dm.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-bio-list.h"
  9. #include "dm-uevent.h"
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/mutex.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/blkpg.h>
  15. #include <linux/bio.h>
  16. #include <linux/buffer_head.h>
  17. #include <linux/mempool.h>
  18. #include <linux/slab.h>
  19. #include <linux/idr.h>
  20. #include <linux/hdreg.h>
  21. #include <linux/blktrace_api.h>
  22. #include <trace/block.h>
  23. #define DM_MSG_PREFIX "core"
  24. static const char *_name = DM_NAME;
  25. static unsigned int major = 0;
  26. static unsigned int _major = 0;
  27. static DEFINE_SPINLOCK(_minor_lock);
  28. /*
  29. * For bio-based dm.
  30. * One of these is allocated per bio.
  31. */
  32. struct dm_io {
  33. struct mapped_device *md;
  34. int error;
  35. atomic_t io_count;
  36. struct bio *bio;
  37. unsigned long start_time;
  38. };
  39. /*
  40. * For bio-based dm.
  41. * One of these is allocated per target within a bio. Hopefully
  42. * this will be simplified out one day.
  43. */
  44. struct dm_target_io {
  45. struct dm_io *io;
  46. struct dm_target *ti;
  47. union map_info info;
  48. };
  49. DEFINE_TRACE(block_bio_complete);
  50. /*
  51. * For request-based dm.
  52. * One of these is allocated per request.
  53. */
  54. struct dm_rq_target_io {
  55. struct mapped_device *md;
  56. struct dm_target *ti;
  57. struct request *orig, clone;
  58. int error;
  59. union map_info info;
  60. };
  61. /*
  62. * For request-based dm.
  63. * One of these is allocated per bio.
  64. */
  65. struct dm_rq_clone_bio_info {
  66. struct bio *orig;
  67. struct request *rq;
  68. };
  69. union map_info *dm_get_mapinfo(struct bio *bio)
  70. {
  71. if (bio && bio->bi_private)
  72. return &((struct dm_target_io *)bio->bi_private)->info;
  73. return NULL;
  74. }
  75. #define MINOR_ALLOCED ((void *)-1)
  76. /*
  77. * Bits for the md->flags field.
  78. */
  79. #define DMF_BLOCK_IO 0
  80. #define DMF_SUSPENDED 1
  81. #define DMF_FROZEN 2
  82. #define DMF_FREEING 3
  83. #define DMF_DELETING 4
  84. #define DMF_NOFLUSH_SUSPENDING 5
  85. /*
  86. * Work processed by per-device workqueue.
  87. */
  88. struct dm_wq_req {
  89. struct work_struct work;
  90. struct mapped_device *md;
  91. void *context;
  92. };
  93. struct mapped_device {
  94. struct rw_semaphore io_lock;
  95. struct mutex suspend_lock;
  96. spinlock_t pushback_lock;
  97. rwlock_t map_lock;
  98. atomic_t holders;
  99. atomic_t open_count;
  100. unsigned long flags;
  101. struct request_queue *queue;
  102. struct gendisk *disk;
  103. char name[16];
  104. void *interface_ptr;
  105. /*
  106. * A list of ios that arrived while we were suspended.
  107. */
  108. atomic_t pending;
  109. wait_queue_head_t wait;
  110. struct bio_list deferred;
  111. struct bio_list pushback;
  112. /*
  113. * Processing queue (flush/barriers)
  114. */
  115. struct workqueue_struct *wq;
  116. /*
  117. * The current mapping.
  118. */
  119. struct dm_table *map;
  120. /*
  121. * io objects are allocated from here.
  122. */
  123. mempool_t *io_pool;
  124. mempool_t *tio_pool;
  125. struct bio_set *bs;
  126. /*
  127. * Event handling.
  128. */
  129. atomic_t event_nr;
  130. wait_queue_head_t eventq;
  131. atomic_t uevent_seq;
  132. struct list_head uevent_list;
  133. spinlock_t uevent_lock; /* Protect access to uevent_list */
  134. /*
  135. * freeze/thaw support require holding onto a super block
  136. */
  137. struct super_block *frozen_sb;
  138. struct block_device *suspended_bdev;
  139. /* forced geometry settings */
  140. struct hd_geometry geometry;
  141. /* sysfs handle */
  142. struct kobject kobj;
  143. };
  144. #define MIN_IOS 256
  145. static struct kmem_cache *_io_cache;
  146. static struct kmem_cache *_tio_cache;
  147. static struct kmem_cache *_rq_tio_cache;
  148. static struct kmem_cache *_rq_bio_info_cache;
  149. static int __init local_init(void)
  150. {
  151. int r = -ENOMEM;
  152. /* allocate a slab for the dm_ios */
  153. _io_cache = KMEM_CACHE(dm_io, 0);
  154. if (!_io_cache)
  155. return r;
  156. /* allocate a slab for the target ios */
  157. _tio_cache = KMEM_CACHE(dm_target_io, 0);
  158. if (!_tio_cache)
  159. goto out_free_io_cache;
  160. _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
  161. if (!_rq_tio_cache)
  162. goto out_free_tio_cache;
  163. _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
  164. if (!_rq_bio_info_cache)
  165. goto out_free_rq_tio_cache;
  166. r = dm_uevent_init();
  167. if (r)
  168. goto out_free_rq_bio_info_cache;
  169. _major = major;
  170. r = register_blkdev(_major, _name);
  171. if (r < 0)
  172. goto out_uevent_exit;
  173. if (!_major)
  174. _major = r;
  175. return 0;
  176. out_uevent_exit:
  177. dm_uevent_exit();
  178. out_free_rq_bio_info_cache:
  179. kmem_cache_destroy(_rq_bio_info_cache);
  180. out_free_rq_tio_cache:
  181. kmem_cache_destroy(_rq_tio_cache);
  182. out_free_tio_cache:
  183. kmem_cache_destroy(_tio_cache);
  184. out_free_io_cache:
  185. kmem_cache_destroy(_io_cache);
  186. return r;
  187. }
  188. static void local_exit(void)
  189. {
  190. kmem_cache_destroy(_rq_bio_info_cache);
