x->done && timeout);
  2809. __remove_wait_queue(&x->wait, &wait);
  2810. if (!x->done)
  2811. return timeout;
  2812. }
  2813. x->done--;
  2814. return timeout ?: 1;
  2815. }
  2816. static inline long __sched
  2817. __wait_for_common(struct completion *x,
  2818. long (*action)(long), long timeout, int state)
  2819. {
  2820. might_sleep();
  2821. spin_lock_irq(&x->wait.lock);
  2822. timeout = do_wait_for_common(x, action, timeout, state);
  2823. spin_unlock_irq(&x->wait.lock);
  2824. return timeout;
  2825. }
  2826. static long __sched
  2827. wait_for_common(struct completion *x, long timeout, int state)
  2828. {
  2829. return __wait_for_common(x, schedule_timeout, timeout, state);
  2830. }
  2831. static long __sched
  2832. wait_for_common_io(struct completion *x, long timeout, int state)
  2833. {
  2834. return __wait_for_common(x, io_schedule_timeout, timeout, state);
  2835. }
  2836. /**
  2837. * wait_for_completion: - waits for completion of a task
  2838. * @x: holds the state of this particular completion
  2839. *
  2840. * This waits to be signaled for completion of a specific task. It is NOT
  2841. * interruptible and there is no timeout.
  2842. *
  2843. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2844. * and interrupt capability. Also see complete().
  2845. */
  2846. void __sched wait_for_completion(struct completion *x)
  2847. {
  2848. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2849. }
  2850. EXPORT_SYMBOL(wait_for_completion);
  2851. /**
  2852. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2853. * @x: holds the state of this particular completion
  2854. * @timeout: timeout value in jiffies
  2855. *
  2856. * This waits for either a completion of a specific task to be signaled or for a
  2857. * specified timeout to expire. The timeout is in jiffies. It is not
  2858. * interruptible.
  2859. *
  2860. * The return value is 0 if timed out, and positive (at least 1, or number of
  2861. * jiffies left till timeout) if completed.
  2862. */
  2863. unsigned long __sched
  2864. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2865. {
  2866. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2867. }
  2868. EXPORT_SYMBOL(wait_for_completion_timeout);
  2869. /**
  2870. * wait_for_completion_io: - waits for completion of a task
  2871. * @x: holds the state of this particular completion
  2872. *
  2873. * This waits to be signaled for completion of a specific task. It is NOT
  2874. * interruptible and there is no timeout. The caller is accounted as waiting
  2875. * for IO.
  2876. */
  2877. void __sched wait_for_completion_io(struct completion *x)
  2878. {
  2879. wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2880. }
  2881. EXPORT_SYMBOL(wait_for_completion_io);
  2882. /**
  2883. * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
  2884. * @x: holds the state of this particular completion
  2885. * @timeout: timeout value in jiffies
  2886. *
  2887. * This waits for either a completion of a specific task to be signaled or for a
  2888. * specified timeout to expire. The timeout is in jiffies. It is not
  2889. * interruptible. The caller is accounted as waiting for IO.
  2890. *
  2891. * The return value is 0 if timed out, and positive (at least 1, or number of
  2892. * jiffies left till timeout) if completed.
  2893. */
  2894. unsigned long __sched
  2895. wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
  2896. {
  2897. return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
  2898. }
  2899. EXPORT_SYMBOL(wait_for_completion_io_timeout);
  2900. /**
  2901. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2902. * @x: holds the state of this particular completion
  2903. *
  2904. * This waits for completion of a specific task to be signaled. It is
  2905. * interruptible.
  2906. *
  2907. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2908. */
  2909. int __sched wait_for_completion_interruptible(struct completion *x)
  2910. {
  2911. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2912. if (t == -ERESTARTSYS)
  2913. return t;
  2914. return 0;
  2915. }
  2916. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2917. /**
  2918. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2919. * @x: holds the state of this particular completion
  2920. * @timeout: timeout value in jiffies
  2921. *
  2922. * This waits for either a completion of a specific task to be signaled or for a
  2923. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2924. *
  2925. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2926. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2927. */
  2928. long __sched
  2929. wait_for_completion_interruptible_timeout(struct completion *x,
  2930. unsigned long timeout)
  2931. {
  2932. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2933. }
  2934. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2935. /**
  2936. * wait_for_completion_killable: - waits for completion of a task (killable)
  2937. * @x: holds the state of this particular completion
  2938. *
  2939. * This waits to be signaled for completion of a specific task. It can be
  2940. * interrupted by a kill signal.
  2941. *
  2942. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2943. */
  2944. int __sched wait_for_completion_killable(struct completion *x)
  2945. {
  2946. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2947. if (t == -ERESTARTSYS)
  2948. return t;
  2949. return 0;
  2950. }
  2951. EXPORT_SYMBOL(wait_for_completion_killable);
  2952. /**
  2953. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2954. * @x: holds the state of this particular completion
  2955. * @timeout: timeout value in jiffies
  2956. *
  2957. * This waits for either a completion of a specific task to be
  2958. * signaled or for a specified timeout to expire. It can be
  2959. * interrupted by a kill signal. The timeout is in jiffies.
  2960. *
  2961. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2962. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2963. */
  2964. long __sched
  2965. wait_for_completion_killable_timeout(struct completion *x,
  2966. unsigned long timeout)
  2967. {
  2968. return wait_for_common(x, timeout, TASK_KILLABLE);
  2969. }
  2970. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2971. /**
  2972. * try_wait_for_completion - try to decrement a completion without blocking
  2973. * @x: completion structure
  2974. *
  2975. * Returns: 0 if a decrement cannot be done without blocking
  2976. * 1 if a decrement succeeded.
  2977. *
  2978. * If a completion is being used as a counting completion,
  2979. * attempt to decrement the counter without blocking. This
  2980. * enables us to avoid waiting if the resource the completion
  2981. * is protecting is not available.
  2982. */
  2983. bool try_wait_for_completion(struct completion *x)
  2984. {
  2985. unsigned long flags;
  2986. int ret = 1;
  2987. spin_lock_irqsave(&x->wait.lock, flags);
  2988. if (!x->done)
  2989. ret = 0;
  2990. else
  2991. x->done--;
  2992. spin_unlock_irqrestore(&x->wait.lock, flags);
  2993. return ret;
  2994. }
  2995. EXPORT_SYMBOL(try_wait_for_completion);
  2996. /**
  2997. * completion_done - Test to see if a completion has any waiters
  2998. * @x: completion structure
  2999. *
  3000. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3001. * 1 if there are no waiters.
  3002. *
  3003. */
  3004. bool completion_done(struct completion *x)
  3005. {
  3006. unsigned long flags;
  3007. int ret = 1;
  3008. spin_lock_irqsave(&x->wait.lock, flags);
  3009. if (!x->done)
  3010. ret = 0;
  3011. spin_unlock_irqrestore(&x->wait.lock, flags);
  3012. return ret;
  3013. }
  3014. EXPORT_SYMBOL(completion_done);
  3015. static long __sched
  3016. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3017. {
  3018. unsigned long flags;
  3019. wait_queue_t wait;
  3020. init_waitqueue_entry(&wait, current);
  3021. __set_current_state(state);
  3022. spin_lock_irqsave(&q->lock, flags);
  3023. __add_wait_queue(q, &wait);
  3024. spin_unlock(&q->lock);
  3025. timeout = schedule_timeout(timeout);
  3026. spin_lock_irq(&q->lock);
  3027. __remove_wait_queue(q, &wait);
  3028. spin_unlock_irqrestore(&q->lock, flags);
  3029. return timeout;
  3030. }
  3031. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3032. {
  3033. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3034. }
  3035. EXPORT_SYMBOL(interruptible_sleep_on);
  3036. long __sched
  3037. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3038. {
  3039. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3040. }
  3041. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3042. void __sched sleep_on(wait_queue_head_t *q)
  3043. {
  3044. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3045. }
  3046. EXPORT_SYMBOL(sleep_on);
  3047. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3048. {
  3049. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3050. }
  3051. EXPORT_SYMBOL(sleep_on_timeout);
  3052. #ifdef CONFIG_RT_MUTEXES
  3053. /*
  3054. * rt_mutex_setprio - set the current priority of a task
  3055. * @p: task
  3056. * @prio: prio value (kernel-internal form)
  3057. *
  3058. * This function changes the 'effective' priority of a task. It does
  3059. * not touch ->normal_prio like __setscheduler().
  3060. *
  3061. * Used by the rt_mutex code to implement priority inheritance logic.
  3062. */
  3063. void rt_mutex_setprio(struct task_struct *p, int prio)
  3064. {
  3065. int oldprio, on_rq, running;
  3066. struct rq *rq;
  3067. const struct sched_class *prev_class;
  3068. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3069. rq = __task_rq_lock(p);
  3070. /*
  3071. * Idle task boosting is a nono in general. There is one
  3072. * exception, when PREEMPT_RT and NOHZ is active:
  3073. *
  3074. * The idle task calls get_next_timer_interrupt() and holds
  3075. * the timer wheel base->lock on the CPU and another CPU wants
  3076. * to access the timer (probably to cancel it). We can safely
  3077. * ignore the boosting request, as the idle CPU runs this code
  3078. * with interrupts disabled and will complete the lock
  3079. * protected section without being interrupted. So there is no
  3080. * real need to boost.
  3081. */
  3082. if (unlikely(p == rq->idle)) {
  3083. WARN_ON(p != rq->curr);
  3084. WARN_ON(p->pi_blocked_on);
  3085. goto out_unlock;
  3086. }
  3087. trace_sched_pi_setprio(p, prio);
  3088. oldprio = p->prio;
  3089. prev_class = p->sched_class;
  3090. on_rq = p->on_rq;
  3091. running = task_current(rq, p);
  3092. if (on_rq)
  3093. dequeue_task(rq, p, 0);
  3094. if (running)
  3095. p->sched_class->put_prev_task(rq, p);
  3096. if (rt_prio(prio))
  3097. p->sched_class = &rt_sched_class;
  3098. else
  3099. p->sched_class = &fair_sched_class;
  3100. p->prio = prio;
  3101. if (running)
  3102. p->sched_class->set_curr_task(rq);
  3103. if (on_rq)
  3104. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3105. check_class_changed(rq, p, prev_class, oldprio);
  3106. out_unlock:
  3107. __task_rq_unlock(rq);
  3108. }
  3109. #endif
  3110. void set_user_nice(struct task_struct *p, long nice)
  3111. {
  3112. int old_prio, delta, on_rq;
  3113. unsigned long flags;
  3114. struct rq *rq;
  3115. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3116. return;
  3117. /*
  3118. * We have to be careful, if called from sys_setpriority(),
  3119. * the task might be in the middle of scheduling on another CPU.
  3120. */
  3121. rq = task_rq_lock(p, &flags);
  3122. /*
  3123. * The RT priorities are set via sched_setscheduler(), but we still
  3124. * allow the 'normal' nice value to be set - but as expected
  3125. * it wont have any effect on scheduling until the task is
  3126. * SCHED_FIFO/SCHED_RR:
  3127. */
  3128. if (task_has_rt_policy(p)) {
  3129. p->static_prio = NICE_TO_PRIO(nice);
  3130. goto out_unlock;
  3131. }
  3132. on_rq = p->on_rq;
  3133. if (on_rq)
  3134. dequeue_task(rq, p, 0);
  3135. p->static_prio = NICE_TO_PRIO(nice);
  3136. set_load_weight(p);
  3137. old_prio = p->prio;
  3138. p->prio = effective_prio(p);
  3139. delta = p->prio - old_prio;
  3140. if (on_rq) {
  3141. enqueue_task(rq, p, 0);
  3142. /*
  3143. * If the task increased its priority or is running and
  3144. * lowered its priority, then reschedule its CPU:
  3145. */
  3146. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3147. resched_task(rq->curr);
  3148. }
  3149. out_unlock:
  3150. task_rq_unlock(rq, p, &flags);
  3151. }
  3152. EXPORT_SYMBOL(set_user_nice);
  3153. /*
  3154. * can_nice - check if a task can reduce its nice value
  3155. * @p: task
  3156. * @nice: nice value
  3157. */
  3158. int can_nice(const struct task_struct *p, const int nice)
  3159. {
  3160. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3161. int nice_rlim = 20 - nice;
  3162. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3163. capable(CAP_SYS_NICE));
  3164. }
  3165. #ifdef __ARCH_WANT_SYS_NICE
  3166. /*
  3167. * sys_nice - change the priority of the current process.
  3168. * @increment: priority increment
  3169. *
  3170. * sys_setpriority is a more generic, but much slower function that
  3171. * does similar things.
  3172. */
  3173. SYSCALL_DEFINE1(nice, int, increment)
  3174. {
  3175. long nice, retval;
  3176. /*
  3177. * Setpriority might change our priority at the same moment.
  3178. * We don't have to worry. Conceptually one call occurs first
  3179. * and we have a single winner.
  3180. */
  3181. if (increment < -40)
  3182. increment = -40;
  3183. if (increment > 40)
  3184. increment = 40;
  3185. nice = TASK_NICE(current) + increment;
  3186. if (nice < -20)
  3187. nice = -20;
  3188. if (nice > 19)
  3189. nice = 19;
  3190. if (increment < 0 && !can_nice(current, nice))
  3191. return -EPERM;
  3192. retval = security_task_setnice(current, nice);
  3193. if (retval)
  3194. return retval;
  3195. set_user_nice(current, nice);
  3196. return 0;
  3197. }
  3198. #endif
  3199. /**
  3200. * task_prio - return the priority value of a given task.
  3201. * @p: the task in question.
  3202. *
  3203. * This is the priority value as seen by users in /proc.
  3204. * RT tasks are offset by -200. Normal tasks are centered
  3205. * around 0, value goes from -16 to +15.
  3206. */
  3207. int task_prio(const struct task_struct *p)
  3208. {
  3209. return p->prio - MAX_RT_PRIO;
  3210. }
  3211. /**
  3212. * task_nice - return the nice value of a given task.
  3213. * @p: the task in question.
  3214. */
  3215. int task_nice(const struct task_struct *p)
  3216. {
  3217. return TASK_NICE(p);
  3218. }
  3219. EXPORT_SYMBOL(task_nice);
  3220. /**
  3221. * idle_cpu - is a given cpu idle currently?
  3222. * @cpu: the processor in question.
  3223. */
  3224. int idle_cpu(int cpu)
  3225. {
  3226. struct rq *rq = cpu_rq(cpu);
  3227. if (rq->curr != rq->idle)
  3228. return 0;
  3229. if (rq->nr_running)
  3230. return 0;
  3231. #ifdef CONFIG_SMP
  3232. if (!llist_empty(&rq->wake_list))
  3233. return 0;
  3234. #endif
  3235. return 1;
  3236. }
  3237. /**
  3238. * idle_task - return the idle task for a given cpu.
  3239. * @cpu: the processor in question.
  3240. */
  3241. struct task_struct *idle_task(int cpu)
  3242. {
  3243. return cpu_rq(cpu)->idle;
  3244. }
  3245. /**
  3246. * find_process_by_pid - find a process with a matching PID value.
  3247. * @pid: the pid in question.
  3248. */
  3249. static struct task_struct *find_process_by_pid(pid_t pid)
  3250. {
  3251. return pid ? find_task_by_vpid(pid) : current;
  3252. }
  3253. /* Actually do priority change: must hold rq lock. */
  3254. static void
  3255. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3256. {
  3257. p->policy = policy;
  3258. p->rt_priority = prio;
  3259. p->normal_prio = normal_prio(p);
  3260. /* we are holding p->pi_lock already */
  3261. p->prio = rt_mutex_getprio(p);
  3262. if (rt_prio(p->prio))
  3263. p->sched_class = &rt_sched_class;
  3264. else
  3265. p->sched_class = &fair_sched_class;
  3266. set_load_weight(p);
  3267. }
  3268. /*
  3269. * check the target process has a UID that matches the current process's
  3270. */
  3271. static bool check_same_owner(struct task_struct *p)
  3272. {
  3273. const struct cred *cred = current_cred(), *pcred;
  3274. bool match;
  3275. rcu_read_lock();
  3276. pcred = __task_cred(p);
  3277. match = (uid_eq(cred->euid, pcred->euid) ||
  3278. uid_eq(cred->euid, pcred->uid));
  3279. rcu_read_unlock();
  3280. return match;
  3281. }
  3282. static int __sched_setscheduler(struct task_struct *p, int policy,
  3283. const struct sched_param *param, bool user)
  3284. {
  3285. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3286. unsigned long flags;
  3287. const struct sched_class *prev_class;
  3288. struct rq *rq;
  3289. int reset_on_fork;
  3290. /* may grab non-irq protected spin_locks */
  3291. BUG_ON(in_interrupt());
  3292. recheck:
  3293. /* double check policy once rq lock held */
  3294. if (policy < 0) {
  3295. reset_on_fork = p->sched_reset_on_fork;
  3296. policy = oldpolicy = p->policy;
  3297. } else {
  3298. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3299. policy &= ~SCHED_RESET_ON_FORK;
  3300. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3301. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3302. policy != SCHED_IDLE)
  3303. return -EINVAL;
  3304. }
  3305. /*
  3306. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3307. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3308. * SCHED_BATCH and SCHED_IDLE is 0.
