namespace.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct mount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt.mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt.mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct mount *mnt)
  87. {
  88. int id = mnt->mnt.mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct mount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt.mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt.mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct mount *mnt)
  116. {
  117. int id = mnt->mnt.mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt.mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct mount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. /*
  137. * vfsmount lock must be held for write
  138. */
  139. unsigned int mnt_get_count(struct mount *mnt)
  140. {
  141. #ifdef CONFIG_SMP
  142. unsigned int count = 0;
  143. int cpu;
  144. for_each_possible_cpu(cpu) {
  145. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  146. }
  147. return count;
  148. #else
  149. return mnt->mnt_count;
  150. #endif
  151. }
  152. static struct mount *alloc_vfsmnt(const char *name)
  153. {
  154. struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  155. if (p) {
  156. struct vfsmount *mnt = &p->mnt;
  157. int err;
  158. err = mnt_alloc_id(p);
  159. if (err)
  160. goto out_free_cache;
  161. if (name) {
  162. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  163. if (!mnt->mnt_devname)
  164. goto out_free_id;
  165. }
  166. #ifdef CONFIG_SMP
  167. p->mnt_pcp = alloc_percpu(struct mnt_pcp);
  168. if (!p->mnt_pcp)
  169. goto out_free_devname;
  170. this_cpu_add(p->mnt_pcp->mnt_count, 1);
  171. #else
  172. p->mnt_count = 1;
  173. p->mnt_writers = 0;
  174. #endif
  175. INIT_LIST_HEAD(&p->mnt_hash);
  176. INIT_LIST_HEAD(&p->mnt_child);
  177. INIT_LIST_HEAD(&p->mnt_mounts);
  178. INIT_LIST_HEAD(&mnt->mnt_list);
  179. INIT_LIST_HEAD(&p->mnt_expire);
  180. INIT_LIST_HEAD(&p->mnt_share);
  181. INIT_LIST_HEAD(&p->mnt_slave_list);
  182. INIT_LIST_HEAD(&p->mnt_slave);
  183. #ifdef CONFIG_FSNOTIFY
  184. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  185. #endif
  186. }
  187. return p;
  188. #ifdef CONFIG_SMP
  189. out_free_devname:
  190. kfree(p->mnt.mnt_devname);
  191. #endif
  192. out_free_id:
  193. mnt_free_id(p);
  194. out_free_cache:
  195. kmem_cache_free(mnt_cache, p);
  196. return NULL;
  197. }
  198. /*
  199. * Most r/o checks on a fs are for operations that take
  200. * discrete amounts of time, like a write() or unlink().
  201. * We must keep track of when those operations start
  202. * (for permission checks) and when they end, so that
  203. * we can determine when writes are able to occur to
  204. * a filesystem.
  205. */
  206. /*
  207. * __mnt_is_readonly: check whether a mount is read-only
  208. * @mnt: the mount to check for its write status
  209. *
  210. * This shouldn't be used directly ouside of the VFS.
  211. * It does not guarantee that the filesystem will stay
  212. * r/w, just that it is right *now*. This can not and
  213. * should not be used in place of IS_RDONLY(inode).
  214. * mnt_want/drop_write() will _keep_ the filesystem
  215. * r/w.
  216. */
  217. int __mnt_is_readonly(struct vfsmount *mnt)
  218. {
  219. if (mnt->mnt_flags & MNT_READONLY)
  220. return 1;
  221. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  222. return 1;
  223. return 0;
  224. }
  225. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  226. static inline void mnt_inc_writers(struct mount *mnt)
  227. {
  228. #ifdef CONFIG_SMP
  229. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  230. #else
  231. mnt->mnt_writers++;
  232. #endif
  233. }
  234. static inline void mnt_dec_writers(struct mount *mnt)
  235. {
  236. #ifdef CONFIG_SMP
  237. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  238. #else
  239. mnt->mnt_writers--;
  240. #endif
  241. }
  242. static unsigned int mnt_get_writers(struct mount *mnt)
  243. {
  244. #ifdef CONFIG_SMP
  245. unsigned int count = 0;
  246. int cpu;
  247. for_each_possible_cpu(cpu) {
  248. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  249. }
  250. return count;
  251. #else
  252. return mnt->mnt_writers;
  253. #endif
  254. }
  255. /*
  256. * Most r/o checks on a fs are for operations that take
  257. * discrete amounts of time, like a write() or unlink().
  258. * We must keep track of when those operations start
  259. * (for permission checks) and when they end, so that
  260. * we can determine when writes are able to occur to
  261. * a filesystem.
  262. */
  263. /**
  264. * mnt_want_write - get write access to a mount
  265. * @m: the mount on which to take a write
  266. *
  267. * This tells the low-level filesystem that a write is
  268. * about to be performed to it, and makes sure that
  269. * writes are allowed before returning success. When
  270. * the write operation is finished, mnt_drop_write()
  271. * must be called. This is effectively a refcount.
  272. */
  273. int mnt_want_write(struct vfsmount *m)
  274. {
  275. struct mount *mnt = real_mount(m);
  276. int ret = 0;
  277. preempt_disable();
  278. mnt_inc_writers(mnt);
  279. /*
  280. * The store to mnt_inc_writers must be visible before we pass
  281. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  282. * incremented count after it has set MNT_WRITE_HOLD.
  283. */
  284. smp_mb();
  285. while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  286. cpu_relax();
  287. /*
  288. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  289. * be set to match its requirements. So we must not load that until
  290. * MNT_WRITE_HOLD is cleared.
  291. */
  292. smp_rmb();
  293. if (__mnt_is_readonly(m)) {
  294. mnt_dec_writers(mnt);
  295. ret = -EROFS;
  296. goto out;
  297. }
  298. out:
  299. preempt_enable();
  300. return ret;
  301. }
  302. EXPORT_SYMBOL_GPL(mnt_want_write);
  303. /**
  304. * mnt_clone_write - get write access to a mount
  305. * @mnt: the mount on which to take a write
  306. *
  307. * This is effectively like mnt_want_write, except
  308. * it must only be used to take an extra write reference
  309. * on a mountpoint that we already know has a write reference
  310. * on it. This allows some optimisation.
  311. *
  312. * After finished, mnt_drop_write must be called as usual to
  313. * drop the reference.
  314. */
  315. int mnt_clone_write(struct vfsmount *mnt)
  316. {
  317. /* superblock may be r/o */
  318. if (__mnt_is_readonly(mnt))
  319. return -EROFS;
  320. preempt_disable();
  321. mnt_inc_writers(real_mount(mnt));
  322. preempt_enable();
  323. return 0;
  324. }
  325. EXPORT_SYMBOL_GPL(mnt_clone_write);
  326. /**
  327. * mnt_want_write_file - get write access to a file's mount
  328. * @file: the file who's mount on which to take a write
  329. *
  330. * This is like mnt_want_write, but it takes a file and can
  331. * do some optimisations if the file is open for write already
  332. */
  333. int mnt_want_write_file(struct file *file)
  334. {
  335. struct inode *inode = file->f_dentry->d_inode;
  336. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  337. return mnt_want_write(file->f_path.mnt);
  338. else
  339. return mnt_clone_write(file->f_path.mnt);
  340. }
  341. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  342. /**
  343. * mnt_drop_write - give up write access to a mount
  344. * @mnt: the mount on which to give up write access
  345. *
  346. * Tells the low-level filesystem that we are done
  347. * performing writes to it. Must be matched with
  348. * mnt_want_write() call above.
  349. */
  350. void mnt_drop_write(struct vfsmount *mnt)
  351. {
  352. preempt_disable();
  353. mnt_dec_writers(real_mount(mnt));
  354. preempt_enable();
  355. }
  356. EXPORT_SYMBOL_GPL(mnt_drop_write);
  357. void mnt_drop_write_file(struct file *file)
  358. {
  359. mnt_drop_write(file->f_path.mnt);
  360. }
  361. EXPORT_SYMBOL(mnt_drop_write_file);
  362. static int mnt_make_readonly(struct mount *mnt)
  363. {
  364. int ret = 0;
  365. br_write_lock(vfsmount_lock);
  366. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  367. /*
  368. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  369. * should be visible before we do.
  370. */
  371. smp_mb();
  372. /*
  373. * With writers on hold, if this value is zero, then there are
  374. * definitely no active writers (although held writers may subsequently
  375. * increment the count, they'll have to wait, and decrement it after
  376. * seeing MNT_READONLY).
  377. *
  378. * It is OK to have counter incremented on one CPU and decremented on
  379. * another: the sum will add up correctly. The danger would be when we
  380. * sum up each counter, if we read a counter before it is incremented,
  381. * but then read another CPU's count which it has been subsequently
  382. * decremented from -- we would see more decrements than we should.
  383. * MNT_WRITE_HOLD protects against this scenario, because
  384. * mnt_want_write first increments count, then smp_mb, then spins on
  385. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  386. * we're counting up here.
  387. */
  388. if (mnt_get_writers(mnt) > 0)
  389. ret = -EBUSY;
  390. else
  391. mnt->mnt.mnt_flags |= MNT_READONLY;
  392. /*
  393. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  394. * that become unheld will see MNT_READONLY.
  395. */
  396. smp_wmb();
  397. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  398. br_write_unlock(vfsmount_lock);
  399. return ret;
  400. }
  401. static void __mnt_unmake_readonly(struct mount *mnt)
  402. {
  403. br_write_lock(vfsmount_lock);
  404. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  405. br_write_unlock(vfsmount_lock);
  406. }
  407. static void free_vfsmnt(struct mount *mnt)
  408. {
  409. kfree(mnt->mnt.mnt_devname);
  410. mnt_free_id(mnt);
  411. #ifdef CONFIG_SMP
  412. free_percpu(mnt->mnt_pcp);
  413. #endif
  414. kmem_cache_free(mnt_cache, mnt);
  415. }
  416. /*
  417. * find the first or last mount at @dentry on vfsmount @mnt depending on
  418. * @dir. If @dir is set return the first mount else return the last mount.
  419. * vfsmount_lock must be held for read or write.
