perf_event_intel.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #include <linux/stddef.h>
  8. #include <linux/types.h>
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <asm/hardirq.h>
  12. #include <asm/apic.h>
  13. #include "perf_event.h"
  14. /*
  15. * Intel PerfMon, used on Core and later.
  16. */
  17. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  18. {
  19. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  20. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  21. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  22. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  23. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  24. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  25. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  26. };
  27. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  28. {
  29. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  30. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  31. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  32. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  33. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  34. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  35. EVENT_CONSTRAINT_END
  36. };
  37. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  38. {
  39. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  40. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  41. /*
  42. * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
  43. * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
  44. * ratio between these counters.
  45. */
  46. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  47. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  48. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  49. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  50. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  51. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  52. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  53. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  54. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  55. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  56. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  57. EVENT_CONSTRAINT_END
  58. };
  59. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  60. {
  61. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  62. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  63. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  64. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  65. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  66. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  67. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  68. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  69. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  70. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  71. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  72. EVENT_CONSTRAINT_END
  73. };
  74. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  75. {
  76. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  77. EVENT_EXTRA_END
  78. };
  79. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  80. {
  81. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  82. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  83. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  84. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  85. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  86. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  87. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  88. EVENT_CONSTRAINT_END
  89. };
  90. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  91. {
  92. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  93. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  94. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  95. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  96. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  97. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  98. EVENT_CONSTRAINT_END
  99. };
  100. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  101. {
  102. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  103. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  104. EVENT_EXTRA_END
  105. };
  106. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  107. {
  108. EVENT_CONSTRAINT_END
  109. };
  110. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  111. {
  112. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  113. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  114. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  115. EVENT_CONSTRAINT_END
  116. };
  117. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  118. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
  119. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
  120. EVENT_EXTRA_END
  121. };
  122. static u64 intel_pmu_event_map(int hw_event)
  123. {
  124. return intel_perfmon_event_map[hw_event];
  125. }
  126. static __initconst const u64 snb_hw_cache_event_ids
  127. [PERF_COUNT_HW_CACHE_MAX]
  128. [PERF_COUNT_HW_CACHE_OP_MAX]
  129. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  130. {
  131. [ C(L1D) ] = {
  132. [ C(OP_READ) ] = {
  133. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  134. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  135. },
  136. [ C(OP_WRITE) ] = {
  137. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  138. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  139. },
  140. [ C(OP_PREFETCH) ] = {
  141. [ C(RESULT_ACCESS) ] = 0x0,
  142. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  143. },
  144. },
  145. [ C(L1I ) ] = {
  146. [ C(OP_READ) ] = {
  147. [ C(RESULT_ACCESS) ] = 0x0,
  148. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  149. },
  150. [ C(OP_WRITE) ] = {
  151. [ C(RESULT_ACCESS) ] = -1,
  152. [ C(RESULT_MISS) ] = -1,
  153. },
  154. [ C(OP_PREFETCH) ] = {
  155. [ C(RESULT_ACCESS) ] = 0x0,
  156. [ C(RESULT_MISS) ] = 0x0,
  157. },
  158. },
  159. [ C(LL ) ] = {
  160. [ C(OP_READ) ] = {
  161. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  162. [ C(RESULT_ACCESS) ] = 0x01b7,
  163. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  164. [ C(RESULT_MISS) ] = 0x01b7,
  165. },
  166. [ C(OP_WRITE) ] = {
  167. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  168. [ C(RESULT_ACCESS) ] = 0x01b7,
  169. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  170. [ C(RESULT_MISS) ] = 0x01b7,
  171. },
  172. [ C(OP_PREFETCH) ] = {
  173. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  174. [ C(RESULT_ACCESS) ] = 0x01b7,
  175. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  176. [ C(RESULT_MISS) ] = 0x01b7,
  177. },
  178. },
  179. [ C(DTLB) ] = {
  180. [ C(OP_READ) ] = {
  181. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  182. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  183. },
  184. [ C(OP_WRITE) ] = {
  185. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  186. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  187. },
  188. [ C(OP_PREFETCH) ] = {
  189. [ C(RESULT_ACCESS) ] = 0x0,
  190. [ C(RESULT_MISS) ] = 0x0,
  191. },
  192. },
  193. [ C(ITLB) ] = {
  194. [ C(OP_READ) ] = {
  195. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  196. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  197. },
  198. [ C(OP_WRITE) ] = {
  199. [ C(RESULT_ACCESS) ] = -1,
  200. [ C(RESULT_MISS) ] = -1,
  201. },
  202. [ C(OP_PREFETCH) ] = {
  203. [ C(RESULT_ACCESS) ] = -1,
  204. [ C(RESULT_MISS) ] = -1,
  205. },
  206. },
  207. [ C(BPU ) ] = {
  208. [ C(OP_READ) ] = {
  209. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  210. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  211. },
  212. [ C(OP_WRITE) ] = {
  213. [ C(RESULT_ACCESS) ] = -1,
  214. [ C(RESULT_MISS) ] = -1,
  215. },
  216. [ C(OP_PREFETCH) ] = {
  217. [ C(RESULT_ACCESS) ] = -1,
  218. [ C(RESULT_MISS) ] = -1,
  219. },
  220. },
  221. [ C(NODE) ] = {
  222. [ C(OP_READ) ] = {
  223. [ C(RESULT_ACCESS) ] = -1,
  224. [ C(RESULT_MISS) ] = -1,
  225. },
  226. [ C(OP_WRITE) ] = {
  227. [ C(RESULT_ACCESS) ] = -1,
  228. [ C(RESULT_MISS) ] = -1,
  229. },
  230. [ C(OP_PREFETCH) ] = {
  231. [ C(RESULT_ACCESS) ] = -1,
  232. [ C(RESULT_MISS) ] = -1,
  233. },
  234. },
  235. };
  236. static __initconst const u64 westmere_hw_cache_event_ids
  237. [PERF_COUNT_HW_CACHE_MAX]
  238. [PERF_COUNT_HW_CACHE_OP_MAX]
  239. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  240. {
  241. [ C(L1D) ] = {
  242. [ C(OP_READ) ] = {
  243. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  244. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  245. },
  246. [ C(OP_WRITE) ] = {
  247. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  248. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  249. },
  250. [ C(OP_PREFETCH) ] = {
  251. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  252. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  253. },
  254. },
  255. [ C(L1I ) ] = {
  256. [ C(OP_READ) ] = {
  257. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  258. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  259. },
  260. [ C(OP_WRITE) ] = {
  261. [ C(RESULT_ACCESS) ] = -1,
  262. [ C(RESULT_MISS) ] = -1,
  263. },
  264. [ C(OP_PREFETCH) ] = {
  265. [ C(RESULT_ACCESS) ] = 0x0,
  266. [ C(RESULT_MISS) ] = 0x0,
  267. },
  268. },
  269. [ C(LL ) ] = {
  270. [ C(OP_READ) ] = {
  271. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  272. [ C(RESULT_ACCESS) ] = 0x01b7,
  273. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  274. [ C(RESULT_MISS) ] = 0x01b7,
  275. },
  276. /*
  277. * Use RFO, not WRITEBACK, because a write miss would typically occur
  278. * on RFO.