  3309. */
  3310. if (param->sched_priority < 0 ||
  3311. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3312. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3313. return -EINVAL;
  3314. if (rt_policy(policy) != (param->sched_priority != 0))
  3315. return -EINVAL;
  3316. /*
  3317. * Allow unprivileged RT tasks to decrease priority:
  3318. */
  3319. if (user && !capable(CAP_SYS_NICE)) {
  3320. if (rt_policy(policy)) {
  3321. unsigned long rlim_rtprio =
  3322. task_rlimit(p, RLIMIT_RTPRIO);
  3323. /* can't set/change the rt policy */
  3324. if (policy != p->policy && !rlim_rtprio)
  3325. return -EPERM;
  3326. /* can't increase priority */
  3327. if (param->sched_priority > p->rt_priority &&
  3328. param->sched_priority > rlim_rtprio)
  3329. return -EPERM;
  3330. }
  3331. /*
  3332. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3333. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3334. */
  3335. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3336. if (!can_nice(p, TASK_NICE(p)))
  3337. return -EPERM;
  3338. }
  3339. /* can't change other user's priorities */
  3340. if (!check_same_owner(p))
  3341. return -EPERM;
  3342. /* Normal users shall not reset the sched_reset_on_fork flag */
  3343. if (p->sched_reset_on_fork && !reset_on_fork)
  3344. return -EPERM;
  3345. }
  3346. if (user) {
  3347. retval = security_task_setscheduler(p);
  3348. if (retval)
  3349. return retval;
  3350. }
  3351. /*
  3352. * make sure no PI-waiters arrive (or leave) while we are
  3353. * changing the priority of the task:
  3354. *
  3355. * To be able to change p->policy safely, the appropriate
  3356. * runqueue lock must be held.
  3357. */
  3358. rq = task_rq_lock(p, &flags);
  3359. /*
  3360. * Changing the policy of the stop threads its a very bad idea
  3361. */
  3362. if (p == rq->stop) {
  3363. task_rq_unlock(rq, p, &flags);
  3364. return -EINVAL;
  3365. }
  3366. /*
  3367. * If not changing anything there's no need to proceed further:
  3368. */
  3369. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3370. param->sched_priority == p->rt_priority))) {
  3371. task_rq_unlock(rq, p, &flags);
  3372. return 0;
  3373. }
  3374. #ifdef CONFIG_RT_GROUP_SCHED
  3375. if (user) {
  3376. /*
  3377. * Do not allow realtime tasks into groups that have no runtime
  3378. * assigned.
  3379. */
  3380. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3381. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3382. !task_group_is_autogroup(task_group(p))) {
  3383. task_rq_unlock(rq, p, &flags);
  3384. return -EPERM;
  3385. }
  3386. }
  3387. #endif
  3388. /* recheck policy now with rq lock held */
  3389. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3390. policy = oldpolicy = -1;
  3391. task_rq_unlock(rq, p, &flags);
  3392. goto recheck;
  3393. }
  3394. on_rq = p->on_rq;
  3395. running = task_current(rq, p);
  3396. if (on_rq)
  3397. dequeue_task(rq, p, 0);
  3398. if (running)
  3399. p->sched_class->put_prev_task(rq, p);
  3400. p->sched_reset_on_fork = reset_on_fork;
  3401. oldprio = p->prio;
  3402. prev_class = p->sched_class;
  3403. __setscheduler(rq, p, policy, param->sched_priority);
  3404. if (running)
  3405. p->sched_class->set_curr_task(rq);
  3406. if (on_rq)
  3407. enqueue_task(rq, p, 0);
  3408. check_class_changed(rq, p, prev_class, oldprio);
  3409. task_rq_unlock(rq, p, &flags);
  3410. rt_mutex_adjust_pi(p);
  3411. return 0;
  3412. }
  3413. /**
  3414. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3415. * @p: the task in question.
  3416. * @policy: new policy.
  3417. * @param: structure containing the new RT priority.
  3418. *
  3419. * NOTE that the task may be already dead.
  3420. */
  3421. int sched_setscheduler(struct task_struct *p, int policy,
  3422. const struct sched_param *param)
  3423. {
  3424. return __sched_setscheduler(p, policy, param, true);
  3425. }
  3426. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3427. /**
  3428. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3429. * @p: the task in question.
  3430. * @policy: new policy.
  3431. * @param: structure containing the new RT priority.
  3432. *
  3433. * Just like sched_setscheduler, only don't bother checking if the
  3434. * current context has permission. For example, this is needed in
  3435. * stop_machine(): we create temporary high priority worker threads,
  3436. * but our caller might not have that capability.
  3437. */
  3438. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3439. const struct sched_param *param)
  3440. {
  3441. return __sched_setscheduler(p, policy, param, false);
  3442. }
  3443. static int
  3444. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3445. {
  3446. struct sched_param lparam;
  3447. struct task_struct *p;
  3448. int retval;
  3449. if (!param || pid < 0)
  3450. return -EINVAL;
  3451. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3452. return -EFAULT;
  3453. rcu_read_lock();
  3454. retval = -ESRCH;
  3455. p = find_process_by_pid(pid);
  3456. if (p != NULL)
  3457. retval = sched_setscheduler(p, policy, &lparam);
  3458. rcu_read_unlock();
  3459. return retval;
  3460. }
  3461. /**
  3462. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3463. * @pid: the pid in question.
  3464. * @policy: new policy.
  3465. * @param: structure containing the new RT priority.
  3466. */
  3467. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3468. struct sched_param __user *, param)
  3469. {
  3470. /* negative values for policy are not valid */
  3471. if (policy < 0)
  3472. return -EINVAL;
  3473. return do_sched_setscheduler(pid, policy, param);
  3474. }
  3475. /**
  3476. * sys_sched_setparam - set/change the RT priority of a thread
  3477. * @pid: the pid in question.
  3478. * @param: structure containing the new RT priority.
  3479. */
  3480. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3481. {
  3482. return do_sched_setscheduler(pid, -1, param);
  3483. }
  3484. /**
  3485. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3486. * @pid: the pid in question.
  3487. */
  3488. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3489. {
  3490. struct task_struct *p;
  3491. int retval;
  3492. if (pid < 0)
  3493. return -EINVAL;
  3494. retval = -ESRCH;
  3495. rcu_read_lock();
  3496. p = find_process_by_pid(pid);
  3497. if (p) {
  3498. retval = security_task_getscheduler(p);
  3499. if (!retval)
  3500. retval = p->policy
  3501. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3502. }
  3503. rcu_read_unlock();
  3504. return retval;
  3505. }
  3506. /**
  3507. * sys_sched_getparam - get the RT priority of a thread
  3508. * @pid: the pid in question.
  3509. * @param: structure containing the RT priority.
  3510. */
  3511. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3512. {
  3513. struct sched_param lp;
  3514. struct task_struct *p;
  3515. int retval;
  3516. if (!param || pid < 0)
  3517. return -EINVAL;
  3518. rcu_read_lock();
  3519. p = find_process_by_pid(pid);
  3520. retval = -ESRCH;
  3521. if (!p)
  3522. goto out_unlock;
  3523. retval = security_task_getscheduler(p);
  3524. if (retval)
  3525. goto out_unlock;
  3526. lp.sched_priority = p->rt_priority;
  3527. rcu_read_unlock();
  3528. /*
  3529. * This one might sleep, we cannot do it with a spinlock held ...
  3530. */
  3531. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3532. return retval;
  3533. out_unlock:
  3534. rcu_read_unlock();
  3535. return retval;
  3536. }
  3537. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3538. {
  3539. cpumask_var_t cpus_allowed, new_mask;
  3540. struct task_struct *p;
  3541. int retval;
  3542. get_online_cpus();
  3543. rcu_read_lock();
  3544. p = find_process_by_pid(pid);
  3545. if (!p) {
  3546. rcu_read_unlock();
  3547. put_online_cpus();
  3548. return -ESRCH;
  3549. }
  3550. /* Prevent p going away */
  3551. get_task_struct(p);
  3552. rcu_read_unlock();
  3553. if (p->flags & PF_NO_SETAFFINITY) {
  3554. retval = -EINVAL;
  3555. goto out_put_task;
  3556. }
  3557. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3558. retval = -ENOMEM;
  3559. goto out_put_task;
  3560. }
  3561. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3562. retval = -ENOMEM;
  3563. goto out_free_cpus_allowed;
  3564. }
  3565. retval = -EPERM;
  3566. if (!check_same_owner(p)) {
  3567. rcu_read_lock();
  3568. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3569. rcu_read_unlock();
  3570. goto out_unlock;
  3571. }
  3572. rcu_read_unlock();
  3573. }
  3574. retval = security_task_setscheduler(p);
  3575. if (retval)
  3576. goto out_unlock;
  3577. cpuset_cpus_allowed(p, cpus_allowed);
  3578. cpumask_and(new_mask, in_mask, cpus_allowed);
  3579. again:
  3580. retval = set_cpus_allowed_ptr(p, new_mask);
  3581. if (!retval) {
  3582. cpuset_cpus_allowed(p, cpus_allowed);
  3583. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3584. /*
  3585. * We must have raced with a concurrent cpuset
  3586. * update. Just reset the cpus_allowed to the
  3587. * cpuset's cpus_allowed
  3588. */
  3589. cpumask_copy(new_mask, cpus_allowed);
  3590. goto again;
  3591. }
  3592. }
  3593. out_unlock:
  3594. free_cpumask_var(new_mask);
  3595. out_free_cpus_allowed:
  3596. free_cpumask_var(cpus_allowed);
  3597. out_put_task:
  3598. put_task_struct(p);
  3599. put_online_cpus();
  3600. return retval;
  3601. }
  3602. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3603. struct cpumask *new_mask)
  3604. {
  3605. if (len < cpumask_size())
  3606. cpumask_clear(new_mask);
  3607. else if (len > cpumask_size())
  3608. len = cpumask_size();
  3609. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3610. }
  3611. /**
  3612. * sys_sched_setaffinity - set the cpu affinity of a process
  3613. * @pid: pid of the process
  3614. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3615. * @user_mask_ptr: user-space pointer to the new cpu mask
  3616. */
  3617. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3618. unsigned long __user *, user_mask_ptr)
  3619. {
  3620. cpumask_var_t new_mask;
  3621. int retval;
  3622. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3623. return -ENOMEM;
  3624. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3625. if (retval == 0)
  3626. retval = sched_setaffinity(pid, new_mask);
  3627. free_cpumask_var(new_mask);
  3628. return retval;
  3629. }
  3630. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3631. {
  3632. struct task_struct *p;
  3633. unsigned long flags;
  3634. int retval;
  3635. get_online_cpus();
  3636. rcu_read_lock();
  3637. retval = -ESRCH;
  3638. p = find_process_by_pid(pid);
  3639. if (!p)
  3640. goto out_unlock;
  3641. retval = security_task_getscheduler(p);
  3642. if (retval)
  3643. goto out_unlock;
  3644. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3645. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3646. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3647. out_unlock:
  3648. rcu_read_unlock();
  3649. put_online_cpus();
  3650. return retval;
  3651. }
  3652. /**
  3653. * sys_sched_getaffinity - get the cpu affinity of a process
  3654. * @pid: pid of the process
  3655. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3656. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3657. */
  3658. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3659. unsigned long __user *, user_mask_ptr)
  3660. {
  3661. int ret;
  3662. cpumask_var_t mask;
  3663. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3664. return -EINVAL;
  3665. if (len & (sizeof(unsigned long)-1))
  3666. return -EINVAL;
  3667. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3668. return -ENOMEM;
  3669. ret = sched_getaffinity(pid, mask);
  3670. if (ret == 0) {
  3671. size_t retlen = min_t(size_t, len, cpumask_size());
  3672. if (copy_to_user(user_mask_ptr, mask, retlen))
  3673. ret = -EFAULT;
  3674. else
  3675. ret = retlen;
  3676. }
  3677. free_cpumask_var(mask);
  3678. return ret;
  3679. }
  3680. /**
  3681. * sys_sched_yield - yield the current processor to other threads.
  3682. *
  3683. * This function yields the current CPU to other tasks. If there are no
  3684. * other threads running on this CPU then this function will return.
  3685. */
  3686. SYSCALL_DEFINE0(sched_yield)
  3687. {
  3688. struct rq *rq = this_rq_lock();
  3689. schedstat_inc(rq, yld_count);
  3690. current->sched_class->yield_task(rq);
  3691. /*
  3692. * Since we are going to call schedule() anyway, there's
  3693. * no need to preempt or enable interrupts:
  3694. */
  3695. __release(rq->lock);
  3696. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3697. do_raw_spin_unlock(&rq->lock);
  3698. sched_preempt_enable_no_resched();
  3699. schedule();
  3700. return 0;
  3701. }
  3702. static inline int should_resched(void)
  3703. {
  3704. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3705. }
  3706. static void __cond_resched(void)
  3707. {
  3708. add_preempt_count(PREEMPT_ACTIVE);
  3709. __schedule();
  3710. sub_preempt_count(PREEMPT_ACTIVE);
  3711. }
  3712. int __sched _cond_resched(void)
  3713. {
  3714. if (should_resched()) {
  3715. __cond_resched();
  3716. return 1;
  3717. }
  3718. return 0;
  3719. }
  3720. EXPORT_SYMBOL(_cond_resched);
  3721. /*
  3722. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3723. * call schedule, and on return reacquire the lock.
  3724. *
  3725. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3726. * operations here to prevent schedule() from being called twice (once via
  3727. * spin_unlock(), once by hand).
  3728. */
  3729. int __cond_resched_lock(spinlock_t *lock)
  3730. {
  3731. int resched = should_resched();
  3732. int ret = 0;
  3733. lockdep_assert_held(lock);
  3734. if (spin_needbreak(lock) || resched) {
  3735. spin_unlock(lock);
  3736. if (resched)
  3737. __cond_resched();
  3738. else
  3739. cpu_relax();
  3740. ret = 1;
  3741. spin_lock(lock);
  3742. }
  3743. return ret;
  3744. }
  3745. EXPORT_SYMBOL(__cond_resched_lock);
  3746. int __sched __cond_resched_softirq(void)
  3747. {
  3748. BUG_ON(!in_softirq());
  3749. if (should_resched()) {
  3750. local_bh_enable();
  3751. __cond_resched();
  3752. local_bh_disable();
  3753. return 1;
  3754. }
  3755. return 0;
  3756. }
  3757. EXPORT_SYMBOL(__cond_resched_softirq);
  3758. /**
  3759. * yield - yield the current processor to other threads.
  3760. *
  3761. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3762. *
  3763. * The scheduler is at all times free to pick the calling task as the most
  3764. * eligible task to run, if removing the yield() call from your code breaks
  3765. * it, its already broken.
  3766. *
  3767. * Typical broken usage is:
  3768. *
  3769. * while (!event)
  3770. * yield();
  3771. *
  3772. * where one assumes that yield() will let 'the other' process run that will
  3773. * make event true. If the current task is a SCHED_FIFO task that will never
  3774. * happen. Never use yield() as a progress guarantee!!
  3775. *
  3776. * If you want to use yield() to wait for something, use wait_event().
  3777. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3778. * If you still want to use yield(), do not!
  3779. */
  3780. void __sched yield(void)
  3781. {
  3782. set_current_state(TASK_RUNNING);
  3783. sys_sched_yield();
  3784. }
  3785. EXPORT_SYMBOL(yield);
  3786. /**
  3787. * yield_to - yield the current processor to another thread in
  3788. * your thread group, or accelerate that thread toward the
  3789. * processor it's on.
  3790. * @p: target task
  3791. * @preempt: whether task preemption is allowed or not
  3792. *
  3793. * It's the caller's job to ensure that the target task struct
  3794. * can't go away on us before we can do any checks.
  3795. *
  3796. * Returns:
  3797. * true (>0) if we indeed boosted the target task.
  3798. * false (0) if we failed to boost the target.
  3799. * -ESRCH if there's no task to yield to.
  3800. */
  3801. bool __sched yield_to(struct task_struct *p, bool preempt)
  3802. {
  3803. struct task_struct *curr = current;
  3804. struct rq *rq, *p_rq;
  3805. unsigned long flags;
  3806. int yielded = 0;
  3807. local_irq_save(flags);
  3808. rq = this_rq();
  3809. again:
  3810. p_rq = task_rq(p);
  3811. /*
  3812. * If we're the only runnable task on the rq and target rq also
  3813. * has only one task, there's absolutely no point in yielding.
  3814. */
  3815. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3816. yielded = -ESRCH;
  3817. goto out_irq;
  3818. }
  3819. double_rq_lock(rq, p_rq);
  3820. while (task_rq(p) != p_rq) {
  3821. double_rq_unlock(rq, p_rq);
  3822. goto again;
  3823. }
  3824. if (!curr->sched_class->yield_to_task)
  3825. goto out_unlock;
  3826. if (curr->sched_class != p->sched_class)
  3827. goto out_unlock;
  3828. if (task_running(p_rq, p) || p->state)
  3829. goto out_unlock;
  3830. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3831. if (yielded) {
  3832. schedstat_inc(rq, yld_count);
  3833. /*
  3834. * Make p's CPU reschedule; pick_next_entity takes care of
  3835. * fairness.
  3836. */
  3837. if (preempt && rq != p_rq)
  3838. resched_task(p_rq->curr);
  3839. }
  3840. out_unlock:
  3841. double_rq_unlock(rq, p_rq);
  3842. out_irq:
  3843. local_irq_restore(flags);
  3844. if (yielded > 0)
  3845. schedule();
  3846. return yielded;
  3847. }
  3848. EXPORT_SYMBOL_GPL(yield_to);
  3849. /*
  3850. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3851. * that process accounting knows that this is a task in IO wait state.
  3852. */
  3853. void __sched io_schedule(void)
  3854. {
  3855. struct rq *rq = raw_rq();
  3856. delayacct_blkio_start();
  3857. atomic_inc(&rq->nr_iowait);
  3858. blk_flush_plug(current);
  3859. current->in_iowait = 1;
  3860. schedule();
  3861. current->in_iowait = 0;
  3862. atomic_dec(&rq->nr_iowait);
  3863. delayacct_blkio_end();
  3864. }
  3865. EXPORT_SYMBOL(io_schedule);
  3866. long __sched io_schedule_timeout(long timeout)
  3867. {
  3868. struct rq *rq = raw_rq();
  3869. long ret;
  3870. delayacct_blkio_start();
  3871. atomic_inc(&rq->nr_iowait);
  3872. blk_flush_plug(current);
  3873. current->in_iowait = 1;
  3874. ret = schedule_timeout(timeout);
  3875. current->in_iowait = 0;
  3876. atomic_dec(&rq->nr_iowait);
  3877. delayacct_blkio_end();
  3878. return ret;
  3879. }
  3880. /**
  3881. * sys_sched_get_priority_max - return maximum RT priority.
