irq_64.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. /* irq.c: UltraSparc IRQ handling/init/registry.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/linkage.h>
  10. #include <linux/ptrace.h>
  11. #include <linux/errno.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/signal.h>
  14. #include <linux/mm.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/slab.h>
  17. #include <linux/random.h>
  18. #include <linux/init.h>
  19. #include <linux/delay.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/ftrace.h>
  23. #include <linux/irq.h>
  24. #include <linux/kmemleak.h>
  25. #include <asm/ptrace.h>
  26. #include <asm/processor.h>
  27. #include <asm/atomic.h>
  28. #include <asm/system.h>
  29. #include <asm/irq.h>
  30. #include <asm/io.h>
  31. #include <asm/iommu.h>
  32. #include <asm/upa.h>
  33. #include <asm/oplib.h>
  34. #include <asm/prom.h>
  35. #include <asm/timer.h>
  36. #include <asm/smp.h>
  37. #include <asm/starfire.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/cache.h>
  40. #include <asm/cpudata.h>
  41. #include <asm/auxio.h>
  42. #include <asm/head.h>
  43. #include <asm/hypervisor.h>
  44. #include <asm/cacheflush.h>
  45. #include "entry.h"
  46. #include "cpumap.h"
  47. #include "kstack.h"
  48. #define NUM_IVECS (IMAP_INR + 1)
  49. struct ino_bucket *ivector_table;
  50. unsigned long ivector_table_pa;
  51. /* On several sun4u processors, it is illegal to mix bypass and
  52. * non-bypass accesses. Therefore we access all INO buckets
  53. * using bypass accesses only.
  54. */
  55. static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
  56. {
  57. unsigned long ret;
  58. __asm__ __volatile__("ldxa [%1] %2, %0"
  59. : "=&r" (ret)
  60. : "r" (bucket_pa +
  61. offsetof(struct ino_bucket,
  62. __irq_chain_pa)),
  63. "i" (ASI_PHYS_USE_EC));
  64. return ret;
  65. }
  66. static void bucket_clear_chain_pa(unsigned long bucket_pa)
  67. {
  68. __asm__ __volatile__("stxa %%g0, [%0] %1"
  69. : /* no outputs */
  70. : "r" (bucket_pa +
  71. offsetof(struct ino_bucket,
  72. __irq_chain_pa)),
  73. "i" (ASI_PHYS_USE_EC));
  74. }
  75. static unsigned int bucket_get_irq(unsigned long bucket_pa)
  76. {
  77. unsigned int ret;
  78. __asm__ __volatile__("lduwa [%1] %2, %0"
  79. : "=&r" (ret)
  80. : "r" (bucket_pa +
  81. offsetof(struct ino_bucket,
  82. __irq)),
  83. "i" (ASI_PHYS_USE_EC));
  84. return ret;
  85. }
  86. static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
  87. {
  88. __asm__ __volatile__("stwa %0, [%1] %2"
  89. : /* no outputs */
  90. : "r" (irq),
  91. "r" (bucket_pa +
  92. offsetof(struct ino_bucket,
  93. __irq)),
  94. "i" (ASI_PHYS_USE_EC));
  95. }
  96. #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
  97. static struct {
  98. unsigned int dev_handle;
  99. unsigned int dev_ino;
  100. unsigned int in_use;
  101. } irq_table[NR_IRQS];
  102. static DEFINE_SPINLOCK(irq_alloc_lock);
  103. unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
  104. {
  105. unsigned long flags;
  106. unsigned char ent;
  107. BUILD_BUG_ON(NR_IRQS >= 256);
  108. spin_lock_irqsave(&irq_alloc_lock, flags);
  109. for (ent = 1; ent < NR_IRQS; ent++) {
  110. if (!irq_table[ent].in_use)
  111. break;
  112. }
  113. if (ent >= NR_IRQS) {
  114. printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
  115. ent = 0;
  116. } else {
  117. irq_table[ent].dev_handle = dev_handle;
  118. irq_table[ent].dev_ino = dev_ino;
  119. irq_table[ent].in_use = 1;
  120. }
  121. spin_unlock_irqrestore(&irq_alloc_lock, flags);
  122. return ent;
  123. }
  124. #ifdef CONFIG_PCI_MSI
  125. void irq_free(unsigned int irq)
  126. {
  127. unsigned long flags;
