ghes_edac.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * GHES/EDAC Linux driver
  3. *
  4. * This file may be distributed under the terms of the GNU General Public
  5. * License version 2.
  6. *
  7. * Copyright (c) 2013 by Mauro Carvalho Chehab <mchehab@redhat.com>
  8. *
  9. * Red Hat Inc. http://www.redhat.com
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <acpi/ghes.h>
  13. #include <linux/edac.h>
  14. #include <linux/dmi.h>
  15. #include "edac_core.h"
  16. #include <ras/ras_event.h>
  17. #define GHES_EDAC_REVISION " Ver: 1.0.0"
  18. struct ghes_edac_pvt {
  19. struct list_head list;
  20. struct ghes *ghes;
  21. struct mem_ctl_info *mci;
  22. /* Buffers for the error handling routine */
  23. char detail_location[240];
  24. char other_detail[160];
  25. char msg[80];
  26. };
  27. static LIST_HEAD(ghes_reglist);
  28. static DEFINE_MUTEX(ghes_edac_lock);
  29. static int ghes_edac_mc_num;
  30. /* Memory Device - Type 17 of SMBIOS spec */
  31. struct memdev_dmi_entry {
  32. u8 type;
  33. u8 length;
  34. u16 handle;
  35. u16 phys_mem_array_handle;
  36. u16 mem_err_info_handle;
  37. u16 total_width;
  38. u16 data_width;
  39. u16 size;
  40. u8 form_factor;
  41. u8 device_set;
  42. u8 device_locator;
  43. u8 bank_locator;
  44. u8 memory_type;
  45. u16 type_detail;
  46. u16 speed;
  47. u8 manufacturer;
  48. u8 serial_number;
  49. u8 asset_tag;
  50. u8 part_number;
  51. u8 attributes;
  52. u32 extended_size;
  53. u16 conf_mem_clk_speed;
  54. } __attribute__((__packed__));
  55. struct ghes_edac_dimm_fill {
  56. struct mem_ctl_info *mci;
  57. unsigned count;
  58. };
  59. char *memory_type[] = {
  60. [MEM_EMPTY] = "EMPTY",
  61. [MEM_RESERVED] = "RESERVED",
  62. [MEM_UNKNOWN] = "UNKNOWN",
  63. [MEM_FPM] = "FPM",
  64. [MEM_EDO] = "EDO",
  65. [MEM_BEDO] = "BEDO",
  66. [MEM_SDR] = "SDR",
  67. [MEM_RDR] = "RDR",
  68. [MEM_DDR] = "DDR",
  69. [MEM_RDDR] = "RDDR",
  70. [MEM_RMBS] = "RMBS",
  71. [MEM_DDR2] = "DDR2",
  72. [MEM_FB_DDR2] = "FB_DDR2",
  73. [MEM_RDDR2] = "RDDR2",
  74. [MEM_XDR] = "XDR",
  75. [MEM_DDR3] = "DDR3",
  76. [MEM_RDDR3] = "RDDR3",
  77. };
  78. static void ghes_edac_count_dimms(const struct dmi_header *dh, void *arg)
  79. {
  80. int *num_dimm = arg;
  81. if (dh->type == DMI_ENTRY_MEM_DEVICE)
  82. (*num_dimm)++;
  83. }
  84. static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg)
  85. {
  86. struct ghes_edac_dimm_fill *dimm_fill = arg;
  87. struct mem_ctl_info *mci = dimm_fill->mci;
  88. if (dh->type == DMI_ENTRY_MEM_DEVICE) {
  89. struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
  90. struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
  91. mci->n_layers,
  92. dimm_fill->count, 0, 0);
  93. if (entry->size == 0xffff) {
  94. pr_info("Can't get DIMM%i size\n",
  95. dimm_fill->count);
  96. dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
  97. } else if (entry->size == 0x7fff) {
  98. dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
  99. } else {
  100. if (entry->size & 1 << 15)
  101. dimm->nr_pages = MiB_TO_PAGES((entry->size &
  102. 0x7fff) << 10);
  103. else
  104. dimm->nr_pages = MiB_TO_PAGES(entry->size);
  105. }
  106. switch (entry->memory_type) {
  107. case 0x12:
  108. if (entry->type_detail & 1 << 13)
  109. dimm->mtype = MEM_RDDR;
  110. else
  111. dimm->mtype = MEM_DDR;
  112. break;
  113. case 0x13:
  114. if (entry->type_detail & 1 << 13)
  115. dimm->mtype = MEM_RDDR2;
  116. else
  117. dimm->mtype = MEM_DDR2;
  118. break;
  119. case 0x14:
  120. dimm->mtype = MEM_FB_DDR2;
  121. break;
  122. case 0x18:
  123. if (entry->type_detail & 1 << 13)
  124. dimm->mtype = MEM_RDDR3;
  125. else
  126. dimm->mtype = MEM_DDR3;
  127. break;
  128. default:
  129. if (entry->type_detail & 1 << 6)
  130. dimm->mtype = MEM_RMBS;
  131. else if ((entry->type_detail & ((1 << 7) | (1 << 13)))
  132. == ((1 << 7) | (1 << 13)))
  133. dimm->mtype = MEM_RDR;
  134. else if (entry->type_detail & 1 << 7)