  3882. * @policy: scheduling class.
  3883. *
  3884. * this syscall returns the maximum rt_priority that can be used
  3885. * by a given scheduling class.
  3886. */
  3887. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3888. {
  3889. int ret = -EINVAL;
  3890. switch (policy) {
  3891. case SCHED_FIFO:
  3892. case SCHED_RR:
  3893. ret = MAX_USER_RT_PRIO-1;
  3894. break;
  3895. case SCHED_NORMAL:
  3896. case SCHED_BATCH:
  3897. case SCHED_IDLE:
  3898. ret = 0;
  3899. break;
  3900. }
  3901. return ret;
  3902. }
  3903. /**
  3904. * sys_sched_get_priority_min - return minimum RT priority.
  3905. * @policy: scheduling class.
  3906. *
  3907. * this syscall returns the minimum rt_priority that can be used
  3908. * by a given scheduling class.
  3909. */
  3910. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3911. {
  3912. int ret = -EINVAL;
  3913. switch (policy) {
  3914. case SCHED_FIFO:
  3915. case SCHED_RR:
  3916. ret = 1;
  3917. break;
  3918. case SCHED_NORMAL:
  3919. case SCHED_BATCH:
  3920. case SCHED_IDLE:
  3921. ret = 0;
  3922. }
  3923. return ret;
  3924. }
  3925. /**
  3926. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3927. * @pid: pid of the process.
  3928. * @interval: userspace pointer to the timeslice value.
  3929. *
  3930. * this syscall writes the default timeslice value of a given process
  3931. * into the user-space timespec buffer. A value of '0' means infinity.
  3932. */
  3933. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3934. struct timespec __user *, interval)
  3935. {
  3936. struct task_struct *p;
  3937. unsigned int time_slice;
  3938. unsigned long flags;
  3939. struct rq *rq;
  3940. int retval;
  3941. struct timespec t;
  3942. if (pid < 0)
  3943. return -EINVAL;
  3944. retval = -ESRCH;
  3945. rcu_read_lock();
  3946. p = find_process_by_pid(pid);
  3947. if (!p)
  3948. goto out_unlock;
  3949. retval = security_task_getscheduler(p);
  3950. if (retval)
  3951. goto out_unlock;
  3952. rq = task_rq_lock(p, &flags);
  3953. time_slice = p->sched_class->get_rr_interval(rq, p);
  3954. task_rq_unlock(rq, p, &flags);
  3955. rcu_read_unlock();
  3956. jiffies_to_timespec(time_slice, &t);
  3957. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3958. return retval;
  3959. out_unlock:
  3960. rcu_read_unlock();
  3961. return retval;
  3962. }
  3963. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3964. void sched_show_task(struct task_struct *p)
  3965. {
  3966. unsigned long free = 0;
  3967. int ppid;
  3968. unsigned state;
  3969. state = p->state ? __ffs(p->state) + 1 : 0;
  3970. printk(KERN_INFO "%-15.15s %c", p->comm,
  3971. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3972. #if BITS_PER_LONG == 32
  3973. if (state == TASK_RUNNING)
  3974. printk(KERN_CONT " running ");
  3975. else
  3976. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3977. #else
  3978. if (state == TASK_RUNNING)
  3979. printk(KERN_CONT " running task ");
  3980. else
  3981. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3982. #endif
  3983. #ifdef CONFIG_DEBUG_STACK_USAGE
  3984. free = stack_not_used(p);
  3985. #endif
  3986. rcu_read_lock();
  3987. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3988. rcu_read_unlock();
  3989. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3990. task_pid_nr(p), ppid,
  3991. (unsigned long)task_thread_info(p)->flags);
  3992. show_stack(p, NULL);
  3993. }
  3994. void show_state_filter(unsigned long state_filter)
  3995. {
  3996. struct task_struct *g, *p;
  3997. #if BITS_PER_LONG == 32
  3998. printk(KERN_INFO
  3999. " task PC stack pid father\n");
  4000. #else
  4001. printk(KERN_INFO
  4002. " task PC stack pid father\n");
  4003. #endif
  4004. rcu_read_lock();
  4005. do_each_thread(g, p) {
  4006. /*
  4007. * reset the NMI-timeout, listing all files on a slow
  4008. * console might take a lot of time:
  4009. */
  4010. touch_nmi_watchdog();
  4011. if (!state_filter || (p->state & state_filter))
  4012. sched_show_task(p);
  4013. } while_each_thread(g, p);
  4014. touch_all_softlockup_watchdogs();
  4015. #ifdef CONFIG_SCHED_DEBUG
  4016. sysrq_sched_debug_show();
  4017. #endif
  4018. rcu_read_unlock();
  4019. /*
  4020. * Only show locks if all tasks are dumped:
  4021. */
  4022. if (!state_filter)
  4023. debug_show_all_locks();
  4024. }
  4025. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4026. {
  4027. idle->sched_class = &idle_sched_class;
  4028. }
  4029. /**
  4030. * init_idle - set up an idle thread for a given CPU
  4031. * @idle: task in question
  4032. * @cpu: cpu the idle task belongs to
  4033. *
  4034. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4035. * flag, to make booting more robust.
  4036. */
  4037. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4038. {
  4039. struct rq *rq = cpu_rq(cpu);
  4040. unsigned long flags;
  4041. raw_spin_lock_irqsave(&rq->lock, flags);
  4042. __sched_fork(idle);
  4043. idle->state = TASK_RUNNING;
  4044. idle->se.exec_start = sched_clock();
  4045. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4046. /*
  4047. * We're having a chicken and egg problem, even though we are
  4048. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4049. * lockdep check in task_group() will fail.
  4050. *
  4051. * Similar case to sched_fork(). / Alternatively we could
  4052. * use task_rq_lock() here and obtain the other rq->lock.
  4053. *
  4054. * Silence PROVE_RCU
  4055. */
  4056. rcu_read_lock();
  4057. __set_task_cpu(idle, cpu);
  4058. rcu_read_unlock();
  4059. rq->curr = rq->idle = idle;
  4060. #if defined(CONFIG_SMP)
  4061. idle->on_cpu = 1;
  4062. #endif
  4063. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4064. /* Set the preempt count _outside_ the spinlocks! */
  4065. task_thread_info(idle)->preempt_count = 0;
  4066. /*
  4067. * The idle tasks have their own, simple scheduling class:
  4068. */
  4069. idle->sched_class = &idle_sched_class;
  4070. ftrace_graph_init_idle_task(idle, cpu);
  4071. vtime_init_idle(idle);
  4072. #if defined(CONFIG_SMP)
  4073. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4074. #endif
  4075. }
  4076. #ifdef CONFIG_SMP
  4077. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4078. {
  4079. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4080. p->sched_class->set_cpus_allowed(p, new_mask);
  4081. cpumask_copy(&p->cpus_allowed, new_mask);
  4082. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4083. }
  4084. /*
  4085. * This is how migration works:
  4086. *
  4087. * 1) we invoke migration_cpu_stop() on the target CPU using
  4088. * stop_one_cpu().
  4089. * 2) stopper starts to run (implicitly forcing the migrated thread
  4090. * off the CPU)
  4091. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4092. * 4) if it's in the wrong runqueue then the migration thread removes
  4093. * it and puts it into the right queue.
  4094. * 5) stopper completes and stop_one_cpu() returns and the migration
  4095. * is done.
  4096. */
  4097. /*
  4098. * Change a given task's CPU affinity. Migrate the thread to a
  4099. * proper CPU and schedule it away if the CPU it's executing on
  4100. * is removed from the allowed bitmask.
  4101. *
  4102. * NOTE: the caller must have a valid reference to the task, the
  4103. * task must not exit() & deallocate itself prematurely. The
  4104. * call is not atomic; no spinlocks may be held.
  4105. */
  4106. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4107. {
  4108. unsigned long flags;
  4109. struct rq *rq;
  4110. unsigned int dest_cpu;
  4111. int ret = 0;
  4112. rq = task_rq_lock(p, &flags);
  4113. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4114. goto out;
  4115. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4116. ret = -EINVAL;
  4117. goto out;
  4118. }
  4119. do_set_cpus_allowed(p, new_mask);
  4120. /* Can the task run on the task's current CPU? If so, we're done */
  4121. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4122. goto out;
  4123. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4124. if (p->on_rq) {
  4125. struct migration_arg arg = { p, dest_cpu };
  4126. /* Need help from migration thread: drop lock and wait. */
  4127. task_rq_unlock(rq, p, &flags);
  4128. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4129. tlb_migrate_finish(p->mm);
  4130. return 0;
  4131. }
  4132. out:
  4133. task_rq_unlock(rq, p, &flags);
  4134. return ret;
  4135. }
  4136. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4137. /*
  4138. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4139. * this because either it can't run here any more (set_cpus_allowed()
  4140. * away from this CPU, or CPU going down), or because we're
  4141. * attempting to rebalance this task on exec (sched_exec).
  4142. *
  4143. * So we race with normal scheduler movements, but that's OK, as long
  4144. * as the task is no longer on this CPU.
  4145. *
  4146. * Returns non-zero if task was successfully migrated.
  4147. */
  4148. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4149. {
  4150. struct rq *rq_dest, *rq_src;
  4151. int ret = 0;
  4152. if (unlikely(!cpu_active(dest_cpu)))
  4153. return ret;
  4154. rq_src = cpu_rq(src_cpu);
  4155. rq_dest = cpu_rq(dest_cpu);
  4156. raw_spin_lock(&p->pi_lock);
  4157. double_rq_lock(rq_src, rq_dest);
  4158. /* Already moved. */
  4159. if (task_cpu(p) != src_cpu)
  4160. goto done;
  4161. /* Affinity changed (again). */
  4162. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4163. goto fail;
  4164. /*
  4165. * If we're not on a rq, the next wake-up will ensure we're
  4166. * placed properly.
  4167. */
  4168. if (p->on_rq) {
  4169. dequeue_task(rq_src, p, 0);
  4170. set_task_cpu(p, dest_cpu);
  4171. enqueue_task(rq_dest, p, 0);
  4172. check_preempt_curr(rq_dest, p, 0);
  4173. }
  4174. done:
  4175. ret = 1;
  4176. fail:
  4177. double_rq_unlock(rq_src, rq_dest);
  4178. raw_spin_unlock(&p->pi_lock);
  4179. return ret;
  4180. }
  4181. /*
  4182. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4183. * and performs thread migration by bumping thread off CPU then
  4184. * 'pushing' onto another runqueue.
  4185. */
  4186. static int migration_cpu_stop(void *data)
  4187. {
  4188. struct migration_arg *arg = data;
  4189. /*
  4190. * The original target cpu might have gone down and we might
  4191. * be on another cpu but it doesn't matter.
  4192. */
  4193. local_irq_disable();
  4194. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4195. local_irq_enable();
  4196. return 0;
  4197. }
  4198. #ifdef CONFIG_HOTPLUG_CPU
  4199. /*
  4200. * Ensures that the idle task is using init_mm right before its cpu goes
  4201. * offline.
  4202. */
  4203. void idle_task_exit(void)
  4204. {
  4205. struct mm_struct *mm = current->active_mm;
  4206. BUG_ON(cpu_online(smp_processor_id()));
  4207. if (mm != &init_mm)
  4208. switch_mm(mm, &init_mm, current);
  4209. mmdrop(mm);
  4210. }
  4211. /*
  4212. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4213. * we might have. Assumes we're called after migrate_tasks() so that the
  4214. * nr_active count is stable.
  4215. *
  4216. * Also see the comment "Global load-average calculations".
  4217. */
  4218. static void calc_load_migrate(struct rq *rq)
  4219. {
  4220. long delta = calc_load_fold_active(rq);
  4221. if (delta)
  4222. atomic_long_add(delta, &calc_load_tasks);
  4223. }
  4224. /*
  4225. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4226. * try_to_wake_up()->select_task_rq().
  4227. *
  4228. * Called with rq->lock held even though we'er in stop_machine() and
  4229. * there's no concurrency possible, we hold the required locks anyway
  4230. * because of lock validation efforts.
  4231. */
  4232. static void migrate_tasks(unsigned int dead_cpu)
  4233. {
  4234. struct rq *rq = cpu_rq(dead_cpu);
  4235. struct task_struct *next, *stop = rq->stop;
  4236. int dest_cpu;
  4237. /*
  4238. * Fudge the rq selection such that the below task selection loop
  4239. * doesn't get stuck on the currently eligible stop task.
  4240. *
  4241. * We're currently inside stop_machine() and the rq is either stuck
  4242. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4243. * either way we should never end up calling schedule() until we're
  4244. * done here.
  4245. */
  4246. rq->stop = NULL;
  4247. for ( ; ; ) {
  4248. /*
  4249. * There's this thread running, bail when that's the only
  4250. * remaining thread.
  4251. */
  4252. if (rq->nr_running == 1)
  4253. break;
  4254. next = pick_next_task(rq);
  4255. BUG_ON(!next);
  4256. next->sched_class->put_prev_task(rq, next);
  4257. /* Find suitable destination for @next, with force if needed. */
  4258. dest_cpu = select_fallback_rq(dead_cpu, next);
  4259. raw_spin_unlock(&rq->lock);
  4260. __migrate_task(next, dead_cpu, dest_cpu);
  4261. raw_spin_lock(&rq->lock);
  4262. }
  4263. rq->stop = stop;
  4264. }
  4265. #endif /* CONFIG_HOTPLUG_CPU */
  4266. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4267. static struct ctl_table sd_ctl_dir[] = {
  4268. {
  4269. .procname = "sched_domain",
  4270. .mode = 0555,
  4271. },
  4272. {}
  4273. };
  4274. static struct ctl_table sd_ctl_root[] = {
  4275. {
  4276. .procname = "kernel",
  4277. .mode = 0555,
  4278. .child = sd_ctl_dir,
  4279. },
  4280. {}
  4281. };
  4282. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4283. {
  4284. struct ctl_table *entry =
  4285. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4286. return entry;
  4287. }
  4288. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4289. {
  4290. struct ctl_table *entry;
  4291. /*
  4292. * In the intermediate directories, both the child directory and
  4293. * procname are dynamically allocated and could fail but the mode
  4294. * will always be set. In the lowest directory the names are
  4295. * static strings and all have proc handlers.
  4296. */
  4297. for (entry = *tablep; entry->mode; entry++) {
  4298. if (entry->child)
  4299. sd_free_ctl_entry(&entry->child);
  4300. if (entry->proc_handler == NULL)
  4301. kfree(entry->procname);
  4302. }
  4303. kfree(*tablep);
  4304. *tablep = NULL;
  4305. }
  4306. static int min_load_idx = 0;
  4307. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4308. static void
  4309. set_table_entry(struct ctl_table *entry,
  4310. const char *procname, void *data, int maxlen,
  4311. umode_t mode, proc_handler *proc_handler,
  4312. bool load_idx)
  4313. {
  4314. entry->procname = procname;
  4315. entry->data = data;
  4316. entry->maxlen = maxlen;
  4317. entry->mode = mode;
  4318. entry->proc_handler = proc_handler;
  4319. if (load_idx) {
  4320. entry->extra1 = &min_load_idx;
  4321. entry->extra2 = &max_load_idx;
  4322. }
  4323. }
  4324. static struct ctl_table *
  4325. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4326. {
  4327. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4328. if (table == NULL)
  4329. return NULL;
  4330. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4331. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4332. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4333. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4334. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4335. sizeof(int), 0644, proc_dointvec_minmax, true);
  4336. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4337. sizeof(int), 0644, proc_dointvec_minmax, true);
  4338. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4339. sizeof(int), 0644, proc_dointvec_minmax, true);
  4340. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4341. sizeof(int), 0644, proc_dointvec_minmax, true);
  4342. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4343. sizeof(int), 0644, proc_dointvec_minmax, true);
  4344. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4345. sizeof(int), 0644, proc_dointvec_minmax, false);
  4346. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4347. sizeof(int), 0644, proc_dointvec_minmax, false);
  4348. set_table_entry(&table[9], "cache_nice_tries",
  4349. &sd->cache_nice_tries,
  4350. sizeof(int), 0644, proc_dointvec_minmax, false);
  4351. set_table_entry(&table[10], "flags", &sd->flags,
  4352. sizeof(int), 0644, proc_dointvec_minmax, false);
  4353. set_table_entry(&table[11], "name", sd->name,
  4354. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4355. /* &table[12] is terminator */
  4356. return table;
  4357. }
  4358. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4359. {
  4360. struct ctl_table *entry, *table;
  4361. struct sched_domain *sd;
  4362. int domain_num = 0, i;
  4363. char buf[32];
  4364. for_each_domain(cpu, sd)
  4365. domain_num++;
  4366. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4367. if (table == NULL)
  4368. return NULL;
  4369. i = 0;
  4370. for_each_domain(cpu, sd) {
  4371. snprintf(buf, 32, "domain%d", i);
  4372. entry->procname = kstrdup(buf, GFP_KERNEL);
  4373. entry->mode = 0555;
  4374. entry->child = sd_alloc_ctl_domain_table(sd);
  4375. entry++;
  4376. i++;
  4377. }
  4378. return table;
  4379. }
  4380. static struct ctl_table_header *sd_sysctl_header;
  4381. static void register_sched_domain_sysctl(void)
  4382. {
  4383. int i, cpu_num = num_possible_cpus();
  4384. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4385. char buf[32];
  4386. WARN_ON(sd_ctl_dir[0].child);
  4387. sd_ctl_dir[0].child = entry;
  4388. if (entry == NULL)
  4389. return;
  4390. for_each_possible_cpu(i) {
  4391. snprintf(buf, 32, "cpu%d", i);
  4392. entry->procname = kstrdup(buf, GFP_KERNEL);
  4393. entry->mode = 0555;
  4394. entry->child = sd_alloc_ctl_cpu_table(i);
  4395. entry++;
  4396. }
  4397. WARN_ON(sd_sysctl_header);
  4398. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4399. }
  4400. /* may be called multiple times per register */
  4401. static void unregister_sched_domain_sysctl(void)
  4402. {
  4403. if (sd_sysctl_header)
  4404. unregister_sysctl_table(sd_sysctl_header);
  4405. sd_sysctl_header = NULL;
  4406. if (sd_ctl_dir[0].child)
  4407. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4408. }
  4409. #else
  4410. static void register_sched_domain_sysctl(void)
  4411. {
  4412. }
  4413. static void unregister_sched_domain_sysctl(void)
  4414. {
  4415. }
  4416. #endif
  4417. static void set_rq_online(struct rq *rq)
  4418. {
  4419. if (!rq->online) {
  4420. const struct sched_class *class;
  4421. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4422. rq->online = 1;
  4423. for_each_class(class) {
  4424. if (class->rq_online)
  4425. class->rq_online(rq);
  4426. }
  4427. }
  4428. }
  4429. static void set_rq_offline(struct rq *rq)
  4430. {
  4431. if (rq->online) {
  4432. const struct sched_class *class;
  4433. for_each_class(class) {
  4434. if (class->rq_offline)
  4435. class->rq_offline(rq);
  4436. }
  4437. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4438. rq->online = 0;
  4439. }
  4440. }
  4441. /*
  4442. * migration_call - callback that gets triggered when a CPU is added.