  420. */
  421. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  422. int dir)
  423. {
  424. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  425. struct list_head *tmp = head;
  426. struct mount *p, *found = NULL;
  427. for (;;) {
  428. tmp = dir ? tmp->next : tmp->prev;
  429. p = NULL;
  430. if (tmp == head)
  431. break;
  432. p = list_entry(tmp, struct mount, mnt_hash);
  433. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  434. found = p;
  435. break;
  436. }
  437. }
  438. return found;
  439. }
  440. /*
  441. * lookup_mnt increments the ref count before returning
  442. * the vfsmount struct.
  443. */
  444. struct vfsmount *lookup_mnt(struct path *path)
  445. {
  446. struct mount *child_mnt;
  447. br_read_lock(vfsmount_lock);
  448. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  449. if (child_mnt) {
  450. mnt_add_count(child_mnt, 1);
  451. br_read_unlock(vfsmount_lock);
  452. return &child_mnt->mnt;
  453. } else {
  454. br_read_unlock(vfsmount_lock);
  455. return NULL;
  456. }
  457. }
  458. static inline int check_mnt(struct mount *mnt)
  459. {
  460. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  461. }
  462. /*
  463. * vfsmount lock must be held for write
  464. */
  465. static void touch_mnt_namespace(struct mnt_namespace *ns)
  466. {
  467. if (ns) {
  468. ns->event = ++event;
  469. wake_up_interruptible(&ns->poll);
  470. }
  471. }
  472. /*
  473. * vfsmount lock must be held for write
  474. */
  475. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  476. {
  477. if (ns && ns->event != event) {
  478. ns->event = event;
  479. wake_up_interruptible(&ns->poll);
  480. }
  481. }
  482. /*
  483. * Clear dentry's mounted state if it has no remaining mounts.
  484. * vfsmount_lock must be held for write.
  485. */
  486. static void dentry_reset_mounted(struct dentry *dentry)
  487. {
  488. unsigned u;
  489. for (u = 0; u < HASH_SIZE; u++) {
  490. struct mount *p;
  491. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  492. if (p->mnt_mountpoint == dentry)
  493. return;
  494. }
  495. }
  496. spin_lock(&dentry->d_lock);
  497. dentry->d_flags &= ~DCACHE_MOUNTED;
  498. spin_unlock(&dentry->d_lock);
  499. }
  500. /*
  501. * vfsmount lock must be held for write
  502. */
  503. static void detach_mnt(struct mount *mnt, struct path *old_path)
  504. {
  505. old_path->dentry = mnt->mnt_mountpoint;
  506. old_path->mnt = &mnt->mnt_parent->mnt;
  507. mnt->mnt_parent = mnt;
  508. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  509. list_del_init(&mnt->mnt_child);
  510. list_del_init(&mnt->mnt_hash);
  511. dentry_reset_mounted(old_path->dentry);
  512. }
  513. /*
  514. * vfsmount lock must be held for write
  515. */
  516. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  517. struct mount *child_mnt)
  518. {
  519. child_mnt->mnt_parent = real_mount(mntget(&mnt->mnt));
  520. child_mnt->mnt_mountpoint = dget(dentry);
  521. spin_lock(&dentry->d_lock);
  522. dentry->d_flags |= DCACHE_MOUNTED;
  523. spin_unlock(&dentry->d_lock);
  524. }
  525. /*
  526. * vfsmount lock must be held for write
  527. */
  528. static void attach_mnt(struct mount *mnt, struct path *path)
  529. {
  530. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  531. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  532. hash(path->mnt, path->dentry));
  533. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  534. }
  535. static inline void __mnt_make_longterm(struct mount *mnt)
  536. {
  537. #ifdef CONFIG_SMP
  538. atomic_inc(&mnt->mnt_longterm);
  539. #endif
  540. }
  541. /* needs vfsmount lock for write */
  542. static inline void __mnt_make_shortterm(struct mount *mnt)
  543. {
  544. #ifdef CONFIG_SMP
  545. atomic_dec(&mnt->mnt_longterm);
  546. #endif
  547. }
  548. /*
  549. * vfsmount lock must be held for write
  550. */
  551. static void commit_tree(struct mount *mnt)
  552. {
  553. struct mount *parent = mnt->mnt_parent;
  554. struct mount *m;
  555. LIST_HEAD(head);
  556. struct mnt_namespace *n = parent->mnt_ns;
  557. BUG_ON(parent == mnt);
  558. list_add_tail(&head, &mnt->mnt.mnt_list);
  559. list_for_each_entry(m, &head, mnt.mnt_list) {
  560. m->mnt_ns = n;
  561. __mnt_make_longterm(m);
  562. }
  563. list_splice(&head, n->list.prev);
  564. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  565. hash(&parent->mnt, mnt->mnt_mountpoint));
  566. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  567. touch_mnt_namespace(n);
  568. }
  569. static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
  570. {
  571. struct list_head *next = p->mnt_mounts.next;
  572. if (next == &p->mnt_mounts) {
  573. while (1) {
  574. if (&p->mnt == root)
  575. return NULL;
  576. next = p->mnt_child.next;
  577. if (next != &p->mnt_parent->mnt_mounts)
  578. break;
  579. p = p->mnt_parent;
  580. }
  581. }
  582. return list_entry(next, struct mount, mnt_child);
  583. }
  584. static struct mount *skip_mnt_tree(struct mount *p)
  585. {
  586. struct list_head *prev = p->mnt_mounts.prev;
  587. while (prev != &p->mnt_mounts) {
  588. p = list_entry(prev, struct mount, mnt_child);
  589. prev = p->mnt_mounts.prev;
  590. }
  591. return p;
  592. }
  593. struct vfsmount *
  594. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  595. {
  596. struct mount *mnt;
  597. struct dentry *root;
  598. if (!type)
  599. return ERR_PTR(-ENODEV);
  600. mnt = alloc_vfsmnt(name);
  601. if (!mnt)
  602. return ERR_PTR(-ENOMEM);
  603. if (flags & MS_KERNMOUNT)
  604. mnt->mnt.mnt_flags = MNT_INTERNAL;
  605. root = mount_fs(type, flags, name, data);
  606. if (IS_ERR(root)) {
  607. free_vfsmnt(mnt);
  608. return ERR_CAST(root);
  609. }
  610. mnt->mnt.mnt_root = root;
  611. mnt->mnt.mnt_sb = root->d_sb;
  612. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  613. mnt->mnt_parent = mnt;
  614. return &mnt->mnt;
  615. }
  616. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  617. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  618. int flag)
  619. {
  620. struct super_block *sb = old->mnt.mnt_sb;
  621. struct mount *mnt = alloc_vfsmnt(old->mnt.mnt_devname);
  622. if (mnt) {
  623. if (flag & (CL_SLAVE | CL_PRIVATE))
  624. mnt->mnt.mnt_group_id = 0; /* not a peer of original */
  625. else
  626. mnt->mnt.mnt_group_id = old->mnt.mnt_group_id;
  627. if ((flag & CL_MAKE_SHARED) && !mnt->mnt.mnt_group_id) {
  628. int err = mnt_alloc_group_id(mnt);
  629. if (err)
  630. goto out_free;
  631. }
  632. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  633. atomic_inc(&sb->s_active);
  634. mnt->mnt.mnt_sb = sb;
  635. mnt->mnt.mnt_root = dget(root);
  636. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  637. mnt->mnt_parent = mnt;
  638. if (flag & CL_SLAVE) {
  639. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  640. mnt->mnt_master = old;
  641. CLEAR_MNT_SHARED(&mnt->mnt);
  642. } else if (!(flag & CL_PRIVATE)) {
  643. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(&old->mnt))
  644. list_add(&mnt->mnt_share, &old->mnt_share);
  645. if (IS_MNT_SLAVE(old))
  646. list_add(&mnt->mnt_slave, &old->mnt_slave);
  647. mnt->mnt_master = old->mnt_master;
  648. }
  649. if (flag & CL_MAKE_SHARED)
  650. set_mnt_shared(mnt);
  651. /* stick the duplicate mount on the same expiry list
  652. * as the original if that was on one */
  653. if (flag & CL_EXPIRE) {
  654. if (!list_empty(&old->mnt_expire))
  655. list_add(&mnt->mnt_expire, &old->mnt_expire);
  656. }
  657. }
  658. return mnt;
  659. out_free:
  660. free_vfsmnt(mnt);
  661. return NULL;
  662. }
  663. static inline void mntfree(struct mount *mnt)
  664. {
  665. struct vfsmount *m = &mnt->mnt;
  666. struct super_block *sb = m->mnt_sb;
  667. /*
  668. * This probably indicates that somebody messed
  669. * up a mnt_want/drop_write() pair. If this
  670. * happens, the filesystem was probably unable
  671. * to make r/w->r/o transitions.
  672. */
  673. /*
  674. * The locking used to deal with mnt_count decrement provides barriers,
  675. * so mnt_get_writers() below is safe.
  676. */
  677. WARN_ON(mnt_get_writers(mnt));
  678. fsnotify_vfsmount_delete(m);
  679. dput(m->mnt_root);
  680. free_vfsmnt(mnt);
  681. deactivate_super(sb);
  682. }
  683. static void mntput_no_expire(struct mount *mnt)
  684. {
  685. put_again:
  686. #ifdef CONFIG_SMP
  687. br_read_lock(vfsmount_lock);
  688. if (likely(atomic_read(&mnt->mnt_longterm))) {
  689. mnt_add_count(mnt, -1);
  690. br_read_unlock(vfsmount_lock);
  691. return;
  692. }
  693. br_read_unlock(vfsmount_lock);
  694. br_write_lock(vfsmount_lock);
  695. mnt_add_count(mnt, -1);
  696. if (mnt_get_count(mnt)) {
  697. br_write_unlock(vfsmount_lock);
  698. return;
  699. }
  700. #else
  701. mnt_add_count(mnt, -1);
  702. if (likely(mnt_get_count(mnt)))
  703. return;
  704. br_write_lock(vfsmount_lock);
  705. #endif
  706. if (unlikely(mnt->mnt.mnt_pinned)) {
  707. mnt_add_count(mnt, mnt->mnt.mnt_pinned + 1);
  708. mnt->mnt.mnt_pinned = 0;
  709. br_write_unlock(vfsmount_lock);
  710. acct_auto_close_mnt(&mnt->mnt);
  711. goto put_again;
  712. }
  713. br_write_unlock(vfsmount_lock);
  714. mntfree(mnt);
  715. }
  716. void mntput(struct vfsmount *mnt)
  717. {
  718. if (mnt) {
  719. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  720. if (unlikely(mnt->mnt_expiry_mark))
  721. mnt->mnt_expiry_mark = 0;
  722. mntput_no_expire(real_mount(mnt));
  723. }
  724. }
  725. EXPORT_SYMBOL(mntput);
  726. struct vfsmount *mntget(struct vfsmount *mnt)
  727. {
  728. if (mnt)
  729. mnt_add_count(real_mount(mnt), 1);
  730. return mnt;
  731. }
  732. EXPORT_SYMBOL(mntget);
  733. void mnt_pin(struct vfsmount *mnt)
  734. {
  735. br_write_lock(vfsmount_lock);
  736. mnt->mnt_pinned++;
  737. br_write_unlock(vfsmount_lock);
  738. }
  739. EXPORT_SYMBOL(mnt_pin);
  740. void mnt_unpin(struct vfsmount *mnt)
  741. {
  742. br_write_lock(vfsmount_lock);
  743. if (mnt->mnt_pinned) {
  744. mnt_add_count(real_mount(mnt), 1);
  745. mnt->mnt_pinned--;
  746. }
  747. br_write_unlock(vfsmount_lock);
  748. }
  749. EXPORT_SYMBOL(mnt_unpin);
  750. static inline void mangle(struct seq_file *m, const char *s)
  751. {
  752. seq_escape(m, s, " \t\n\\");
  753. }
  754. /*
  755. * Simple .show_options callback for filesystems which don't want to
  756. * implement more complex mount option showing.