  191. kmem_cache_destroy(_rq_tio_cache);
  192. kmem_cache_destroy(_tio_cache);
  193. kmem_cache_destroy(_io_cache);
  194. unregister_blkdev(_major, _name);
  195. dm_uevent_exit();
  196. _major = 0;
  197. DMINFO("cleaned up");
  198. }
  199. static int (*_inits[])(void) __initdata = {
  200. local_init,
  201. dm_target_init,
  202. dm_linear_init,
  203. dm_stripe_init,
  204. dm_kcopyd_init,
  205. dm_interface_init,
  206. };
  207. static void (*_exits[])(void) = {
  208. local_exit,
  209. dm_target_exit,
  210. dm_linear_exit,
  211. dm_stripe_exit,
  212. dm_kcopyd_exit,
  213. dm_interface_exit,
  214. };
  215. static int __init dm_init(void)
  216. {
  217. const int count = ARRAY_SIZE(_inits);
  218. int r, i;
  219. for (i = 0; i < count; i++) {
  220. r = _inits[i]();
  221. if (r)
  222. goto bad;
  223. }
  224. return 0;
  225. bad:
  226. while (i--)
  227. _exits[i]();
  228. return r;
  229. }
  230. static void __exit dm_exit(void)
  231. {
  232. int i = ARRAY_SIZE(_exits);
  233. while (i--)
  234. _exits[i]();
  235. }
  236. /*
  237. * Block device functions
  238. */
  239. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  240. {
  241. struct mapped_device *md;
  242. spin_lock(&_minor_lock);
  243. md = bdev->bd_disk->private_data;
  244. if (!md)
  245. goto out;
  246. if (test_bit(DMF_FREEING, &md->flags) ||
  247. test_bit(DMF_DELETING, &md->flags)) {
  248. md = NULL;
  249. goto out;
  250. }
  251. dm_get(md);
  252. atomic_inc(&md->open_count);
  253. out:
  254. spin_unlock(&_minor_lock);
  255. return md ? 0 : -ENXIO;
  256. }
  257. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  258. {
  259. struct mapped_device *md = disk->private_data;
  260. atomic_dec(&md->open_count);
  261. dm_put(md);
  262. return 0;
  263. }
  264. int dm_open_count(struct mapped_device *md)
  265. {
  266. return atomic_read(&md->open_count);
  267. }
  268. /*
  269. * Guarantees nothing is using the device before it's deleted.
  270. */
  271. int dm_lock_for_deletion(struct mapped_device *md)
  272. {
  273. int r = 0;
  274. spin_lock(&_minor_lock);
  275. if (dm_open_count(md))
  276. r = -EBUSY;
  277. else
  278. set_bit(DMF_DELETING, &md->flags);
  279. spin_unlock(&_minor_lock);
  280. return r;
  281. }
  282. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  283. {
  284. struct mapped_device *md = bdev->bd_disk->private_data;
  285. return dm_get_geometry(md, geo);
  286. }
  287. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  288. unsigned int cmd, unsigned long arg)
  289. {
  290. struct mapped_device *md = bdev->bd_disk->private_data;
  291. struct dm_table *map = dm_get_table(md);
  292. struct dm_target *tgt;
  293. int r = -ENOTTY;
  294. if (!map || !dm_table_get_size(map))
  295. goto out;
  296. /* We only support devices that have a single target */
  297. if (dm_table_get_num_targets(map) != 1)
  298. goto out;
  299. tgt = dm_table_get_target(map, 0);
  300. if (dm_suspended(md)) {
  301. r = -EAGAIN;
  302. goto out;
  303. }
  304. if (tgt->type->ioctl)
  305. r = tgt->type->ioctl(tgt, cmd, arg);
  306. out:
  307. dm_table_put(map);
  308. return r;
  309. }
  310. static struct dm_io *alloc_io(struct mapped_device *md)
  311. {
  312. return mempool_alloc(md->io_pool, GFP_NOIO);
  313. }
  314. static void free_io(struct mapped_device *md, struct dm_io *io)
  315. {
  316. mempool_free(io, md->io_pool);
  317. }
  318. static struct dm_target_io *alloc_tio(struct mapped_device *md)
  319. {
  320. return mempool_alloc(md->tio_pool, GFP_NOIO);
  321. }
  322. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  323. {
  324. mempool_free(tio, md->tio_pool);
  325. }
  326. static void start_io_acct(struct dm_io *io)
  327. {
  328. struct mapped_device *md = io->md;
  329. int cpu;
  330. io->start_time = jiffies;
  331. cpu = part_stat_lock();
  332. part_round_stats(cpu, &dm_disk(md)->part0);
  333. part_stat_unlock();
  334. dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
  335. }
  336. static void end_io_acct(struct dm_io *io)
  337. {
  338. struct mapped_device *md = io->md;
  339. struct bio *bio = io->bio;
  340. unsigned long duration = jiffies - io->start_time;
  341. int pending, cpu;
  342. int rw = bio_data_dir(bio);
  343. cpu = part_stat_lock();
  344. part_round_stats(cpu, &dm_disk(md)->part0);
  345. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  346. part_stat_unlock();
  347. dm_disk(md)->part0.in_flight = pending =
  348. atomic_dec_return(&md->pending);
  349. /* nudge anyone waiting on suspend queue */
  350. if (!pending)
  351. wake_up(&md->wait);
  352. }
  353. /*
  354. * Add the bio to the list of deferred io.
  355. */
  356. static int queue_io(struct mapped_device *md, struct bio *bio)
  357. {
  358. down_write(&md->io_lock);
  359. if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
  360. up_write(&md->io_lock);
  361. return 1;
  362. }
  363. bio_list_add(&md->deferred, bio);
  364. up_write(&md->io_lock);
  365. return 0; /* deferred successfully */
  366. }
  367. /*
  368. * Everyone (including functions in this file), should use this
  369. * function to access the md->map field, and make sure they call
  370. * dm_table_put() when finished.
