smp.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <linux/completion.h>
  28. #include <linux/atomic.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cputype.h>
  32. #include <asm/exception.h>
  33. #include <asm/idmap.h>
  34. #include <asm/topology.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sections.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/ptrace.h>
  42. #include <asm/localtimer.h>
  43. #include <asm/smp_plat.h>
  44. /*
  45. * as from 2.5, kernels no longer have an init_tasks structure
  46. * so we need some other way of telling a new secondary core
  47. * where to place its SVC stack
  48. */
  49. struct secondary_data secondary_data;
  50. enum ipi_msg_type {
  51. IPI_TIMER = 2,
  52. IPI_RESCHEDULE,
  53. IPI_CALL_FUNC,
  54. IPI_CALL_FUNC_SINGLE,
  55. IPI_CPU_STOP,
  56. };
  57. static DECLARE_COMPLETION(cpu_running);
  58. int __cpuinit __cpu_up(unsigned int cpu)
  59. {
  60. struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
  61. struct task_struct *idle = ci->idle;
  62. int ret;
  63. /*
  64. * Spawn a new process manually, if not already done.
  65. * Grab a pointer to its task struct so we can mess with it
  66. */
  67. if (!idle) {
  68. idle = fork_idle(cpu);
  69. if (IS_ERR(idle)) {
  70. printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
  71. return PTR_ERR(idle);
  72. }
  73. ci->idle = idle;
  74. } else {
  75. /*
  76. * Since this idle thread is being re-used, call
  77. * init_idle() to reinitialize the thread structure.
  78. */
  79. init_idle(idle, cpu);
  80. }
  81. /*
  82. * We need to tell the secondary core where to find
  83. * its stack and the page tables.
  84. */
  85. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  86. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  87. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  88. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  89. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  90. /*
  91. * Now bring the CPU into our world.
  92. */
  93. ret = boot_secondary(cpu, idle);
  94. if (ret == 0) {
  95. /*
  96. * CPU was successfully started, wait for it
  97. * to come online or time out.
  98. */
  99. wait_for_completion_timeout(&cpu_running,
  100. msecs_to_jiffies(1000));
  101. if (!cpu_online(cpu)) {
  102. pr_crit("CPU%u: failed to come online\n", cpu);
  103. ret = -EIO;
  104. }
  105. } else {
  106. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  107. }
  108. secondary_data.stack = NULL;
  109. secondary_data.pgdir = 0;
  110. return ret;
  111. }
  112. #ifdef CONFIG_HOTPLUG_CPU
  113. static void percpu_timer_stop(void);
  114. /*
  115. * __cpu_disable runs on the processor to be shutdown.
  116. */
  117. int __cpu_disable(void)
  118. {
  119. unsigned int cpu = smp_processor_id();
  120. struct task_struct *p;
  121. int ret;
  122. ret = platform_cpu_disable(cpu);
  123. if (ret)
  124. return ret;
  125. /*
  126. * Take this CPU offline. Once we clear this, we can't return,
  127. * and we must not schedule until we're ready to give up the cpu.
  128. */
  129. set_cpu_online(cpu, false);
  130. /*
  131. * OK - migrate IRQs away from this CPU
  132. */
  133. migrate_irqs();
  134. /*
  135. * Stop the local timer for this CPU.
  136. */
  137. percpu_timer_stop();
  138. /*
  139. * Flush user cache and TLB mappings, and then remove this CPU
  140. * from the vm mask set of all processes.
  141. */
  142. flush_cache_all();
  143. local_flush_tlb_all();
  144. read_lock(&tasklist_lock);
  145. for_each_process(p) {
  146. if (p->mm)
  147. cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
  148. }
  149. read_unlock(&tasklist_lock);
  150. return 0;
  151. }
  152. static DECLARE_COMPLETION(cpu_died);
  153. /*
  154. * called on the thread which is asking for a CPU to be shutdown -
  155. * waits until shutdown has completed, or it is timed out.