  757. *
  758. * See also save_mount_options().
  759. */
  760. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  761. {
  762. const char *options;
  763. rcu_read_lock();
  764. options = rcu_dereference(mnt->mnt_sb->s_options);
  765. if (options != NULL && options[0]) {
  766. seq_putc(m, ',');
  767. mangle(m, options);
  768. }
  769. rcu_read_unlock();
  770. return 0;
  771. }
  772. EXPORT_SYMBOL(generic_show_options);
  773. /*
  774. * If filesystem uses generic_show_options(), this function should be
  775. * called from the fill_super() callback.
  776. *
  777. * The .remount_fs callback usually needs to be handled in a special
  778. * way, to make sure, that previous options are not overwritten if the
  779. * remount fails.
  780. *
  781. * Also note, that if the filesystem's .remount_fs function doesn't
  782. * reset all options to their default value, but changes only newly
  783. * given options, then the displayed options will not reflect reality
  784. * any more.
  785. */
  786. void save_mount_options(struct super_block *sb, char *options)
  787. {
  788. BUG_ON(sb->s_options);
  789. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  790. }
  791. EXPORT_SYMBOL(save_mount_options);
  792. void replace_mount_options(struct super_block *sb, char *options)
  793. {
  794. char *old = sb->s_options;
  795. rcu_assign_pointer(sb->s_options, options);
  796. if (old) {
  797. synchronize_rcu();
  798. kfree(old);
  799. }
  800. }
  801. EXPORT_SYMBOL(replace_mount_options);
  802. #ifdef CONFIG_PROC_FS
  803. /* iterator */
  804. static void *m_start(struct seq_file *m, loff_t *pos)
  805. {
  806. struct proc_mounts *p = m->private;
  807. down_read(&namespace_sem);
  808. return seq_list_start(&p->ns->list, *pos);
  809. }
  810. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  811. {
  812. struct proc_mounts *p = m->private;
  813. return seq_list_next(v, &p->ns->list, pos);
  814. }
  815. static void m_stop(struct seq_file *m, void *v)
  816. {
  817. up_read(&namespace_sem);
  818. }
  819. int mnt_had_events(struct proc_mounts *p)
  820. {
  821. struct mnt_namespace *ns = p->ns;
  822. int res = 0;
  823. br_read_lock(vfsmount_lock);
  824. if (p->m.poll_event != ns->event) {
  825. p->m.poll_event = ns->event;
  826. res = 1;
  827. }
  828. br_read_unlock(vfsmount_lock);
  829. return res;
  830. }
  831. struct proc_fs_info {
  832. int flag;
  833. const char *str;
  834. };
  835. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  836. {
  837. static const struct proc_fs_info fs_info[] = {
  838. { MS_SYNCHRONOUS, ",sync" },
  839. { MS_DIRSYNC, ",dirsync" },
  840. { MS_MANDLOCK, ",mand" },
  841. { 0, NULL }
  842. };
  843. const struct proc_fs_info *fs_infop;
  844. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  845. if (sb->s_flags & fs_infop->flag)
  846. seq_puts(m, fs_infop->str);
  847. }
  848. return security_sb_show_options(m, sb);
  849. }
  850. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  851. {
  852. static const struct proc_fs_info mnt_info[] = {
  853. { MNT_NOSUID, ",nosuid" },
  854. { MNT_NODEV, ",nodev" },
  855. { MNT_NOEXEC, ",noexec" },
  856. { MNT_NOATIME, ",noatime" },
  857. { MNT_NODIRATIME, ",nodiratime" },
  858. { MNT_RELATIME, ",relatime" },
  859. { 0, NULL }
  860. };
  861. const struct proc_fs_info *fs_infop;
  862. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  863. if (mnt->mnt_flags & fs_infop->flag)
  864. seq_puts(m, fs_infop->str);
  865. }
  866. }
  867. static void show_type(struct seq_file *m, struct super_block *sb)
  868. {
  869. mangle(m, sb->s_type->name);
  870. if (sb->s_subtype && sb->s_subtype[0]) {
  871. seq_putc(m, '.');
  872. mangle(m, sb->s_subtype);
  873. }
  874. }
  875. static int show_vfsmnt(struct seq_file *m, void *v)
  876. {
  877. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  878. int err = 0;
  879. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  880. if (mnt->mnt_sb->s_op->show_devname) {
  881. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  882. if (err)
  883. goto out;
  884. } else {
  885. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  886. }
  887. seq_putc(m, ' ');
  888. seq_path(m, &mnt_path, " \t\n\\");
  889. seq_putc(m, ' ');
  890. show_type(m, mnt->mnt_sb);
  891. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  892. err = show_sb_opts(m, mnt->mnt_sb);
  893. if (err)
  894. goto out;
  895. show_mnt_opts(m, mnt);
  896. if (mnt->mnt_sb->s_op->show_options)
  897. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  898. seq_puts(m, " 0 0\n");
  899. out:
  900. return err;
  901. }
  902. const struct seq_operations mounts_op = {
  903. .start = m_start,
  904. .next = m_next,
  905. .stop = m_stop,
  906. .show = show_vfsmnt
  907. };
  908. static int show_mountinfo(struct seq_file *m, void *v)
  909. {
  910. struct proc_mounts *p = m->private;
  911. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  912. struct mount *r = real_mount(mnt);
  913. struct super_block *sb = mnt->mnt_sb;
  914. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  915. struct path root = p->root;
  916. int err = 0;
  917. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, r->mnt_parent->mnt.mnt_id,
  918. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  919. if (sb->s_op->show_path)
  920. err = sb->s_op->show_path(m, mnt);
  921. else
  922. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  923. if (err)
  924. goto out;
  925. seq_putc(m, ' ');
  926. /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
  927. err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
  928. if (err)
  929. goto out;
  930. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  931. show_mnt_opts(m, mnt);
  932. /* Tagged fields ("foo:X" or "bar") */
  933. if (IS_MNT_SHARED(mnt))
  934. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  935. if (IS_MNT_SLAVE(r)) {
  936. int master = r->mnt_master->mnt.mnt_group_id;
  937. int dom = get_dominating_id(r, &p->root);
  938. seq_printf(m, " master:%i", master);
  939. if (dom && dom != master)
  940. seq_printf(m, " propagate_from:%i", dom);
  941. }
  942. if (IS_MNT_UNBINDABLE(mnt))
  943. seq_puts(m, " unbindable");
  944. /* Filesystem specific data */
  945. seq_puts(m, " - ");
  946. show_type(m, sb);
  947. seq_putc(m, ' ');
  948. if (sb->s_op->show_devname)
  949. err = sb->s_op->show_devname(m, mnt);
  950. else
  951. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  952. if (err)
  953. goto out;
  954. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  955. err = show_sb_opts(m, sb);
  956. if (err)
  957. goto out;
  958. if (sb->s_op->show_options)
  959. err = sb->s_op->show_options(m, mnt);
  960. seq_putc(m, '\n');
  961. out:
  962. return err;
  963. }
  964. const struct seq_operations mountinfo_op = {
  965. .start = m_start,
  966. .next = m_next,
  967. .stop = m_stop,
  968. .show = show_mountinfo,
  969. };
  970. static int show_vfsstat(struct seq_file *m, void *v)
  971. {
  972. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  973. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  974. int err = 0;
  975. /* device */
  976. if (mnt->mnt_sb->s_op->show_devname) {
  977. seq_puts(m, "device ");
  978. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  979. } else {
  980. if (mnt->mnt_devname) {
  981. seq_puts(m, "device ");
  982. mangle(m, mnt->mnt_devname);
  983. } else
  984. seq_puts(m, "no device");
  985. }
  986. /* mount point */
  987. seq_puts(m, " mounted on ");
  988. seq_path(m, &mnt_path, " \t\n\\");
  989. seq_putc(m, ' ');
  990. /* file system type */
  991. seq_puts(m, "with fstype ");
  992. show_type(m, mnt->mnt_sb);
  993. /* optional statistics */
  994. if (mnt->mnt_sb->s_op->show_stats) {
  995. seq_putc(m, ' ');
  996. if (!err)
  997. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  998. }
  999. seq_putc(m, '\n');
  1000. return err;
  1001. }
  1002. const struct seq_operations mountstats_op = {
  1003. .start = m_start,
  1004. .next = m_next,
  1005. .stop = m_stop,
  1006. .show = show_vfsstat,
  1007. };
  1008. #endif /* CONFIG_PROC_FS */
  1009. /**
  1010. * may_umount_tree - check if a mount tree is busy
  1011. * @mnt: root of mount tree
  1012. *
  1013. * This is called to check if a tree of mounts has any
  1014. * open files, pwds, chroots or sub mounts that are
  1015. * busy.