  371. */
  372. struct dm_table *dm_get_table(struct mapped_device *md)
  373. {
  374. struct dm_table *t;
  375. read_lock(&md->map_lock);
  376. t = md->map;
  377. if (t)
  378. dm_table_get(t);
  379. read_unlock(&md->map_lock);
  380. return t;
  381. }
  382. /*
  383. * Get the geometry associated with a dm device
  384. */
  385. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  386. {
  387. *geo = md->geometry;
  388. return 0;
  389. }
  390. /*
  391. * Set the geometry of a device.
  392. */
  393. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  394. {
  395. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  396. if (geo->start > sz) {
  397. DMWARN("Start sector is beyond the geometry limits.");
  398. return -EINVAL;
  399. }
  400. md->geometry = *geo;
  401. return 0;
  402. }
  403. /*-----------------------------------------------------------------
  404. * CRUD START:
  405. * A more elegant soln is in the works that uses the queue
  406. * merge fn, unfortunately there are a couple of changes to
  407. * the block layer that I want to make for this. So in the
  408. * interests of getting something for people to use I give
  409. * you this clearly demarcated crap.
  410. *---------------------------------------------------------------*/
  411. static int __noflush_suspending(struct mapped_device *md)
  412. {
  413. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  414. }
  415. /*
  416. * Decrements the number of outstanding ios that a bio has been
  417. * cloned into, completing the original io if necc.
  418. */
  419. static void dec_pending(struct dm_io *io, int error)
  420. {
  421. unsigned long flags;
  422. int io_error;
  423. struct bio *bio;
  424. struct mapped_device *md = io->md;
  425. /* Push-back supersedes any I/O errors */
  426. if (error && !(io->error > 0 && __noflush_suspending(md)))
  427. io->error = error;
  428. if (atomic_dec_and_test(&io->io_count)) {
  429. if (io->error == DM_ENDIO_REQUEUE) {
  430. /*
  431. * Target requested pushing back the I/O.
  432. * This must be handled before the sleeper on
  433. * suspend queue merges the pushback list.
  434. */
  435. spin_lock_irqsave(&md->pushback_lock, flags);
  436. if (__noflush_suspending(md))
  437. bio_list_add(&md->pushback, io->bio);
  438. else
  439. /* noflush suspend was interrupted. */
  440. io->error = -EIO;
  441. spin_unlock_irqrestore(&md->pushback_lock, flags);
  442. }
  443. end_io_acct(io);
  444. io_error = io->error;
  445. bio = io->bio;
  446. free_io(md, io);
  447. if (io_error != DM_ENDIO_REQUEUE) {
  448. trace_block_bio_complete(md->queue, bio);
  449. bio_endio(bio, io_error);
  450. }
  451. }
  452. }
  453. static void clone_endio(struct bio *bio, int error)
  454. {
  455. int r = 0;
  456. struct dm_target_io *tio = bio->bi_private;
  457. struct dm_io *io = tio->io;
  458. struct mapped_device *md = tio->io->md;
  459. dm_endio_fn endio = tio->ti->type->end_io;
  460. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  461. error = -EIO;
  462. if (endio) {
  463. r = endio(tio->ti, bio, error, &tio->info);
  464. if (r < 0 || r == DM_ENDIO_REQUEUE)
  465. /*
  466. * error and requeue request are handled
  467. * in dec_pending().
  468. */
  469. error = r;
  470. else if (r == DM_ENDIO_INCOMPLETE)
  471. /* The target will handle the io */
  472. return;
  473. else if (r) {
  474. DMWARN("unimplemented target endio return value: %d", r);
  475. BUG();
  476. }
  477. }
  478. /*
  479. * Store md for cleanup instead of tio which is about to get freed.
  480. */
  481. bio->bi_private = md->bs;
  482. free_tio(md, tio);
  483. bio_put(bio);
  484. dec_pending(io, error);
  485. }
  486. static sector_t max_io_len(struct mapped_device *md,
  487. sector_t sector, struct dm_target *ti)
  488. {
  489. sector_t offset = sector - ti->begin;
  490. sector_t len = ti->len - offset;
  491. /*
  492. * Does the target need to split even further ?
  493. */
  494. if (ti->split_io) {
  495. sector_t boundary;
  496. boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
  497. - offset;
  498. if (len > boundary)
  499. len = boundary;
  500. }
  501. return len;
  502. }
  503. static void __map_bio(struct dm_target *ti, struct bio *clone,
  504. struct dm_target_io *tio)
  505. {
  506. int r;
  507. sector_t sector;
  508. struct mapped_device *md;
  509. /*
  510. * Sanity checks.
  511. */
  512. BUG_ON(!clone->bi_size);
  513. clone->bi_end_io = clone_endio;
  514. clone->bi_private = tio;
  515. /*
  516. * Map the clone. If r == 0 we don't need to do
  517. * anything, the target has assumed ownership of
  518. * this io.
  519. */
  520. atomic_inc(&tio->io->io_count);
  521. sector = clone->bi_sector;
  522. r = ti->type->map(ti, clone, &tio->info);
  523. if (r == DM_MAPIO_REMAPPED) {
  524. /* the bio has been remapped so dispatch it */
  525. trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
  526. tio->io->bio->bi_bdev->bd_dev,
  527. clone->bi_sector, sector);
  528. generic_make_request(clone);
  529. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  530. /* error the io and bail out, or requeue it if needed */
  531. md = tio->io->md;
  532. dec_pending(tio->io, r);
  533. /*
  534. * Store bio_set for cleanup.
  535. */
  536. clone->bi_private = md->bs;
  537. bio_put(clone);
  538. free_tio(md, tio);
  539. } else if (r) {
  540. DMWARN("unimplemented target map return value: %d", r);
  541. BUG();
  542. }
  543. }
  544. struct clone_info {
  545. struct mapped_device *md;
  546. struct dm_table *map;
  547. struct bio *bio;
  548. struct dm_io *io;
  549. sector_t sector;
  550. sector_t sector_count;
  551. unsigned short idx;
  552. };
  553. static void dm_bio_destructor(struct bio *bio)
  554. {
  555. struct bio_set *bs = bio->bi_private;
  556. bio_free(bio, bs);
  557. }
  558. /*
  559. * Creates a little bio that is just does part of a bvec.