  128. if (irq >= NR_IRQS)
  129. return;
  130. spin_lock_irqsave(&irq_alloc_lock, flags);
  131. irq_table[irq].in_use = 0;
  132. spin_unlock_irqrestore(&irq_alloc_lock, flags);
  133. }
  134. #endif
  135. /*
  136. * /proc/interrupts printing:
  137. */
  138. int show_interrupts(struct seq_file *p, void *v)
  139. {
  140. int i = *(loff_t *) v, j;
  141. struct irqaction * action;
  142. unsigned long flags;
  143. if (i == 0) {
  144. seq_printf(p, " ");
  145. for_each_online_cpu(j)
  146. seq_printf(p, "CPU%d ",j);
  147. seq_putc(p, '\n');
  148. }
  149. if (i < NR_IRQS) {
  150. raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
  151. action = irq_desc[i].action;
  152. if (!action)
  153. goto skip;
  154. seq_printf(p, "%3d: ",i);
  155. #ifndef CONFIG_SMP
  156. seq_printf(p, "%10u ", kstat_irqs(i));
  157. #else
  158. for_each_online_cpu(j)
  159. seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
  160. #endif
  161. seq_printf(p, " %9s", irq_desc[i].irq_data.chip->name);
  162. seq_printf(p, " %s", action->name);
  163. for (action=action->next; action; action = action->next)
  164. seq_printf(p, ", %s", action->name);
  165. seq_putc(p, '\n');
  166. skip:
  167. raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  168. } else if (i == NR_IRQS) {
  169. seq_printf(p, "NMI: ");
  170. for_each_online_cpu(j)
  171. seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
  172. seq_printf(p, " Non-maskable interrupts\n");
  173. }
  174. return 0;
  175. }
  176. static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
  177. {
  178. unsigned int tid;
  179. if (this_is_starfire) {
  180. tid = starfire_translate(imap, cpuid);
  181. tid <<= IMAP_TID_SHIFT;
  182. tid &= IMAP_TID_UPA;
  183. } else {
  184. if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  185. unsigned long ver;
  186. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  187. if ((ver >> 32UL) == __JALAPENO_ID ||
  188. (ver >> 32UL) == __SERRANO_ID) {
  189. tid = cpuid << IMAP_TID_SHIFT;
  190. tid &= IMAP_TID_JBUS;
  191. } else {
  192. unsigned int a = cpuid & 0x1f;
  193. unsigned int n = (cpuid >> 5) & 0x1f;
  194. tid = ((a << IMAP_AID_SHIFT) |
  195. (n << IMAP_NID_SHIFT));
  196. tid &= (IMAP_AID_SAFARI |
  197. IMAP_NID_SAFARI);
  198. }
  199. } else {
  200. tid = cpuid << IMAP_TID_SHIFT;
  201. tid &= IMAP_TID_UPA;
  202. }
  203. }
  204. return tid;
  205. }
  206. struct irq_handler_data {
  207. unsigned long iclr;
  208. unsigned long imap;
  209. void (*pre_handler)(unsigned int, void *, void *);
  210. void *arg1;
  211. void *arg2;
  212. };
  213. #ifdef CONFIG_SMP
  214. static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
  215. {
  216. cpumask_t mask;
  217. int cpuid;
  218. cpumask_copy(&mask, affinity);
  219. if (cpus_equal(mask, cpu_online_map)) {
  220. cpuid = map_to_cpu(irq);
  221. } else {
  222. cpumask_t tmp;
  223. cpus_and(tmp, cpu_online_map, mask);
  224. cpuid = cpus_empty(tmp) ? map_to_cpu(irq) : first_cpu(tmp);
  225. }
  226. return cpuid;
  227. }
  228. #else
  229. #define irq_choose_cpu(irq, affinity) \
  230. real_hard_smp_processor_id()
  231. #endif
  232. static void sun4u_irq_enable(struct irq_data *data)
  233. {
  234. struct irq_handler_data *handler_data = data->handler_data;
  235. if (likely(handler_data)) {
  236. unsigned long cpuid, imap, val;
  237. unsigned int tid;
  238. cpuid = irq_choose_cpu(data->irq, data->affinity);
  239. imap = handler_data->imap;
  240. tid = sun4u_compute_tid(imap, cpuid);
  241. val = upa_readq(imap);
  242. val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
  243. IMAP_AID_SAFARI | IMAP_NID_SAFARI);
  244. val |= tid | IMAP_VALID;