  279. */
  280. [ C(OP_WRITE) ] = {
  281. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  282. [ C(RESULT_ACCESS) ] = 0x01b7,
  283. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  284. [ C(RESULT_MISS) ] = 0x01b7,
  285. },
  286. [ C(OP_PREFETCH) ] = {
  287. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  288. [ C(RESULT_ACCESS) ] = 0x01b7,
  289. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  290. [ C(RESULT_MISS) ] = 0x01b7,
  291. },
  292. },
  293. [ C(DTLB) ] = {
  294. [ C(OP_READ) ] = {
  295. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  296. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  297. },
  298. [ C(OP_WRITE) ] = {
  299. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  300. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  301. },
  302. [ C(OP_PREFETCH) ] = {
  303. [ C(RESULT_ACCESS) ] = 0x0,
  304. [ C(RESULT_MISS) ] = 0x0,
  305. },
  306. },
  307. [ C(ITLB) ] = {
  308. [ C(OP_READ) ] = {
  309. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  310. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  311. },
  312. [ C(OP_WRITE) ] = {
  313. [ C(RESULT_ACCESS) ] = -1,
  314. [ C(RESULT_MISS) ] = -1,
  315. },
  316. [ C(OP_PREFETCH) ] = {
  317. [ C(RESULT_ACCESS) ] = -1,
  318. [ C(RESULT_MISS) ] = -1,
  319. },
  320. },
  321. [ C(BPU ) ] = {
  322. [ C(OP_READ) ] = {
  323. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  324. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  325. },
  326. [ C(OP_WRITE) ] = {
  327. [ C(RESULT_ACCESS) ] = -1,
  328. [ C(RESULT_MISS) ] = -1,
  329. },
  330. [ C(OP_PREFETCH) ] = {
  331. [ C(RESULT_ACCESS) ] = -1,
  332. [ C(RESULT_MISS) ] = -1,
  333. },
  334. },
  335. [ C(NODE) ] = {
  336. [ C(OP_READ) ] = {
  337. [ C(RESULT_ACCESS) ] = 0x01b7,
  338. [ C(RESULT_MISS) ] = 0x01b7,
  339. },
  340. [ C(OP_WRITE) ] = {
  341. [ C(RESULT_ACCESS) ] = 0x01b7,
  342. [ C(RESULT_MISS) ] = 0x01b7,
  343. },
  344. [ C(OP_PREFETCH) ] = {
  345. [ C(RESULT_ACCESS) ] = 0x01b7,
  346. [ C(RESULT_MISS) ] = 0x01b7,
  347. },
  348. },
  349. };
  350. /*
  351. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  352. * See IA32 SDM Vol 3B 30.6.1.3
  353. */
  354. #define NHM_DMND_DATA_RD (1 << 0)
  355. #define NHM_DMND_RFO (1 << 1)
  356. #define NHM_DMND_IFETCH (1 << 2)
  357. #define NHM_DMND_WB (1 << 3)
  358. #define NHM_PF_DATA_RD (1 << 4)
  359. #define NHM_PF_DATA_RFO (1 << 5)
  360. #define NHM_PF_IFETCH (1 << 6)
  361. #define NHM_OFFCORE_OTHER (1 << 7)
  362. #define NHM_UNCORE_HIT (1 << 8)
  363. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  364. #define NHM_OTHER_CORE_HITM (1 << 10)
  365. /* reserved */
  366. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  367. #define NHM_REMOTE_DRAM (1 << 13)
  368. #define NHM_LOCAL_DRAM (1 << 14)
  369. #define NHM_NON_DRAM (1 << 15)
  370. #define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
  371. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  372. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  373. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  374. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  375. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
  376. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  377. static __initconst const u64 nehalem_hw_cache_extra_regs
  378. [PERF_COUNT_HW_CACHE_MAX]
  379. [PERF_COUNT_HW_CACHE_OP_MAX]
  380. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  381. {
  382. [ C(LL ) ] = {
  383. [ C(OP_READ) ] = {
  384. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  385. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  386. },
  387. [ C(OP_WRITE) ] = {
  388. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  389. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  390. },
  391. [ C(OP_PREFETCH) ] = {
  392. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  393. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  394. },
  395. },
  396. [ C(NODE) ] = {
  397. [ C(OP_READ) ] = {
  398. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
  399. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
  400. },
  401. [ C(OP_WRITE) ] = {
  402. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
  403. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
  404. },
  405. [ C(OP_PREFETCH) ] = {
  406. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
  407. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
  408. },
  409. },
  410. };
  411. static __initconst const u64 nehalem_hw_cache_event_ids
  412. [PERF_COUNT_HW_CACHE_MAX]
  413. [PERF_COUNT_HW_CACHE_OP_MAX]
  414. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  415. {
  416. [ C(L1D) ] = {
  417. [ C(OP_READ) ] = {
  418. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  419. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  420. },
  421. [ C(OP_WRITE) ] = {
  422. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  423. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  424. },
  425. [ C(OP_PREFETCH) ] = {
  426. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  427. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  428. },
  429. },
  430. [ C(L1I ) ] = {
  431. [ C(OP_READ) ] = {
  432. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  433. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  434. },
  435. [ C(OP_WRITE) ] = {
  436. [ C(RESULT_ACCESS) ] = -1,
  437. [ C(RESULT_MISS) ] = -1,
  438. },
  439. [ C(OP_PREFETCH) ] = {
  440. [ C(RESULT_ACCESS) ] = 0x0,
  441. [ C(RESULT_MISS) ] = 0x0,
  442. },
  443. },
  444. [ C(LL ) ] = {
  445. [ C(OP_READ) ] = {
  446. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  447. [ C(RESULT_ACCESS) ] = 0x01b7,
  448. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  449. [ C(RESULT_MISS) ] = 0x01b7,
  450. },
  451. /*
  452. * Use RFO, not WRITEBACK, because a write miss would typically occur
  453. * on RFO.