  4443. * Here we can start up the necessary migration thread for the new CPU.
  4444. */
  4445. static int __cpuinit
  4446. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4447. {
  4448. int cpu = (long)hcpu;
  4449. unsigned long flags;
  4450. struct rq *rq = cpu_rq(cpu);
  4451. switch (action & ~CPU_TASKS_FROZEN) {
  4452. case CPU_UP_PREPARE:
  4453. rq->calc_load_update = calc_load_update;
  4454. break;
  4455. case CPU_ONLINE:
  4456. /* Update our root-domain */
  4457. raw_spin_lock_irqsave(&rq->lock, flags);
  4458. if (rq->rd) {
  4459. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4460. set_rq_online(rq);
  4461. }
  4462. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4463. break;
  4464. #ifdef CONFIG_HOTPLUG_CPU
  4465. case CPU_DYING:
  4466. sched_ttwu_pending();
  4467. /* Update our root-domain */
  4468. raw_spin_lock_irqsave(&rq->lock, flags);
  4469. if (rq->rd) {
  4470. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4471. set_rq_offline(rq);
  4472. }
  4473. migrate_tasks(cpu);
  4474. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4475. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4476. break;
  4477. case CPU_DEAD:
  4478. calc_load_migrate(rq);
  4479. break;
  4480. #endif
  4481. }
  4482. update_max_interval();
  4483. return NOTIFY_OK;
  4484. }
  4485. /*
  4486. * Register at high priority so that task migration (migrate_all_tasks)
  4487. * happens before everything else. This has to be lower priority than
  4488. * the notifier in the perf_event subsystem, though.
  4489. */
  4490. static struct notifier_block __cpuinitdata migration_notifier = {
  4491. .notifier_call = migration_call,
  4492. .priority = CPU_PRI_MIGRATION,
  4493. };
  4494. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4495. unsigned long action, void *hcpu)
  4496. {
  4497. switch (action & ~CPU_TASKS_FROZEN) {
  4498. case CPU_STARTING:
  4499. case CPU_DOWN_FAILED:
  4500. set_cpu_active((long)hcpu, true);
  4501. return NOTIFY_OK;
  4502. default:
  4503. return NOTIFY_DONE;
  4504. }
  4505. }
  4506. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4507. unsigned long action, void *hcpu)
  4508. {
  4509. switch (action & ~CPU_TASKS_FROZEN) {
  4510. case CPU_DOWN_PREPARE:
  4511. set_cpu_active((long)hcpu, false);
  4512. return NOTIFY_OK;
  4513. default:
  4514. return NOTIFY_DONE;
  4515. }
  4516. }
  4517. static int __init migration_init(void)
  4518. {
  4519. void *cpu = (void *)(long)smp_processor_id();
  4520. int err;
  4521. /* Initialize migration for the boot CPU */
  4522. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4523. BUG_ON(err == NOTIFY_BAD);
  4524. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4525. register_cpu_notifier(&migration_notifier);
  4526. /* Register cpu active notifiers */
  4527. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4528. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4529. return 0;
  4530. }
  4531. early_initcall(migration_init);
  4532. #endif
  4533. #ifdef CONFIG_SMP
  4534. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4535. #ifdef CONFIG_SCHED_DEBUG
  4536. static __read_mostly int sched_debug_enabled;
  4537. static int __init sched_debug_setup(char *str)
  4538. {
  4539. sched_debug_enabled = 1;
  4540. return 0;
  4541. }
  4542. early_param("sched_debug", sched_debug_setup);
  4543. static inline bool sched_debug(void)
  4544. {
  4545. return sched_debug_enabled;
  4546. }
  4547. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4548. struct cpumask *groupmask)
  4549. {
  4550. struct sched_group *group = sd->groups;
  4551. char str[256];
  4552. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4553. cpumask_clear(groupmask);
  4554. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4555. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4556. printk("does not load-balance\n");
  4557. if (sd->parent)
  4558. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4559. " has parent");
  4560. return -1;
  4561. }
  4562. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4563. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4564. printk(KERN_ERR "ERROR: domain->span does not contain "
  4565. "CPU%d\n", cpu);
  4566. }
  4567. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4568. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4569. " CPU%d\n", cpu);
  4570. }
  4571. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4572. do {
  4573. if (!group) {
  4574. printk("\n");
  4575. printk(KERN_ERR "ERROR: group is NULL\n");
  4576. break;
  4577. }
  4578. /*
  4579. * Even though we initialize ->power to something semi-sane,
  4580. * we leave power_orig unset. This allows us to detect if
  4581. * domain iteration is still funny without causing /0 traps.
  4582. */
  4583. if (!group->sgp->power_orig) {
  4584. printk(KERN_CONT "\n");
  4585. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4586. "set\n");
  4587. break;
  4588. }
  4589. if (!cpumask_weight(sched_group_cpus(group))) {
  4590. printk(KERN_CONT "\n");
  4591. printk(KERN_ERR "ERROR: empty group\n");
  4592. break;
  4593. }
  4594. if (!(sd->flags & SD_OVERLAP) &&
  4595. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4596. printk(KERN_CONT "\n");
  4597. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4598. break;
  4599. }
  4600. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4601. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4602. printk(KERN_CONT " %s", str);
  4603. if (group->sgp->power != SCHED_POWER_SCALE) {
  4604. printk(KERN_CONT " (cpu_power = %d)",
  4605. group->sgp->power);
  4606. }
  4607. group = group->next;
  4608. } while (group != sd->groups);
  4609. printk(KERN_CONT "\n");
  4610. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4611. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4612. if (sd->parent &&
  4613. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4614. printk(KERN_ERR "ERROR: parent span is not a superset "
  4615. "of domain->span\n");
  4616. return 0;
  4617. }
  4618. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4619. {
  4620. int level = 0;
  4621. if (!sched_debug_enabled)
  4622. return;
  4623. if (!sd) {
  4624. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4625. return;
  4626. }
  4627. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4628. for (;;) {
  4629. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4630. break;
  4631. level++;
  4632. sd = sd->parent;
  4633. if (!sd)
  4634. break;
  4635. }
  4636. }
  4637. #else /* !CONFIG_SCHED_DEBUG */
  4638. # define sched_domain_debug(sd, cpu) do { } while (0)
  4639. static inline bool sched_debug(void)
  4640. {
  4641. return false;
  4642. }
  4643. #endif /* CONFIG_SCHED_DEBUG */
  4644. static int sd_degenerate(struct sched_domain *sd)
  4645. {
  4646. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4647. return 1;
  4648. /* Following flags need at least 2 groups */
  4649. if (sd->flags & (SD_LOAD_BALANCE |
  4650. SD_BALANCE_NEWIDLE |
  4651. SD_BALANCE_FORK |
  4652. SD_BALANCE_EXEC |
  4653. SD_SHARE_CPUPOWER |
  4654. SD_SHARE_PKG_RESOURCES)) {
  4655. if (sd->groups != sd->groups->next)
  4656. return 0;
  4657. }
  4658. /* Following flags don't use groups */
  4659. if (sd->flags & (SD_WAKE_AFFINE))
  4660. return 0;
  4661. return 1;
  4662. }
  4663. static int
  4664. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4665. {
  4666. unsigned long cflags = sd->flags, pflags = parent->flags;
  4667. if (sd_degenerate(parent))
  4668. return 1;
  4669. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4670. return 0;
  4671. /* Flags needing groups don't count if only 1 group in parent */
  4672. if (parent->groups == parent->groups->next) {
  4673. pflags &= ~(SD_LOAD_BALANCE |
  4674. SD_BALANCE_NEWIDLE |
  4675. SD_BALANCE_FORK |
  4676. SD_BALANCE_EXEC |
  4677. SD_SHARE_CPUPOWER |
  4678. SD_SHARE_PKG_RESOURCES);
  4679. if (nr_node_ids == 1)
  4680. pflags &= ~SD_SERIALIZE;
  4681. }
  4682. if (~cflags & pflags)
  4683. return 0;
  4684. return 1;
  4685. }
  4686. static void free_rootdomain(struct rcu_head *rcu)
  4687. {
  4688. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4689. cpupri_cleanup(&rd->cpupri);
  4690. free_cpumask_var(rd->rto_mask);
  4691. free_cpumask_var(rd->online);
  4692. free_cpumask_var(rd->span);
  4693. kfree(rd);
  4694. }
  4695. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4696. {
  4697. struct root_domain *old_rd = NULL;
  4698. unsigned long flags;
  4699. raw_spin_lock_irqsave(&rq->lock, flags);
  4700. if (rq->rd) {
  4701. old_rd = rq->rd;
  4702. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4703. set_rq_offline(rq);
  4704. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4705. /*
  4706. * If we dont want to free the old_rt yet then
  4707. * set old_rd to NULL to skip the freeing later
  4708. * in this function:
  4709. */
  4710. if (!atomic_dec_and_test(&old_rd->refcount))
  4711. old_rd = NULL;
  4712. }
  4713. atomic_inc(&rd->refcount);
  4714. rq->rd = rd;
  4715. cpumask_set_cpu(rq->cpu, rd->span);
  4716. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4717. set_rq_online(rq);
  4718. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4719. if (old_rd)
  4720. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4721. }
  4722. static int init_rootdomain(struct root_domain *rd)
  4723. {
  4724. memset(rd, 0, sizeof(*rd));
  4725. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4726. goto out;
  4727. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4728. goto free_span;
  4729. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4730. goto free_online;
  4731. if (cpupri_init(&rd->cpupri) != 0)
  4732. goto free_rto_mask;
  4733. return 0;
  4734. free_rto_mask:
  4735. free_cpumask_var(rd->rto_mask);
  4736. free_online:
  4737. free_cpumask_var(rd->online);
  4738. free_span:
  4739. free_cpumask_var(rd->span);
  4740. out:
  4741. return -ENOMEM;
  4742. }
  4743. /*
  4744. * By default the system creates a single root-domain with all cpus as
  4745. * members (mimicking the global state we have today).
  4746. */
  4747. struct root_domain def_root_domain;
  4748. static void init_defrootdomain(void)
  4749. {
  4750. init_rootdomain(&def_root_domain);
  4751. atomic_set(&def_root_domain.refcount, 1);
  4752. }
  4753. static struct root_domain *alloc_rootdomain(void)
  4754. {
  4755. struct root_domain *rd;
  4756. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4757. if (!rd)
  4758. return NULL;
  4759. if (init_rootdomain(rd) != 0) {
  4760. kfree(rd);
  4761. return NULL;
  4762. }
  4763. return rd;
  4764. }
  4765. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4766. {
  4767. struct sched_group *tmp, *first;
  4768. if (!sg)
  4769. return;
  4770. first = sg;
  4771. do {
  4772. tmp = sg->next;
  4773. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4774. kfree(sg->sgp);
  4775. kfree(sg);
  4776. sg = tmp;
  4777. } while (sg != first);
  4778. }
  4779. static void free_sched_domain(struct rcu_head *rcu)
  4780. {
  4781. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4782. /*
  4783. * If its an overlapping domain it has private groups, iterate and
  4784. * nuke them all.
  4785. */
  4786. if (sd->flags & SD_OVERLAP) {
  4787. free_sched_groups(sd->groups, 1);
  4788. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4789. kfree(sd->groups->sgp);
  4790. kfree(sd->groups);
  4791. }
  4792. kfree(sd);
  4793. }
  4794. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4795. {
  4796. call_rcu(&sd->rcu, free_sched_domain);
  4797. }
  4798. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4799. {
  4800. for (; sd; sd = sd->parent)
  4801. destroy_sched_domain(sd, cpu);
  4802. }
  4803. /*
  4804. * Keep a special pointer to the highest sched_domain that has
  4805. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4806. * allows us to avoid some pointer chasing select_idle_sibling().
  4807. *
  4808. * Also keep a unique ID per domain (we use the first cpu number in
  4809. * the cpumask of the domain), this allows us to quickly tell if
  4810. * two cpus are in the same cache domain, see cpus_share_cache().
  4811. */
  4812. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4813. DEFINE_PER_CPU(int, sd_llc_id);
  4814. static void update_top_cache_domain(int cpu)
  4815. {
  4816. struct sched_domain *sd;
  4817. int id = cpu;
  4818. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4819. if (sd)
  4820. id = cpumask_first(sched_domain_span(sd));
  4821. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4822. per_cpu(sd_llc_id, cpu) = id;
  4823. }
  4824. /*
  4825. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4826. * hold the hotplug lock.
  4827. */
  4828. static void
  4829. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4830. {
  4831. struct rq *rq = cpu_rq(cpu);
  4832. struct sched_domain *tmp;
  4833. /* Remove the sched domains which do not contribute to scheduling. */
  4834. for (tmp = sd; tmp; ) {
  4835. struct sched_domain *parent = tmp->parent;
  4836. if (!parent)
  4837. break;
  4838. if (sd_parent_degenerate(tmp, parent)) {
  4839. tmp->parent = parent->parent;
  4840. if (parent->parent)
  4841. parent->parent->child = tmp;
  4842. destroy_sched_domain(parent, cpu);
  4843. } else
  4844. tmp = tmp->parent;
  4845. }
  4846. if (sd && sd_degenerate(sd)) {
  4847. tmp = sd;
  4848. sd = sd->parent;
  4849. destroy_sched_domain(tmp, cpu);
  4850. if (sd)
  4851. sd->child = NULL;
  4852. }
  4853. sched_domain_debug(sd, cpu);
  4854. rq_attach_root(rq, rd);
  4855. tmp = rq->sd;
  4856. rcu_assign_pointer(rq->sd, sd);
  4857. destroy_sched_domains(tmp, cpu);
  4858. update_top_cache_domain(cpu);
  4859. }
  4860. /* cpus with isolated domains */
  4861. static cpumask_var_t cpu_isolated_map;
  4862. /* Setup the mask of cpus configured for isolated domains */
  4863. static int __init isolated_cpu_setup(char *str)
  4864. {
  4865. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4866. cpulist_parse(str, cpu_isolated_map);
  4867. return 1;
  4868. }
  4869. __setup("isolcpus=", isolated_cpu_setup);
  4870. static const struct cpumask *cpu_cpu_mask(int cpu)
  4871. {
  4872. return cpumask_of_node(cpu_to_node(cpu));
  4873. }
  4874. struct sd_data {
  4875. struct sched_domain **__percpu sd;
  4876. struct sched_group **__percpu sg;
  4877. struct sched_group_power **__percpu sgp;
  4878. };
  4879. struct s_data {
  4880. struct sched_domain ** __percpu sd;
  4881. struct root_domain *rd;
  4882. };
  4883. enum s_alloc {
  4884. sa_rootdomain,
  4885. sa_sd,
  4886. sa_sd_storage,
  4887. sa_none,
  4888. };
  4889. struct sched_domain_topology_level;
  4890. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4891. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4892. #define SDTL_OVERLAP 0x01
  4893. struct sched_domain_topology_level {
  4894. sched_domain_init_f init;
  4895. sched_domain_mask_f mask;
  4896. int flags;
  4897. int numa_level;
  4898. struct sd_data data;
  4899. };
  4900. /*
  4901. * Build an iteration mask that can exclude certain CPUs from the upwards
  4902. * domain traversal.
  4903. *
  4904. * Asymmetric node setups can result in situations where the domain tree is of
  4905. * unequal depth, make sure to skip domains that already cover the entire
  4906. * range.
  4907. *
  4908. * In that case build_sched_domains() will have terminated the iteration early
  4909. * and our sibling sd spans will be empty. Domains should always include the
  4910. * cpu they're built on, so check that.
  4911. *
  4912. */
  4913. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4914. {
  4915. const struct cpumask *span = sched_domain_span(sd);
  4916. struct sd_data *sdd = sd->private;
  4917. struct sched_domain *sibling;
  4918. int i;
  4919. for_each_cpu(i, span) {
  4920. sibling = *per_cpu_ptr(sdd->sd, i);
  4921. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4922. continue;
  4923. cpumask_set_cpu(i, sched_group_mask(sg));
  4924. }
  4925. }
  4926. /*
  4927. * Return the canonical balance cpu for this group, this is the first cpu
  4928. * of this group that's also in the iteration mask.