  245. upa_writeq(val, imap);
  246. upa_writeq(ICLR_IDLE, handler_data->iclr);
  247. }
  248. }
  249. static int sun4u_set_affinity(struct irq_data *data,
  250. const struct cpumask *mask, bool force)
  251. {
  252. struct irq_handler_data *handler_data = data->handler_data;
  253. if (likely(handler_data)) {
  254. unsigned long cpuid, imap, val;
  255. unsigned int tid;
  256. cpuid = irq_choose_cpu(data->irq, mask);
  257. imap = handler_data->imap;
  258. tid = sun4u_compute_tid(imap, cpuid);
  259. val = upa_readq(imap);
  260. val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
  261. IMAP_AID_SAFARI | IMAP_NID_SAFARI);
  262. val |= tid | IMAP_VALID;
  263. upa_writeq(val, imap);
  264. upa_writeq(ICLR_IDLE, handler_data->iclr);
  265. }
  266. return 0;
  267. }
  268. /* Don't do anything. The desc->status check for IRQ_DISABLED in
  269. * handler_irq() will skip the handler call and that will leave the
  270. * interrupt in the sent state. The next ->enable() call will hit the
  271. * ICLR register to reset the state machine.
  272. *
  273. * This scheme is necessary, instead of clearing the Valid bit in the
  274. * IMAP register, to handle the case of IMAP registers being shared by
  275. * multiple INOs (and thus ICLR registers). Since we use a different
  276. * virtual IRQ for each shared IMAP instance, the generic code thinks
  277. * there is only one user so it prematurely calls ->disable() on
  278. * free_irq().
  279. *
  280. * We have to provide an explicit ->disable() method instead of using
  281. * NULL to get the default. The reason is that if the generic code
  282. * sees that, it also hooks up a default ->shutdown method which
  283. * invokes ->mask() which we do not want. See irq_chip_set_defaults().
  284. */
  285. static void sun4u_irq_disable(struct irq_data *data)
  286. {
  287. }
  288. static void sun4u_irq_eoi(struct irq_data *data)
  289. {
  290. struct irq_handler_data *handler_data = data->handler_data;
  291. struct irq_desc *desc = irq_desc + data->irq;
  292. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  293. return;
  294. if (likely(handler_data))
  295. upa_writeq(ICLR_IDLE, handler_data->iclr);
  296. }
  297. static void sun4v_irq_enable(struct irq_data *data)
  298. {
  299. unsigned int ino = irq_table[data->irq].dev_ino;
  300. unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
  301. int err;
  302. err = sun4v_intr_settarget(ino, cpuid);
  303. if (err != HV_EOK)
  304. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  305. "err(%d)\n", ino, cpuid, err);
  306. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  307. if (err != HV_EOK)
  308. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  309. "err(%d)\n", ino, err);
  310. err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
  311. if (err != HV_EOK)
  312. printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
  313. ino, err);
  314. }
  315. static int sun4v_set_affinity(struct irq_data *data,
  316. const struct cpumask *mask, bool force)
  317. {
  318. unsigned int ino = irq_table[data->irq].dev_ino;
  319. unsigned long cpuid = irq_choose_cpu(data->irq, mask);
  320. int err;
  321. err = sun4v_intr_settarget(ino, cpuid);
  322. if (err != HV_EOK)
  323. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  324. "err(%d)\n", ino, cpuid, err);
  325. return 0;
  326. }
  327. static void sun4v_irq_disable(struct irq_data *data)
  328. {
  329. unsigned int ino = irq_table[data->irq].dev_ino;
  330. int err;
  331. err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
  332. if (err != HV_EOK)
  333. printk(KERN_ERR "sun4v_intr_setenabled(%x): "
  334. "err(%d)\n", ino, err);
  335. }