  454. */
  455. [ C(OP_WRITE) ] = {
  456. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  457. [ C(RESULT_ACCESS) ] = 0x01b7,
  458. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  459. [ C(RESULT_MISS) ] = 0x01b7,
  460. },
  461. [ C(OP_PREFETCH) ] = {
  462. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  463. [ C(RESULT_ACCESS) ] = 0x01b7,
  464. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  465. [ C(RESULT_MISS) ] = 0x01b7,
  466. },
  467. },
  468. [ C(DTLB) ] = {
  469. [ C(OP_READ) ] = {
  470. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  471. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  472. },
  473. [ C(OP_WRITE) ] = {
  474. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  475. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  476. },
  477. [ C(OP_PREFETCH) ] = {
  478. [ C(RESULT_ACCESS) ] = 0x0,
  479. [ C(RESULT_MISS) ] = 0x0,
  480. },
  481. },
  482. [ C(ITLB) ] = {
  483. [ C(OP_READ) ] = {
  484. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  485. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  486. },
  487. [ C(OP_WRITE) ] = {
  488. [ C(RESULT_ACCESS) ] = -1,
  489. [ C(RESULT_MISS) ] = -1,
  490. },
  491. [ C(OP_PREFETCH) ] = {
  492. [ C(RESULT_ACCESS) ] = -1,
  493. [ C(RESULT_MISS) ] = -1,
  494. },
  495. },
  496. [ C(BPU ) ] = {
  497. [ C(OP_READ) ] = {
  498. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  499. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  500. },
  501. [ C(OP_WRITE) ] = {
  502. [ C(RESULT_ACCESS) ] = -1,
  503. [ C(RESULT_MISS) ] = -1,
  504. },
  505. [ C(OP_PREFETCH) ] = {
  506. [ C(RESULT_ACCESS) ] = -1,
  507. [ C(RESULT_MISS) ] = -1,
  508. },
  509. },
  510. [ C(NODE) ] = {
  511. [ C(OP_READ) ] = {
  512. [ C(RESULT_ACCESS) ] = 0x01b7,
  513. [ C(RESULT_MISS) ] = 0x01b7,
  514. },
  515. [ C(OP_WRITE) ] = {
  516. [ C(RESULT_ACCESS) ] = 0x01b7,
  517. [ C(RESULT_MISS) ] = 0x01b7,
  518. },
  519. [ C(OP_PREFETCH) ] = {
  520. [ C(RESULT_ACCESS) ] = 0x01b7,
  521. [ C(RESULT_MISS) ] = 0x01b7,
  522. },
  523. },
  524. };
  525. static __initconst const u64 core2_hw_cache_event_ids
  526. [PERF_COUNT_HW_CACHE_MAX]
  527. [PERF_COUNT_HW_CACHE_OP_MAX]
  528. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  529. {
  530. [ C(L1D) ] = {
  531. [ C(OP_READ) ] = {
  532. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  533. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  534. },
  535. [ C(OP_WRITE) ] = {
  536. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  537. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  538. },
  539. [ C(OP_PREFETCH) ] = {
  540. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  541. [ C(RESULT_MISS) ] = 0,
  542. },
  543. },
  544. [ C(L1I ) ] = {
  545. [ C(OP_READ) ] = {
  546. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  547. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  548. },
  549. [ C(OP_WRITE) ] = {
  550. [ C(RESULT_ACCESS) ] = -1,
  551. [ C(RESULT_MISS) ] = -1,
  552. },
  553. [ C(OP_PREFETCH) ] = {
  554. [ C(RESULT_ACCESS) ] = 0,
  555. [ C(RESULT_MISS) ] = 0,
  556. },
  557. },
  558. [ C(LL ) ] = {
  559. [ C(OP_READ) ] = {
  560. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  561. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  562. },
  563. [ C(OP_WRITE) ] = {
  564. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  565. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  566. },
  567. [ C(OP_PREFETCH) ] = {
  568. [ C(RESULT_ACCESS) ] = 0,
  569. [ C(RESULT_MISS) ] = 0,
  570. },
  571. },
  572. [ C(DTLB) ] = {
  573. [ C(OP_READ) ] = {
  574. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  575. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  576. },
  577. [ C(OP_WRITE) ] = {
  578. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  579. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  580. },
  581. [ C(OP_PREFETCH) ] = {
  582. [ C(RESULT_ACCESS) ] = 0,
  583. [ C(RESULT_MISS) ] = 0,
  584. },
  585. },
  586. [ C(ITLB) ] = {
  587. [ C(OP_READ) ] = {
  588. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  589. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  590. },
  591. [ C(OP_WRITE) ] = {
  592. [ C(RESULT_ACCESS) ] = -1,
  593. [ C(RESULT_MISS) ] = -1,
  594. },
  595. [ C(OP_PREFETCH) ] = {
  596. [ C(RESULT_ACCESS) ] = -1,
  597. [ C(RESULT_MISS) ] = -1,
  598. },
  599. },
  600. [ C(BPU ) ] = {
  601. [ C(OP_READ) ] = {
  602. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  603. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  604. },
  605. [ C(OP_WRITE) ] = {
  606. [ C(RESULT_ACCESS) ] = -1,
  607. [ C(RESULT_MISS) ] = -1,
  608. },
  609. [ C(OP_PREFETCH) ] = {
  610. [ C(RESULT_ACCESS) ] = -1,
  611. [ C(RESULT_MISS) ] = -1,
  612. },
  613. },
  614. };
  615. static __initconst const u64 atom_hw_cache_event_ids
  616. [PERF_COUNT_HW_CACHE_MAX]
  617. [PERF_COUNT_HW_CACHE_OP_MAX]
  618. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  619. {