  1016. */
  1017. int may_umount_tree(struct vfsmount *mnt)
  1018. {
  1019. int actual_refs = 0;
  1020. int minimum_refs = 0;
  1021. struct mount *p;
  1022. BUG_ON(!mnt);
  1023. /* write lock needed for mnt_get_count */
  1024. br_write_lock(vfsmount_lock);
  1025. for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
  1026. actual_refs += mnt_get_count(p);
  1027. minimum_refs += 2;
  1028. }
  1029. br_write_unlock(vfsmount_lock);
  1030. if (actual_refs > minimum_refs)
  1031. return 0;
  1032. return 1;
  1033. }
  1034. EXPORT_SYMBOL(may_umount_tree);
  1035. /**
  1036. * may_umount - check if a mount point is busy
  1037. * @mnt: root of mount
  1038. *
  1039. * This is called to check if a mount point has any
  1040. * open files, pwds, chroots or sub mounts. If the
  1041. * mount has sub mounts this will return busy
  1042. * regardless of whether the sub mounts are busy.
  1043. *
  1044. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1045. * give false negatives. The main reason why it's here is that we need
  1046. * a non-destructive way to look for easily umountable filesystems.
  1047. */
  1048. int may_umount(struct vfsmount *mnt)
  1049. {
  1050. int ret = 1;
  1051. down_read(&namespace_sem);
  1052. br_write_lock(vfsmount_lock);
  1053. if (propagate_mount_busy(real_mount(mnt), 2))
  1054. ret = 0;
  1055. br_write_unlock(vfsmount_lock);
  1056. up_read(&namespace_sem);
  1057. return ret;
  1058. }
  1059. EXPORT_SYMBOL(may_umount);
  1060. void release_mounts(struct list_head *head)
  1061. {
  1062. struct mount *mnt;
  1063. while (!list_empty(head)) {
  1064. mnt = list_first_entry(head, struct mount, mnt_hash);
  1065. list_del_init(&mnt->mnt_hash);
  1066. if (mnt_has_parent(mnt)) {
  1067. struct dentry *dentry;
  1068. struct vfsmount *m;
  1069. br_write_lock(vfsmount_lock);
  1070. dentry = mnt->mnt_mountpoint;
  1071. m = &mnt->mnt_parent->mnt;
  1072. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  1073. mnt->mnt_parent = mnt;
  1074. m->mnt_ghosts--;
  1075. br_write_unlock(vfsmount_lock);
  1076. dput(dentry);
  1077. mntput(m);
  1078. }
  1079. mntput(&mnt->mnt);
  1080. }
  1081. }
  1082. /*
  1083. * vfsmount lock must be held for write
  1084. * namespace_sem must be held for write
  1085. */
  1086. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  1087. {
  1088. LIST_HEAD(tmp_list);
  1089. struct mount *p;
  1090. for (p = mnt; p; p = next_mnt(p, &mnt->mnt))
  1091. list_move(&p->mnt_hash, &tmp_list);
  1092. if (propagate)
  1093. propagate_umount(&tmp_list);
  1094. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1095. list_del_init(&p->mnt_expire);
  1096. list_del_init(&p->mnt.mnt_list);
  1097. __touch_mnt_namespace(p->mnt_ns);
  1098. p->mnt_ns = NULL;
  1099. __mnt_make_shortterm(p);
  1100. list_del_init(&p->mnt_child);
  1101. if (mnt_has_parent(p)) {
  1102. p->mnt_parent->mnt.mnt_ghosts++;
  1103. dentry_reset_mounted(p->mnt_mountpoint);
  1104. }
  1105. change_mnt_propagation(p, MS_PRIVATE);
  1106. }
  1107. list_splice(&tmp_list, kill);
  1108. }
  1109. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  1110. static int do_umount(struct mount *mnt, int flags)
  1111. {
  1112. struct super_block *sb = mnt->mnt.mnt_sb;
  1113. int retval;
  1114. LIST_HEAD(umount_list);
  1115. retval = security_sb_umount(&mnt->mnt, flags);
  1116. if (retval)
  1117. return retval;
  1118. /*
  1119. * Allow userspace to request a mountpoint be expired rather than
  1120. * unmounting unconditionally. Unmount only happens if:
  1121. * (1) the mark is already set (the mark is cleared by mntput())
  1122. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1123. */
  1124. if (flags & MNT_EXPIRE) {
  1125. if (&mnt->mnt == current->fs->root.mnt ||
  1126. flags & (MNT_FORCE | MNT_DETACH))
  1127. return -EINVAL;
  1128. /*
  1129. * probably don't strictly need the lock here if we examined
  1130. * all race cases, but it's a slowpath.
  1131. */
  1132. br_write_lock(vfsmount_lock);
  1133. if (mnt_get_count(mnt) != 2) {
  1134. br_write_unlock(vfsmount_lock);
  1135. return -EBUSY;
  1136. }
  1137. br_write_unlock(vfsmount_lock);
  1138. if (!xchg(&mnt->mnt.mnt_expiry_mark, 1))
  1139. return -EAGAIN;
  1140. }
  1141. /*
  1142. * If we may have to abort operations to get out of this
  1143. * mount, and they will themselves hold resources we must
  1144. * allow the fs to do things. In the Unix tradition of
  1145. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1146. * might fail to complete on the first run through as other tasks
  1147. * must return, and the like. Thats for the mount program to worry
  1148. * about for the moment.
  1149. */
  1150. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1151. sb->s_op->umount_begin(sb);
  1152. }
  1153. /*
  1154. * No sense to grab the lock for this test, but test itself looks
  1155. * somewhat bogus. Suggestions for better replacement?
  1156. * Ho-hum... In principle, we might treat that as umount + switch
  1157. * to rootfs. GC would eventually take care of the old vfsmount.
  1158. * Actually it makes sense, especially if rootfs would contain a
  1159. * /reboot - static binary that would close all descriptors and
  1160. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1161. */
  1162. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1163. /*
  1164. * Special case for "unmounting" root ...
  1165. * we just try to remount it readonly.
  1166. */
  1167. down_write(&sb->s_umount);
  1168. if (!(sb->s_flags & MS_RDONLY))
  1169. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1170. up_write(&sb->s_umount);
  1171. return retval;
  1172. }
  1173. down_write(&namespace_sem);
  1174. br_write_lock(vfsmount_lock);
  1175. event++;
  1176. if (!(flags & MNT_DETACH))
  1177. shrink_submounts(mnt, &umount_list);
  1178. retval = -EBUSY;
  1179. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1180. if (!list_empty(&mnt->mnt.mnt_list))
  1181. umount_tree(mnt, 1, &umount_list);
  1182. retval = 0;
  1183. }
  1184. br_write_unlock(vfsmount_lock);
  1185. up_write(&namespace_sem);
  1186. release_mounts(&umount_list);
  1187. return retval;
  1188. }
  1189. /*
  1190. * Now umount can handle mount points as well as block devices.
  1191. * This is important for filesystems which use unnamed block devices.
  1192. *
  1193. * We now support a flag for forced unmount like the other 'big iron'
  1194. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1195. */
  1196. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1197. {
  1198. struct path path;
  1199. struct mount *mnt;
  1200. int retval;
  1201. int lookup_flags = 0;
  1202. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1203. return -EINVAL;
  1204. if (!(flags & UMOUNT_NOFOLLOW))
  1205. lookup_flags |= LOOKUP_FOLLOW;
  1206. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1207. if (retval)
  1208. goto out;
  1209. mnt = real_mount(path.mnt);
  1210. retval = -EINVAL;
  1211. if (path.dentry != path.mnt->mnt_root)
  1212. goto dput_and_out;
  1213. if (!check_mnt(mnt))
  1214. goto dput_and_out;
  1215. retval = -EPERM;
  1216. if (!capable(CAP_SYS_ADMIN))
  1217. goto dput_and_out;
  1218. retval = do_umount(mnt, flags);
  1219. dput_and_out:
  1220. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1221. dput(path.dentry);
  1222. mntput_no_expire(mnt);
  1223. out:
  1224. return retval;
  1225. }
  1226. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1227. /*
  1228. * The 2.0 compatible umount. No flags.
  1229. */
  1230. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1231. {
  1232. return sys_umount(name, 0);
  1233. }
  1234. #endif
  1235. static int mount_is_safe(struct path *path)
  1236. {
  1237. if (capable(CAP_SYS_ADMIN))
  1238. return 0;
  1239. return -EPERM;
  1240. #ifdef notyet
  1241. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1242. return -EPERM;
  1243. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1244. if (current_uid() != path->dentry->d_inode->i_uid)
  1245. return -EPERM;
  1246. }
  1247. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1248. return -EPERM;
  1249. return 0;
  1250. #endif
  1251. }
  1252. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1253. int flag)
  1254. {
  1255. struct mount *res, *p, *q, *r;
  1256. struct path path;
  1257. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&mnt->mnt))
  1258. return NULL;
  1259. res = q = clone_mnt(mnt, dentry, flag);
  1260. if (!q)
  1261. goto Enomem;
  1262. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1263. p = mnt;
  1264. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1265. struct mount *s;
  1266. if (!is_subdir(r->mnt_mountpoint, dentry))
  1267. continue;
  1268. for (s = r; s; s = next_mnt(s, &r->mnt)) {
  1269. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&s->mnt)) {
  1270. s = skip_mnt_tree(s);
  1271. continue;
  1272. }
  1273. while (p != s->mnt_parent) {
  1274. p = p->mnt_parent;
  1275. q = q->mnt_parent;
  1276. }
  1277. p = s;
  1278. path.mnt = &q->mnt;
  1279. path.dentry = p->mnt_mountpoint;
  1280. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1281. if (!q)
  1282. goto Enomem;
  1283. br_write_lock(vfsmount_lock);
  1284. list_add_tail(&q->mnt.mnt_list, &res->mnt.mnt_list);
  1285. attach_mnt(q, &path);
  1286. br_write_unlock(vfsmount_lock);
  1287. }
  1288. }
  1289. return res;
  1290. Enomem:
  1291. if (res) {
  1292. LIST_HEAD(umount_list);
  1293. br_write_lock(vfsmount_lock);
  1294. umount_tree(res, 0, &umount_list);
  1295. br_write_unlock(vfsmount_lock);
  1296. release_mounts(&umount_list);
  1297. }
  1298. return NULL;
  1299. }
  1300. struct vfsmount *collect_mounts(struct path *path)
  1301. {
  1302. struct mount *tree;
  1303. down_write(&namespace_sem);
  1304. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1305. CL_COPY_ALL | CL_PRIVATE);
  1306. up_write(&namespace_sem);
  1307. return tree ? &tree->mnt : NULL;
  1308. }
  1309. void drop_collected_mounts(struct vfsmount *mnt)
  1310. {
  1311. LIST_HEAD(umount_list);
  1312. down_write(&namespace_sem);
  1313. br_write_lock(vfsmount_lock);
  1314. umount_tree(real_mount(mnt), 0, &umount_list);
  1315. br_write_unlock(vfsmount_lock);
  1316. up_write(&namespace_sem);
  1317. release_mounts(&umount_list);
  1318. }
  1319. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1320. struct vfsmount *root)
  1321. {
  1322. struct vfsmount *mnt;
  1323. int res = f(root, arg);
  1324. if (res)
  1325. return res;
  1326. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1327. res = f(mnt, arg);
  1328. if (res)
  1329. return res;
  1330. }
  1331. return 0;
  1332. }
  1333. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1334. {
  1335. struct mount *p;
  1336. for (p = mnt; p != end; p = next_mnt(p, &mnt->mnt)) {
  1337. if (p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt))
  1338. mnt_release_group_id(p);
  1339. }
  1340. }
  1341. static int invent_group_ids(struct mount *mnt, bool recurse)
  1342. {
  1343. struct mount *p;
  1344. for (p = mnt; p; p = recurse ? next_mnt(p, &mnt->mnt) : NULL) {
  1345. if (!p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt)) {
  1346. int err = mnt_alloc_group_id(p);
  1347. if (err) {
  1348. cleanup_group_ids(mnt, p);
  1349. return err;
  1350. }
  1351. }
  1352. }
  1353. return 0;
  1354. }
  1355. /*
  1356. * @source_mnt : mount tree to be attached
  1357. * @nd : place the mount tree @source_mnt is attached
  1358. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1359. * store the parent mount and mountpoint dentry.