  560. */
  561. static struct bio *split_bvec(struct bio *bio, sector_t sector,
  562. unsigned short idx, unsigned int offset,
  563. unsigned int len, struct bio_set *bs)
  564. {
  565. struct bio *clone;
  566. struct bio_vec *bv = bio->bi_io_vec + idx;
  567. clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
  568. clone->bi_destructor = dm_bio_destructor;
  569. *clone->bi_io_vec = *bv;
  570. clone->bi_sector = sector;
  571. clone->bi_bdev = bio->bi_bdev;
  572. clone->bi_rw = bio->bi_rw;
  573. clone->bi_vcnt = 1;
  574. clone->bi_size = to_bytes(len);
  575. clone->bi_io_vec->bv_offset = offset;
  576. clone->bi_io_vec->bv_len = clone->bi_size;
  577. clone->bi_flags |= 1 << BIO_CLONED;
  578. return clone;
  579. }
  580. /*
  581. * Creates a bio that consists of range of complete bvecs.
  582. */
  583. static struct bio *clone_bio(struct bio *bio, sector_t sector,
  584. unsigned short idx, unsigned short bv_count,
  585. unsigned int len, struct bio_set *bs)
  586. {
  587. struct bio *clone;
  588. clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
  589. __bio_clone(clone, bio);
  590. clone->bi_destructor = dm_bio_destructor;
  591. clone->bi_sector = sector;
  592. clone->bi_idx = idx;
  593. clone->bi_vcnt = idx + bv_count;
  594. clone->bi_size = to_bytes(len);
  595. clone->bi_flags &= ~(1 << BIO_SEG_VALID);
  596. return clone;
  597. }
  598. static int __clone_and_map(struct clone_info *ci)
  599. {
  600. struct bio *clone, *bio = ci->bio;
  601. struct dm_target *ti;
  602. sector_t len = 0, max;
  603. struct dm_target_io *tio;
  604. ti = dm_table_find_target(ci->map, ci->sector);
  605. if (!dm_target_is_valid(ti))
  606. return -EIO;
  607. max = max_io_len(ci->md, ci->sector, ti);
  608. /*
  609. * Allocate a target io object.
  610. */
  611. tio = alloc_tio(ci->md);
  612. tio->io = ci->io;
  613. tio->ti = ti;
  614. memset(&tio->info, 0, sizeof(tio->info));
  615. if (ci->sector_count <= max) {
  616. /*
  617. * Optimise for the simple case where we can do all of
  618. * the remaining io with a single clone.
  619. */
  620. clone = clone_bio(bio, ci->sector, ci->idx,
  621. bio->bi_vcnt - ci->idx, ci->sector_count,
  622. ci->md->bs);
  623. __map_bio(ti, clone, tio);
  624. ci->sector_count = 0;
  625. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  626. /*
  627. * There are some bvecs that don't span targets.
  628. * Do as many of these as possible.
  629. */
  630. int i;
  631. sector_t remaining = max;
  632. sector_t bv_len;
  633. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  634. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  635. if (bv_len > remaining)
  636. break;
  637. remaining -= bv_len;
  638. len += bv_len;
  639. }
  640. clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
  641. ci->md->bs);
  642. __map_bio(ti, clone, tio);
  643. ci->sector += len;
  644. ci->sector_count -= len;
  645. ci->idx = i;
  646. } else {
  647. /*
  648. * Handle a bvec that must be split between two or more targets.
  649. */
  650. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  651. sector_t remaining = to_sector(bv->bv_len);
  652. unsigned int offset = 0;
  653. do {
  654. if (offset) {
  655. ti = dm_table_find_target(ci->map, ci->sector);
  656. if (!dm_target_is_valid(ti))
  657. return -EIO;
  658. max = max_io_len(ci->md, ci->sector, ti);
  659. tio = alloc_tio(ci->md);
  660. tio->io = ci->io;
  661. tio->ti = ti;
  662. memset(&tio->info, 0, sizeof(tio->info));
  663. }
  664. len = min(remaining, max);
  665. clone = split_bvec(bio, ci->sector, ci->idx,
  666. bv->bv_offset + offset, len,
  667. ci->md->bs);
  668. __map_bio(ti, clone, tio);
  669. ci->sector += len;
  670. ci->sector_count -= len;
  671. offset += to_bytes(len);
  672. } while (remaining -= len);
  673. ci->idx++;
  674. }
  675. return 0;
  676. }
  677. /*
  678. * Split the bio into several clones.
  679. */
  680. static int __split_bio(struct mapped_device *md, struct bio *bio)
  681. {
  682. struct clone_info ci;
  683. int error = 0;
  684. ci.map = dm_get_table(md);
  685. if (unlikely(!ci.map))
  686. return -EIO;
  687. if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
  688. dm_table_put(ci.map);
  689. bio_endio(bio, -EOPNOTSUPP);
  690. return 0;
  691. }
  692. ci.md = md;
  693. ci.bio = bio;
  694. ci.io = alloc_io(md);
  695. ci.io->error = 0;
  696. atomic_set(&ci.io->io_count, 1);
  697. ci.io->bio = bio;
  698. ci.io->md = md;
  699. ci.sector = bio->bi_sector;
  700. ci.sector_count = bio_sectors(bio);
  701. ci.idx = bio->bi_idx;
  702. start_io_acct(ci.io);
  703. while (ci.sector_count && !error)
  704. error = __clone_and_map(&ci);
  705. /* drop the extra reference count */
  706. dec_pending(ci.io, error);
  707. dm_table_put(ci.map);
  708. return 0;
  709. }
  710. /*-----------------------------------------------------------------
  711. * CRUD END
  712. *---------------------------------------------------------------*/
  713. static int dm_merge_bvec(struct request_queue *q,
  714. struct bvec_merge_data *bvm,
  715. struct bio_vec *biovec)
  716. {
  717. struct mapped_device *md = q->queuedata;
  718. struct dm_table *map = dm_get_table(md);
  719. struct dm_target *ti;
  720. sector_t max_sectors;
  721. int max_size = 0;
  722. if (unlikely(!map))
  723. goto out;
  724. ti = dm_table_find_target(map, bvm->bi_sector);
  725. if (!dm_target_is_valid(ti))
  726. goto out_table;
  727. /*
  728. * Find maximum amount of I/O that won't need splitting
  729. */
  730. max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
  731. (sector_t) BIO_MAX_SECTORS);
  732. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  733. if (max_size < 0)
  734. max_size = 0;
  735. /*
  736. * merge_bvec_fn() returns number of bytes
  737. * it can accept at this offset
  738. * max is precomputed maximal io size
  739. */
  740. if (max_size && ti->type->merge)
  741. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  742. out_table:
  743. dm_table_put(map);
  744. out:
  745. /*
  746. * Always allow an entire first page
  747. */
  748. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  749. max_size = biovec->bv_len;
  750. return max_size;
  751. }
  752. /*
  753. * The request function that just remaps the bio built up by
  754. * dm_merge_bvec.