  4929. */
  4930. int group_balance_cpu(struct sched_group *sg)
  4931. {
  4932. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4933. }
  4934. static int
  4935. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4936. {
  4937. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4938. const struct cpumask *span = sched_domain_span(sd);
  4939. struct cpumask *covered = sched_domains_tmpmask;
  4940. struct sd_data *sdd = sd->private;
  4941. struct sched_domain *child;
  4942. int i;
  4943. cpumask_clear(covered);
  4944. for_each_cpu(i, span) {
  4945. struct cpumask *sg_span;
  4946. if (cpumask_test_cpu(i, covered))
  4947. continue;
  4948. child = *per_cpu_ptr(sdd->sd, i);
  4949. /* See the comment near build_group_mask(). */
  4950. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4951. continue;
  4952. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4953. GFP_KERNEL, cpu_to_node(cpu));
  4954. if (!sg)
  4955. goto fail;
  4956. sg_span = sched_group_cpus(sg);
  4957. if (child->child) {
  4958. child = child->child;
  4959. cpumask_copy(sg_span, sched_domain_span(child));
  4960. } else
  4961. cpumask_set_cpu(i, sg_span);
  4962. cpumask_or(covered, covered, sg_span);
  4963. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4964. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4965. build_group_mask(sd, sg);
  4966. /*
  4967. * Initialize sgp->power such that even if we mess up the
  4968. * domains and no possible iteration will get us here, we won't
  4969. * die on a /0 trap.
  4970. */
  4971. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4972. /*
  4973. * Make sure the first group of this domain contains the
  4974. * canonical balance cpu. Otherwise the sched_domain iteration
  4975. * breaks. See update_sg_lb_stats().
  4976. */
  4977. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4978. group_balance_cpu(sg) == cpu)
  4979. groups = sg;
  4980. if (!first)
  4981. first = sg;
  4982. if (last)
  4983. last->next = sg;
  4984. last = sg;
  4985. last->next = first;
  4986. }
  4987. sd->groups = groups;
  4988. return 0;
  4989. fail:
  4990. free_sched_groups(first, 0);
  4991. return -ENOMEM;
  4992. }
  4993. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4994. {
  4995. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4996. struct sched_domain *child = sd->child;
  4997. if (child)
  4998. cpu = cpumask_first(sched_domain_span(child));
  4999. if (sg) {
  5000. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5001. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5002. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5003. }
  5004. return cpu;
  5005. }
  5006. /*
  5007. * build_sched_groups will build a circular linked list of the groups
  5008. * covered by the given span, and will set each group's ->cpumask correctly,
  5009. * and ->cpu_power to 0.
  5010. *
  5011. * Assumes the sched_domain tree is fully constructed
  5012. */
  5013. static int
  5014. build_sched_groups(struct sched_domain *sd, int cpu)
  5015. {
  5016. struct sched_group *first = NULL, *last = NULL;
  5017. struct sd_data *sdd = sd->private;
  5018. const struct cpumask *span = sched_domain_span(sd);
  5019. struct cpumask *covered;
  5020. int i;
  5021. get_group(cpu, sdd, &sd->groups);
  5022. atomic_inc(&sd->groups->ref);
  5023. if (cpu != cpumask_first(sched_domain_span(sd)))
  5024. return 0;
  5025. lockdep_assert_held(&sched_domains_mutex);
  5026. covered = sched_domains_tmpmask;
  5027. cpumask_clear(covered);
  5028. for_each_cpu(i, span) {
  5029. struct sched_group *sg;
  5030. int group = get_group(i, sdd, &sg);
  5031. int j;
  5032. if (cpumask_test_cpu(i, covered))
  5033. continue;
  5034. cpumask_clear(sched_group_cpus(sg));
  5035. sg->sgp->power = 0;
  5036. cpumask_setall(sched_group_mask(sg));
  5037. for_each_cpu(j, span) {
  5038. if (get_group(j, sdd, NULL) != group)
  5039. continue;
  5040. cpumask_set_cpu(j, covered);
  5041. cpumask_set_cpu(j, sched_group_cpus(sg));
  5042. }
  5043. if (!first)
  5044. first = sg;
  5045. if (last)
  5046. last->next = sg;
  5047. last = sg;
  5048. }
  5049. last->next = first;
  5050. return 0;
  5051. }
  5052. /*
  5053. * Initialize sched groups cpu_power.
  5054. *
  5055. * cpu_power indicates the capacity of sched group, which is used while
  5056. * distributing the load between different sched groups in a sched domain.
  5057. * Typically cpu_power for all the groups in a sched domain will be same unless
  5058. * there are asymmetries in the topology. If there are asymmetries, group
  5059. * having more cpu_power will pickup more load compared to the group having
  5060. * less cpu_power.
  5061. */
  5062. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5063. {
  5064. struct sched_group *sg = sd->groups;
  5065. WARN_ON(!sd || !sg);
  5066. do {
  5067. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5068. sg = sg->next;
  5069. } while (sg != sd->groups);
  5070. if (cpu != group_balance_cpu(sg))
  5071. return;
  5072. update_group_power(sd, cpu);
  5073. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5074. }
  5075. int __weak arch_sd_sibling_asym_packing(void)
  5076. {
  5077. return 0*SD_ASYM_PACKING;
  5078. }
  5079. /*
  5080. * Initializers for schedule domains
  5081. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5082. */
  5083. #ifdef CONFIG_SCHED_DEBUG
  5084. # define SD_INIT_NAME(sd, type) sd->name = #type
  5085. #else
  5086. # define SD_INIT_NAME(sd, type) do { } while (0)
  5087. #endif
  5088. #define SD_INIT_FUNC(type) \
  5089. static noinline struct sched_domain * \
  5090. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5091. { \
  5092. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5093. *sd = SD_##type##_INIT; \
  5094. SD_INIT_NAME(sd, type); \
  5095. sd->private = &tl->data; \
  5096. return sd; \
  5097. }
  5098. SD_INIT_FUNC(CPU)
  5099. #ifdef CONFIG_SCHED_SMT
  5100. SD_INIT_FUNC(SIBLING)
  5101. #endif
  5102. #ifdef CONFIG_SCHED_MC
  5103. SD_INIT_FUNC(MC)
  5104. #endif
  5105. #ifdef CONFIG_SCHED_BOOK
  5106. SD_INIT_FUNC(BOOK)
  5107. #endif
  5108. static int default_relax_domain_level = -1;
  5109. int sched_domain_level_max;
  5110. static int __init setup_relax_domain_level(char *str)
  5111. {
  5112. if (kstrtoint(str, 0, &default_relax_domain_level))
  5113. pr_warn("Unable to set relax_domain_level\n");
  5114. return 1;
  5115. }
  5116. __setup("relax_domain_level=", setup_relax_domain_level);
  5117. static void set_domain_attribute(struct sched_domain *sd,
  5118. struct sched_domain_attr *attr)
  5119. {
  5120. int request;
  5121. if (!attr || attr->relax_domain_level < 0) {
  5122. if (default_relax_domain_level < 0)
  5123. return;
  5124. else
  5125. request = default_relax_domain_level;
  5126. } else
  5127. request = attr->relax_domain_level;
  5128. if (request < sd->level) {
  5129. /* turn off idle balance on this domain */
  5130. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5131. } else {
  5132. /* turn on idle balance on this domain */
  5133. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5134. }
  5135. }
  5136. static void __sdt_free(const struct cpumask *cpu_map);
  5137. static int __sdt_alloc(const struct cpumask *cpu_map);
  5138. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5139. const struct cpumask *cpu_map)
  5140. {
  5141. switch (what) {
  5142. case sa_rootdomain:
  5143. if (!atomic_read(&d->rd->refcount))
  5144. free_rootdomain(&d->rd->rcu); /* fall through */
  5145. case sa_sd:
  5146. free_percpu(d->sd); /* fall through */
  5147. case sa_sd_storage:
  5148. __sdt_free(cpu_map); /* fall through */
  5149. case sa_none:
  5150. break;
  5151. }
  5152. }
  5153. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5154. const struct cpumask *cpu_map)
  5155. {
  5156. memset(d, 0, sizeof(*d));
  5157. if (__sdt_alloc(cpu_map))
  5158. return sa_sd_storage;
  5159. d->sd = alloc_percpu(struct sched_domain *);
  5160. if (!d->sd)
  5161. return sa_sd_storage;
  5162. d->rd = alloc_rootdomain();
  5163. if (!d->rd)
  5164. return sa_sd;
  5165. return sa_rootdomain;
  5166. }
  5167. /*
  5168. * NULL the sd_data elements we've used to build the sched_domain and
  5169. * sched_group structure so that the subsequent __free_domain_allocs()
  5170. * will not free the data we're using.
  5171. */
  5172. static void claim_allocations(int cpu, struct sched_domain *sd)
  5173. {
  5174. struct sd_data *sdd = sd->private;
  5175. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5176. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5177. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5178. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5179. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5180. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5181. }
  5182. #ifdef CONFIG_SCHED_SMT
  5183. static const struct cpumask *cpu_smt_mask(int cpu)
  5184. {
  5185. return topology_thread_cpumask(cpu);
  5186. }
  5187. #endif
  5188. /*
  5189. * Topology list, bottom-up.
  5190. */
  5191. static struct sched_domain_topology_level default_topology[] = {
  5192. #ifdef CONFIG_SCHED_SMT
  5193. { sd_init_SIBLING, cpu_smt_mask, },
  5194. #endif
  5195. #ifdef CONFIG_SCHED_MC
  5196. { sd_init_MC, cpu_coregroup_mask, },
  5197. #endif
  5198. #ifdef CONFIG_SCHED_BOOK
  5199. { sd_init_BOOK, cpu_book_mask, },
  5200. #endif
  5201. { sd_init_CPU, cpu_cpu_mask, },
  5202. { NULL, },
  5203. };
  5204. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5205. #ifdef CONFIG_NUMA
  5206. static int sched_domains_numa_levels;
  5207. static int *sched_domains_numa_distance;
  5208. static struct cpumask ***sched_domains_numa_masks;
  5209. static int sched_domains_curr_level;
  5210. static inline int sd_local_flags(int level)
  5211. {
  5212. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5213. return 0;
  5214. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5215. }
  5216. static struct sched_domain *
  5217. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5218. {
  5219. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5220. int level = tl->numa_level;
  5221. int sd_weight = cpumask_weight(
  5222. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5223. *sd = (struct sched_domain){
  5224. .min_interval = sd_weight,
  5225. .max_interval = 2*sd_weight,
  5226. .busy_factor = 32,
  5227. .imbalance_pct = 125,
  5228. .cache_nice_tries = 2,
  5229. .busy_idx = 3,
  5230. .idle_idx = 2,
  5231. .newidle_idx = 0,
  5232. .wake_idx = 0,
  5233. .forkexec_idx = 0,
  5234. .flags = 1*SD_LOAD_BALANCE
  5235. | 1*SD_BALANCE_NEWIDLE
  5236. | 0*SD_BALANCE_EXEC
  5237. | 0*SD_BALANCE_FORK
  5238. | 0*SD_BALANCE_WAKE
  5239. | 0*SD_WAKE_AFFINE
  5240. | 0*SD_SHARE_CPUPOWER
  5241. | 0*SD_SHARE_PKG_RESOURCES
  5242. | 1*SD_SERIALIZE
  5243. | 0*SD_PREFER_SIBLING
  5244. | sd_local_flags(level)
  5245. ,
  5246. .last_balance = jiffies,
  5247. .balance_interval = sd_weight,
  5248. };
  5249. SD_INIT_NAME(sd, NUMA);
  5250. sd->private = &tl->data;
  5251. /*
  5252. * Ugly hack to pass state to sd_numa_mask()...
  5253. */
  5254. sched_domains_curr_level = tl->numa_level;
  5255. return sd;
  5256. }
  5257. static const struct cpumask *sd_numa_mask(int cpu)
  5258. {
  5259. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5260. }
  5261. static void sched_numa_warn(const char *str)
  5262. {
  5263. static int done = false;
  5264. int i,j;
  5265. if (done)
  5266. return;
  5267. done = true;
  5268. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5269. for (i = 0; i < nr_node_ids; i++) {
  5270. printk(KERN_WARNING " ");
  5271. for (j = 0; j < nr_node_ids; j++)
  5272. printk(KERN_CONT "%02d ", node_distance(i,j));
  5273. printk(KERN_CONT "\n");
  5274. }
  5275. printk(KERN_WARNING "\n");
  5276. }
  5277. static bool find_numa_distance(int distance)
  5278. {
  5279. int i;
  5280. if (distance == node_distance(0, 0))
  5281. return true;
  5282. for (i = 0; i < sched_domains_numa_levels; i++) {
  5283. if (sched_domains_numa_distance[i] == distance)
  5284. return true;
  5285. }
  5286. return false;
  5287. }
  5288. static void sched_init_numa(void)
  5289. {
  5290. int next_distance, curr_distance = node_distance(0, 0);
  5291. struct sched_domain_topology_level *tl;
  5292. int level = 0;
  5293. int i, j, k;
  5294. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5295. if (!sched_domains_numa_distance)
  5296. return;
  5297. /*
  5298. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5299. * unique distances in the node_distance() table.
  5300. *
  5301. * Assumes node_distance(0,j) includes all distances in
  5302. * node_distance(i,j) in order to avoid cubic time.
  5303. */
  5304. next_distance = curr_distance;
  5305. for (i = 0; i < nr_node_ids; i++) {
  5306. for (j = 0; j < nr_node_ids; j++) {
  5307. for (k = 0; k < nr_node_ids; k++) {
  5308. int distance = node_distance(i, k);
  5309. if (distance > curr_distance &&
  5310. (distance < next_distance ||
  5311. next_distance == curr_distance))
  5312. next_distance = distance;
  5313. /*
  5314. * While not a strong assumption it would be nice to know
  5315. * about cases where if node A is connected to B, B is not
  5316. * equally connected to A.
  5317. */
  5318. if (sched_debug() && node_distance(k, i) != distance)
  5319. sched_numa_warn("Node-distance not symmetric");
  5320. if (sched_debug() && i && !find_numa_distance(distance))
  5321. sched_numa_warn("Node-0 not representative");
  5322. }
  5323. if (next_distance != curr_distance) {
  5324. sched_domains_numa_distance[level++] = next_distance;
  5325. sched_domains_numa_levels = level;
  5326. curr_distance = next_distance;
  5327. } else break;
  5328. }
  5329. /*
  5330. * In case of sched_debug() we verify the above assumption.
  5331. */
  5332. if (!sched_debug())
  5333. break;
  5334. }
  5335. /*
  5336. * 'level' contains the number of unique distances, excluding the
  5337. * identity distance node_distance(i,i).
  5338. *
  5339. * The sched_domains_nume_distance[] array includes the actual distance
  5340. * numbers.
  5341. */
  5342. /*
  5343. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5344. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5345. * the array will contain less then 'level' members. This could be
  5346. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5347. * in other functions.
  5348. *
  5349. * We reset it to 'level' at the end of this function.
  5350. */
  5351. sched_domains_numa_levels = 0;
  5352. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5353. if (!sched_domains_numa_masks)
  5354. return;
  5355. /*
  5356. * Now for each level, construct a mask per node which contains all
  5357. * cpus of nodes that are that many hops away from us.
  5358. */
  5359. for (i = 0; i < level; i++) {
  5360. sched_domains_numa_masks[i] =
  5361. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5362. if (!sched_domains_numa_masks[i])
  5363. return;
  5364. for (j = 0; j < nr_node_ids; j++) {
  5365. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5366. if (!mask)
  5367. return;
  5368. sched_domains_numa_masks[i][j] = mask;
  5369. for (k = 0; k < nr_node_ids; k++) {
  5370. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5371. continue;
  5372. cpumask_or(mask, mask, cpumask_of_node(k));
  5373. }
  5374. }
  5375. }
  5376. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5377. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5378. if (!tl)
  5379. return;
  5380. /*
  5381. * Copy the default topology bits..
  5382. */
  5383. for (i = 0; default_topology[i].init; i++)
  5384. tl[i] = default_topology[i];
  5385. /*
  5386. * .. and append 'j' levels of NUMA goodness.
  5387. */
  5388. for (j = 0; j < level; i++, j++) {
  5389. tl[i] = (struct sched_domain_topology_level){
  5390. .init = sd_numa_init,
  5391. .mask = sd_numa_mask,
  5392. .flags = SDTL_OVERLAP,
  5393. .numa_level = j,
  5394. };
  5395. }
  5396. sched_domain_topology = tl;
  5397. sched_domains_numa_levels = level;
  5398. }
  5399. static void sched_domains_numa_masks_set(int cpu)
  5400. {
  5401. int i, j;
  5402. int node = cpu_to_node(cpu);
  5403. for (i = 0; i < sched_domains_numa_levels; i++) {
  5404. for (j = 0; j < nr_node_ids; j++) {
  5405. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5406. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5407. }
  5408. }
  5409. }
  5410. static void sched_domains_numa_masks_clear(int cpu)
  5411. {
  5412. int i, j;
  5413. for (i = 0; i < sched_domains_numa_levels; i++) {
  5414. for (j = 0; j < nr_node_ids; j++)
  5415. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5416. }
  5417. }
  5418. /*
  5419. * Update sched_domains_numa_masks[level][node] array when new cpus
  5420. * are onlined.