  1360. * (done when source_mnt is moved)
  1361. *
  1362. * NOTE: in the table below explains the semantics when a source mount
  1363. * of a given type is attached to a destination mount of a given type.
  1364. * ---------------------------------------------------------------------------
  1365. * | BIND MOUNT OPERATION |
  1366. * |**************************************************************************
  1367. * | source-->| shared | private | slave | unbindable |
  1368. * | dest | | | | |
  1369. * | | | | | | |
  1370. * | v | | | | |
  1371. * |**************************************************************************
  1372. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1373. * | | | | | |
  1374. * |non-shared| shared (+) | private | slave (*) | invalid |
  1375. * ***************************************************************************
  1376. * A bind operation clones the source mount and mounts the clone on the
  1377. * destination mount.
  1378. *
  1379. * (++) the cloned mount is propagated to all the mounts in the propagation
  1380. * tree of the destination mount and the cloned mount is added to
  1381. * the peer group of the source mount.
  1382. * (+) the cloned mount is created under the destination mount and is marked
  1383. * as shared. The cloned mount is added to the peer group of the source
  1384. * mount.
  1385. * (+++) the mount is propagated to all the mounts in the propagation tree
  1386. * of the destination mount and the cloned mount is made slave
  1387. * of the same master as that of the source mount. The cloned mount
  1388. * is marked as 'shared and slave'.
  1389. * (*) the cloned mount is made a slave of the same master as that of the
  1390. * source mount.
  1391. *
  1392. * ---------------------------------------------------------------------------
  1393. * | MOVE MOUNT OPERATION |
  1394. * |**************************************************************************
  1395. * | source-->| shared | private | slave | unbindable |
  1396. * | dest | | | | |
  1397. * | | | | | | |
  1398. * | v | | | | |
  1399. * |**************************************************************************
  1400. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1401. * | | | | | |
  1402. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1403. * ***************************************************************************
  1404. *
  1405. * (+) the mount is moved to the destination. And is then propagated to
  1406. * all the mounts in the propagation tree of the destination mount.
  1407. * (+*) the mount is moved to the destination.
  1408. * (+++) the mount is moved to the destination and is then propagated to
  1409. * all the mounts belonging to the destination mount's propagation tree.
  1410. * the mount is marked as 'shared and slave'.
  1411. * (*) the mount continues to be a slave at the new location.
  1412. *
  1413. * if the source mount is a tree, the operations explained above is
  1414. * applied to each mount in the tree.
  1415. * Must be called without spinlocks held, since this function can sleep
  1416. * in allocations.
  1417. */
  1418. static int attach_recursive_mnt(struct mount *source_mnt,
  1419. struct path *path, struct path *parent_path)
  1420. {
  1421. LIST_HEAD(tree_list);
  1422. struct mount *dest_mnt = real_mount(path->mnt);
  1423. struct dentry *dest_dentry = path->dentry;
  1424. struct mount *child, *p;
  1425. int err;
  1426. if (IS_MNT_SHARED(&dest_mnt->mnt)) {
  1427. err = invent_group_ids(source_mnt, true);
  1428. if (err)
  1429. goto out;
  1430. }
  1431. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1432. if (err)
  1433. goto out_cleanup_ids;
  1434. br_write_lock(vfsmount_lock);
  1435. if (IS_MNT_SHARED(&dest_mnt->mnt)) {
  1436. for (p = source_mnt; p; p = next_mnt(p, &source_mnt->mnt))
  1437. set_mnt_shared(p);
  1438. }
  1439. if (parent_path) {
  1440. detach_mnt(source_mnt, parent_path);
  1441. attach_mnt(source_mnt, path);
  1442. touch_mnt_namespace(source_mnt->mnt_ns);
  1443. } else {
  1444. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1445. commit_tree(source_mnt);
  1446. }
  1447. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1448. list_del_init(&child->mnt_hash);
  1449. commit_tree(child);
  1450. }
  1451. br_write_unlock(vfsmount_lock);
  1452. return 0;
  1453. out_cleanup_ids:
  1454. if (IS_MNT_SHARED(&dest_mnt->mnt))
  1455. cleanup_group_ids(source_mnt, NULL);
  1456. out:
  1457. return err;
  1458. }
  1459. static int lock_mount(struct path *path)
  1460. {
  1461. struct vfsmount *mnt;
  1462. retry:
  1463. mutex_lock(&path->dentry->d_inode->i_mutex);
  1464. if (unlikely(cant_mount(path->dentry))) {
  1465. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1466. return -ENOENT;
  1467. }
  1468. down_write(&namespace_sem);
  1469. mnt = lookup_mnt(path);
  1470. if (likely(!mnt))
  1471. return 0;
  1472. up_write(&namespace_sem);
  1473. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1474. path_put(path);
  1475. path->mnt = mnt;
  1476. path->dentry = dget(mnt->mnt_root);
  1477. goto retry;
  1478. }
  1479. static void unlock_mount(struct path *path)
  1480. {
  1481. up_write(&namespace_sem);
  1482. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1483. }
  1484. static int graft_tree(struct mount *mnt, struct path *path)
  1485. {
  1486. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1487. return -EINVAL;
  1488. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1489. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1490. return -ENOTDIR;
  1491. if (d_unlinked(path->dentry))
  1492. return -ENOENT;
  1493. return attach_recursive_mnt(mnt, path, NULL);
  1494. }
  1495. /*
  1496. * Sanity check the flags to change_mnt_propagation.
  1497. */
  1498. static int flags_to_propagation_type(int flags)
  1499. {
  1500. int type = flags & ~(MS_REC | MS_SILENT);
  1501. /* Fail if any non-propagation flags are set */
  1502. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1503. return 0;
  1504. /* Only one propagation flag should be set */
  1505. if (!is_power_of_2(type))
  1506. return 0;
  1507. return type;
  1508. }
  1509. /*
  1510. * recursively change the type of the mountpoint.
  1511. */
  1512. static int do_change_type(struct path *path, int flag)
  1513. {
  1514. struct mount *m;
  1515. struct mount *mnt = real_mount(path->mnt);
  1516. int recurse = flag & MS_REC;
  1517. int type;
  1518. int err = 0;
  1519. if (!capable(CAP_SYS_ADMIN))
  1520. return -EPERM;
  1521. if (path->dentry != path->mnt->mnt_root)
  1522. return -EINVAL;
  1523. type = flags_to_propagation_type(flag);
  1524. if (!type)
  1525. return -EINVAL;
  1526. down_write(&namespace_sem);
  1527. if (type == MS_SHARED) {
  1528. err = invent_group_ids(mnt, recurse);
  1529. if (err)
  1530. goto out_unlock;
  1531. }
  1532. br_write_lock(vfsmount_lock);
  1533. for (m = mnt; m; m = (recurse ? next_mnt(m, &mnt->mnt) : NULL))
  1534. change_mnt_propagation(m, type);
  1535. br_write_unlock(vfsmount_lock);
  1536. out_unlock:
  1537. up_write(&namespace_sem);
  1538. return err;
  1539. }
  1540. /*
  1541. * do loopback mount.
  1542. */
  1543. static int do_loopback(struct path *path, char *old_name,
  1544. int recurse)
  1545. {
  1546. LIST_HEAD(umount_list);
  1547. struct path old_path;
  1548. struct mount *mnt = NULL, *old;
  1549. int err = mount_is_safe(path);
  1550. if (err)
  1551. return err;
  1552. if (!old_name || !*old_name)
  1553. return -EINVAL;
  1554. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1555. if (err)
  1556. return err;
  1557. err = lock_mount(path);
  1558. if (err)
  1559. goto out;
  1560. old = real_mount(old_path.mnt);
  1561. err = -EINVAL;
  1562. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1563. goto out2;
  1564. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1565. goto out2;
  1566. err = -ENOMEM;
  1567. if (recurse)
  1568. mnt = copy_tree(old, old_path.dentry, 0);
  1569. else
  1570. mnt = clone_mnt(old, old_path.dentry, 0);
  1571. if (!mnt)
  1572. goto out2;
  1573. err = graft_tree(mnt, path);
  1574. if (err) {
  1575. br_write_lock(vfsmount_lock);
  1576. umount_tree(mnt, 0, &umount_list);
  1577. br_write_unlock(vfsmount_lock);
  1578. }
  1579. out2:
  1580. unlock_mount(path);
  1581. release_mounts(&umount_list);
  1582. out:
  1583. path_put(&old_path);
  1584. return err;
  1585. }
  1586. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1587. {
  1588. int error = 0;
  1589. int readonly_request = 0;
  1590. if (ms_flags & MS_RDONLY)
  1591. readonly_request = 1;
  1592. if (readonly_request == __mnt_is_readonly(mnt))
  1593. return 0;
  1594. if (readonly_request)
  1595. error = mnt_make_readonly(real_mount(mnt));
  1596. else
  1597. __mnt_unmake_readonly(real_mount(mnt));
  1598. return error;
  1599. }
  1600. /*
  1601. * change filesystem flags. dir should be a physical root of filesystem.