  755. */
  756. static int dm_request(struct request_queue *q, struct bio *bio)
  757. {
  758. int r = -EIO;
  759. int rw = bio_data_dir(bio);
  760. struct mapped_device *md = q->queuedata;
  761. int cpu;
  762. down_read(&md->io_lock);
  763. cpu = part_stat_lock();
  764. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  765. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  766. part_stat_unlock();
  767. /*
  768. * If we're suspended we have to queue
  769. * this io for later.
  770. */
  771. while (test_bit(DMF_BLOCK_IO, &md->flags)) {
  772. up_read(&md->io_lock);
  773. if (bio_rw(bio) != READA)
  774. r = queue_io(md, bio);
  775. if (r <= 0)
  776. goto out_req;
  777. /*
  778. * We're in a while loop, because someone could suspend
  779. * before we get to the following read lock.
  780. */
  781. down_read(&md->io_lock);
  782. }
  783. r = __split_bio(md, bio);
  784. up_read(&md->io_lock);
  785. out_req:
  786. if (r < 0)
  787. bio_io_error(bio);
  788. return 0;
  789. }
  790. static void dm_unplug_all(struct request_queue *q)
  791. {
  792. struct mapped_device *md = q->queuedata;
  793. struct dm_table *map = dm_get_table(md);
  794. if (map) {
  795. dm_table_unplug_all(map);
  796. dm_table_put(map);
  797. }
  798. }
  799. static int dm_any_congested(void *congested_data, int bdi_bits)
  800. {
  801. int r = bdi_bits;
  802. struct mapped_device *md = congested_data;
  803. struct dm_table *map;
  804. if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
  805. map = dm_get_table(md);
  806. if (map) {
  807. r = dm_table_any_congested(map, bdi_bits);
  808. dm_table_put(map);
  809. }
  810. }
  811. return r;
  812. }
  813. /*-----------------------------------------------------------------
  814. * An IDR is used to keep track of allocated minor numbers.
  815. *---------------------------------------------------------------*/
  816. static DEFINE_IDR(_minor_idr);
  817. static void free_minor(int minor)
  818. {
  819. spin_lock(&_minor_lock);
  820. idr_remove(&_minor_idr, minor);
  821. spin_unlock(&_minor_lock);
  822. }
  823. /*
  824. * See if the device with a specific minor # is free.
  825. */
  826. static int specific_minor(int minor)
  827. {
  828. int r, m;
  829. if (minor >= (1 << MINORBITS))
  830. return -EINVAL;
  831. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  832. if (!r)
  833. return -ENOMEM;
  834. spin_lock(&_minor_lock);
  835. if (idr_find(&_minor_idr, minor)) {
  836. r = -EBUSY;
  837. goto out;
  838. }
  839. r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
  840. if (r)
  841. goto out;
  842. if (m != minor) {
  843. idr_remove(&_minor_idr, m);
  844. r = -EBUSY;
  845. goto out;
  846. }
  847. out:
  848. spin_unlock(&_minor_lock);
  849. return r;
  850. }
  851. static int next_free_minor(int *minor)
  852. {
  853. int r, m;
  854. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  855. if (!r)
  856. return -ENOMEM;
  857. spin_lock(&_minor_lock);
  858. r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
  859. if (r)
  860. goto out;
  861. if (m >= (1 << MINORBITS)) {
  862. idr_remove(&_minor_idr, m);
  863. r = -ENOSPC;
  864. goto out;
  865. }
  866. *minor = m;
  867. out:
  868. spin_unlock(&_minor_lock);
  869. return r;
  870. }
  871. static struct block_device_operations dm_blk_dops;
  872. /*
  873. * Allocate and initialise a blank device with a given minor.