  5421. */
  5422. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5423. unsigned long action,
  5424. void *hcpu)
  5425. {
  5426. int cpu = (long)hcpu;
  5427. switch (action & ~CPU_TASKS_FROZEN) {
  5428. case CPU_ONLINE:
  5429. sched_domains_numa_masks_set(cpu);
  5430. break;
  5431. case CPU_DEAD:
  5432. sched_domains_numa_masks_clear(cpu);
  5433. break;
  5434. default:
  5435. return NOTIFY_DONE;
  5436. }
  5437. return NOTIFY_OK;
  5438. }
  5439. #else
  5440. static inline void sched_init_numa(void)
  5441. {
  5442. }
  5443. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5444. unsigned long action,
  5445. void *hcpu)
  5446. {
  5447. return 0;
  5448. }
  5449. #endif /* CONFIG_NUMA */
  5450. static int __sdt_alloc(const struct cpumask *cpu_map)
  5451. {
  5452. struct sched_domain_topology_level *tl;
  5453. int j;
  5454. for (tl = sched_domain_topology; tl->init; tl++) {
  5455. struct sd_data *sdd = &tl->data;
  5456. sdd->sd = alloc_percpu(struct sched_domain *);
  5457. if (!sdd->sd)
  5458. return -ENOMEM;
  5459. sdd->sg = alloc_percpu(struct sched_group *);
  5460. if (!sdd->sg)
  5461. return -ENOMEM;
  5462. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5463. if (!sdd->sgp)
  5464. return -ENOMEM;
  5465. for_each_cpu(j, cpu_map) {
  5466. struct sched_domain *sd;
  5467. struct sched_group *sg;
  5468. struct sched_group_power *sgp;
  5469. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5470. GFP_KERNEL, cpu_to_node(j));
  5471. if (!sd)
  5472. return -ENOMEM;
  5473. *per_cpu_ptr(sdd->sd, j) = sd;
  5474. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5475. GFP_KERNEL, cpu_to_node(j));
  5476. if (!sg)
  5477. return -ENOMEM;
  5478. sg->next = sg;
  5479. *per_cpu_ptr(sdd->sg, j) = sg;
  5480. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5481. GFP_KERNEL, cpu_to_node(j));
  5482. if (!sgp)
  5483. return -ENOMEM;
  5484. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5485. }
  5486. }
  5487. return 0;
  5488. }
  5489. static void __sdt_free(const struct cpumask *cpu_map)
  5490. {
  5491. struct sched_domain_topology_level *tl;
  5492. int j;
  5493. for (tl = sched_domain_topology; tl->init; tl++) {
  5494. struct sd_data *sdd = &tl->data;
  5495. for_each_cpu(j, cpu_map) {
  5496. struct sched_domain *sd;
  5497. if (sdd->sd) {
  5498. sd = *per_cpu_ptr(sdd->sd, j);
  5499. if (sd && (sd->flags & SD_OVERLAP))
  5500. free_sched_groups(sd->groups, 0);
  5501. kfree(*per_cpu_ptr(sdd->sd, j));
  5502. }
  5503. if (sdd->sg)
  5504. kfree(*per_cpu_ptr(sdd->sg, j));
  5505. if (sdd->sgp)
  5506. kfree(*per_cpu_ptr(sdd->sgp, j));
  5507. }
  5508. free_percpu(sdd->sd);
  5509. sdd->sd = NULL;
  5510. free_percpu(sdd->sg);
  5511. sdd->sg = NULL;
  5512. free_percpu(sdd->sgp);
  5513. sdd->sgp = NULL;
  5514. }
  5515. }
  5516. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5517. struct s_data *d, const struct cpumask *cpu_map,
  5518. struct sched_domain_attr *attr, struct sched_domain *child,
  5519. int cpu)
  5520. {
  5521. struct sched_domain *sd = tl->init(tl, cpu);
  5522. if (!sd)
  5523. return child;
  5524. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5525. if (child) {
  5526. sd->level = child->level + 1;
  5527. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5528. child->parent = sd;
  5529. }
  5530. sd->child = child;
  5531. set_domain_attribute(sd, attr);
  5532. return sd;
  5533. }
  5534. /*
  5535. * Build sched domains for a given set of cpus and attach the sched domains
  5536. * to the individual cpus
  5537. */
  5538. static int build_sched_domains(const struct cpumask *cpu_map,
  5539. struct sched_domain_attr *attr)
  5540. {
  5541. enum s_alloc alloc_state = sa_none;
  5542. struct sched_domain *sd;
  5543. struct s_data d;
  5544. int i, ret = -ENOMEM;
  5545. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5546. if (alloc_state != sa_rootdomain)
  5547. goto error;
  5548. /* Set up domains for cpus specified by the cpu_map. */
  5549. for_each_cpu(i, cpu_map) {
  5550. struct sched_domain_topology_level *tl;
  5551. sd = NULL;
  5552. for (tl = sched_domain_topology; tl->init; tl++) {
  5553. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5554. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5555. sd->flags |= SD_OVERLAP;
  5556. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5557. break;
  5558. }
  5559. while (sd->child)
  5560. sd = sd->child;
  5561. *per_cpu_ptr(d.sd, i) = sd;
  5562. }
  5563. /* Build the groups for the domains */
  5564. for_each_cpu(i, cpu_map) {
  5565. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5566. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5567. if (sd->flags & SD_OVERLAP) {
  5568. if (build_overlap_sched_groups(sd, i))
  5569. goto error;
  5570. } else {
  5571. if (build_sched_groups(sd, i))
  5572. goto error;
  5573. }
  5574. }
  5575. }
  5576. /* Calculate CPU power for physical packages and nodes */
  5577. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5578. if (!cpumask_test_cpu(i, cpu_map))
  5579. continue;
  5580. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5581. claim_allocations(i, sd);
  5582. init_sched_groups_power(i, sd);
  5583. }
  5584. }
  5585. /* Attach the domains */
  5586. rcu_read_lock();
  5587. for_each_cpu(i, cpu_map) {
  5588. sd = *per_cpu_ptr(d.sd, i);
  5589. cpu_attach_domain(sd, d.rd, i);
  5590. }
  5591. rcu_read_unlock();
  5592. ret = 0;
  5593. error:
  5594. __free_domain_allocs(&d, alloc_state, cpu_map);
  5595. return ret;
  5596. }
  5597. static cpumask_var_t *doms_cur; /* current sched domains */
  5598. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5599. static struct sched_domain_attr *dattr_cur;
  5600. /* attribues of custom domains in 'doms_cur' */
  5601. /*
  5602. * Special case: If a kmalloc of a doms_cur partition (array of
  5603. * cpumask) fails, then fallback to a single sched domain,
  5604. * as determined by the single cpumask fallback_doms.
  5605. */
  5606. static cpumask_var_t fallback_doms;
  5607. /*
  5608. * arch_update_cpu_topology lets virtualized architectures update the
  5609. * cpu core maps. It is supposed to return 1 if the topology changed
  5610. * or 0 if it stayed the same.
  5611. */
  5612. int __attribute__((weak)) arch_update_cpu_topology(void)
  5613. {
  5614. return 0;
  5615. }
  5616. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5617. {
  5618. int i;
  5619. cpumask_var_t *doms;
  5620. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5621. if (!doms)
  5622. return NULL;
  5623. for (i = 0; i < ndoms; i++) {
  5624. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5625. free_sched_domains(doms, i);
  5626. return NULL;
  5627. }
  5628. }
  5629. return doms;
  5630. }
  5631. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5632. {
  5633. unsigned int i;
  5634. for (i = 0; i < ndoms; i++)
  5635. free_cpumask_var(doms[i]);
  5636. kfree(doms);
  5637. }
  5638. /*
  5639. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5640. * For now this just excludes isolated cpus, but could be used to
  5641. * exclude other special cases in the future.
  5642. */
  5643. static int init_sched_domains(const struct cpumask *cpu_map)
  5644. {
  5645. int err;
  5646. arch_update_cpu_topology();
  5647. ndoms_cur = 1;
  5648. doms_cur = alloc_sched_domains(ndoms_cur);
  5649. if (!doms_cur)
  5650. doms_cur = &fallback_doms;
  5651. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5652. err = build_sched_domains(doms_cur[0], NULL);
  5653. register_sched_domain_sysctl();
  5654. return err;
  5655. }
  5656. /*
  5657. * Detach sched domains from a group of cpus specified in cpu_map
  5658. * These cpus will now be attached to the NULL domain
  5659. */
  5660. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5661. {
  5662. int i;
  5663. rcu_read_lock();
  5664. for_each_cpu(i, cpu_map)
  5665. cpu_attach_domain(NULL, &def_root_domain, i);
  5666. rcu_read_unlock();
  5667. }
  5668. /* handle null as "default" */
  5669. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5670. struct sched_domain_attr *new, int idx_new)
  5671. {
  5672. struct sched_domain_attr tmp;
  5673. /* fast path */
  5674. if (!new && !cur)
  5675. return 1;
  5676. tmp = SD_ATTR_INIT;
  5677. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5678. new ? (new + idx_new) : &tmp,
  5679. sizeof(struct sched_domain_attr));
  5680. }
  5681. /*
  5682. * Partition sched domains as specified by the 'ndoms_new'
  5683. * cpumasks in the array doms_new[] of cpumasks. This compares
  5684. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5685. * It destroys each deleted domain and builds each new domain.
  5686. *
  5687. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5688. * The masks don't intersect (don't overlap.) We should setup one
  5689. * sched domain for each mask. CPUs not in any of the cpumasks will
  5690. * not be load balanced. If the same cpumask appears both in the
  5691. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5692. * it as it is.
  5693. *
  5694. * The passed in 'doms_new' should be allocated using
  5695. * alloc_sched_domains. This routine takes ownership of it and will
  5696. * free_sched_domains it when done with it. If the caller failed the
  5697. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5698. * and partition_sched_domains() will fallback to the single partition
  5699. * 'fallback_doms', it also forces the domains to be rebuilt.
  5700. *
  5701. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5702. * ndoms_new == 0 is a special case for destroying existing domains,
  5703. * and it will not create the default domain.
  5704. *
  5705. * Call with hotplug lock held
  5706. */
  5707. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5708. struct sched_domain_attr *dattr_new)
  5709. {
  5710. int i, j, n;
  5711. int new_topology;
  5712. mutex_lock(&sched_domains_mutex);
  5713. /* always unregister in case we don't destroy any domains */
  5714. unregister_sched_domain_sysctl();
  5715. /* Let architecture update cpu core mappings. */
  5716. new_topology = arch_update_cpu_topology();
  5717. n = doms_new ? ndoms_new : 0;
  5718. /* Destroy deleted domains */
  5719. for (i = 0; i < ndoms_cur; i++) {
  5720. for (j = 0; j < n && !new_topology; j++) {
  5721. if (cpumask_equal(doms_cur[i], doms_new[j])
  5722. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5723. goto match1;
  5724. }
  5725. /* no match - a current sched domain not in new doms_new[] */
  5726. detach_destroy_domains(doms_cur[i]);
  5727. match1:
  5728. ;
  5729. }
  5730. if (doms_new == NULL) {
  5731. ndoms_cur = 0;
  5732. doms_new = &fallback_doms;
  5733. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5734. WARN_ON_ONCE(dattr_new);
  5735. }
  5736. /* Build new domains */
  5737. for (i = 0; i < ndoms_new; i++) {
  5738. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5739. if (cpumask_equal(doms_new[i], doms_cur[j])
  5740. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5741. goto match2;
  5742. }
  5743. /* no match - add a new doms_new */
  5744. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5745. match2:
  5746. ;
  5747. }
  5748. /* Remember the new sched domains */
  5749. if (doms_cur != &fallback_doms)
  5750. free_sched_domains(doms_cur, ndoms_cur);
  5751. kfree(dattr_cur); /* kfree(NULL) is safe */
  5752. doms_cur = doms_new;
  5753. dattr_cur = dattr_new;
  5754. ndoms_cur = ndoms_new;
  5755. register_sched_domain_sysctl();
  5756. mutex_unlock(&sched_domains_mutex);
  5757. }
  5758. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5759. /*
  5760. * Update cpusets according to cpu_active mask. If cpusets are
  5761. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5762. * around partition_sched_domains().
  5763. *
  5764. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5765. * want to restore it back to its original state upon resume anyway.
  5766. */
  5767. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5768. void *hcpu)
  5769. {
  5770. switch (action) {
  5771. case CPU_ONLINE_FROZEN:
  5772. case CPU_DOWN_FAILED_FROZEN:
  5773. /*
  5774. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5775. * resume sequence. As long as this is not the last online
  5776. * operation in the resume sequence, just build a single sched
  5777. * domain, ignoring cpusets.
  5778. */
  5779. num_cpus_frozen--;
  5780. if (likely(num_cpus_frozen)) {
  5781. partition_sched_domains(1, NULL, NULL);
  5782. break;
  5783. }
  5784. /*
  5785. * This is the last CPU online operation. So fall through and
  5786. * restore the original sched domains by considering the
  5787. * cpuset configurations.
  5788. */
  5789. case CPU_ONLINE:
  5790. case CPU_DOWN_FAILED:
  5791. cpuset_update_active_cpus(true);
  5792. break;
  5793. default:
  5794. return NOTIFY_DONE;
  5795. }
  5796. return NOTIFY_OK;
  5797. }
  5798. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5799. void *hcpu)
  5800. {
  5801. switch (action) {
  5802. case CPU_DOWN_PREPARE:
  5803. cpuset_update_active_cpus(false);
  5804. break;
  5805. case CPU_DOWN_PREPARE_FROZEN:
  5806. num_cpus_frozen++;
  5807. partition_sched_domains(1, NULL, NULL);
  5808. break;
  5809. default:
  5810. return NOTIFY_DONE;
  5811. }
  5812. return NOTIFY_OK;
  5813. }
  5814. void __init sched_init_smp(void)
  5815. {
  5816. cpumask_var_t non_isolated_cpus;
  5817. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5818. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5819. sched_init_numa();
  5820. get_online_cpus();
  5821. mutex_lock(&sched_domains_mutex);
  5822. init_sched_domains(cpu_active_mask);
  5823. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5824. if (cpumask_empty(non_isolated_cpus))
  5825. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5826. mutex_unlock(&sched_domains_mutex);
  5827. put_online_cpus();
  5828. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5829. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5830. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5831. /* RT runtime code needs to handle some hotplug events */
  5832. hotcpu_notifier(update_runtime, 0);
  5833. init_hrtick();
  5834. /* Move init over to a non-isolated CPU */
  5835. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5836. BUG();
  5837. sched_init_granularity();
  5838. free_cpumask_var(non_isolated_cpus);
  5839. init_sched_rt_class();
  5840. }
  5841. #else
  5842. void __init sched_init_smp(void)
  5843. {
  5844. sched_init_granularity();
  5845. }
  5846. #endif /* CONFIG_SMP */
  5847. const_debug unsigned int sysctl_timer_migration = 1;
  5848. int in_sched_functions(unsigned long addr)
  5849. {
  5850. return in_lock_functions(addr) ||
  5851. (addr >= (unsigned long)__sched_text_start
  5852. && addr < (unsigned long)__sched_text_end);
  5853. }
  5854. #ifdef CONFIG_CGROUP_SCHED
  5855. struct task_group root_task_group;
  5856. LIST_HEAD(task_groups);
  5857. #endif
  5858. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5859. void __init sched_init(void)
  5860. {
  5861. int i, j;
  5862. unsigned long alloc_size = 0, ptr;
  5863. #ifdef CONFIG_FAIR_GROUP_SCHED
  5864. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5865. #endif
  5866. #ifdef CONFIG_RT_GROUP_SCHED
  5867. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5868. #endif
  5869. #ifdef CONFIG_CPUMASK_OFFSTACK
  5870. alloc_size += num_possible_cpus() * cpumask_size();
  5871. #endif
  5872. if (alloc_size) {
  5873. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5874. #ifdef CONFIG_FAIR_GROUP_SCHED
  5875. root_task_group.se = (struct sched_entity **)ptr;
  5876. ptr += nr_cpu_ids * sizeof(void **);
  5877. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5878. ptr += nr_cpu_ids * sizeof(void **);
  5879. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5880. #ifdef CONFIG_RT_GROUP_SCHED
  5881. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5882. ptr += nr_cpu_ids * sizeof(void **);
  5883. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5884. ptr += nr_cpu_ids * sizeof(void **);
  5885. #endif /* CONFIG_RT_GROUP_SCHED */
  5886. #ifdef CONFIG_CPUMASK_OFFSTACK
  5887. for_each_possible_cpu(i) {
  5888. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5889. ptr += cpumask_size();
  5890. }
  5891. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5892. }
  5893. #ifdef CONFIG_SMP
  5894. init_defrootdomain();
  5895. #endif
  5896. init_rt_bandwidth(&def_rt_bandwidth,
  5897. global_rt_period(), global_rt_runtime());
  5898. #ifdef CONFIG_RT_GROUP_SCHED
  5899. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5900. global_rt_period(), global_rt_runtime());
  5901. #endif /* CONFIG_RT_GROUP_SCHED */
  5902. #ifdef CONFIG_CGROUP_SCHED
  5903. list_add(&root_task_group.list, &task_groups);
  5904. INIT_LIST_HEAD(&root_task_group.children);
  5905. INIT_LIST_HEAD(&root_task_group.siblings);
  5906. autogroup_init(&init_task);
  5907. #endif /* CONFIG_CGROUP_SCHED */
  5908. #ifdef CONFIG_CGROUP_CPUACCT
  5909. root_cpuacct.cpustat = &kernel_cpustat;
  5910. root_cpuacct.cpuusage = alloc_percpu(u64);
  5911. /* Too early, not expected to fail */
  5912. BUG_ON(!root_cpuacct.cpuusage);
  5913. #endif
  5914. for_each_possible_cpu(i) {
  5915. struct rq *rq;
  5916. rq = cpu_rq(i);
  5917. raw_spin_lock_init(&rq->lock);
  5918. rq->nr_running = 0;
  5919. rq->calc_load_active = 0;
  5920. rq->calc_load_update = jiffies + LOAD_FREQ;
  5921. init_cfs_rq(&rq->cfs);
  5922. init_rt_rq(&rq->rt, rq);
  5923. #ifdef CONFIG_FAIR_GROUP_SCHED
  5924. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5925. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5926. /*
  5927. * How much cpu bandwidth does root_task_group get?
  5928. *
  5929. * In case of task-groups formed thr' the cgroup filesystem, it
  5930. * gets 100% of the cpu resources in the system. This overall
  5931. * system cpu resource is divided among the tasks of
  5932. * root_task_group and its child task-groups in a fair manner,
  5933. * based on each entity's (task or task-group's) weight
  5934. * (se->load.weight).