  336. static void sun4v_irq_eoi(struct irq_data *data)
  337. {
  338. unsigned int ino = irq_table[data->irq].dev_ino;
  339. struct irq_desc *desc = irq_desc + data->irq;
  340. int err;
  341. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  342. return;
  343. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  344. if (err != HV_EOK)
  345. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  346. "err(%d)\n", ino, err);
  347. }
  348. static void sun4v_virq_enable(struct irq_data *data)
  349. {
  350. unsigned long cpuid, dev_handle, dev_ino;
  351. int err;
  352. cpuid = irq_choose_cpu(data->irq, data->affinity);
  353. dev_handle = irq_table[data->irq].dev_handle;
  354. dev_ino = irq_table[data->irq].dev_ino;
  355. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  356. if (err != HV_EOK)
  357. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  358. "err(%d)\n",
  359. dev_handle, dev_ino, cpuid, err);
  360. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  361. HV_INTR_STATE_IDLE);
  362. if (err != HV_EOK)
  363. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  364. "HV_INTR_STATE_IDLE): err(%d)\n",
  365. dev_handle, dev_ino, err);
  366. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  367. HV_INTR_ENABLED);
  368. if (err != HV_EOK)
  369. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  370. "HV_INTR_ENABLED): err(%d)\n",
  371. dev_handle, dev_ino, err);
  372. }
  373. static int sun4v_virt_set_affinity(struct irq_data *data,
  374. const struct cpumask *mask, bool force)
  375. {
  376. unsigned long cpuid, dev_handle, dev_ino;
  377. int err;
  378. cpuid = irq_choose_cpu(data->irq, mask);
  379. dev_handle = irq_table[data->irq].dev_handle;
  380. dev_ino = irq_table[data->irq].dev_ino;
  381. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  382. if (err != HV_EOK)
  383. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  384. "err(%d)\n",
  385. dev_handle, dev_ino, cpuid, err);
  386. return 0;
  387. }
  388. static void sun4v_virq_disable(struct irq_data *data)
  389. {
  390. unsigned long dev_handle, dev_ino;
  391. int err;
  392. dev_handle = irq_table[data->irq].dev_handle;
  393. dev_ino = irq_table[data->irq].dev_ino;
  394. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  395. HV_INTR_DISABLED);
  396. if (err != HV_EOK)
  397. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  398. "HV_INTR_DISABLED): err(%d)\n",
  399. dev_handle, dev_ino, err);
  400. }
  401. static void sun4v_virq_eoi(struct irq_data *data)
  402. {
  403. struct irq_desc *desc = irq_desc + data->irq;
  404. unsigned long dev_handle, dev_ino;
  405. int err;
  406. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  407. return;
  408. dev_handle = irq_table[data->irq].dev_handle;
  409. dev_ino = irq_table[data->irq].dev_ino;
  410. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  411. HV_INTR_STATE_IDLE);
  412. if (err != HV_EOK)
  413. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  414. "HV_INTR_STATE_IDLE): err(%d)\n",
  415. dev_handle, dev_ino, err);
  416. }
  417. static struct irq_chip sun4u_irq = {
  418. .name = "sun4u",
  419. .irq_enable = sun4u_irq_enable,
  420. .irq_disable = sun4u_irq_disable,
  421. .irq_eoi = sun4u_irq_eoi,
  422. .irq_set_affinity = sun4u_set_affinity,
  423. };
  424. static struct irq_chip sun4v_irq = {
  425. .name = "sun4v",
  426. .irq_enable = sun4v_irq_enable,
  427. .irq_disable = sun4v_irq_disable,
  428. .irq_eoi = sun4v_irq_eoi,
  429. .irq_set_affinity = sun4v_set_affinity,
  430. };
  431. static struct irq_chip sun4v_virq = {
  432. .name = "vsun4v",
  433. .irq_enable = sun4v_virq_enable,
  434. .irq_disable = sun4v_virq_disable,