  135. dimm->mtype = MEM_SDR;
  136. else if (entry->type_detail & 1 << 9)
  137. dimm->mtype = MEM_EDO;
  138. else
  139. dimm->mtype = MEM_UNKNOWN;
  140. }
  141. /*
  142. * Actually, we can only detect if the memory has bits for
  143. * checksum or not
  144. */
  145. if (entry->total_width == entry->data_width)
  146. dimm->edac_mode = EDAC_NONE;
  147. else
  148. dimm->edac_mode = EDAC_SECDED;
  149. dimm->dtype = DEV_UNKNOWN;
  150. dimm->grain = 128; /* Likely, worse case */
  151. /*
  152. * FIXME: It shouldn't be hard to also fill the DIMM labels
  153. */
  154. if (dimm->nr_pages) {
  155. edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
  156. dimm_fill->count, memory_type[dimm->mtype],
  157. PAGES_TO_MiB(dimm->nr_pages),
  158. (dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
  159. edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
  160. entry->memory_type, entry->type_detail,
  161. entry->total_width, entry->data_width);
  162. }
  163. dimm_fill->count++;
  164. }
  165. }
  166. void ghes_edac_report_mem_error(struct ghes *ghes, int sev,
  167. struct cper_sec_mem_err *mem_err)
  168. {
  169. enum hw_event_mc_err_type type;
  170. struct edac_raw_error_desc *e;
  171. struct mem_ctl_info *mci;
  172. struct ghes_edac_pvt *pvt = NULL;
  173. char *p;
  174. u8 grain_bits;
  175. list_for_each_entry(pvt, &ghes_reglist, list) {
  176. if (ghes == pvt->ghes)
  177. break;
  178. }
  179. if (!pvt) {
  180. pr_err("Internal error: Can't find EDAC structure\n");
  181. return;
  182. }
  183. mci = pvt->mci;
  184. e = &mci->error_desc;
  185. /* Cleans the error report buffer */
  186. memset(e, 0, sizeof (*e));
  187. e->error_count = 1;
  188. strcpy(e->label, "unknown label");
  189. e->msg = pvt->msg;
  190. e->other_detail = pvt->other_detail;
  191. e->top_layer = -1;
  192. e->mid_layer = -1;
  193. e->low_layer = -1;
  194. *pvt->other_detail = '\0';
  195. *pvt->msg = '\0';
  196. switch (sev) {
  197. case GHES_SEV_CORRECTED:
  198. type = HW_EVENT_ERR_CORRECTED;
  199. break;
  200. case GHES_SEV_RECOVERABLE:
  201. type = HW_EVENT_ERR_UNCORRECTED;
  202. break;
  203. case GHES_SEV_PANIC:
  204. type = HW_EVENT_ERR_FATAL;
  205. break;
  206. default:
  207. case GHES_SEV_NO:
  208. type = HW_EVENT_ERR_INFO;
  209. }
  210. edac_dbg(1, "error validation_bits: 0x%08llx\n",
  211. (long long)mem_err->validation_bits);
  212. /* Error type, mapped on e->msg */
  213. if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
  214. p = pvt->msg;
  215. switch (mem_err->error_type) {
  216. case 0:
  217. p += sprintf(p, "Unknown");
  218. break;
  219. case 1:
  220. p += sprintf(p, "No error");
  221. break;
  222. case 2:
  223. p += sprintf(p, "Single-bit ECC");
  224. break;
  225. case 3:
  226. p += sprintf(p, "Multi-bit ECC");
  227. break;
  228. case 4:
  229. p += sprintf(p, "Single-symbol ChipKill ECC");
  230. break;
  231. case 5:
  232. p += sprintf(p, "Multi-symbol ChipKill ECC");
  233. break;
  234. case 6:
  235. p += sprintf(p, "Master abort");
  236. break;
  237. case 7:
  238. p += sprintf(p, "Target abort");
  239. break;
  240. case 8:
  241. p += sprintf(p, "Parity Error");
  242. break;
  243. case 9:
  244. p += sprintf(p, "Watchdog timeout");
  245. break;
  246. case 10:
  247. p += sprintf(p, "Invalid address");
  248. break;
  249. case 11:
  250. p += sprintf(p, "Mirror Broken");
  251. break;
  252. case 12:
  253. p += sprintf(p, "Memory Sparing");
  254. break;
  255. case 13:
  256. p += sprintf(p, "Scrub corrected error");
  257. break;
  258. case 14:
  259. p += sprintf(p, "Scrub uncorrected error");
  260. break;
  261. case 15:
  262. p += sprintf(p, "Physical Memory Map-out event");
  263. break;
  264. default:
  265. p += sprintf(p, "reserved error (%d)",
  266. mem_err->error_type);
  267. }
  268. } else {
  269. strcpy(pvt->msg, "unknown error");
  270. }
  271. /* Error address */