  5935. *
  5936. * In other words, if root_task_group has 10 tasks of weight
  5937. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5938. * then A0's share of the cpu resource is:
  5939. *
  5940. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5941. *
  5942. * We achieve this by letting root_task_group's tasks sit
  5943. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5944. */
  5945. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5946. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5947. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5948. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5949. #ifdef CONFIG_RT_GROUP_SCHED
  5950. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5951. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5952. #endif
  5953. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5954. rq->cpu_load[j] = 0;
  5955. rq->last_load_update_tick = jiffies;
  5956. #ifdef CONFIG_SMP
  5957. rq->sd = NULL;
  5958. rq->rd = NULL;
  5959. rq->cpu_power = SCHED_POWER_SCALE;
  5960. rq->post_schedule = 0;
  5961. rq->active_balance = 0;
  5962. rq->next_balance = jiffies;
  5963. rq->push_cpu = 0;
  5964. rq->cpu = i;
  5965. rq->online = 0;
  5966. rq->idle_stamp = 0;
  5967. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5968. INIT_LIST_HEAD(&rq->cfs_tasks);
  5969. rq_attach_root(rq, &def_root_domain);
  5970. #ifdef CONFIG_NO_HZ
  5971. rq->nohz_flags = 0;
  5972. #endif
  5973. #endif
  5974. init_rq_hrtick(rq);
  5975. atomic_set(&rq->nr_iowait, 0);
  5976. }
  5977. set_load_weight(&init_task);
  5978. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5979. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5980. #endif
  5981. #ifdef CONFIG_RT_MUTEXES
  5982. plist_head_init(&init_task.pi_waiters);
  5983. #endif
  5984. /*
  5985. * The boot idle thread does lazy MMU switching as well:
  5986. */
  5987. atomic_inc(&init_mm.mm_count);
  5988. enter_lazy_tlb(&init_mm, current);
  5989. /*
  5990. * Make us the idle thread. Technically, schedule() should not be
  5991. * called from this thread, however somewhere below it might be,
  5992. * but because we are the idle thread, we just pick up running again
  5993. * when this runqueue becomes "idle".
  5994. */
  5995. init_idle(current, smp_processor_id());
  5996. calc_load_update = jiffies + LOAD_FREQ;
  5997. /*
  5998. * During early bootup we pretend to be a normal task:
  5999. */
  6000. current->sched_class = &fair_sched_class;
  6001. #ifdef CONFIG_SMP
  6002. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6003. /* May be allocated at isolcpus cmdline parse time */
  6004. if (cpu_isolated_map == NULL)
  6005. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6006. idle_thread_set_boot_cpu();
  6007. #endif
  6008. init_sched_fair_class();
  6009. scheduler_running = 1;
  6010. }
  6011. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6012. static inline int preempt_count_equals(int preempt_offset)
  6013. {
  6014. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6015. return (nested == preempt_offset);
  6016. }
  6017. void __might_sleep(const char *file, int line, int preempt_offset)
  6018. {
  6019. static unsigned long prev_jiffy; /* ratelimiting */
  6020. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6021. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6022. system_state != SYSTEM_RUNNING || oops_in_progress)
  6023. return;
  6024. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6025. return;
  6026. prev_jiffy = jiffies;
  6027. printk(KERN_ERR
  6028. "BUG: sleeping function called from invalid context at %s:%d\n",
  6029. file, line);
  6030. printk(KERN_ERR
  6031. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6032. in_atomic(), irqs_disabled(),
  6033. current->pid, current->comm);
  6034. debug_show_held_locks(current);
  6035. if (irqs_disabled())
  6036. print_irqtrace_events(current);
  6037. dump_stack();
  6038. }
  6039. EXPORT_SYMBOL(__might_sleep);
  6040. #endif
  6041. #ifdef CONFIG_MAGIC_SYSRQ
  6042. static void normalize_task(struct rq *rq, struct task_struct *p)
  6043. {
  6044. const struct sched_class *prev_class = p->sched_class;
  6045. int old_prio = p->prio;
  6046. int on_rq;
  6047. on_rq = p->on_rq;
  6048. if (on_rq)
  6049. dequeue_task(rq, p, 0);
  6050. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6051. if (on_rq) {
  6052. enqueue_task(rq, p, 0);
  6053. resched_task(rq->curr);
  6054. }
  6055. check_class_changed(rq, p, prev_class, old_prio);
  6056. }
  6057. void normalize_rt_tasks(void)
  6058. {
  6059. struct task_struct *g, *p;
  6060. unsigned long flags;
  6061. struct rq *rq;
  6062. read_lock_irqsave(&tasklist_lock, flags);
  6063. do_each_thread(g, p) {
  6064. /*
  6065. * Only normalize user tasks:
  6066. */
  6067. if (!p->mm)
  6068. continue;
  6069. p->se.exec_start = 0;
  6070. #ifdef CONFIG_SCHEDSTATS
  6071. p->se.statistics.wait_start = 0;
  6072. p->se.statistics.sleep_start = 0;
  6073. p->se.statistics.block_start = 0;
  6074. #endif
  6075. if (!rt_task(p)) {
  6076. /*
  6077. * Renice negative nice level userspace
  6078. * tasks back to 0:
  6079. */
  6080. if (TASK_NICE(p) < 0 && p->mm)
  6081. set_user_nice(p, 0);
  6082. continue;
  6083. }
  6084. raw_spin_lock(&p->pi_lock);
  6085. rq = __task_rq_lock(p);
  6086. normalize_task(rq, p);
  6087. __task_rq_unlock(rq);
  6088. raw_spin_unlock(&p->pi_lock);
  6089. } while_each_thread(g, p);
  6090. read_unlock_irqrestore(&tasklist_lock, flags);
  6091. }
  6092. #endif /* CONFIG_MAGIC_SYSRQ */
  6093. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6094. /*
  6095. * These functions are only useful for the IA64 MCA handling, or kdb.
  6096. *
  6097. * They can only be called when the whole system has been
  6098. * stopped - every CPU needs to be quiescent, and no scheduling
  6099. * activity can take place. Using them for anything else would
  6100. * be a serious bug, and as a result, they aren't even visible
  6101. * under any other configuration.
  6102. */
  6103. /**
  6104. * curr_task - return the current task for a given cpu.
  6105. * @cpu: the processor in question.
  6106. *
  6107. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6108. */
  6109. struct task_struct *curr_task(int cpu)
  6110. {
  6111. return cpu_curr(cpu);
  6112. }
  6113. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6114. #ifdef CONFIG_IA64
  6115. /**
  6116. * set_curr_task - set the current task for a given cpu.
  6117. * @cpu: the processor in question.
  6118. * @p: the task pointer to set.
  6119. *
  6120. * Description: This function must only be used when non-maskable interrupts
  6121. * are serviced on a separate stack. It allows the architecture to switch the
  6122. * notion of the current task on a cpu in a non-blocking manner. This function
  6123. * must be called with all CPU's synchronized, and interrupts disabled, the
  6124. * and caller must save the original value of the current task (see
  6125. * curr_task() above) and restore that value before reenabling interrupts and
  6126. * re-starting the system.
  6127. *
  6128. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6129. */
  6130. void set_curr_task(int cpu, struct task_struct *p)
  6131. {
  6132. cpu_curr(cpu) = p;
  6133. }
  6134. #endif
  6135. #ifdef CONFIG_CGROUP_SCHED
  6136. /* task_group_lock serializes the addition/removal of task groups */
  6137. static DEFINE_SPINLOCK(task_group_lock);
  6138. static void free_sched_group(struct task_group *tg)
  6139. {
  6140. free_fair_sched_group(tg);
  6141. free_rt_sched_group(tg);
  6142. autogroup_free(tg);
  6143. kfree(tg);
  6144. }
  6145. /* allocate runqueue etc for a new task group */
  6146. struct task_group *sched_create_group(struct task_group *parent)
  6147. {
  6148. struct task_group *tg;
  6149. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6150. if (!tg)
  6151. return ERR_PTR(-ENOMEM);
  6152. if (!alloc_fair_sched_group(tg, parent))
  6153. goto err;
  6154. if (!alloc_rt_sched_group(tg, parent))
  6155. goto err;
  6156. return tg;
  6157. err:
  6158. free_sched_group(tg);
  6159. return ERR_PTR(-ENOMEM);
  6160. }
  6161. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6162. {
  6163. unsigned long flags;
  6164. spin_lock_irqsave(&task_group_lock, flags);
  6165. list_add_rcu(&tg->list, &task_groups);
  6166. WARN_ON(!parent); /* root should already exist */
  6167. tg->parent = parent;
  6168. INIT_LIST_HEAD(&tg->children);
  6169. list_add_rcu(&tg->siblings, &parent->children);
  6170. spin_unlock_irqrestore(&task_group_lock, flags);
  6171. }
  6172. /* rcu callback to free various structures associated with a task group */
  6173. static void free_sched_group_rcu(struct rcu_head *rhp)
  6174. {
  6175. /* now it should be safe to free those cfs_rqs */
  6176. free_sched_group(container_of(rhp, struct task_group, rcu));
  6177. }
  6178. /* Destroy runqueue etc associated with a task group */
  6179. void sched_destroy_group(struct task_group *tg)
  6180. {
  6181. /* wait for possible concurrent references to cfs_rqs complete */
  6182. call_rcu(&tg->rcu, free_sched_group_rcu);
  6183. }
  6184. void sched_offline_group(struct task_group *tg)
  6185. {
  6186. unsigned long flags;
  6187. int i;
  6188. /* end participation in shares distribution */
  6189. for_each_possible_cpu(i)
  6190. unregister_fair_sched_group(tg, i);
  6191. spin_lock_irqsave(&task_group_lock, flags);
  6192. list_del_rcu(&tg->list);
  6193. list_del_rcu(&tg->siblings);
  6194. spin_unlock_irqrestore(&task_group_lock, flags);
  6195. }
  6196. /* change task's runqueue when it moves between groups.
  6197. * The caller of this function should have put the task in its new group
  6198. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6199. * reflect its new group.
  6200. */
  6201. void sched_move_task(struct task_struct *tsk)
  6202. {
  6203. struct task_group *tg;
  6204. int on_rq, running;
  6205. unsigned long flags;
  6206. struct rq *rq;
  6207. rq = task_rq_lock(tsk, &flags);
  6208. running = task_current(rq, tsk);
  6209. on_rq = tsk->on_rq;
  6210. if (on_rq)
  6211. dequeue_task(rq, tsk, 0);
  6212. if (unlikely(running))
  6213. tsk->sched_class->put_prev_task(rq, tsk);
  6214. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6215. lockdep_is_held(&tsk->sighand->siglock)),
  6216. struct task_group, css);
  6217. tg = autogroup_task_group(tsk, tg);
  6218. tsk->sched_task_group = tg;
  6219. #ifdef CONFIG_FAIR_GROUP_SCHED
  6220. if (tsk->sched_class->task_move_group)
  6221. tsk->sched_class->task_move_group(tsk, on_rq);
  6222. else
  6223. #endif
  6224. set_task_rq(tsk, task_cpu(tsk));
  6225. if (unlikely(running))
  6226. tsk->sched_class->set_curr_task(rq);
  6227. if (on_rq)
  6228. enqueue_task(rq, tsk, 0);
  6229. task_rq_unlock(rq, tsk, &flags);
  6230. }
  6231. #endif /* CONFIG_CGROUP_SCHED */
  6232. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6233. static unsigned long to_ratio(u64 period, u64 runtime)
  6234. {
  6235. if (runtime == RUNTIME_INF)
  6236. return 1ULL << 20;
  6237. return div64_u64(runtime << 20, period);
  6238. }
  6239. #endif
  6240. #ifdef CONFIG_RT_GROUP_SCHED
  6241. /*
  6242. * Ensure that the real time constraints are schedulable.
  6243. */
  6244. static DEFINE_MUTEX(rt_constraints_mutex);
  6245. /* Must be called with tasklist_lock held */
  6246. static inline int tg_has_rt_tasks(struct task_group *tg)
  6247. {
  6248. struct task_struct *g, *p;
  6249. do_each_thread(g, p) {
  6250. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6251. return 1;
  6252. } while_each_thread(g, p);
  6253. return 0;
  6254. }
  6255. struct rt_schedulable_data {
  6256. struct task_group *tg;
  6257. u64 rt_period;
  6258. u64 rt_runtime;
  6259. };
  6260. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6261. {
  6262. struct rt_schedulable_data *d = data;
  6263. struct task_group *child;
  6264. unsigned long total, sum = 0;
  6265. u64 period, runtime;
  6266. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6267. runtime = tg->rt_bandwidth.rt_runtime;
  6268. if (tg == d->tg) {
  6269. period = d->rt_period;
  6270. runtime = d->rt_runtime;
  6271. }
  6272. /*
  6273. * Cannot have more runtime than the period.
  6274. */
  6275. if (runtime > period && runtime != RUNTIME_INF)
  6276. return -EINVAL;
  6277. /*
  6278. * Ensure we don't starve existing RT tasks.
  6279. */
  6280. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6281. return -EBUSY;
  6282. total = to_ratio(period, runtime);
  6283. /*
  6284. * Nobody can have more than the global setting allows.
  6285. */
  6286. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6287. return -EINVAL;
  6288. /*
  6289. * The sum of our children's runtime should not exceed our own.
  6290. */
  6291. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6292. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6293. runtime = child->rt_bandwidth.rt_runtime;
  6294. if (child == d->tg) {
  6295. period = d->rt_period;
  6296. runtime = d->rt_runtime;
  6297. }
  6298. sum += to_ratio(period, runtime);
  6299. }
  6300. if (sum > total)
  6301. return -EINVAL;
  6302. return 0;
  6303. }
  6304. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6305. {
  6306. int ret;
  6307. struct rt_schedulable_data data = {
  6308. .tg = tg,
  6309. .rt_period = period,
  6310. .rt_runtime = runtime,
  6311. };
  6312. rcu_read_lock();
  6313. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6314. rcu_read_unlock();
  6315. return ret;
  6316. }
  6317. static int tg_set_rt_bandwidth(struct task_group *tg,
  6318. u64 rt_period, u64 rt_runtime)
  6319. {
  6320. int i, err = 0;
  6321. mutex_lock(&rt_constraints_mutex);
  6322. read_lock(&tasklist_lock);
  6323. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6324. if (err)
  6325. goto unlock;
  6326. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6327. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6328. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6329. for_each_possible_cpu(i) {
  6330. struct rt_rq *rt_rq = tg->rt_rq[i];
  6331. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6332. rt_rq->rt_runtime = rt_runtime;
  6333. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6334. }
  6335. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6336. unlock:
  6337. read_unlock(&tasklist_lock);
  6338. mutex_unlock(&rt_constraints_mutex);
  6339. return err;
  6340. }
  6341. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6342. {
  6343. u64 rt_runtime, rt_period;
  6344. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6345. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6346. if (rt_runtime_us < 0)
  6347. rt_runtime = RUNTIME_INF;
  6348. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6349. }
  6350. long sched_group_rt_runtime(struct task_group *tg)
  6351. {
  6352. u64 rt_runtime_us;
  6353. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6354. return -1;
  6355. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6356. do_div(rt_runtime_us, NSEC_PER_USEC);
  6357. return rt_runtime_us;
  6358. }
  6359. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6360. {
  6361. u64 rt_runtime, rt_period;
  6362. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6363. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6364. if (rt_period == 0)
  6365. return -EINVAL;
  6366. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6367. }
  6368. long sched_group_rt_period(struct task_group *tg)
  6369. {
  6370. u64 rt_period_us;
  6371. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6372. do_div(rt_period_us, NSEC_PER_USEC);
  6373. return rt_period_us;
  6374. }
  6375. static int sched_rt_global_constraints(void)
  6376. {
  6377. u64 runtime, period;
  6378. int ret = 0;
  6379. if (sysctl_sched_rt_period <= 0)
  6380. return -EINVAL;
  6381. runtime = global_rt_runtime();
  6382. period = global_rt_period();
  6383. /*
  6384. * Sanity check on the sysctl variables.
  6385. */
  6386. if (runtime > period && runtime != RUNTIME_INF)
  6387. return -EINVAL;
  6388. mutex_lock(&rt_constraints_mutex);
  6389. read_lock(&tasklist_lock);
  6390. ret = __rt_schedulable(NULL, 0, 0);
  6391. read_unlock(&tasklist_lock);
  6392. mutex_unlock(&rt_constraints_mutex);
  6393. return ret;
  6394. }
  6395. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6396. {
  6397. /* Don't accept realtime tasks when there is no way for them to run */
  6398. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6399. return 0;
  6400. return 1;
  6401. }
  6402. #else /* !CONFIG_RT_GROUP_SCHED */
  6403. static int sched_rt_global_constraints(void)
  6404. {
  6405. unsigned long flags;
  6406. int i;
  6407. if (sysctl_sched_rt_period <= 0)
  6408. return -EINVAL;
  6409. /*
  6410. * There's always some RT tasks in the root group
  6411. * -- migration, kstopmachine etc..