  435. .irq_eoi = sun4v_virq_eoi,
  436. .irq_set_affinity = sun4v_virt_set_affinity,
  437. };
  438. static void pre_flow_handler(unsigned int irq, struct irq_desc *desc)
  439. {
  440. struct irq_handler_data *handler_data = get_irq_data(irq);
  441. unsigned int ino = irq_table[irq].dev_ino;
  442. handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
  443. handle_fasteoi_irq(irq, desc);
  444. }
  445. void irq_install_pre_handler(int irq,
  446. void (*func)(unsigned int, void *, void *),
  447. void *arg1, void *arg2)
  448. {
  449. struct irq_handler_data *handler_data = get_irq_data(irq);
  450. struct irq_desc *desc = irq_desc + irq;
  451. handler_data->pre_handler = func;
  452. handler_data->arg1 = arg1;
  453. handler_data->arg2 = arg2;
  454. desc->handle_irq = pre_flow_handler;
  455. }
  456. unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
  457. {
  458. struct ino_bucket *bucket;
  459. struct irq_handler_data *handler_data;
  460. unsigned int irq;
  461. int ino;
  462. BUG_ON(tlb_type == hypervisor);
  463. ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
  464. bucket = &ivector_table[ino];
  465. irq = bucket_get_irq(__pa(bucket));
  466. if (!irq) {
  467. irq = irq_alloc(0, ino);
  468. bucket_set_irq(__pa(bucket), irq);
  469. set_irq_chip_and_handler_name(irq,
  470. &sun4u_irq,
  471. handle_fasteoi_irq,
  472. "IVEC");
  473. }
  474. handler_data = get_irq_data(irq);
  475. if (unlikely(handler_data))
  476. goto out;
  477. handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  478. if (unlikely(!handler_data)) {
  479. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  480. prom_halt();
  481. }
  482. set_irq_data(irq, handler_data);
  483. handler_data->imap = imap;
  484. handler_data->iclr = iclr;
  485. out:
  486. return irq;
  487. }
  488. static unsigned int sun4v_build_common(unsigned long sysino,
  489. struct irq_chip *chip)
  490. {
  491. struct ino_bucket *bucket;
  492. struct irq_handler_data *handler_data;
  493. unsigned int irq;
  494. BUG_ON(tlb_type != hypervisor);
  495. bucket = &ivector_table[sysino];
  496. irq = bucket_get_irq(__pa(bucket));
  497. if (!irq) {
  498. irq = irq_alloc(0, sysino);
  499. bucket_set_irq(__pa(bucket), irq);
  500. set_irq_chip_and_handler_name(irq, chip,
  501. handle_fasteoi_irq,
  502. "IVEC");
  503. }
  504. handler_data = get_irq_data(irq);
  505. if (unlikely(handler_data))
  506. goto out;
  507. handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  508. if (unlikely(!handler_data)) {
  509. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  510. prom_halt();
  511. }
  512. set_irq_data(irq, handler_data);
  513. /* Catch accidental accesses to these things. IMAP/ICLR handling
  514. * is done by hypervisor calls on sun4v platforms, not by direct
  515. * register accesses.
  516. */
  517. handler_data->imap = ~0UL;
  518. handler_data->iclr = ~0UL;
  519. out:
  520. return irq;
  521. }
  522. unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
  523. {
  524. unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
  525. return sun4v_build_common(sysino, &sun4v_irq);
  526. }
  527. unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
  528. {
  529. struct irq_handler_data *handler_data;
  530. unsigned long hv_err, cookie;
  531. struct ino_bucket *bucket;
  532. struct irq_desc *desc;
  533. unsigned int irq;
  534. bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
  535. if (unlikely(!bucket))
  536. return 0;
  537. /* The only reference we store to the IRQ bucket is
  538. * by physical address which kmemleak can't see, tell
  539. * it that this object explicitly is not a leak and
  540. * should be scanned.