  156. */
  157. void __cpu_die(unsigned int cpu)
  158. {
  159. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  160. pr_err("CPU%u: cpu didn't die\n", cpu);
  161. return;
  162. }
  163. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  164. if (!platform_cpu_kill(cpu))
  165. printk("CPU%u: unable to kill\n", cpu);
  166. }
  167. /*
  168. * Called from the idle thread for the CPU which has been shutdown.
  169. *
  170. * Note that we disable IRQs here, but do not re-enable them
  171. * before returning to the caller. This is also the behaviour
  172. * of the other hotplug-cpu capable cores, so presumably coming
  173. * out of idle fixes this.
  174. */
  175. void __ref cpu_die(void)
  176. {
  177. unsigned int cpu = smp_processor_id();
  178. idle_task_exit();
  179. local_irq_disable();
  180. mb();
  181. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  182. complete(&cpu_died);
  183. /*
  184. * actual CPU shutdown procedure is at least platform (if not
  185. * CPU) specific.
  186. */
  187. platform_cpu_die(cpu);
  188. /*
  189. * Do not return to the idle loop - jump back to the secondary
  190. * cpu initialisation. There's some initialisation which needs
  191. * to be repeated to undo the effects of taking the CPU offline.
  192. */
  193. __asm__("mov sp, %0\n"
  194. " mov fp, #0\n"
  195. " b secondary_start_kernel"
  196. :
  197. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  198. }
  199. #endif /* CONFIG_HOTPLUG_CPU */
  200. int __cpu_logical_map[NR_CPUS];
  201. void __init smp_setup_processor_id(void)
  202. {
  203. int i;
  204. u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
  205. cpu_logical_map(0) = cpu;
  206. for (i = 1; i < NR_CPUS; ++i)
  207. cpu_logical_map(i) = i == cpu ? 0 : i;
  208. printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
  209. }
  210. /*
  211. * Called by both boot and secondaries to move global data into
  212. * per-processor storage.
  213. */
  214. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  215. {
  216. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  217. cpu_info->loops_per_jiffy = loops_per_jiffy;
  218. store_cpu_topology(cpuid);
  219. }
  220. /*
  221. * This is the secondary CPU boot entry. We're using this CPUs
  222. * idle thread stack, but a set of temporary page tables.
  223. */
  224. asmlinkage void __cpuinit secondary_start_kernel(void)
  225. {
  226. struct mm_struct *mm = &init_mm;
  227. unsigned int cpu = smp_processor_id();
  228. printk("CPU%u: Booted secondary processor\n", cpu);
  229. /*
  230. * All kernel threads share the same mm context; grab a
  231. * reference and switch to it.
  232. */
  233. atomic_inc(&mm->mm_count);
  234. current->active_mm = mm;
  235. cpumask_set_cpu(cpu, mm_cpumask(mm));
  236. cpu_switch_mm(mm->pgd, mm);
  237. enter_lazy_tlb(mm, current);
  238. local_flush_tlb_all();
  239. cpu_init();
  240. preempt_disable();
  241. trace_hardirqs_off();
  242. /*
  243. * Give the platform a chance to do its own initialisation.
  244. */
  245. platform_secondary_init(cpu);
  246. notify_cpu_starting(cpu);
  247. calibrate_delay();
  248. smp_store_cpu_info(cpu);
  249. /*
  250. * OK, now it's safe to let the boot CPU continue. Wait for
  251. * the CPU migration code to notice that the CPU is online
  252. * before we continue - which happens after __cpu_up returns.
  253. */
  254. set_cpu_online(cpu, true);
  255. complete(&cpu_running);
  256. /*
  257. * Setup the percpu timer for this CPU.
  258. */
  259. percpu_timer_setup();
  260. while (!cpu_active(cpu))
  261. cpu_relax();
  262. /*
  263. * cpu_active bit is set, so it's safe to enalbe interrupts
  264. * now.