  620. [ C(L1D) ] = {
  621. [ C(OP_READ) ] = {
  622. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  623. [ C(RESULT_MISS) ] = 0,
  624. },
  625. [ C(OP_WRITE) ] = {
  626. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  627. [ C(RESULT_MISS) ] = 0,
  628. },
  629. [ C(OP_PREFETCH) ] = {
  630. [ C(RESULT_ACCESS) ] = 0x0,
  631. [ C(RESULT_MISS) ] = 0,
  632. },
  633. },
  634. [ C(L1I ) ] = {
  635. [ C(OP_READ) ] = {
  636. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  637. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  638. },
  639. [ C(OP_WRITE) ] = {
  640. [ C(RESULT_ACCESS) ] = -1,
  641. [ C(RESULT_MISS) ] = -1,
  642. },
  643. [ C(OP_PREFETCH) ] = {
  644. [ C(RESULT_ACCESS) ] = 0,
  645. [ C(RESULT_MISS) ] = 0,
  646. },
  647. },
  648. [ C(LL ) ] = {
  649. [ C(OP_READ) ] = {
  650. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  651. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  652. },
  653. [ C(OP_WRITE) ] = {
  654. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  655. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  656. },
  657. [ C(OP_PREFETCH) ] = {
  658. [ C(RESULT_ACCESS) ] = 0,
  659. [ C(RESULT_MISS) ] = 0,
  660. },
  661. },
  662. [ C(DTLB) ] = {
  663. [ C(OP_READ) ] = {
  664. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  665. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  666. },
  667. [ C(OP_WRITE) ] = {
  668. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  669. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  670. },
  671. [ C(OP_PREFETCH) ] = {
  672. [ C(RESULT_ACCESS) ] = 0,
  673. [ C(RESULT_MISS) ] = 0,
  674. },
  675. },
  676. [ C(ITLB) ] = {
  677. [ C(OP_READ) ] = {
  678. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  679. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  680. },
  681. [ C(OP_WRITE) ] = {
  682. [ C(RESULT_ACCESS) ] = -1,
  683. [ C(RESULT_MISS) ] = -1,
  684. },
  685. [ C(OP_PREFETCH) ] = {
  686. [ C(RESULT_ACCESS) ] = -1,
  687. [ C(RESULT_MISS) ] = -1,
  688. },
  689. },
  690. [ C(BPU ) ] = {
  691. [ C(OP_READ) ] = {
  692. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  693. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  694. },
  695. [ C(OP_WRITE) ] = {
  696. [ C(RESULT_ACCESS) ] = -1,
  697. [ C(RESULT_MISS) ] = -1,
  698. },
  699. [ C(OP_PREFETCH) ] = {
  700. [ C(RESULT_ACCESS) ] = -1,
  701. [ C(RESULT_MISS) ] = -1,
  702. },
  703. },
  704. };
  705. static void intel_pmu_disable_all(void)
  706. {
  707. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  708. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  709. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  710. intel_pmu_disable_bts();
  711. intel_pmu_pebs_disable_all();
  712. intel_pmu_lbr_disable_all();
  713. }
  714. static void intel_pmu_enable_all(int added)
  715. {
  716. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  717. intel_pmu_pebs_enable_all();
  718. intel_pmu_lbr_enable_all();
  719. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  720. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  721. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  722. struct perf_event *event =
  723. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  724. if (WARN_ON_ONCE(!event))
  725. return;
  726. intel_pmu_enable_bts(event->hw.config);
  727. }
  728. }
  729. /*
  730. * Workaround for:
  731. * Intel Errata AAK100 (model 26)
  732. * Intel Errata AAP53 (model 30)
  733. * Intel Errata BD53 (model 44)
  734. *
  735. * The official story:
  736. * These chips need to be 'reset' when adding counters by programming the
  737. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  738. * in sequence on the same PMC or on different PMCs.
  739. *
  740. * In practise it appears some of these events do in fact count, and
  741. * we need to programm all 4 events.
  742. */
  743. static void intel_pmu_nhm_workaround(void)
  744. {
  745. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  746. static const unsigned long nhm_magic[4] = {
  747. 0x4300B5,
  748. 0x4300D2,
  749. 0x4300B1,
  750. 0x4300B1
  751. };
  752. struct perf_event *event;
  753. int i;
  754. /*
  755. * The Errata requires below steps:
  756. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  757. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  758. * the corresponding PMCx;
  759. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  760. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  761. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  762. */
  763. /*
  764. * The real steps we choose are a little different from above.
  765. * A) To reduce MSR operations, we don't run step 1) as they
  766. * are already cleared before this function is called;
  767. * B) Call x86_perf_event_update to save PMCx before configuring
  768. * PERFEVTSELx with magic number;
  769. * C) With step 5), we do clear only when the PERFEVTSELx is
  770. * not used currently.