  874. */
  875. static struct mapped_device *alloc_dev(int minor)
  876. {
  877. int r;
  878. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  879. void *old_md;
  880. if (!md) {
  881. DMWARN("unable to allocate device, out of memory.");
  882. return NULL;
  883. }
  884. if (!try_module_get(THIS_MODULE))
  885. goto bad_module_get;
  886. /* get a minor number for the dev */
  887. if (minor == DM_ANY_MINOR)
  888. r = next_free_minor(&minor);
  889. else
  890. r = specific_minor(minor);
  891. if (r < 0)
  892. goto bad_minor;
  893. init_rwsem(&md->io_lock);
  894. mutex_init(&md->suspend_lock);
  895. spin_lock_init(&md->pushback_lock);
  896. rwlock_init(&md->map_lock);
  897. atomic_set(&md->holders, 1);
  898. atomic_set(&md->open_count, 0);
  899. atomic_set(&md->event_nr, 0);
  900. atomic_set(&md->uevent_seq, 0);
  901. INIT_LIST_HEAD(&md->uevent_list);
  902. spin_lock_init(&md->uevent_lock);
  903. md->queue = blk_alloc_queue(GFP_KERNEL);
  904. if (!md->queue)
  905. goto bad_queue;
  906. md->queue->queuedata = md;
  907. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  908. md->queue->backing_dev_info.congested_data = md;
  909. blk_queue_make_request(md->queue, dm_request);
  910. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  911. md->queue->unplug_fn = dm_unplug_all;
  912. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  913. md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
  914. if (!md->io_pool)
  915. goto bad_io_pool;
  916. md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
  917. if (!md->tio_pool)
  918. goto bad_tio_pool;
  919. md->bs = bioset_create(16, 0);
  920. if (!md->bs)
  921. goto bad_no_bioset;
  922. md->disk = alloc_disk(1);
  923. if (!md->disk)
  924. goto bad_disk;
  925. atomic_set(&md->pending, 0);
  926. init_waitqueue_head(&md->wait);
  927. init_waitqueue_head(&md->eventq);
  928. md->disk->major = _major;
  929. md->disk->first_minor = minor;
  930. md->disk->fops = &dm_blk_dops;
  931. md->disk->queue = md->queue;
  932. md->disk->private_data = md;
  933. sprintf(md->disk->disk_name, "dm-%d", minor);
  934. add_disk(md->disk);
  935. format_dev_t(md->name, MKDEV(_major, minor));
  936. md->wq = create_singlethread_workqueue("kdmflush");
  937. if (!md->wq)
  938. goto bad_thread;
  939. /* Populate the mapping, nobody knows we exist yet */
  940. spin_lock(&_minor_lock);
  941. old_md = idr_replace(&_minor_idr, md, minor);
  942. spin_unlock(&_minor_lock);
  943. BUG_ON(old_md != MINOR_ALLOCED);
  944. return md;
  945. bad_thread:
  946. put_disk(md->disk);
  947. bad_disk:
  948. bioset_free(md->bs);
  949. bad_no_bioset:
  950. mempool_destroy(md->tio_pool);
  951. bad_tio_pool:
  952. mempool_destroy(md->io_pool);
  953. bad_io_pool:
  954. blk_cleanup_queue(md->queue);
  955. bad_queue:
  956. free_minor(minor);
  957. bad_minor:
  958. module_put(THIS_MODULE);
  959. bad_module_get:
  960. kfree(md);
  961. return NULL;
  962. }
  963. static void unlock_fs(struct mapped_device *md);
  964. static void free_dev(struct mapped_device *md)
  965. {
  966. int minor = MINOR(disk_devt(md->disk));
  967. if (md->suspended_bdev) {
  968. unlock_fs(md);
  969. bdput(md->suspended_bdev);
  970. }
  971. destroy_workqueue(md->wq);
  972. mempool_destroy(md->tio_pool);
  973. mempool_destroy(md->io_pool);
  974. bioset_free(md->bs);
  975. del_gendisk(md->disk);
  976. free_minor(minor);
  977. spin_lock(&_minor_lock);
  978. md->disk->private_data = NULL;
  979. spin_unlock(&_minor_lock);
  980. put_disk(md->disk);
  981. blk_cleanup_queue(md->queue);
  982. module_put(THIS_MODULE);
  983. kfree(md);
  984. }
  985. /*
  986. * Bind a table to the device.
  987. */
  988. static void event_callback(void *context)
  989. {
  990. unsigned long flags;
  991. LIST_HEAD(uevents);
  992. struct mapped_device *md = (struct mapped_device *) context;
  993. spin_lock_irqsave(&md->uevent_lock, flags);
  994. list_splice_init(&md->uevent_list, &uevents);
  995. spin_unlock_irqrestore(&md->uevent_lock, flags);
  996. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  997. atomic_inc(&md->event_nr);
  998. wake_up(&md->eventq);
  999. }
  1000. static void __set_size(struct mapped_device *md, sector_t size)
  1001. {
  1002. set_capacity(md->disk, size);
  1003. mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
  1004. i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  1005. mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
  1006. }
  1007. static int __bind(struct mapped_device *md, struct dm_table *t)
  1008. {
  1009. struct request_queue *q = md->queue;
  1010. sector_t size;
  1011. size = dm_table_get_size(t);
  1012. /*
  1013. * Wipe any geometry if the size of the table changed.
  1014. */
  1015. if (size != get_capacity(md->disk))
  1016. memset(&md->geometry, 0, sizeof(md->geometry));
  1017. if (md->suspended_bdev)
  1018. __set_size(md, size);
  1019. if (!size) {
  1020. dm_table_destroy(t);
  1021. return 0;
  1022. }
  1023. dm_table_event_callback(t, event_callback, md);
  1024. write_lock(&md->map_lock);
  1025. md->map = t;
  1026. dm_table_set_restrictions(t, q);
  1027. write_unlock(&md->map_lock);
  1028. return 0;
  1029. }
  1030. static void __unbind(struct mapped_device *md)
  1031. {
  1032. struct dm_table *map = md->map;
  1033. if (!map)
  1034. return;
  1035. dm_table_event_callback(map, NULL, NULL);
  1036. write_lock(&md->map_lock);
  1037. md->map = NULL;
  1038. write_unlock(&md->map_lock);
  1039. dm_table_destroy(map);
  1040. }
  1041. /*
  1042. * Constructor for a new device.