  541. */
  542. kmemleak_not_leak(bucket);
  543. __flush_dcache_range((unsigned long) bucket,
  544. ((unsigned long) bucket +
  545. sizeof(struct ino_bucket)));
  546. irq = irq_alloc(devhandle, devino);
  547. bucket_set_irq(__pa(bucket), irq);
  548. set_irq_chip_and_handler_name(irq, &sun4v_virq,
  549. handle_fasteoi_irq,
  550. "IVEC");
  551. handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  552. if (unlikely(!handler_data))
  553. return 0;
  554. /* In order to make the LDC channel startup sequence easier,
  555. * especially wrt. locking, we do not let request_irq() enable
  556. * the interrupt.
  557. */
  558. desc = irq_desc + irq;
  559. desc->status |= IRQ_NOAUTOEN;
  560. set_irq_data(irq, handler_data);
  561. /* Catch accidental accesses to these things. IMAP/ICLR handling
  562. * is done by hypervisor calls on sun4v platforms, not by direct
  563. * register accesses.
  564. */
  565. handler_data->imap = ~0UL;
  566. handler_data->iclr = ~0UL;
  567. cookie = ~__pa(bucket);
  568. hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
  569. if (hv_err) {
  570. prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
  571. "err=%lu\n", devhandle, devino, hv_err);
  572. prom_halt();
  573. }
  574. return irq;
  575. }
  576. void ack_bad_irq(unsigned int irq)
  577. {
  578. unsigned int ino = irq_table[irq].dev_ino;
  579. if (!ino)
  580. ino = 0xdeadbeef;
  581. printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
  582. ino, irq);
  583. }
  584. void *hardirq_stack[NR_CPUS];
  585. void *softirq_stack[NR_CPUS];
  586. void __irq_entry handler_irq(int pil, struct pt_regs *regs)
  587. {
  588. unsigned long pstate, bucket_pa;
  589. struct pt_regs *old_regs;
  590. void *orig_sp;
  591. clear_softint(1 << pil);
  592. old_regs = set_irq_regs(regs);
  593. irq_enter();
  594. /* Grab an atomic snapshot of the pending IVECs. */
  595. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  596. "wrpr %0, %3, %%pstate\n\t"
  597. "ldx [%2], %1\n\t"
  598. "stx %%g0, [%2]\n\t"
  599. "wrpr %0, 0x0, %%pstate\n\t"
  600. : "=&r" (pstate), "=&r" (bucket_pa)
  601. : "r" (irq_work_pa(smp_processor_id())),
  602. "i" (PSTATE_IE)
  603. : "memory");
  604. orig_sp = set_hardirq_stack();
  605. while (bucket_pa) {
  606. struct irq_desc *desc;
  607. unsigned long next_pa;
  608. unsigned int irq;
  609. next_pa = bucket_get_chain_pa(bucket_pa);
  610. irq = bucket_get_irq(bucket_pa);
  611. bucket_clear_chain_pa(bucket_pa);
  612. desc = irq_desc + irq;
  613. if (!(desc->status & IRQ_DISABLED))
  614. desc->handle_irq(irq, desc);
  615. bucket_pa = next_pa;
  616. }
  617. restore_hardirq_stack(orig_sp);
  618. irq_exit();
  619. set_irq_regs(old_regs);
  620. }
  621. void do_softirq(void)
  622. {
  623. unsigned long flags;
  624. if (in_interrupt())
  625. return;
  626. local_irq_save(flags);
  627. if (local_softirq_pending()) {
  628. void *orig_sp, *sp = softirq_stack[smp_processor_id()];
  629. sp += THREAD_SIZE - 192 - STACK_BIAS;
  630. __asm__ __volatile__("mov %%sp, %0\n\t"
  631. "mov %1, %%sp"
  632. : "=&r" (orig_sp)
  633. : "r" (sp));
  634. __do_softirq();
  635. __asm__ __volatile__("mov %0, %%sp"