  771. * D) Call x86_perf_event_set_period to restore PMCx;
  772. */
  773. /* We always operate 4 pairs of PERF Counters */
  774. for (i = 0; i < 4; i++) {
  775. event = cpuc->events[i];
  776. if (event)
  777. x86_perf_event_update(event);
  778. }
  779. for (i = 0; i < 4; i++) {
  780. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  781. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  782. }
  783. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  784. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  785. for (i = 0; i < 4; i++) {
  786. event = cpuc->events[i];
  787. if (event) {
  788. x86_perf_event_set_period(event);
  789. __x86_pmu_enable_event(&event->hw,
  790. ARCH_PERFMON_EVENTSEL_ENABLE);
  791. } else
  792. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  793. }
  794. }
  795. static void intel_pmu_nhm_enable_all(int added)
  796. {
  797. if (added)
  798. intel_pmu_nhm_workaround();
  799. intel_pmu_enable_all(added);
  800. }
  801. static inline u64 intel_pmu_get_status(void)
  802. {
  803. u64 status;
  804. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  805. return status;
  806. }
  807. static inline void intel_pmu_ack_status(u64 ack)
  808. {
  809. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  810. }
  811. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  812. {
  813. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  814. u64 ctrl_val, mask;
  815. mask = 0xfULL << (idx * 4);
  816. rdmsrl(hwc->config_base, ctrl_val);
  817. ctrl_val &= ~mask;
  818. wrmsrl(hwc->config_base, ctrl_val);
  819. }
  820. static void intel_pmu_disable_event(struct perf_event *event)
  821. {
  822. struct hw_perf_event *hwc = &event->hw;
  823. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  824. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  825. intel_pmu_disable_bts();
  826. intel_pmu_drain_bts_buffer();
  827. return;
  828. }
  829. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  830. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  831. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  832. intel_pmu_disable_fixed(hwc);
  833. return;
  834. }
  835. x86_pmu_disable_event(event);
  836. if (unlikely(event->attr.precise_ip))
  837. intel_pmu_pebs_disable(event);
  838. }
  839. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  840. {
  841. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  842. u64 ctrl_val, bits, mask;
  843. /*
  844. * Enable IRQ generation (0x8),
  845. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  846. * if requested:
  847. */
  848. bits = 0x8ULL;
  849. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  850. bits |= 0x2;
  851. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  852. bits |= 0x1;
  853. /*
  854. * ANY bit is supported in v3 and up
  855. */
  856. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  857. bits |= 0x4;
  858. bits <<= (idx * 4);
  859. mask = 0xfULL << (idx * 4);
  860. rdmsrl(hwc->config_base, ctrl_val);
  861. ctrl_val &= ~mask;
  862. ctrl_val |= bits;
  863. wrmsrl(hwc->config_base, ctrl_val);
  864. }
  865. static void intel_pmu_enable_event(struct perf_event *event)
  866. {
  867. struct hw_perf_event *hwc = &event->hw;
  868. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  869. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  870. if (!__this_cpu_read(cpu_hw_events.enabled))
  871. return;
  872. intel_pmu_enable_bts(hwc->config);
  873. return;
  874. }
  875. if (event->attr.exclude_host)
  876. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  877. if (event->attr.exclude_guest)
  878. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  879. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  880. intel_pmu_enable_fixed(hwc);
  881. return;
  882. }
  883. if (unlikely(event->attr.precise_ip))
  884. intel_pmu_pebs_enable(event);
  885. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  886. }
  887. /*
  888. * Save and restart an expired event. Called by NMI contexts,
  889. * so it has to be careful about preempting normal event ops:
  890. */
  891. int intel_pmu_save_and_restart(struct perf_event *event)
  892. {
  893. x86_perf_event_update(event);
  894. return x86_perf_event_set_period(event);
  895. }
  896. static void intel_pmu_reset(void)
  897. {
  898. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  899. unsigned long flags;
  900. int idx;
  901. if (!x86_pmu.num_counters)
  902. return;
  903. local_irq_save(flags);
  904. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  905. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  906. checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
  907. checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
  908. }
  909. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  910. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  911. if (ds)
  912. ds->bts_index = ds->bts_buffer_base;
  913. local_irq_restore(flags);
  914. }
  915. /*
  916. * This handler is triggered by the local APIC, so the APIC IRQ handling
  917. * rules apply:
  918. */
  919. static int intel_pmu_handle_irq(struct pt_regs *regs)
  920. {
  921. struct perf_sample_data data;
  922. struct cpu_hw_events *cpuc;
  923. int bit, loops;
  924. u64 status;
  925. int handled;
  926. perf_sample_data_init(&data, 0);
  927. cpuc = &__get_cpu_var(cpu_hw_events);
  928. /*
  929. * Some chipsets need to unmask the LVTPC in a particular spot
  930. * inside the nmi handler. As a result, the unmasking was pushed
  931. * into all the nmi handlers.
  932. *
  933. * This handler doesn't seem to have any issues with the unmasking
  934. * so it was left at the top.
  935. */
  936. apic_write(APIC_LVTPC, APIC_DM_NMI);
  937. intel_pmu_disable_all();
  938. handled = intel_pmu_drain_bts_buffer();
  939. status = intel_pmu_get_status();
  940. if (!status) {
  941. intel_pmu_enable_all(0);
  942. return handled;
  943. }
  944. loops = 0;
  945. again:
  946. intel_pmu_ack_status(status);
  947. if (++loops > 100) {
  948. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  949. perf_event_print_debug();
  950. intel_pmu_reset();
  951. goto done;
  952. }
  953. inc_irq_stat(apic_perf_irqs);
  954. intel_pmu_lbr_read();
  955. /*
  956. * PEBS overflow sets bit 62 in the global status register
  957. */
  958. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  959. handled++;
  960. x86_pmu.drain_pebs(regs);
  961. }
  962. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  963. struct perf_event *event = cpuc->events[bit];
  964. handled++;
  965. if (!test_bit(bit, cpuc->active_mask))
  966. continue;
  967. if (!intel_pmu_save_and_restart(event))
  968. continue;
  969. data.period = event->hw.last_period;
  970. if (perf_event_overflow(event, &data, regs))
  971. x86_pmu_stop(event, 0);
  972. }
  973. /*
  974. * Repeat if there is more work to be done:
  975. */
  976. status = intel_pmu_get_status();
  977. if (status)
  978. goto again;
  979. done:
  980. intel_pmu_enable_all(0);
  981. return handled;
  982. }
  983. static struct event_constraint *
  984. intel_bts_constraints(struct perf_event *event)
  985. {
  986. struct hw_perf_event *hwc = &event->hw;
  987. unsigned int hw_event, bts_event;
  988. if (event->attr.freq)
  989. return NULL;
  990. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  991. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  992. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  993. return &bts_constraint;
  994. return NULL;
  995. }
  996. static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
  997. {
  998. if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
  999. return false;
  1000. if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
  1001. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1002. event->hw.config |= 0x01bb;
  1003. event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
  1004. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  1005. } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
  1006. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1007. event->hw.config |= 0x01b7;
  1008. event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
  1009. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  1010. }
  1011. if (event->hw.extra_reg.idx == orig_idx)
  1012. return false;
  1013. return true;
  1014. }
  1015. /*
  1016. * manage allocation of shared extra msr for certain events
  1017. *
  1018. * sharing can be:
  1019. * per-cpu: to be shared between the various events on a single PMU
  1020. * per-core: per-cpu + shared by HT threads
  1021. */
  1022. static struct event_constraint *
  1023. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  1024. struct perf_event *event)
  1025. {
  1026. struct event_constraint *c = &emptyconstraint;
  1027. struct hw_perf_event_extra *reg = &event->hw.extra_reg;
  1028. struct er_account *era;
  1029. unsigned long flags;
  1030. int orig_idx = reg->idx;
  1031. /* already allocated shared msr */
  1032. if (reg->alloc)
  1033. return &unconstrained;
  1034. again:
  1035. era = &cpuc->shared_regs->regs[reg->idx];
  1036. /*
  1037. * we use spin_lock_irqsave() to avoid lockdep issues when
  1038. * passing a fake cpuc
  1039. */
  1040. raw_spin_lock_irqsave(&era->lock, flags);
  1041. if (!atomic_read(&era->ref) || era->config == reg->config) {
  1042. /* lock in msr value */
  1043. era->config = reg->config;
  1044. era->reg = reg->reg;
  1045. /* one more user */
  1046. atomic_inc(&era->ref);
  1047. /* no need to reallocate during incremental event scheduling */
  1048. reg->alloc = 1;
  1049. /*
  1050. * All events using extra_reg are unconstrained.