  272. if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
  273. e->page_frame_number = mem_err->physical_addr >> PAGE_SHIFT;
  274. e->offset_in_page = mem_err->physical_addr & ~PAGE_MASK;
  275. }
  276. /* Error grain */
  277. if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
  278. e->grain = ~(mem_err->physical_addr_mask & ~PAGE_MASK);
  279. /* Memory error location, mapped on e->location */
  280. p = e->location;
  281. if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
  282. p += sprintf(p, "node:%d ", mem_err->node);
  283. if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
  284. p += sprintf(p, "card:%d ", mem_err->card);
  285. if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
  286. p += sprintf(p, "module:%d ", mem_err->module);
  287. if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
  288. p += sprintf(p, "bank:%d ", mem_err->bank);
  289. if (mem_err->validation_bits & CPER_MEM_VALID_ROW)
  290. p += sprintf(p, "row:%d ", mem_err->row);
  291. if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
  292. p += sprintf(p, "col:%d ", mem_err->column);
  293. if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
  294. p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
  295. if (p > e->location)
  296. *(p - 1) = '\0';
  297. /* All other fields are mapped on e->other_detail */
  298. p = pvt->other_detail;
  299. if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
  300. u64 status = mem_err->error_status;
  301. p += sprintf(p, "status(0x%016llx): ", (long long)status);
  302. switch ((status >> 8) & 0xff) {
  303. case 1:
  304. p += sprintf(p, "Error detected internal to the component ");
  305. break;
  306. case 16:
  307. p += sprintf(p, "Error detected in the bus ");
  308. break;
  309. case 4:
  310. p += sprintf(p, "Storage error in DRAM memory ");
  311. break;
  312. case 5:
  313. p += sprintf(p, "Storage error in TLB ");
  314. break;
  315. case 6:
  316. p += sprintf(p, "Storage error in cache ");
  317. break;
  318. case 7:
  319. p += sprintf(p, "Error in one or more functional units ");
  320. break;
  321. case 8:
  322. p += sprintf(p, "component failed self test ");
  323. break;
  324. case 9:
  325. p += sprintf(p, "Overflow or undervalue of internal queue ");
  326. break;
  327. case 17:
  328. p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
  329. break;
  330. case 18:
  331. p += sprintf(p, "Improper access error ");
  332. break;
  333. case 19:
  334. p += sprintf(p, "Access to a memory address which is not mapped to any component ");
  335. break;
  336. case 20:
  337. p += sprintf(p, "Loss of Lockstep ");
  338. break;
  339. case 21:
  340. p += sprintf(p, "Response not associated with a request ");
  341. break;
  342. case 22:
  343. p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
  344. break;
  345. case 23:
  346. p += sprintf(p, "Detection of a PATH_ERROR ");
  347. break;
  348. case 25:
  349. p += sprintf(p, "Bus operation timeout ");
  350. break;
  351. case 26:
  352. p += sprintf(p, "A read was issued to data that has been poisoned ");
  353. break;
  354. default:
  355. p += sprintf(p, "reserved ");
  356. break;
  357. }
  358. }
  359. if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
  360. p += sprintf(p, "requestorID: 0x%016llx ",
  361. (long long)mem_err->requestor_id);
  362. if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
  363. p += sprintf(p, "responderID: 0x%016llx ",
  364. (long long)mem_err->responder_id);
  365. if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
  366. p += sprintf(p, "targetID: 0x%016llx ",
  367. (long long)mem_err->responder_id);
  368. if (p > pvt->other_detail)
  369. *(p - 1) = '\0';
  370. /* Generate the trace event */
  371. grain_bits = fls_long(e->grain);
  372. sprintf(pvt->detail_location, "APEI location: %s %s",
  373. e->location, e->other_detail);
  374. trace_mc_event(type, e->msg, e->label, e->error_count,
  375. mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