  1043. */
  1044. int dm_create(int minor, struct mapped_device **result)
  1045. {
  1046. struct mapped_device *md;
  1047. md = alloc_dev(minor);
  1048. if (!md)
  1049. return -ENXIO;
  1050. dm_sysfs_init(md);
  1051. *result = md;
  1052. return 0;
  1053. }
  1054. static struct mapped_device *dm_find_md(dev_t dev)
  1055. {
  1056. struct mapped_device *md;
  1057. unsigned minor = MINOR(dev);
  1058. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1059. return NULL;
  1060. spin_lock(&_minor_lock);
  1061. md = idr_find(&_minor_idr, minor);
  1062. if (md && (md == MINOR_ALLOCED ||
  1063. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1064. test_bit(DMF_FREEING, &md->flags))) {
  1065. md = NULL;
  1066. goto out;
  1067. }
  1068. out:
  1069. spin_unlock(&_minor_lock);
  1070. return md;
  1071. }
  1072. struct mapped_device *dm_get_md(dev_t dev)
  1073. {
  1074. struct mapped_device *md = dm_find_md(dev);
  1075. if (md)
  1076. dm_get(md);
  1077. return md;
  1078. }
  1079. void *dm_get_mdptr(struct mapped_device *md)
  1080. {
  1081. return md->interface_ptr;
  1082. }
  1083. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1084. {
  1085. md->interface_ptr = ptr;
  1086. }
  1087. void dm_get(struct mapped_device *md)
  1088. {
  1089. atomic_inc(&md->holders);
  1090. }
  1091. const char *dm_device_name(struct mapped_device *md)
  1092. {
  1093. return md->name;
  1094. }
  1095. EXPORT_SYMBOL_GPL(dm_device_name);
  1096. void dm_put(struct mapped_device *md)
  1097. {
  1098. struct dm_table *map;
  1099. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1100. if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
  1101. map = dm_get_table(md);
  1102. idr_replace(&_minor_idr, MINOR_ALLOCED,
  1103. MINOR(disk_devt(dm_disk(md))));
  1104. set_bit(DMF_FREEING, &md->flags);
  1105. spin_unlock(&_minor_lock);
  1106. if (!dm_suspended(md)) {
  1107. dm_table_presuspend_targets(map);
  1108. dm_table_postsuspend_targets(map);
  1109. }
  1110. dm_sysfs_exit(md);
  1111. dm_table_put(map);
  1112. __unbind(md);
  1113. free_dev(md);
  1114. }
  1115. }
  1116. EXPORT_SYMBOL_GPL(dm_put);
  1117. static int dm_wait_for_completion(struct mapped_device *md)
  1118. {
  1119. int r = 0;
  1120. while (1) {
  1121. set_current_state(TASK_INTERRUPTIBLE);
  1122. smp_mb();
  1123. if (!atomic_read(&md->pending))
  1124. break;
  1125. if (signal_pending(current)) {
  1126. r = -EINTR;
  1127. break;
  1128. }
  1129. io_schedule();
  1130. }
  1131. set_current_state(TASK_RUNNING);
  1132. return r;
  1133. }
  1134. /*
  1135. * Process the deferred bios
  1136. */
  1137. static void __flush_deferred_io(struct mapped_device *md)
  1138. {
  1139. struct bio *c;
  1140. while ((c = bio_list_pop(&md->deferred))) {
  1141. if (__split_bio(md, c))
  1142. bio_io_error(c);
  1143. }
  1144. clear_bit(DMF_BLOCK_IO, &md->flags);
  1145. }
  1146. static void __merge_pushback_list(struct mapped_device *md)
  1147. {
  1148. unsigned long flags;
  1149. spin_lock_irqsave(&md->pushback_lock, flags);
  1150. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1151. bio_list_merge_head(&md->deferred, &md->pushback);
  1152. bio_list_init(&md->pushback);
  1153. spin_unlock_irqrestore(&md->pushback_lock, flags);
  1154. }
  1155. static void dm_wq_work(struct work_struct *work)
  1156. {
  1157. struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
  1158. struct mapped_device *md = req->md;
  1159. down_write(&md->io_lock);
  1160. __flush_deferred_io(md);
  1161. up_write(&md->io_lock);
  1162. }
  1163. static void dm_wq_queue(struct mapped_device *md, void *context,
  1164. struct dm_wq_req *req)
  1165. {
  1166. req->md = md;
  1167. req->context = context;
  1168. INIT_WORK(&req->work, dm_wq_work);
  1169. queue_work(md->wq, &req->work);
  1170. }
  1171. static void dm_queue_flush(struct mapped_device *md, void *context)
  1172. {
  1173. struct dm_wq_req req;
  1174. dm_wq_queue(md, context, &req);
  1175. flush_workqueue(md->wq);
  1176. }
  1177. /*
  1178. * Swap in a new table (destroying old one).
  1179. */
  1180. int dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1181. {
  1182. int r = -EINVAL;
  1183. mutex_lock(&md->suspend_lock);
  1184. /* device must be suspended */
  1185. if (!dm_suspended(md))
  1186. goto out;
  1187. /* without bdev, the device size cannot be changed */
  1188. if (!md->suspended_bdev)
  1189. if (get_capacity(md->disk) != dm_table_get_size(table))
  1190. goto out;
  1191. __unbind(md);
  1192. r = __bind(md, table);
  1193. out:
  1194. mutex_unlock(&md->suspend_lock);
  1195. return r;
  1196. }
  1197. /*
  1198. * Functions to lock and unlock any filesystem running on the
  1199. * device.
  1200. */
  1201. static int lock_fs(struct mapped_device *md)
  1202. {
  1203. int r;
  1204. WARN_ON(md->frozen_sb);
  1205. md->frozen_sb = freeze_bdev(md->suspended_bdev);
  1206. if (IS_ERR(md->frozen_sb)) {
  1207. r = PTR_ERR(md->frozen_sb);
  1208. md->frozen_sb = NULL;
  1209. return r;
  1210. }
  1211. set_bit(DMF_FROZEN, &md->flags);
  1212. /* don't bdput right now, we don't want the bdev
  1213. * to go away while it is locked.
  1214. */
  1215. return 0;
  1216. }
  1217. static void unlock_fs(struct mapped_device *md)
  1218. {
  1219. if (!test_bit(DMF_FROZEN, &md->flags))
  1220. return;
  1221. thaw_bdev(md->suspended_bdev, md->frozen_sb);
  1222. md->frozen_sb = NULL;
  1223. clear_bit(DMF_FROZEN, &md->flags);
  1224. }
  1225. /*
  1226. * We need to be able to change a mapping table under a mounted
  1227. * filesystem. For example we might want to move some data in
  1228. * the background. Before the table can be swapped with
  1229. * dm_bind_table, dm_suspend must be called to flush any in
  1230. * flight bios and ensure that any further io gets deferred.
  1231. */
  1232. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  1233. {
  1234. struct dm_table *map = NULL;
  1235. DECLARE_WAITQUEUE(wait, current);
  1236. int r = 0;
  1237. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  1238. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  1239. mutex_lock(&md->suspend_lock);
  1240. if (dm_suspended(md)) {
  1241. r = -EINVAL;
  1242. goto out_unlock;
  1243. }
  1244. map = dm_get_table(md);
  1245. /*
  1246. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  1247. * This flag is cleared before dm_suspend returns.