  1051. * Avoids calling x86_get_event_constraints()
  1052. *
  1053. * Must revisit if extra_reg controlling events
  1054. * ever have constraints. Worst case we go through
  1055. * the regular event constraint table.
  1056. */
  1057. c = &unconstrained;
  1058. } else if (intel_try_alt_er(event, orig_idx)) {
  1059. raw_spin_unlock(&era->lock);
  1060. goto again;
  1061. }
  1062. raw_spin_unlock_irqrestore(&era->lock, flags);
  1063. return c;
  1064. }
  1065. static void
  1066. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  1067. struct hw_perf_event_extra *reg)
  1068. {
  1069. struct er_account *era;
  1070. /*
  1071. * only put constraint if extra reg was actually
  1072. * allocated. Also takes care of event which do
  1073. * not use an extra shared reg
  1074. */
  1075. if (!reg->alloc)
  1076. return;
  1077. era = &cpuc->shared_regs->regs[reg->idx];
  1078. /* one fewer user */
  1079. atomic_dec(&era->ref);
  1080. /* allocate again next time */
  1081. reg->alloc = 0;
  1082. }
  1083. static struct event_constraint *
  1084. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  1085. struct perf_event *event)
  1086. {
  1087. struct event_constraint *c = NULL;
  1088. if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
  1089. c = __intel_shared_reg_get_constraints(cpuc, event);
  1090. return c;
  1091. }
  1092. struct event_constraint *
  1093. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1094. {
  1095. struct event_constraint *c;
  1096. if (x86_pmu.event_constraints) {
  1097. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1098. if ((event->hw.config & c->cmask) == c->code)
  1099. return c;
  1100. }
  1101. }
  1102. return &unconstrained;
  1103. }
  1104. static struct event_constraint *
  1105. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1106. {
  1107. struct event_constraint *c;
  1108. c = intel_bts_constraints(event);
  1109. if (c)
  1110. return c;
  1111. c = intel_pebs_constraints(event);
  1112. if (c)
  1113. return c;
  1114. c = intel_shared_regs_constraints(cpuc, event);
  1115. if (c)
  1116. return c;
  1117. return x86_get_event_constraints(cpuc, event);
  1118. }
  1119. static void
  1120. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  1121. struct perf_event *event)
  1122. {
  1123. struct hw_perf_event_extra *reg;
  1124. reg = &event->hw.extra_reg;
  1125. if (reg->idx != EXTRA_REG_NONE)
  1126. __intel_shared_reg_put_constraints(cpuc, reg);
  1127. }
  1128. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  1129. struct perf_event *event)
  1130. {
  1131. intel_put_shared_regs_event_constraints(cpuc, event);
  1132. }
  1133. static int intel_pmu_hw_config(struct perf_event *event)
  1134. {
  1135. int ret = x86_pmu_hw_config(event);
  1136. if (ret)
  1137. return ret;
  1138. if (event->attr.precise_ip &&
  1139. (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  1140. /*
  1141. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  1142. * (0x003c) so that we can use it with PEBS.
  1143. *
  1144. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  1145. * PEBS capable. However we can use INST_RETIRED.ANY_P
  1146. * (0x00c0), which is a PEBS capable event, to get the same
  1147. * count.
  1148. *
  1149. * INST_RETIRED.ANY_P counts the number of cycles that retires
  1150. * CNTMASK instructions. By setting CNTMASK to a value (16)
  1151. * larger than the maximum number of instructions that can be
  1152. * retired per cycle (4) and then inverting the condition, we
  1153. * count all cycles that retire 16 or less instructions, which
  1154. * is every cycle.
  1155. *
  1156. * Thereby we gain a PEBS capable cycle counter.