  376. PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
  377. grain_bits, e->syndrome, pvt->detail_location);
  378. /* Report the error via EDAC API */
  379. edac_raw_mc_handle_error(type, mci, e);
  380. }
  381. EXPORT_SYMBOL_GPL(ghes_edac_report_mem_error);
  382. int ghes_edac_register(struct ghes *ghes, struct device *dev)
  383. {
  384. bool fake = false;
  385. int rc, num_dimm = 0;
  386. struct mem_ctl_info *mci;
  387. struct edac_mc_layer layers[1];
  388. struct ghes_edac_pvt *pvt;
  389. struct ghes_edac_dimm_fill dimm_fill;
  390. /* Get the number of DIMMs */
  391. dmi_walk(ghes_edac_count_dimms, &num_dimm);
  392. /* Check if we've got a bogus BIOS */
  393. if (num_dimm == 0) {
  394. fake = true;
  395. num_dimm = 1;
  396. }
  397. layers[0].type = EDAC_MC_LAYER_ALL_MEM;
  398. layers[0].size = num_dimm;
  399. layers[0].is_virt_csrow = true;
  400. /*
  401. * We need to serialize edac_mc_alloc() and edac_mc_add_mc(),
  402. * to avoid duplicated memory controller numbers
  403. */
  404. mutex_lock(&ghes_edac_lock);
  405. mci = edac_mc_alloc(ghes_edac_mc_num, ARRAY_SIZE(layers), layers,
  406. sizeof(*pvt));
  407. if (!mci) {
  408. pr_info("Can't allocate memory for EDAC data\n");
  409. mutex_unlock(&ghes_edac_lock);
  410. return -ENOMEM;
  411. }
  412. pvt = mci->pvt_info;
  413. memset(pvt, 0, sizeof(*pvt));
  414. list_add_tail(&pvt->list, &ghes_reglist);
  415. pvt->ghes = ghes;
  416. pvt->mci = mci;
  417. mci->pdev = dev;
  418. mci->mtype_cap = MEM_FLAG_EMPTY;
  419. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  420. mci->edac_cap = EDAC_FLAG_NONE;
  421. mci->mod_name = "ghes_edac.c";
  422. mci->mod_ver = GHES_EDAC_REVISION;
  423. mci->ctl_name = "ghes_edac";
  424. mci->dev_name = "ghes";
  425. if (!ghes_edac_mc_num) {
  426. if (!fake) {
  427. pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
  428. pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
  429. pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
  430. pr_info("If you find incorrect reports, please contact your hardware vendor\n");
  431. pr_info("to correct its BIOS.\n");
  432. pr_info("This system has %d DIMM sockets.\n",
  433. num_dimm);
  434. } else {
  435. pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
  436. pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
  437. pr_info("work on such system. Use this driver with caution\n");
  438. }
  439. }
  440. if (!fake) {
  441. /*
  442. * Fill DIMM info from DMI for the memory controller #0
  443. *
  444. * Keep it in blank for the other memory controllers, as
  445. * there's no reliable way to properly credit each DIMM to
  446. * the memory controller, as different BIOSes fill the
  447. * DMI bank location fields on different ways
  448. */
  449. if (!ghes_edac_mc_num) {
  450. dimm_fill.count = 0;
  451. dimm_fill.mci = mci;
  452. dmi_walk(ghes_edac_dmidecode, &dimm_fill);
  453. }
  454. } else {
  455. struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
  456. mci->n_layers, 0, 0, 0);
  457. dimm->nr_pages = 1;
  458. dimm->grain = 128;
  459. dimm->mtype = MEM_UNKNOWN;
  460. dimm->dtype = DEV_UNKNOWN;
  461. dimm->edac_mode = EDAC_SECDED;
  462. }
  463. rc = edac_mc_add_mc(mci);
  464. if (rc < 0) {
  465. pr_info("Can't register at EDAC core\n");
  466. edac_mc_free(mci);
  467. mutex_unlock(&ghes_edac_lock);
  468. return -ENODEV;
  469. }
  470. ghes_edac_mc_num++;
  471. mutex_unlock(&ghes_edac_lock);
  472. return 0;
  473. }
  474. EXPORT_SYMBOL_GPL(ghes_edac_register);
  475. void ghes_edac_unregister(struct ghes *ghes)
  476. {
  477. struct mem_ctl_info *mci;
  478. struct ghes_edac_pvt *pvt, *tmp;
  479. list_for_each_entry_safe(pvt, tmp, &ghes_reglist, list) {
  480. if (ghes == pvt->ghes) {
  481. mci = pvt->mci;
  482. edac_mc_del_mc(mci->pdev);
  483. edac_mc_free(mci);
  484. list_del(&pvt->list);
  485. }
  486. }
  487. }
  488. EXPORT_SYMBOL_GPL(ghes_edac_unregister);