  636. : : "r" (orig_sp));
  637. }
  638. local_irq_restore(flags);
  639. }
  640. #ifdef CONFIG_HOTPLUG_CPU
  641. void fixup_irqs(void)
  642. {
  643. unsigned int irq;
  644. for (irq = 0; irq < NR_IRQS; irq++) {
  645. unsigned long flags;
  646. raw_spin_lock_irqsave(&irq_desc[irq].lock, flags);
  647. if (irq_desc[irq].action &&
  648. !(irq_desc[irq].status & IRQ_PER_CPU)) {
  649. struct irq_data *data = irq_get_irq_data(irq);
  650. if (data->chip->irq_set_affinity)
  651. data->chip->irq_set_affinity(data,
  652. data->affinity,
  653. false);
  654. }
  655. raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
  656. }
  657. tick_ops->disable_irq();
  658. }
  659. #endif
  660. struct sun5_timer {
  661. u64 count0;
  662. u64 limit0;
  663. u64 count1;
  664. u64 limit1;
  665. };
  666. static struct sun5_timer *prom_timers;
  667. static u64 prom_limit0, prom_limit1;
  668. static void map_prom_timers(void)
  669. {
  670. struct device_node *dp;
  671. const unsigned int *addr;
  672. /* PROM timer node hangs out in the top level of device siblings... */
  673. dp = of_find_node_by_path("/");
  674. dp = dp->child;
  675. while (dp) {
  676. if (!strcmp(dp->name, "counter-timer"))
  677. break;
  678. dp = dp->sibling;
  679. }
  680. /* Assume if node is not present, PROM uses different tick mechanism
  681. * which we should not care about.
  682. */
  683. if (!dp) {
  684. prom_timers = (struct sun5_timer *) 0;
  685. return;
  686. }
  687. /* If PROM is really using this, it must be mapped by him. */
  688. addr = of_get_property(dp, "address", NULL);
  689. if (!addr) {
  690. prom_printf("PROM does not have timer mapped, trying to continue.\n");
  691. prom_timers = (struct sun5_timer *) 0;
  692. return;
  693. }
  694. prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
  695. }
  696. static void kill_prom_timer(void)
  697. {
  698. if (!prom_timers)
  699. return;
  700. /* Save them away for later. */
  701. prom_limit0 = prom_timers->limit0;
  702. prom_limit1 = prom_timers->limit1;
  703. /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
  704. * We turn both off here just to be paranoid.
  705. */
  706. prom_timers->limit0 = 0;
  707. prom_timers->limit1 = 0;
  708. /* Wheee, eat the interrupt packet too... */
  709. __asm__ __volatile__(
  710. " mov 0x40, %%g2\n"
  711. " ldxa [%%g0] %0, %%g1\n"
  712. " ldxa [%%g2] %1, %%g1\n"
  713. " stxa %%g0, [%%g0] %0\n"
  714. " membar #Sync\n"
  715. : /* no outputs */
  716. : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
  717. : "g1", "g2");
  718. }
  719. void notrace init_irqwork_curcpu(void)
  720. {
  721. int cpu = hard_smp_processor_id();
  722. trap_block[cpu].irq_worklist_pa = 0UL;
  723. }
  724. /* Please be very careful with register_one_mondo() and
  725. * sun4v_register_mondo_queues().
  726. *
  727. * On SMP this gets invoked from the CPU trampoline before
  728. * the cpu has fully taken over the trap table from OBP,
  729. * and it's kernel stack + %g6 thread register state is
  730. * not fully cooked yet.
  731. *
  732. * Therefore you cannot make any OBP calls, not even prom_printf,
  733. * from these two routines.