  1157. */
  1158. u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
  1159. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  1160. event->hw.config = alt_config;
  1161. }
  1162. if (event->attr.type != PERF_TYPE_RAW)
  1163. return 0;
  1164. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  1165. return 0;
  1166. if (x86_pmu.version < 3)
  1167. return -EINVAL;
  1168. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1169. return -EACCES;
  1170. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  1171. return 0;
  1172. }
  1173. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  1174. {
  1175. if (x86_pmu.guest_get_msrs)
  1176. return x86_pmu.guest_get_msrs(nr);
  1177. *nr = 0;
  1178. return NULL;
  1179. }
  1180. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  1181. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  1182. {
  1183. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1184. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1185. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  1186. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  1187. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  1188. *nr = 1;
  1189. return arr;
  1190. }
  1191. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  1192. {
  1193. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1194. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1195. int idx;
  1196. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1197. struct perf_event *event = cpuc->events[idx];
  1198. arr[idx].msr = x86_pmu_config_addr(idx);
  1199. arr[idx].host = arr[idx].guest = 0;
  1200. if (!test_bit(idx, cpuc->active_mask))
  1201. continue;
  1202. arr[idx].host = arr[idx].guest =
  1203. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  1204. if (event->attr.exclude_host)
  1205. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1206. else if (event->attr.exclude_guest)
  1207. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1208. }
  1209. *nr = x86_pmu.num_counters;
  1210. return arr;
  1211. }
  1212. static void core_pmu_enable_event(struct perf_event *event)
  1213. {
  1214. if (!event->attr.exclude_host)
  1215. x86_pmu_enable_event(event);
  1216. }
  1217. static void core_pmu_enable_all(int added)
  1218. {
  1219. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1220. int idx;
  1221. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1222. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  1223. if (!test_bit(idx, cpuc->active_mask) ||
  1224. cpuc->events[idx]->attr.exclude_host)
  1225. continue;
  1226. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1227. }
  1228. }
  1229. static __initconst const struct x86_pmu core_pmu = {
  1230. .name = "core",
  1231. .handle_irq = x86_pmu_handle_irq,
  1232. .disable_all = x86_pmu_disable_all,
  1233. .enable_all = core_pmu_enable_all,
  1234. .enable = core_pmu_enable_event,
  1235. .disable = x86_pmu_disable_event,
  1236. .hw_config = x86_pmu_hw_config,
  1237. .schedule_events = x86_schedule_events,
  1238. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1239. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1240. .event_map = intel_pmu_event_map,
  1241. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1242. .apic = 1,
  1243. /*
  1244. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1245. * so we install an artificial 1<<31 period regardless of
  1246. * the generic event period:
  1247. */
  1248. .max_period = (1ULL << 31) - 1,
  1249. .get_event_constraints = intel_get_event_constraints,
  1250. .put_event_constraints = intel_put_event_constraints,
  1251. .event_constraints = intel_core_event_constraints,
  1252. .guest_get_msrs = core_guest_get_msrs,
  1253. };
  1254. struct intel_shared_regs *allocate_shared_regs(int cpu)
  1255. {
  1256. struct intel_shared_regs *regs;
  1257. int i;
  1258. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  1259. GFP_KERNEL, cpu_to_node(cpu));
  1260. if (regs) {
  1261. /*
  1262. * initialize the locks to keep lockdep happy
  1263. */
  1264. for (i = 0; i < EXTRA_REG_MAX; i++)
  1265. raw_spin_lock_init(&regs->regs[i].lock);
  1266. regs->core_id = -1;
  1267. }
  1268. return regs;
  1269. }
  1270. static int intel_pmu_cpu_prepare(int cpu)
  1271. {
  1272. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1273. if (!x86_pmu.extra_regs)
  1274. return NOTIFY_OK;
  1275. cpuc->shared_regs = allocate_shared_regs(cpu);
  1276. if (!cpuc->shared_regs)
  1277. return NOTIFY_BAD;
  1278. return NOTIFY_OK;
  1279. }
  1280. static void intel_pmu_cpu_starting(int cpu)
  1281. {
  1282. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1283. int core_id = topology_core_id(cpu);
  1284. int i;
  1285. init_debug_store_on_cpu(cpu);
  1286. /*
  1287. * Deal with CPUs that don't clear their LBRs on power-up.
  1288. */
  1289. intel_pmu_lbr_reset();
  1290. if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
  1291. return;
  1292. for_each_cpu(i, topology_thread_cpumask(cpu)) {
  1293. struct intel_shared_regs *pc;
  1294. pc = per_cpu(cpu_hw_events, i).shared_regs;
  1295. if (pc && pc->core_id == core_id) {
  1296. cpuc->kfree_on_online = cpuc->shared_regs;
  1297. cpuc->shared_regs = pc;
  1298. break;
  1299. }
  1300. }
  1301. cpuc->shared_regs->core_id = core_id;
  1302. cpuc->shared_regs->refcnt++;
  1303. }
  1304. static void intel_pmu_cpu_dying(int cpu)
  1305. {
  1306. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1307. struct intel_shared_regs *pc;
  1308. pc = cpuc->shared_regs;
  1309. if (pc) {
  1310. if (pc->core_id == -1 || --pc->refcnt == 0)
  1311. kfree(pc);
  1312. cpuc->shared_regs = NULL;
  1313. }
  1314. fini_debug_store_on_cpu(cpu);
  1315. }
  1316. static __initconst const struct x86_pmu intel_pmu = {
  1317. .name = "Intel",
  1318. .handle_irq = intel_pmu_handle_irq,
  1319. .disable_all = intel_pmu_disable_all,
  1320. .enable_all = intel_pmu_enable_all,
  1321. .enable = intel_pmu_enable_event,
  1322. .disable = intel_pmu_disable_event,
  1323. .hw_config = intel_pmu_hw_config,
  1324. .schedule_events = x86_schedule_events,
  1325. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1326. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1327. .event_map = intel_pmu_event_map,
  1328. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1329. .apic = 1,
  1330. /*
  1331. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1332. * so we install an artificial 1<<31 period regardless of
  1333. * the generic event period:
  1334. */
  1335. .max_period = (1ULL << 31) - 1,
  1336. .get_event_constraints = intel_get_event_constraints,
  1337. .put_event_constraints = intel_put_event_constraints,
  1338. .cpu_prepare = intel_pmu_cpu_prepare,
  1339. .cpu_starting = intel_pmu_cpu_starting,
  1340. .cpu_dying = intel_pmu_cpu_dying,
  1341. .guest_get_msrs = intel_guest_get_msrs,
  1342. };
  1343. static void intel_clovertown_quirks(void)
  1344. {
  1345. /*
  1346. * PEBS is unreliable due to:
  1347. *
  1348. * AJ67 - PEBS may experience CPL leaks
  1349. * AJ68 - PEBS PMI may be delayed by one event
  1350. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  1351. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  1352. *
  1353. * AJ67 could be worked around by restricting the OS/USR flags.