  1602. * If you've mounted a non-root directory somewhere and want to do remount
  1603. * on it - tough luck.
  1604. */
  1605. static int do_remount(struct path *path, int flags, int mnt_flags,
  1606. void *data)
  1607. {
  1608. int err;
  1609. struct super_block *sb = path->mnt->mnt_sb;
  1610. struct mount *mnt = real_mount(path->mnt);
  1611. if (!capable(CAP_SYS_ADMIN))
  1612. return -EPERM;
  1613. if (!check_mnt(mnt))
  1614. return -EINVAL;
  1615. if (path->dentry != path->mnt->mnt_root)
  1616. return -EINVAL;
  1617. err = security_sb_remount(sb, data);
  1618. if (err)
  1619. return err;
  1620. down_write(&sb->s_umount);
  1621. if (flags & MS_BIND)
  1622. err = change_mount_flags(path->mnt, flags);
  1623. else
  1624. err = do_remount_sb(sb, flags, data, 0);
  1625. if (!err) {
  1626. br_write_lock(vfsmount_lock);
  1627. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1628. mnt->mnt.mnt_flags = mnt_flags;
  1629. br_write_unlock(vfsmount_lock);
  1630. }
  1631. up_write(&sb->s_umount);
  1632. if (!err) {
  1633. br_write_lock(vfsmount_lock);
  1634. touch_mnt_namespace(mnt->mnt_ns);
  1635. br_write_unlock(vfsmount_lock);
  1636. }
  1637. return err;
  1638. }
  1639. static inline int tree_contains_unbindable(struct mount *mnt)
  1640. {
  1641. struct mount *p;
  1642. for (p = mnt; p; p = next_mnt(p, &mnt->mnt)) {
  1643. if (IS_MNT_UNBINDABLE(&p->mnt))
  1644. return 1;
  1645. }
  1646. return 0;
  1647. }
  1648. static int do_move_mount(struct path *path, char *old_name)
  1649. {
  1650. struct path old_path, parent_path;
  1651. struct mount *p;
  1652. struct mount *old;
  1653. int err = 0;
  1654. if (!capable(CAP_SYS_ADMIN))
  1655. return -EPERM;
  1656. if (!old_name || !*old_name)
  1657. return -EINVAL;
  1658. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1659. if (err)
  1660. return err;
  1661. err = lock_mount(path);
  1662. if (err < 0)
  1663. goto out;
  1664. old = real_mount(old_path.mnt);
  1665. err = -EINVAL;
  1666. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1667. goto out1;
  1668. if (d_unlinked(path->dentry))
  1669. goto out1;
  1670. err = -EINVAL;
  1671. if (old_path.dentry != old_path.mnt->mnt_root)
  1672. goto out1;
  1673. if (!mnt_has_parent(old))
  1674. goto out1;
  1675. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1676. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1677. goto out1;
  1678. /*
  1679. * Don't move a mount residing in a shared parent.
  1680. */
  1681. if (IS_MNT_SHARED(&old->mnt_parent->mnt))
  1682. goto out1;
  1683. /*
  1684. * Don't move a mount tree containing unbindable mounts to a destination
  1685. * mount which is shared.
  1686. */
  1687. if (IS_MNT_SHARED(path->mnt) &&
  1688. tree_contains_unbindable(old))
  1689. goto out1;
  1690. err = -ELOOP;
  1691. for (p = real_mount(path->mnt); mnt_has_parent(p); p = p->mnt_parent)
  1692. if (p == old)
  1693. goto out1;
  1694. err = attach_recursive_mnt(old, path, &parent_path);
  1695. if (err)
  1696. goto out1;
  1697. /* if the mount is moved, it should no longer be expire
  1698. * automatically */
  1699. list_del_init(&old->mnt_expire);
  1700. out1:
  1701. unlock_mount(path);
  1702. out:
  1703. if (!err)
  1704. path_put(&parent_path);
  1705. path_put(&old_path);
  1706. return err;
  1707. }
  1708. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1709. {
  1710. int err;
  1711. const char *subtype = strchr(fstype, '.');
  1712. if (subtype) {
  1713. subtype++;
  1714. err = -EINVAL;
  1715. if (!subtype[0])
  1716. goto err;
  1717. } else
  1718. subtype = "";
  1719. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1720. err = -ENOMEM;
  1721. if (!mnt->mnt_sb->s_subtype)
  1722. goto err;
  1723. return mnt;
  1724. err:
  1725. mntput(mnt);
  1726. return ERR_PTR(err);
  1727. }
  1728. static struct vfsmount *
  1729. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1730. {
  1731. struct file_system_type *type = get_fs_type(fstype);
  1732. struct vfsmount *mnt;
  1733. if (!type)
  1734. return ERR_PTR(-ENODEV);
  1735. mnt = vfs_kern_mount(type, flags, name, data);
  1736. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1737. !mnt->mnt_sb->s_subtype)
  1738. mnt = fs_set_subtype(mnt, fstype);
  1739. put_filesystem(type);
  1740. return mnt;
  1741. }
  1742. /*
  1743. * add a mount into a namespace's mount tree
  1744. */
  1745. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1746. {
  1747. int err;
  1748. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1749. err = lock_mount(path);
  1750. if (err)
  1751. return err;
  1752. err = -EINVAL;
  1753. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
  1754. goto unlock;
  1755. /* Refuse the same filesystem on the same mount point */
  1756. err = -EBUSY;
  1757. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1758. path->mnt->mnt_root == path->dentry)
  1759. goto unlock;
  1760. err = -EINVAL;
  1761. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1762. goto unlock;
  1763. newmnt->mnt.mnt_flags = mnt_flags;
  1764. err = graft_tree(newmnt, path);
  1765. unlock:
  1766. unlock_mount(path);
  1767. return err;
  1768. }
  1769. /*
  1770. * create a new mount for userspace and request it to be added into the
  1771. * namespace's tree
  1772. */
  1773. static int do_new_mount(struct path *path, char *type, int flags,
  1774. int mnt_flags, char *name, void *data)
  1775. {
  1776. struct vfsmount *mnt;
  1777. int err;
  1778. if (!type)
  1779. return -EINVAL;
  1780. /* we need capabilities... */
  1781. if (!capable(CAP_SYS_ADMIN))
  1782. return -EPERM;
  1783. mnt = do_kern_mount(type, flags, name, data);
  1784. if (IS_ERR(mnt))
  1785. return PTR_ERR(mnt);
  1786. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1787. if (err)
  1788. mntput(mnt);
  1789. return err;
  1790. }
  1791. int finish_automount(struct vfsmount *m, struct path *path)
  1792. {
  1793. struct mount *mnt = real_mount(m);
  1794. int err;
  1795. /* The new mount record should have at least 2 refs to prevent it being
  1796. * expired before we get a chance to add it
  1797. */
  1798. BUG_ON(mnt_get_count(mnt) < 2);
  1799. if (m->mnt_sb == path->mnt->mnt_sb &&
  1800. m->mnt_root == path->dentry) {
  1801. err = -ELOOP;
  1802. goto fail;
  1803. }
  1804. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1805. if (!err)
  1806. return 0;
  1807. fail:
  1808. /* remove m from any expiration list it may be on */
  1809. if (!list_empty(&mnt->mnt_expire)) {
  1810. down_write(&namespace_sem);
  1811. br_write_lock(vfsmount_lock);
  1812. list_del_init(&mnt->mnt_expire);
  1813. br_write_unlock(vfsmount_lock);
  1814. up_write(&namespace_sem);
  1815. }
  1816. mntput(m);
  1817. mntput(m);
  1818. return err;
  1819. }
  1820. /**
  1821. * mnt_set_expiry - Put a mount on an expiration list
  1822. * @mnt: The mount to list.
  1823. * @expiry_list: The list to add the mount to.
  1824. */
  1825. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1826. {
  1827. down_write(&namespace_sem);
  1828. br_write_lock(vfsmount_lock);
  1829. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1830. br_write_unlock(vfsmount_lock);
  1831. up_write(&namespace_sem);
  1832. }
  1833. EXPORT_SYMBOL(mnt_set_expiry);
  1834. /*
  1835. * process a list of expirable mountpoints with the intent of discarding any
  1836. * mountpoints that aren't in use and haven't been touched since last we came
  1837. * here
  1838. */
  1839. void mark_mounts_for_expiry(struct list_head *mounts)
  1840. {
  1841. struct mount *mnt, *next;
  1842. LIST_HEAD(graveyard);
  1843. LIST_HEAD(umounts);
  1844. if (list_empty(mounts))
  1845. return;
  1846. down_write(&namespace_sem);
  1847. br_write_lock(vfsmount_lock);
  1848. /* extract from the expiration list every vfsmount that matches the
  1849. * following criteria:
  1850. * - only referenced by its parent vfsmount
  1851. * - still marked for expiry (marked on the last call here; marks are
  1852. * cleared by mntput())
  1853. */
  1854. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1855. if (!xchg(&mnt->mnt.mnt_expiry_mark, 1) ||
  1856. propagate_mount_busy(mnt, 1))
  1857. continue;
  1858. list_move(&mnt->mnt_expire, &graveyard);
  1859. }
  1860. while (!list_empty(&graveyard)) {
  1861. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1862. touch_mnt_namespace(mnt->mnt_ns);
  1863. umount_tree(mnt, 1, &umounts);
  1864. }
  1865. br_write_unlock(vfsmount_lock);
  1866. up_write(&namespace_sem);
  1867. release_mounts(&umounts);
  1868. }
  1869. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1870. /*
  1871. * Ripoff of 'select_parent()'
  1872. *
  1873. * search the list of submounts for a given mountpoint, and move any
  1874. * shrinkable submounts to the 'graveyard' list.