  1248. */
  1249. if (noflush)
  1250. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1251. /* This does not get reverted if there's an error later. */
  1252. dm_table_presuspend_targets(map);
  1253. /* bdget() can stall if the pending I/Os are not flushed */
  1254. if (!noflush) {
  1255. md->suspended_bdev = bdget_disk(md->disk, 0);
  1256. if (!md->suspended_bdev) {
  1257. DMWARN("bdget failed in dm_suspend");
  1258. r = -ENOMEM;
  1259. goto out;
  1260. }
  1261. /*
  1262. * Flush I/O to the device. noflush supersedes do_lockfs,
  1263. * because lock_fs() needs to flush I/Os.
  1264. */
  1265. if (do_lockfs) {
  1266. r = lock_fs(md);
  1267. if (r)
  1268. goto out;
  1269. }
  1270. }
  1271. /*
  1272. * First we set the BLOCK_IO flag so no more ios will be mapped.
  1273. */
  1274. down_write(&md->io_lock);
  1275. set_bit(DMF_BLOCK_IO, &md->flags);
  1276. add_wait_queue(&md->wait, &wait);
  1277. up_write(&md->io_lock);
  1278. /* unplug */
  1279. if (map)
  1280. dm_table_unplug_all(map);
  1281. /*
  1282. * Wait for the already-mapped ios to complete.
  1283. */
  1284. r = dm_wait_for_completion(md);
  1285. down_write(&md->io_lock);
  1286. remove_wait_queue(&md->wait, &wait);
  1287. if (noflush)
  1288. __merge_pushback_list(md);
  1289. up_write(&md->io_lock);
  1290. /* were we interrupted ? */
  1291. if (r < 0) {
  1292. dm_queue_flush(md, NULL);
  1293. unlock_fs(md);
  1294. goto out; /* pushback list is already flushed, so skip flush */
  1295. }
  1296. dm_table_postsuspend_targets(map);
  1297. set_bit(DMF_SUSPENDED, &md->flags);
  1298. out:
  1299. if (r && md->suspended_bdev) {
  1300. bdput(md->suspended_bdev);
  1301. md->suspended_bdev = NULL;
  1302. }
  1303. dm_table_put(map);
  1304. out_unlock:
  1305. mutex_unlock(&md->suspend_lock);
  1306. return r;
  1307. }
  1308. int dm_resume(struct mapped_device *md)
  1309. {
  1310. int r = -EINVAL;
  1311. struct dm_table *map = NULL;
  1312. mutex_lock(&md->suspend_lock);
  1313. if (!dm_suspended(md))
  1314. goto out;
  1315. map = dm_get_table(md);
  1316. if (!map || !dm_table_get_size(map))
  1317. goto out;
  1318. r = dm_table_resume_targets(map);
  1319. if (r)
  1320. goto out;
  1321. dm_queue_flush(md, NULL);
  1322. unlock_fs(md);
  1323. if (md->suspended_bdev) {
  1324. bdput(md->suspended_bdev);
  1325. md->suspended_bdev = NULL;
  1326. }
  1327. clear_bit(DMF_SUSPENDED, &md->flags);
  1328. dm_table_unplug_all(map);
  1329. dm_kobject_uevent(md);
  1330. r = 0;
  1331. out:
  1332. dm_table_put(map);
  1333. mutex_unlock(&md->suspend_lock);
  1334. return r;
  1335. }
  1336. /*-----------------------------------------------------------------
  1337. * Event notification.
  1338. *---------------------------------------------------------------*/
  1339. void dm_kobject_uevent(struct mapped_device *md)
  1340. {
  1341. kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
  1342. }
  1343. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  1344. {
  1345. return atomic_add_return(1, &md->uevent_seq);
  1346. }
  1347. uint32_t dm_get_event_nr(struct mapped_device *md)
  1348. {
  1349. return atomic_read(&md->event_nr);
  1350. }
  1351. int dm_wait_event(struct mapped_device *md, int event_nr)
  1352. {
  1353. return wait_event_interruptible(md->eventq,
  1354. (event_nr != atomic_read(&md->event_nr)));
  1355. }
  1356. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  1357. {
  1358. unsigned long flags;
  1359. spin_lock_irqsave(&md->uevent_lock, flags);
  1360. list_add(elist, &md->uevent_list);
  1361. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1362. }
  1363. /*
  1364. * The gendisk is only valid as long as you have a reference
  1365. * count on 'md'.
  1366. */
  1367. struct gendisk *dm_disk(struct mapped_device *md)
  1368. {
  1369. return md->disk;
  1370. }
  1371. struct kobject *dm_kobject(struct mapped_device *md)
  1372. {
  1373. return &md->kobj;
  1374. }
  1375. /*
  1376. * struct mapped_device should not be exported outside of dm.c
  1377. * so use this check to verify that kobj is part of md structure
  1378. */
  1379. struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
  1380. {
  1381. struct mapped_device *md;
  1382. md = container_of(kobj, struct mapped_device, kobj);
  1383. if (&md->kobj != kobj)
  1384. return NULL;
  1385. dm_get(md);
  1386. return md;
  1387. }
  1388. int dm_suspended(struct mapped_device *md)
  1389. {
  1390. return test_bit(DMF_SUSPENDED, &md->flags);
  1391. }
  1392. int dm_noflush_suspending(struct dm_target *ti)
  1393. {
  1394. struct mapped_device *md = dm_table_get_md(ti->table);
  1395. int r = __noflush_suspending(md);
  1396. dm_put(md);
  1397. return r;
  1398. }
  1399. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  1400. static struct block_device_operations dm_blk_dops = {
  1401. .open = dm_blk_open,
  1402. .release = dm_blk_close,
  1403. .ioctl = dm_blk_ioctl,
  1404. .getgeo = dm_blk_getgeo,
  1405. .owner = THIS_MODULE
  1406. };
  1407. EXPORT_SYMBOL(dm_get_mapinfo);
  1408. /*
  1409. * module hooks
  1410. */
  1411. module_init(dm_init);
  1412. module_exit(dm_exit);
  1413. module_param(major, uint, 0);
  1414. MODULE_PARM_DESC(major, "The major number of the device mapper");
  1415. MODULE_DESCRIPTION(DM_NAME " driver");
  1416. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  1417. MODULE_LICENSE("GPL");