  1354. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  1355. *
  1356. * AJ106 could possibly be worked around by not allowing LBR
  1357. * usage from PEBS, including the fixup.
  1358. * AJ68 could possibly be worked around by always programming
  1359. * a pebs_event_reset[0] value and coping with the lost events.
  1360. *
  1361. * But taken together it might just make sense to not enable PEBS on
  1362. * these chips.
  1363. */
  1364. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1365. x86_pmu.pebs = 0;
  1366. x86_pmu.pebs_constraints = NULL;
  1367. }
  1368. __init int intel_pmu_init(void)
  1369. {
  1370. union cpuid10_edx edx;
  1371. union cpuid10_eax eax;
  1372. unsigned int unused;
  1373. unsigned int ebx;
  1374. int version;
  1375. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  1376. switch (boot_cpu_data.x86) {
  1377. case 0x6:
  1378. return p6_pmu_init();
  1379. case 0xf:
  1380. return p4_pmu_init();
  1381. }
  1382. return -ENODEV;
  1383. }
  1384. /*
  1385. * Check whether the Architectural PerfMon supports
  1386. * Branch Misses Retired hw_event or not.
  1387. */
  1388. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  1389. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  1390. return -ENODEV;
  1391. version = eax.split.version_id;
  1392. if (version < 2)
  1393. x86_pmu = core_pmu;
  1394. else
  1395. x86_pmu = intel_pmu;
  1396. x86_pmu.version = version;
  1397. x86_pmu.num_counters = eax.split.num_counters;
  1398. x86_pmu.cntval_bits = eax.split.bit_width;
  1399. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  1400. /*
  1401. * Quirk: v2 perfmon does not report fixed-purpose events, so
  1402. * assume at least 3 events:
  1403. */
  1404. if (version > 1)
  1405. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1406. /*
  1407. * v2 and above have a perf capabilities MSR
  1408. */
  1409. if (version > 1) {
  1410. u64 capabilities;
  1411. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  1412. x86_pmu.intel_cap.capabilities = capabilities;
  1413. }
  1414. intel_ds_init();
  1415. /*
  1416. * Install the hw-cache-events table:
  1417. */
  1418. switch (boot_cpu_data.x86_model) {
  1419. case 14: /* 65 nm core solo/duo, "Yonah" */
  1420. pr_cont("Core events, ");
  1421. break;
  1422. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  1423. x86_pmu.quirks = intel_clovertown_quirks;
  1424. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  1425. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  1426. case 29: /* six-core 45 nm xeon "Dunnington" */
  1427. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1428. sizeof(hw_cache_event_ids));
  1429. intel_pmu_lbr_init_core();
  1430. x86_pmu.event_constraints = intel_core2_event_constraints;
  1431. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  1432. pr_cont("Core2 events, ");
  1433. break;
  1434. case 26: /* 45 nm nehalem, "Bloomfield" */
  1435. case 30: /* 45 nm nehalem, "Lynnfield" */
  1436. case 46: /* 45 nm nehalem-ex, "Beckton" */
  1437. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1438. sizeof(hw_cache_event_ids));
  1439. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1440. sizeof(hw_cache_extra_regs));
  1441. intel_pmu_lbr_init_nhm();
  1442. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  1443. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  1444. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1445. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  1446. /* UOPS_ISSUED.STALLED_CYCLES */
  1447. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1448. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1449. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1450. if (ebx & 0x40) {
  1451. /*
  1452. * Erratum AAJ80 detected, we work it around by using
  1453. * the BR_MISP_EXEC.ANY event. This will over-count
  1454. * branch-misses, but it's still much better than the
  1455. * architectural event which is often completely bogus:
  1456. */
  1457. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  1458. pr_cont("erratum AAJ80 worked around, ");
  1459. }
  1460. pr_cont("Nehalem events, ");
  1461. break;
  1462. case 28: /* Atom */
  1463. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1464. sizeof(hw_cache_event_ids));
  1465. intel_pmu_lbr_init_atom();
  1466. x86_pmu.event_constraints = intel_gen_event_constraints;
  1467. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  1468. pr_cont("Atom events, ");
  1469. break;
  1470. case 37: /* 32 nm nehalem, "Clarkdale" */
  1471. case 44: /* 32 nm nehalem, "Gulftown" */
  1472. case 47: /* 32 nm Xeon E7 */
  1473. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  1474. sizeof(hw_cache_event_ids));
  1475. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1476. sizeof(hw_cache_extra_regs));
  1477. intel_pmu_lbr_init_nhm();
  1478. x86_pmu.event_constraints = intel_westmere_event_constraints;
  1479. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1480. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  1481. x86_pmu.extra_regs = intel_westmere_extra_regs;
  1482. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1483. /* UOPS_ISSUED.STALLED_CYCLES */
  1484. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1485. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1486. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1487. pr_cont("Westmere events, ");
  1488. break;
  1489. case 42: /* SandyBridge */
  1490. case 45: /* SandyBridge, "Romely-EP" */
  1491. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  1492. sizeof(hw_cache_event_ids));
  1493. intel_pmu_lbr_init_nhm();
  1494. x86_pmu.event_constraints = intel_snb_event_constraints;
  1495. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  1496. x86_pmu.extra_regs = intel_snb_extra_regs;
  1497. /* all extra regs are per-cpu when HT is on */
  1498. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1499. x86_pmu.er_flags |= ERF_NO_HT_SHARING;
  1500. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  1501. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1502. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  1503. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
  1504. pr_cont("SandyBridge events, ");
  1505. break;
  1506. default:
  1507. switch (x86_pmu.version) {
  1508. case 1:
  1509. x86_pmu.event_constraints = intel_v1_event_constraints;
  1510. pr_cont("generic architected perfmon v1, ");
  1511. break;
  1512. default:
  1513. /*
  1514. * default constraints for v2 and up
  1515. */
  1516. x86_pmu.event_constraints = intel_gen_event_constraints;
  1517. pr_cont("generic architected perfmon, ");
  1518. break;
  1519. }
  1520. }
  1521. return 0;
  1522. }