  734. */
  735. static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
  736. {
  737. unsigned long num_entries = (qmask + 1) / 64;
  738. unsigned long status;
  739. status = sun4v_cpu_qconf(type, paddr, num_entries);
  740. if (status != HV_EOK) {
  741. prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
  742. "err %lu\n", type, paddr, num_entries, status);
  743. prom_halt();
  744. }
  745. }
  746. void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
  747. {
  748. struct trap_per_cpu *tb = &trap_block[this_cpu];
  749. register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
  750. tb->cpu_mondo_qmask);
  751. register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
  752. tb->dev_mondo_qmask);
  753. register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
  754. tb->resum_qmask);
  755. register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
  756. tb->nonresum_qmask);
  757. }
  758. /* Each queue region must be a power of 2 multiple of 64 bytes in
  759. * size. The base real address must be aligned to the size of the
  760. * region. Thus, an 8KB queue must be 8KB aligned, for example.
  761. */
  762. static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
  763. {
  764. unsigned long size = PAGE_ALIGN(qmask + 1);
  765. unsigned long order = get_order(size);
  766. unsigned long p;
  767. p = __get_free_pages(GFP_KERNEL, order);
  768. if (!p) {
  769. prom_printf("SUN4V: Error, cannot allocate queue.\n");
  770. prom_halt();
  771. }
  772. *pa_ptr = __pa(p);
  773. }
  774. static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
  775. {
  776. #ifdef CONFIG_SMP
  777. unsigned long page;
  778. BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
  779. page = get_zeroed_page(GFP_KERNEL);
  780. if (!page) {
  781. prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
  782. prom_halt();
  783. }
  784. tb->cpu_mondo_block_pa = __pa(page);
  785. tb->cpu_list_pa = __pa(page + 64);
  786. #endif
  787. }
  788. /* Allocate mondo and error queues for all possible cpus. */
  789. static void __init sun4v_init_mondo_queues(void)
  790. {
  791. int cpu;
  792. for_each_possible_cpu(cpu) {
  793. struct trap_per_cpu *tb = &trap_block[cpu];
  794. alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
  795. alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
  796. alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
  797. alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
  798. alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
  799. alloc_one_queue(&tb->nonresum_kernel_buf_pa,
  800. tb->nonresum_qmask);
  801. }
  802. }
  803. static void __init init_send_mondo_info(void)
  804. {
  805. int cpu;
  806. for_each_possible_cpu(cpu) {
  807. struct trap_per_cpu *tb = &trap_block[cpu];
  808. init_cpu_send_mondo_info(tb);
  809. }
  810. }
  811. static struct irqaction timer_irq_action = {
  812. .name = "timer",
  813. };
  814. /* Only invoked on boot processor. */
  815. void __init init_IRQ(void)
  816. {
  817. unsigned long size;
  818. map_prom_timers();
  819. kill_prom_timer();
  820. size = sizeof(struct ino_bucket) * NUM_IVECS;
  821. ivector_table = kzalloc(size, GFP_KERNEL);
  822. if (!ivector_table) {
  823. prom_printf("Fatal error, cannot allocate ivector_table\n");
  824. prom_halt();
  825. }
  826. __flush_dcache_range((unsigned long) ivector_table,
  827. ((unsigned long) ivector_table) + size);
  828. ivector_table_pa = __pa(ivector_table);
  829. if (tlb_type == hypervisor)
  830. sun4v_init_mondo_queues();
  831. init_send_mondo_info();
  832. if (tlb_type == hypervisor) {
  833. /* Load up the boot cpu's entries. */
  834. sun4v_register_mondo_queues(hard_smp_processor_id());
  835. }
  836. /* We need to clear any IRQ's pending in the soft interrupt
  837. * registers, a spurious one could be left around from the
  838. * PROM timer which we just disabled.
  839. */
  840. clear_softint(get_softint());
  841. /* Now that ivector table is initialized, it is safe
  842. * to receive IRQ vector traps. We will normally take
  843. * one or two right now, in case some device PROM used
  844. * to boot us wants to speak to us. We just ignore them.
  845. */
  846. __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
  847. "or %%g1, %0, %%g1\n\t"
  848. "wrpr %%g1, 0x0, %%pstate"
  849. : /* No outputs */
  850. : "i" (PSTATE_IE)
  851. : "g1");
  852. irq_desc[0].action = &timer_irq_action;
  853. }