  265. */
  266. local_irq_enable();
  267. local_fiq_enable();
  268. /*
  269. * OK, it's off to the idle thread for us
  270. */
  271. cpu_idle();
  272. }
  273. void __init smp_cpus_done(unsigned int max_cpus)
  274. {
  275. int cpu;
  276. unsigned long bogosum = 0;
  277. for_each_online_cpu(cpu)
  278. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  279. printk(KERN_INFO "SMP: Total of %d processors activated "
  280. "(%lu.%02lu BogoMIPS).\n",
  281. num_online_cpus(),
  282. bogosum / (500000/HZ),
  283. (bogosum / (5000/HZ)) % 100);
  284. }
  285. void __init smp_prepare_boot_cpu(void)
  286. {
  287. unsigned int cpu = smp_processor_id();
  288. per_cpu(cpu_data, cpu).idle = current;
  289. }
  290. void __init smp_prepare_cpus(unsigned int max_cpus)
  291. {
  292. unsigned int ncores = num_possible_cpus();
  293. init_cpu_topology();
  294. smp_store_cpu_info(smp_processor_id());
  295. /*
  296. * are we trying to boot more cores than exist?
  297. */
  298. if (max_cpus > ncores)
  299. max_cpus = ncores;
  300. if (ncores > 1 && max_cpus) {
  301. /*
  302. * Enable the local timer or broadcast device for the
  303. * boot CPU, but only if we have more than one CPU.
  304. */
  305. percpu_timer_setup();
  306. /*
  307. * Initialise the present map, which describes the set of CPUs
  308. * actually populated at the present time. A platform should
  309. * re-initialize the map in platform_smp_prepare_cpus() if
  310. * present != possible (e.g. physical hotplug).
  311. */
  312. init_cpu_present(&cpu_possible_map);
  313. /*
  314. * Initialise the SCU if there are more than one CPU
  315. * and let them know where to start.
  316. */
  317. platform_smp_prepare_cpus(max_cpus);
  318. }
  319. }
  320. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  321. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  322. {
  323. smp_cross_call = fn;
  324. }
  325. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  326. {
  327. smp_cross_call(mask, IPI_CALL_FUNC);
  328. }
  329. void arch_send_call_function_single_ipi(int cpu)
  330. {
  331. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  332. }
  333. static const char *ipi_types[NR_IPI] = {
  334. #define S(x,s) [x - IPI_TIMER] = s
  335. S(IPI_TIMER, "Timer broadcast interrupts"),
  336. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  337. S(IPI_CALL_FUNC, "Function call interrupts"),
  338. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  339. S(IPI_CPU_STOP, "CPU stop interrupts"),
  340. };
  341. void show_ipi_list(struct seq_file *p, int prec)
  342. {
  343. unsigned int cpu, i;
  344. for (i = 0; i < NR_IPI; i++) {
  345. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  346. for_each_present_cpu(cpu)
  347. seq_printf(p, "%10u ",
  348. __get_irq_stat(cpu, ipi_irqs[i]));
  349. seq_printf(p, " %s\n", ipi_types[i]);
  350. }
  351. }
  352. u64 smp_irq_stat_cpu(unsigned int cpu)
  353. {
  354. u64 sum = 0;
  355. int i;
  356. for (i = 0; i < NR_IPI; i++)
  357. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  358. return sum;
  359. }
  360. /*
  361. * Timer (local or broadcast) support
  362. */
  363. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  364. static void ipi_timer(void)
  365. {
  366. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  367. irq_enter();
  368. evt->event_handler(evt);
  369. irq_exit();
  370. }
  371. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  372. static void smp_timer_broadcast(const struct cpumask *mask)
  373. {
  374. smp_cross_call(mask, IPI_TIMER);
  375. }
  376. #else
  377. #define smp_timer_broadcast NULL
  378. #endif
  379. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  380. struct clock_event_device *evt)
  381. {
  382. }
  383. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  384. {
  385. evt->name = "dummy_timer";
  386. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  387. CLOCK_EVT_FEAT_PERIODIC |
  388. CLOCK_EVT_FEAT_DUMMY;
  389. evt->rating = 400;
  390. evt->mult = 1;
  391. evt->set_mode = broadcast_timer_set_mode;
  392. clockevents_register_device(evt);
  393. }
  394. void __cpuinit percpu_timer_setup(void)
  395. {
  396. unsigned int cpu = smp_processor_id();
  397. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  398. evt->cpumask = cpumask_of(cpu);
  399. evt->broadcast = smp_timer_broadcast;
  400. if (local_timer_setup(evt))
  401. broadcast_timer_setup(evt);
  402. }
  403. #ifdef CONFIG_HOTPLUG_CPU
  404. /*
  405. * The generic clock events code purposely does not stop the local timer
  406. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  407. * manually here.