  1875. */
  1876. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1877. {
  1878. struct mount *this_parent = parent;
  1879. struct list_head *next;
  1880. int found = 0;
  1881. repeat:
  1882. next = this_parent->mnt_mounts.next;
  1883. resume:
  1884. while (next != &this_parent->mnt_mounts) {
  1885. struct list_head *tmp = next;
  1886. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1887. next = tmp->next;
  1888. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1889. continue;
  1890. /*
  1891. * Descend a level if the d_mounts list is non-empty.
  1892. */
  1893. if (!list_empty(&mnt->mnt_mounts)) {
  1894. this_parent = mnt;
  1895. goto repeat;
  1896. }
  1897. if (!propagate_mount_busy(mnt, 1)) {
  1898. list_move_tail(&mnt->mnt_expire, graveyard);
  1899. found++;
  1900. }
  1901. }
  1902. /*
  1903. * All done at this level ... ascend and resume the search
  1904. */
  1905. if (this_parent != parent) {
  1906. next = this_parent->mnt_child.next;
  1907. this_parent = this_parent->mnt_parent;
  1908. goto resume;
  1909. }
  1910. return found;
  1911. }
  1912. /*
  1913. * process a list of expirable mountpoints with the intent of discarding any
  1914. * submounts of a specific parent mountpoint
  1915. *
  1916. * vfsmount_lock must be held for write
  1917. */
  1918. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1919. {
  1920. LIST_HEAD(graveyard);
  1921. struct mount *m;
  1922. /* extract submounts of 'mountpoint' from the expiration list */
  1923. while (select_submounts(mnt, &graveyard)) {
  1924. while (!list_empty(&graveyard)) {
  1925. m = list_first_entry(&graveyard, struct mount,
  1926. mnt_expire);
  1927. touch_mnt_namespace(m->mnt_ns);
  1928. umount_tree(m, 1, umounts);
  1929. }
  1930. }
  1931. }
  1932. /*
  1933. * Some copy_from_user() implementations do not return the exact number of
  1934. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1935. * Note that this function differs from copy_from_user() in that it will oops
  1936. * on bad values of `to', rather than returning a short copy.
  1937. */
  1938. static long exact_copy_from_user(void *to, const void __user * from,
  1939. unsigned long n)
  1940. {
  1941. char *t = to;
  1942. const char __user *f = from;
  1943. char c;
  1944. if (!access_ok(VERIFY_READ, from, n))
  1945. return n;
  1946. while (n) {
  1947. if (__get_user(c, f)) {
  1948. memset(t, 0, n);
  1949. break;
  1950. }
  1951. *t++ = c;
  1952. f++;
  1953. n--;
  1954. }
  1955. return n;
  1956. }
  1957. int copy_mount_options(const void __user * data, unsigned long *where)
  1958. {
  1959. int i;
  1960. unsigned long page;
  1961. unsigned long size;
  1962. *where = 0;
  1963. if (!data)
  1964. return 0;
  1965. if (!(page = __get_free_page(GFP_KERNEL)))
  1966. return -ENOMEM;
  1967. /* We only care that *some* data at the address the user
  1968. * gave us is valid. Just in case, we'll zero
  1969. * the remainder of the page.
  1970. */
  1971. /* copy_from_user cannot cross TASK_SIZE ! */
  1972. size = TASK_SIZE - (unsigned long)data;
  1973. if (size > PAGE_SIZE)
  1974. size = PAGE_SIZE;
  1975. i = size - exact_copy_from_user((void *)page, data, size);
  1976. if (!i) {
  1977. free_page(page);
  1978. return -EFAULT;
  1979. }
  1980. if (i != PAGE_SIZE)
  1981. memset((char *)page + i, 0, PAGE_SIZE - i);
  1982. *where = page;
  1983. return 0;
  1984. }
  1985. int copy_mount_string(const void __user *data, char **where)
  1986. {
  1987. char *tmp;
  1988. if (!data) {
  1989. *where = NULL;
  1990. return 0;
  1991. }
  1992. tmp = strndup_user(data, PAGE_SIZE);
  1993. if (IS_ERR(tmp))
  1994. return PTR_ERR(tmp);
  1995. *where = tmp;
  1996. return 0;
  1997. }
  1998. /*
  1999. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2000. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2001. *
  2002. * data is a (void *) that can point to any structure up to
  2003. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2004. * information (or be NULL).
  2005. *
  2006. * Pre-0.97 versions of mount() didn't have a flags word.
  2007. * When the flags word was introduced its top half was required
  2008. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2009. * Therefore, if this magic number is present, it carries no information
  2010. * and must be discarded.
  2011. */
  2012. long do_mount(char *dev_name, char *dir_name, char *type_page,
  2013. unsigned long flags, void *data_page)
  2014. {
  2015. struct path path;
  2016. int retval = 0;
  2017. int mnt_flags = 0;
  2018. /* Discard magic */
  2019. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2020. flags &= ~MS_MGC_MSK;
  2021. /* Basic sanity checks */
  2022. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2023. return -EINVAL;
  2024. if (data_page)
  2025. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2026. /* ... and get the mountpoint */
  2027. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2028. if (retval)
  2029. return retval;
  2030. retval = security_sb_mount(dev_name, &path,
  2031. type_page, flags, data_page);
  2032. if (retval)
  2033. goto dput_out;
  2034. /* Default to relatime unless overriden */
  2035. if (!(flags & MS_NOATIME))
  2036. mnt_flags |= MNT_RELATIME;
  2037. /* Separate the per-mountpoint flags */
  2038. if (flags & MS_NOSUID)
  2039. mnt_flags |= MNT_NOSUID;
  2040. if (flags & MS_NODEV)
  2041. mnt_flags |= MNT_NODEV;
  2042. if (flags & MS_NOEXEC)
  2043. mnt_flags |= MNT_NOEXEC;
  2044. if (flags & MS_NOATIME)
  2045. mnt_flags |= MNT_NOATIME;
  2046. if (flags & MS_NODIRATIME)
  2047. mnt_flags |= MNT_NODIRATIME;
  2048. if (flags & MS_STRICTATIME)
  2049. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2050. if (flags & MS_RDONLY)
  2051. mnt_flags |= MNT_READONLY;
  2052. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2053. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2054. MS_STRICTATIME);
  2055. if (flags & MS_REMOUNT)
  2056. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2057. data_page);
  2058. else if (flags & MS_BIND)
  2059. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2060. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2061. retval = do_change_type(&path, flags);
  2062. else if (flags & MS_MOVE)
  2063. retval = do_move_mount(&path, dev_name);
  2064. else
  2065. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2066. dev_name, data_page);
  2067. dput_out:
  2068. path_put(&path);
  2069. return retval;
  2070. }
  2071. static struct mnt_namespace *alloc_mnt_ns(void)
  2072. {
  2073. struct mnt_namespace *new_ns;
  2074. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2075. if (!new_ns)
  2076. return ERR_PTR(-ENOMEM);
  2077. atomic_set(&new_ns->count, 1);
  2078. new_ns->root = NULL;
  2079. INIT_LIST_HEAD(&new_ns->list);
  2080. init_waitqueue_head(&new_ns->poll);
  2081. new_ns->event = 0;
  2082. return new_ns;
  2083. }
  2084. void mnt_make_longterm(struct vfsmount *mnt)
  2085. {
  2086. __mnt_make_longterm(real_mount(mnt));
  2087. }
  2088. void mnt_make_shortterm(struct vfsmount *m)
  2089. {
  2090. #ifdef CONFIG_SMP
  2091. struct mount *mnt = real_mount(m);
  2092. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  2093. return;
  2094. br_write_lock(vfsmount_lock);
  2095. atomic_dec(&mnt->mnt_longterm);
  2096. br_write_unlock(vfsmount_lock);
  2097. #endif
  2098. }
  2099. /*
  2100. * Allocate a new namespace structure and populate it with contents
  2101. * copied from the namespace of the passed in task structure.
  2102. */
  2103. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2104. struct fs_struct *fs)
  2105. {
  2106. struct mnt_namespace *new_ns;
  2107. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2108. struct mount *p, *q;
  2109. struct mount *new;
  2110. new_ns = alloc_mnt_ns();
  2111. if (IS_ERR(new_ns))
  2112. return new_ns;
  2113. down_write(&namespace_sem);
  2114. /* First pass: copy the tree topology */
  2115. new = copy_tree(real_mount(mnt_ns->root), mnt_ns->root->mnt_root,
  2116. CL_COPY_ALL | CL_EXPIRE);
  2117. if (!new) {
  2118. up_write(&namespace_sem);
  2119. kfree(new_ns);
  2120. return ERR_PTR(-ENOMEM);
  2121. }
  2122. new_ns->root = &new->mnt;
  2123. br_write_lock(vfsmount_lock);
  2124. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2125. br_write_unlock(vfsmount_lock);
  2126. /*
  2127. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2128. * as belonging to new namespace. We have already acquired a private
  2129. * fs_struct, so tsk->fs->lock is not needed.