  6412. */
  6413. if (sysctl_sched_rt_runtime == 0)
  6414. return -EBUSY;
  6415. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6416. for_each_possible_cpu(i) {
  6417. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6418. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6419. rt_rq->rt_runtime = global_rt_runtime();
  6420. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6421. }
  6422. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6423. return 0;
  6424. }
  6425. #endif /* CONFIG_RT_GROUP_SCHED */
  6426. int sched_rr_handler(struct ctl_table *table, int write,
  6427. void __user *buffer, size_t *lenp,
  6428. loff_t *ppos)
  6429. {
  6430. int ret;
  6431. static DEFINE_MUTEX(mutex);
  6432. mutex_lock(&mutex);
  6433. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6434. /* make sure that internally we keep jiffies */
  6435. /* also, writing zero resets timeslice to default */
  6436. if (!ret && write) {
  6437. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6438. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6439. }
  6440. mutex_unlock(&mutex);
  6441. return ret;
  6442. }
  6443. int sched_rt_handler(struct ctl_table *table, int write,
  6444. void __user *buffer, size_t *lenp,
  6445. loff_t *ppos)
  6446. {
  6447. int ret;
  6448. int old_period, old_runtime;
  6449. static DEFINE_MUTEX(mutex);
  6450. mutex_lock(&mutex);
  6451. old_period = sysctl_sched_rt_period;
  6452. old_runtime = sysctl_sched_rt_runtime;
  6453. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6454. if (!ret && write) {
  6455. ret = sched_rt_global_constraints();
  6456. if (ret) {
  6457. sysctl_sched_rt_period = old_period;
  6458. sysctl_sched_rt_runtime = old_runtime;
  6459. } else {
  6460. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6461. def_rt_bandwidth.rt_period =
  6462. ns_to_ktime(global_rt_period());
  6463. }
  6464. }
  6465. mutex_unlock(&mutex);
  6466. return ret;
  6467. }
  6468. #ifdef CONFIG_CGROUP_SCHED
  6469. /* return corresponding task_group object of a cgroup */
  6470. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6471. {
  6472. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6473. struct task_group, css);
  6474. }
  6475. static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
  6476. {
  6477. struct task_group *tg, *parent;
  6478. if (!cgrp->parent) {
  6479. /* This is early initialization for the top cgroup */
  6480. return &root_task_group.css;
  6481. }
  6482. parent = cgroup_tg(cgrp->parent);
  6483. tg = sched_create_group(parent);
  6484. if (IS_ERR(tg))
  6485. return ERR_PTR(-ENOMEM);
  6486. return &tg->css;
  6487. }
  6488. static int cpu_cgroup_css_online(struct cgroup *cgrp)
  6489. {
  6490. struct task_group *tg = cgroup_tg(cgrp);
  6491. struct task_group *parent;
  6492. if (!cgrp->parent)
  6493. return 0;
  6494. parent = cgroup_tg(cgrp->parent);
  6495. sched_online_group(tg, parent);
  6496. return 0;
  6497. }
  6498. static void cpu_cgroup_css_free(struct cgroup *cgrp)
  6499. {
  6500. struct task_group *tg = cgroup_tg(cgrp);
  6501. sched_destroy_group(tg);
  6502. }
  6503. static void cpu_cgroup_css_offline(struct cgroup *cgrp)
  6504. {
  6505. struct task_group *tg = cgroup_tg(cgrp);
  6506. sched_offline_group(tg);
  6507. }
  6508. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6509. struct cgroup_taskset *tset)
  6510. {
  6511. struct task_struct *task;
  6512. cgroup_taskset_for_each(task, cgrp, tset) {
  6513. #ifdef CONFIG_RT_GROUP_SCHED
  6514. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6515. return -EINVAL;
  6516. #else
  6517. /* We don't support RT-tasks being in separate groups */
  6518. if (task->sched_class != &fair_sched_class)
  6519. return -EINVAL;
  6520. #endif
  6521. }
  6522. return 0;
  6523. }
  6524. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6525. struct cgroup_taskset *tset)
  6526. {
  6527. struct task_struct *task;
  6528. cgroup_taskset_for_each(task, cgrp, tset)
  6529. sched_move_task(task);
  6530. }
  6531. static void
  6532. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6533. struct task_struct *task)
  6534. {
  6535. /*
  6536. * cgroup_exit() is called in the copy_process() failure path.
  6537. * Ignore this case since the task hasn't ran yet, this avoids
  6538. * trying to poke a half freed task state from generic code.
  6539. */
  6540. if (!(task->flags & PF_EXITING))
  6541. return;
  6542. sched_move_task(task);
  6543. }
  6544. #ifdef CONFIG_FAIR_GROUP_SCHED
  6545. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6546. u64 shareval)
  6547. {
  6548. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6549. }
  6550. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6551. {
  6552. struct task_group *tg = cgroup_tg(cgrp);
  6553. return (u64) scale_load_down(tg->shares);
  6554. }
  6555. #ifdef CONFIG_CFS_BANDWIDTH
  6556. static DEFINE_MUTEX(cfs_constraints_mutex);
  6557. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6558. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6559. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6560. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6561. {
  6562. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6563. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6564. if (tg == &root_task_group)
  6565. return -EINVAL;
  6566. /*
  6567. * Ensure we have at some amount of bandwidth every period. This is
  6568. * to prevent reaching a state of large arrears when throttled via
  6569. * entity_tick() resulting in prolonged exit starvation.
  6570. */
  6571. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6572. return -EINVAL;
  6573. /*
  6574. * Likewise, bound things on the otherside by preventing insane quota
  6575. * periods. This also allows us to normalize in computing quota
  6576. * feasibility.
  6577. */
  6578. if (period > max_cfs_quota_period)
  6579. return -EINVAL;
  6580. mutex_lock(&cfs_constraints_mutex);
  6581. ret = __cfs_schedulable(tg, period, quota);
  6582. if (ret)
  6583. goto out_unlock;
  6584. runtime_enabled = quota != RUNTIME_INF;
  6585. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6586. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6587. raw_spin_lock_irq(&cfs_b->lock);
  6588. cfs_b->period = ns_to_ktime(period);
  6589. cfs_b->quota = quota;
  6590. __refill_cfs_bandwidth_runtime(cfs_b);
  6591. /* restart the period timer (if active) to handle new period expiry */
  6592. if (runtime_enabled && cfs_b->timer_active) {
  6593. /* force a reprogram */
  6594. cfs_b->timer_active = 0;
  6595. __start_cfs_bandwidth(cfs_b);
  6596. }
  6597. raw_spin_unlock_irq(&cfs_b->lock);
  6598. for_each_possible_cpu(i) {
  6599. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6600. struct rq *rq = cfs_rq->rq;
  6601. raw_spin_lock_irq(&rq->lock);
  6602. cfs_rq->runtime_enabled = runtime_enabled;
  6603. cfs_rq->runtime_remaining = 0;
  6604. if (cfs_rq->throttled)
  6605. unthrottle_cfs_rq(cfs_rq);
  6606. raw_spin_unlock_irq(&rq->lock);
  6607. }
  6608. out_unlock:
  6609. mutex_unlock(&cfs_constraints_mutex);
  6610. return ret;
  6611. }
  6612. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6613. {
  6614. u64 quota, period;
  6615. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6616. if (cfs_quota_us < 0)
  6617. quota = RUNTIME_INF;
  6618. else
  6619. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6620. return tg_set_cfs_bandwidth(tg, period, quota);
  6621. }
  6622. long tg_get_cfs_quota(struct task_group *tg)
  6623. {
  6624. u64 quota_us;
  6625. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6626. return -1;
  6627. quota_us = tg->cfs_bandwidth.quota;
  6628. do_div(quota_us, NSEC_PER_USEC);
  6629. return quota_us;
  6630. }
  6631. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6632. {
  6633. u64 quota, period;
  6634. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6635. quota = tg->cfs_bandwidth.quota;
  6636. return tg_set_cfs_bandwidth(tg, period, quota);
  6637. }
  6638. long tg_get_cfs_period(struct task_group *tg)
  6639. {
  6640. u64 cfs_period_us;
  6641. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6642. do_div(cfs_period_us, NSEC_PER_USEC);
  6643. return cfs_period_us;
  6644. }
  6645. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6646. {
  6647. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6648. }
  6649. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6650. s64 cfs_quota_us)
  6651. {
  6652. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6653. }
  6654. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6655. {
  6656. return tg_get_cfs_period(cgroup_tg(cgrp));
  6657. }
  6658. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6659. u64 cfs_period_us)
  6660. {
  6661. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6662. }
  6663. struct cfs_schedulable_data {
  6664. struct task_group *tg;
  6665. u64 period, quota;
  6666. };
  6667. /*
  6668. * normalize group quota/period to be quota/max_period
  6669. * note: units are usecs
  6670. */
  6671. static u64 normalize_cfs_quota(struct task_group *tg,
  6672. struct cfs_schedulable_data *d)
  6673. {
  6674. u64 quota, period;
  6675. if (tg == d->tg) {
  6676. period = d->period;
  6677. quota = d->quota;
  6678. } else {
  6679. period = tg_get_cfs_period(tg);
  6680. quota = tg_get_cfs_quota(tg);
  6681. }
  6682. /* note: these should typically be equivalent */
  6683. if (quota == RUNTIME_INF || quota == -1)
  6684. return RUNTIME_INF;
  6685. return to_ratio(period, quota);
  6686. }
  6687. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6688. {
  6689. struct cfs_schedulable_data *d = data;
  6690. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6691. s64 quota = 0, parent_quota = -1;
  6692. if (!tg->parent) {
  6693. quota = RUNTIME_INF;
  6694. } else {
  6695. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6696. quota = normalize_cfs_quota(tg, d);
  6697. parent_quota = parent_b->hierarchal_quota;
  6698. /*
  6699. * ensure max(child_quota) <= parent_quota, inherit when no
  6700. * limit is set
  6701. */
  6702. if (quota == RUNTIME_INF)
  6703. quota = parent_quota;
  6704. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6705. return -EINVAL;
  6706. }
  6707. cfs_b->hierarchal_quota = quota;
  6708. return 0;
  6709. }
  6710. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6711. {
  6712. int ret;
  6713. struct cfs_schedulable_data data = {
  6714. .tg = tg,
  6715. .period = period,
  6716. .quota = quota,
  6717. };
  6718. if (quota != RUNTIME_INF) {
  6719. do_div(data.period, NSEC_PER_USEC);
  6720. do_div(data.quota, NSEC_PER_USEC);
  6721. }
  6722. rcu_read_lock();
  6723. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6724. rcu_read_unlock();
  6725. return ret;
  6726. }
  6727. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6728. struct cgroup_map_cb *cb)
  6729. {
  6730. struct task_group *tg = cgroup_tg(cgrp);
  6731. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6732. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6733. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6734. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6735. return 0;
  6736. }
  6737. #endif /* CONFIG_CFS_BANDWIDTH */
  6738. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6739. #ifdef CONFIG_RT_GROUP_SCHED
  6740. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6741. s64 val)
  6742. {
  6743. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6744. }
  6745. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6746. {
  6747. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6748. }
  6749. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6750. u64 rt_period_us)
  6751. {
  6752. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6753. }
  6754. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6755. {
  6756. return sched_group_rt_period(cgroup_tg(cgrp));
  6757. }
  6758. #endif /* CONFIG_RT_GROUP_SCHED */
  6759. static struct cftype cpu_files[] = {
  6760. #ifdef CONFIG_FAIR_GROUP_SCHED
  6761. {
  6762. .name = "shares",
  6763. .read_u64 = cpu_shares_read_u64,
  6764. .write_u64 = cpu_shares_write_u64,
  6765. },
  6766. #endif
  6767. #ifdef CONFIG_CFS_BANDWIDTH
  6768. {
  6769. .name = "cfs_quota_us",
  6770. .read_s64 = cpu_cfs_quota_read_s64,
  6771. .write_s64 = cpu_cfs_quota_write_s64,
  6772. },
  6773. {
  6774. .name = "cfs_period_us",
  6775. .read_u64 = cpu_cfs_period_read_u64,
  6776. .write_u64 = cpu_cfs_period_write_u64,
  6777. },
  6778. {
  6779. .name = "stat",
  6780. .read_map = cpu_stats_show,
  6781. },
  6782. #endif
  6783. #ifdef CONFIG_RT_GROUP_SCHED
  6784. {
  6785. .name = "rt_runtime_us",
  6786. .read_s64 = cpu_rt_runtime_read,
  6787. .write_s64 = cpu_rt_runtime_write,
  6788. },
  6789. {
  6790. .name = "rt_period_us",
  6791. .read_u64 = cpu_rt_period_read_uint,
  6792. .write_u64 = cpu_rt_period_write_uint,
  6793. },
  6794. #endif
  6795. { } /* terminate */
  6796. };
  6797. struct cgroup_subsys cpu_cgroup_subsys = {
  6798. .name = "cpu",
  6799. .css_alloc = cpu_cgroup_css_alloc,
  6800. .css_free = cpu_cgroup_css_free,
  6801. .css_online = cpu_cgroup_css_online,
  6802. .css_offline = cpu_cgroup_css_offline,
  6803. .can_attach = cpu_cgroup_can_attach,
  6804. .attach = cpu_cgroup_attach,
  6805. .exit = cpu_cgroup_exit,
  6806. .subsys_id = cpu_cgroup_subsys_id,
  6807. .base_cftypes = cpu_files,
  6808. .early_init = 1,
  6809. };
  6810. #endif /* CONFIG_CGROUP_SCHED */
  6811. #ifdef CONFIG_CGROUP_CPUACCT
  6812. /*
  6813. * CPU accounting code for task groups.
  6814. *
  6815. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6816. * (balbir@in.ibm.com).
  6817. */
  6818. struct cpuacct root_cpuacct;
  6819. /* create a new cpu accounting group */
  6820. static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
  6821. {
  6822. struct cpuacct *ca;
  6823. if (!cgrp->parent)
  6824. return &root_cpuacct.css;
  6825. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6826. if (!ca)
  6827. goto out;
  6828. ca->cpuusage = alloc_percpu(u64);
  6829. if (!ca->cpuusage)
  6830. goto out_free_ca;
  6831. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6832. if (!ca->cpustat)
  6833. goto out_free_cpuusage;
  6834. return &ca->css;
  6835. out_free_cpuusage:
  6836. free_percpu(ca->cpuusage);
  6837. out_free_ca:
  6838. kfree(ca);
  6839. out:
  6840. return ERR_PTR(-ENOMEM);
  6841. }
  6842. /* destroy an existing cpu accounting group */
  6843. static void cpuacct_css_free(struct cgroup *cgrp)
  6844. {
  6845. struct cpuacct *ca = cgroup_ca(cgrp);
  6846. free_percpu(ca->cpustat);
  6847. free_percpu(ca->cpuusage);
  6848. kfree(ca);
  6849. }
  6850. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6851. {
  6852. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6853. u64 data;
  6854. #ifndef CONFIG_64BIT
  6855. /*
  6856. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6857. */
  6858. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6859. data = *cpuusage;
  6860. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6861. #else
  6862. data = *cpuusage;
  6863. #endif
  6864. return data;
  6865. }
  6866. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6867. {
  6868. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6869. #ifndef CONFIG_64BIT
  6870. /*
  6871. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6872. */
  6873. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6874. *cpuusage = val;
  6875. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6876. #else
  6877. *cpuusage = val;
  6878. #endif
  6879. }
  6880. /* return total cpu usage (in nanoseconds) of a group */
  6881. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6882. {
  6883. struct cpuacct *ca = cgroup_ca(cgrp);
  6884. u64 totalcpuusage = 0;
  6885. int i;
  6886. for_each_present_cpu(i)
  6887. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6888. return totalcpuusage;
  6889. }
  6890. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6891. u64 reset)
  6892. {
  6893. struct cpuacct *ca = cgroup_ca(cgrp);
  6894. int err = 0;
  6895. int i;
  6896. if (reset) {
  6897. err = -EINVAL;
  6898. goto out;
  6899. }
  6900. for_each_present_cpu(i)
  6901. cpuacct_cpuusage_write(ca, i, 0);
  6902. out:
  6903. return err;
  6904. }
  6905. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6906. struct seq_file *m)
  6907. {
  6908. struct cpuacct *ca = cgroup_ca(cgroup);
  6909. u64 percpu;
  6910. int i;
  6911. for_each_present_cpu(i) {
  6912. percpu = cpuacct_cpuusage_read(ca, i);
  6913. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6914. }
  6915. seq_printf(m, "\n");
  6916. return 0;
  6917. }
  6918. static const char *cpuacct_stat_desc[] = {
  6919. [CPUACCT_STAT_USER] = "user",
  6920. [CPUACCT_STAT_SYSTEM] = "system",
  6921. };
  6922. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6923. struct cgroup_map_cb *cb)
  6924. {
  6925. struct cpuacct *ca = cgroup_ca(cgrp);
  6926. int cpu;
  6927. s64 val = 0;
  6928. for_each_online_cpu(cpu) {
  6929. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6930. val += kcpustat->cpustat[CPUTIME_USER];
  6931. val += kcpustat->cpustat[CPUTIME_NICE];
  6932. }
  6933. val = cputime64_to_clock_t(val);
  6934. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6935. val = 0;
  6936. for_each_online_cpu(cpu) {
  6937. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6938. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6939. val += kcpustat->cpustat[CPUTIME_IRQ];
  6940. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6941. }
  6942. val = cputime64_to_clock_t(val);
  6943. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6944. return 0;
  6945. }
  6946. static struct cftype files[] = {
  6947. {
  6948. .name = "usage",
  6949. .read_u64 = cpuusage_read,
  6950. .write_u64 = cpuusage_write,
  6951. },
  6952. {
  6953. .name = "usage_percpu",
  6954. .read_seq_string = cpuacct_percpu_seq_read,
  6955. },
  6956. {
  6957. .name = "stat",
  6958. .read_map = cpuacct_stats_show,
  6959. },
  6960. { } /* terminate */
  6961. };
  6962. /*
  6963. * charge this task's execution time to its accounting group.
  6964. *
  6965. * called with rq->lock held.
  6966. */
  6967. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6968. {
  6969. struct cpuacct *ca;
  6970. int cpu;
  6971. if (unlikely(!cpuacct_subsys.active))
  6972. return;
  6973. cpu = task_cpu(tsk);
  6974. rcu_read_lock();
  6975. ca = task_ca(tsk);
  6976. for (; ca; ca = parent_ca(ca)) {
  6977. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6978. *cpuusage += cputime;
  6979. }
  6980. rcu_read_unlock();
  6981. }
  6982. struct cgroup_subsys cpuacct_subsys = {
  6983. .name = "cpuacct",
  6984. .css_alloc = cpuacct_css_alloc,
  6985. .css_free = cpuacct_css_free,
  6986. .subsys_id = cpuacct_subsys_id,
  6987. .base_cftypes = files,
  6988. };
  6989. #endif /* CONFIG_CGROUP_CPUACCT */
  6990. void dump_cpu_task(int cpu)
  6991. {
  6992. pr_info("Task dump for CPU %d:\n", cpu);
  6993. sched_show_task(cpu_curr(cpu));
  6994. }