  408. */
  409. static void percpu_timer_stop(void)
  410. {
  411. unsigned int cpu = smp_processor_id();
  412. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  413. local_timer_stop(evt);
  414. }
  415. #endif
  416. static DEFINE_RAW_SPINLOCK(stop_lock);
  417. /*
  418. * ipi_cpu_stop - handle IPI from smp_send_stop()
  419. */
  420. static void ipi_cpu_stop(unsigned int cpu)
  421. {
  422. if (system_state == SYSTEM_BOOTING ||
  423. system_state == SYSTEM_RUNNING) {
  424. raw_spin_lock(&stop_lock);
  425. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  426. dump_stack();
  427. raw_spin_unlock(&stop_lock);
  428. }
  429. set_cpu_online(cpu, false);
  430. local_fiq_disable();
  431. local_irq_disable();
  432. #ifdef CONFIG_HOTPLUG_CPU
  433. platform_cpu_kill(cpu);
  434. #endif
  435. while (1)
  436. cpu_relax();
  437. }
  438. /*
  439. * Main handler for inter-processor interrupts
  440. */
  441. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  442. {
  443. handle_IPI(ipinr, regs);
  444. }
  445. void handle_IPI(int ipinr, struct pt_regs *regs)
  446. {
  447. unsigned int cpu = smp_processor_id();
  448. struct pt_regs *old_regs = set_irq_regs(regs);
  449. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  450. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  451. switch (ipinr) {
  452. case IPI_TIMER:
  453. ipi_timer();
  454. break;
  455. case IPI_RESCHEDULE:
  456. scheduler_ipi();
  457. break;
  458. case IPI_CALL_FUNC:
  459. generic_smp_call_function_interrupt();
  460. break;
  461. case IPI_CALL_FUNC_SINGLE:
  462. generic_smp_call_function_single_interrupt();
  463. break;
  464. case IPI_CPU_STOP:
  465. ipi_cpu_stop(cpu);
  466. break;
  467. default:
  468. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  469. cpu, ipinr);
  470. break;
  471. }
  472. set_irq_regs(old_regs);
  473. }
  474. void smp_send_reschedule(int cpu)
  475. {
  476. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  477. }
  478. void smp_send_stop(void)
  479. {
  480. unsigned long timeout;
  481. if (num_online_cpus() > 1) {
  482. cpumask_t mask = cpu_online_map;
  483. cpu_clear(smp_processor_id(), mask);
  484. smp_cross_call(&mask, IPI_CPU_STOP);
  485. }
  486. /* Wait up to one second for other CPUs to stop */
  487. timeout = USEC_PER_SEC;
  488. while (num_online_cpus() > 1 && timeout--)
  489. udelay(1);
  490. if (num_online_cpus() > 1)
  491. pr_warning("SMP: failed to stop secondary CPUs\n");
  492. }
  493. /*
  494. * not supported here
  495. */
  496. int setup_profiling_timer(unsigned int multiplier)
  497. {
  498. return -EINVAL;
  499. }