  2130. */
  2131. p = real_mount(mnt_ns->root);
  2132. q = new;
  2133. while (p) {
  2134. q->mnt_ns = new_ns;
  2135. __mnt_make_longterm(q);
  2136. if (fs) {
  2137. if (&p->mnt == fs->root.mnt) {
  2138. fs->root.mnt = mntget(&q->mnt);
  2139. __mnt_make_longterm(q);
  2140. mnt_make_shortterm(&p->mnt);
  2141. rootmnt = &p->mnt;
  2142. }
  2143. if (&p->mnt == fs->pwd.mnt) {
  2144. fs->pwd.mnt = mntget(&q->mnt);
  2145. __mnt_make_longterm(q);
  2146. mnt_make_shortterm(&p->mnt);
  2147. pwdmnt = &p->mnt;
  2148. }
  2149. }
  2150. p = next_mnt(p, mnt_ns->root);
  2151. q = next_mnt(q, new_ns->root);
  2152. }
  2153. up_write(&namespace_sem);
  2154. if (rootmnt)
  2155. mntput(rootmnt);
  2156. if (pwdmnt)
  2157. mntput(pwdmnt);
  2158. return new_ns;
  2159. }
  2160. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2161. struct fs_struct *new_fs)
  2162. {
  2163. struct mnt_namespace *new_ns;
  2164. BUG_ON(!ns);
  2165. get_mnt_ns(ns);
  2166. if (!(flags & CLONE_NEWNS))
  2167. return ns;
  2168. new_ns = dup_mnt_ns(ns, new_fs);
  2169. put_mnt_ns(ns);
  2170. return new_ns;
  2171. }
  2172. /**
  2173. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2174. * @mnt: pointer to the new root filesystem mountpoint
  2175. */
  2176. static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2177. {
  2178. struct mnt_namespace *new_ns;
  2179. new_ns = alloc_mnt_ns();
  2180. if (!IS_ERR(new_ns)) {
  2181. real_mount(mnt)->mnt_ns = new_ns;
  2182. __mnt_make_longterm(real_mount(mnt));
  2183. new_ns->root = mnt;
  2184. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2185. } else {
  2186. mntput(mnt);
  2187. }
  2188. return new_ns;
  2189. }
  2190. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2191. {
  2192. struct mnt_namespace *ns;
  2193. struct super_block *s;
  2194. struct path path;
  2195. int err;
  2196. ns = create_mnt_ns(mnt);
  2197. if (IS_ERR(ns))
  2198. return ERR_CAST(ns);
  2199. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2200. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2201. put_mnt_ns(ns);
  2202. if (err)
  2203. return ERR_PTR(err);
  2204. /* trade a vfsmount reference for active sb one */
  2205. s = path.mnt->mnt_sb;
  2206. atomic_inc(&s->s_active);
  2207. mntput(path.mnt);
  2208. /* lock the sucker */
  2209. down_write(&s->s_umount);
  2210. /* ... and return the root of (sub)tree on it */
  2211. return path.dentry;
  2212. }
  2213. EXPORT_SYMBOL(mount_subtree);
  2214. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2215. char __user *, type, unsigned long, flags, void __user *, data)
  2216. {
  2217. int ret;
  2218. char *kernel_type;
  2219. char *kernel_dir;
  2220. char *kernel_dev;
  2221. unsigned long data_page;
  2222. ret = copy_mount_string(type, &kernel_type);
  2223. if (ret < 0)
  2224. goto out_type;
  2225. kernel_dir = getname(dir_name);
  2226. if (IS_ERR(kernel_dir)) {
  2227. ret = PTR_ERR(kernel_dir);
  2228. goto out_dir;
  2229. }
  2230. ret = copy_mount_string(dev_name, &kernel_dev);
  2231. if (ret < 0)
  2232. goto out_dev;
  2233. ret = copy_mount_options(data, &data_page);
  2234. if (ret < 0)
  2235. goto out_data;
  2236. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2237. (void *) data_page);
  2238. free_page(data_page);
  2239. out_data:
  2240. kfree(kernel_dev);
  2241. out_dev:
  2242. putname(kernel_dir);
  2243. out_dir:
  2244. kfree(kernel_type);
  2245. out_type:
  2246. return ret;
  2247. }
  2248. /*
  2249. * Return true if path is reachable from root
  2250. *
  2251. * namespace_sem or vfsmount_lock is held
  2252. */
  2253. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2254. const struct path *root)
  2255. {
  2256. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2257. dentry = mnt->mnt_mountpoint;
  2258. mnt = mnt->mnt_parent;
  2259. }
  2260. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2261. }
  2262. int path_is_under(struct path *path1, struct path *path2)
  2263. {
  2264. int res;
  2265. br_read_lock(vfsmount_lock);
  2266. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2267. br_read_unlock(vfsmount_lock);
  2268. return res;
  2269. }
  2270. EXPORT_SYMBOL(path_is_under);
  2271. /*
  2272. * pivot_root Semantics:
  2273. * Moves the root file system of the current process to the directory put_old,
  2274. * makes new_root as the new root file system of the current process, and sets
  2275. * root/cwd of all processes which had them on the current root to new_root.
  2276. *
  2277. * Restrictions:
  2278. * The new_root and put_old must be directories, and must not be on the
  2279. * same file system as the current process root. The put_old must be
  2280. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2281. * pointed to by put_old must yield the same directory as new_root. No other
  2282. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2283. *
  2284. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2285. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2286. * in this situation.
  2287. *
  2288. * Notes:
  2289. * - we don't move root/cwd if they are not at the root (reason: if something
  2290. * cared enough to change them, it's probably wrong to force them elsewhere)
  2291. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2292. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2293. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2294. * first.
  2295. */
  2296. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2297. const char __user *, put_old)
  2298. {
  2299. struct path new, old, parent_path, root_parent, root;
  2300. struct mount *new_mnt, *root_mnt;
  2301. int error;
  2302. if (!capable(CAP_SYS_ADMIN))
  2303. return -EPERM;
  2304. error = user_path_dir(new_root, &new);
  2305. if (error)
  2306. goto out0;
  2307. error = user_path_dir(put_old, &old);
  2308. if (error)
  2309. goto out1;
  2310. error = security_sb_pivotroot(&old, &new);
  2311. if (error)
  2312. goto out2;
  2313. get_fs_root(current->fs, &root);
  2314. error = lock_mount(&old);
  2315. if (error)
  2316. goto out3;
  2317. error = -EINVAL;
  2318. new_mnt = real_mount(new.mnt);
  2319. root_mnt = real_mount(root.mnt);
  2320. if (IS_MNT_SHARED(old.mnt) ||
  2321. IS_MNT_SHARED(&new_mnt->mnt_parent->mnt) ||
  2322. IS_MNT_SHARED(&root_mnt->mnt_parent->mnt))
  2323. goto out4;
  2324. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2325. goto out4;
  2326. error = -ENOENT;
  2327. if (d_unlinked(new.dentry))
  2328. goto out4;
  2329. if (d_unlinked(old.dentry))
  2330. goto out4;
  2331. error = -EBUSY;
  2332. if (new.mnt == root.mnt ||
  2333. old.mnt == root.mnt)
  2334. goto out4; /* loop, on the same file system */
  2335. error = -EINVAL;
  2336. if (root.mnt->mnt_root != root.dentry)
  2337. goto out4; /* not a mountpoint */
  2338. if (!mnt_has_parent(root_mnt))
  2339. goto out4; /* not attached */
  2340. if (new.mnt->mnt_root != new.dentry)
  2341. goto out4; /* not a mountpoint */
  2342. if (!mnt_has_parent(new_mnt))
  2343. goto out4; /* not attached */
  2344. /* make sure we can reach put_old from new_root */
  2345. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2346. goto out4;
  2347. br_write_lock(vfsmount_lock);
  2348. detach_mnt(new_mnt, &parent_path);
  2349. detach_mnt(root_mnt, &root_parent);
  2350. /* mount old root on put_old */
  2351. attach_mnt(root_mnt, &old);
  2352. /* mount new_root on / */
  2353. attach_mnt(new_mnt, &root_parent);
  2354. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2355. br_write_unlock(vfsmount_lock);
  2356. chroot_fs_refs(&root, &new);
  2357. error = 0;
  2358. out4:
  2359. unlock_mount(&old);
  2360. if (!error) {
  2361. path_put(&root_parent);
  2362. path_put(&parent_path);
  2363. }
  2364. out3:
  2365. path_put(&root);
  2366. out2:
  2367. path_put(&old);
  2368. out1:
  2369. path_put(&new);
  2370. out0:
  2371. return error;
  2372. }
  2373. static void __init init_mount_tree(void)
  2374. {
  2375. struct vfsmount *mnt;
  2376. struct mnt_namespace *ns;
  2377. struct path root;
  2378. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2379. if (IS_ERR(mnt))
  2380. panic("Can't create rootfs");
  2381. ns = create_mnt_ns(mnt);
  2382. if (IS_ERR(ns))
  2383. panic("Can't allocate initial namespace");
  2384. init_task.nsproxy->mnt_ns = ns;
  2385. get_mnt_ns(ns);
  2386. root.mnt = ns->root;
  2387. root.dentry = ns->root->mnt_root;
  2388. set_fs_pwd(current->fs, &root);
  2389. set_fs_root(current->fs, &root);
  2390. }
  2391. void __init mnt_init(void)
  2392. {
  2393. unsigned u;
  2394. int err;
  2395. init_rwsem(&namespace_sem);
  2396. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2397. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2398. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2399. if (!mount_hashtable)
  2400. panic("Failed to allocate mount hash table\n");
  2401. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2402. for (u = 0; u < HASH_SIZE; u++)
  2403. INIT_LIST_HEAD(&mount_hashtable[u]);
  2404. br_lock_init(vfsmount_lock);
  2405. err = sysfs_init();
  2406. if (err)
  2407. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2408. __func__, err);
  2409. fs_kobj = kobject_create_and_add("fs", NULL);
  2410. if (!fs_kobj)
  2411. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2412. init_rootfs();
  2413. init_mount_tree();
  2414. }
  2415. void put_mnt_ns(struct mnt_namespace *ns)
  2416. {
  2417. LIST_HEAD(umount_list);
  2418. if (!atomic_dec_and_test(&ns->count))
  2419. return;
  2420. down_write(&namespace_sem);
  2421. br_write_lock(vfsmount_lock);
  2422. umount_tree(real_mount(ns->root), 0, &umount_list);
  2423. br_write_unlock(vfsmount_lock);
  2424. up_write(&namespace_sem);
  2425. release_mounts(&umount_list);
  2426. kfree(ns);
  2427. }
  2428. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2429. {
  2430. struct vfsmount *mnt;
  2431. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2432. if (!IS_ERR(mnt)) {
  2433. /*
  2434. * it is a longterm mount, don't release mnt until
  2435. * we unmount before file sys is unregistered
  2436. */
  2437. mnt_make_longterm(mnt);
  2438. }
  2439. return mnt;
  2440. }
  2441. EXPORT_SYMBOL_GPL(kern_mount_data);
  2442. void kern_unmount(struct vfsmount *mnt)
  2443. {
  2444. /* release long term mount so mount point can be released */
  2445. if (!IS_ERR_OR_NULL(mnt)) {
  2446. mnt_make_shortterm(mnt);
  2447. mntput(mnt);
  2448. }
  2449. }
  2450. EXPORT_SYMBOL(kern_unmount);
  2451. bool our_mnt(struct vfsmount *mnt)
  2452. {
  2453. return check_mnt(real_mount(mnt));
  2454. }