amd64_edac.c 88 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126
  1. #include "amd64_edac.h"
  2. #include <asm/k8.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. /* Lookup table for all possible MC control instances */
  13. struct amd64_pvt;
  14. static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
  15. static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
  16. /*
  17. * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
  18. * later.
  19. */
  20. static int ddr2_dbam_revCG[] = {
  21. [0] = 32,
  22. [1] = 64,
  23. [2] = 128,
  24. [3] = 256,
  25. [4] = 512,
  26. [5] = 1024,
  27. [6] = 2048,
  28. };
  29. static int ddr2_dbam_revD[] = {
  30. [0] = 32,
  31. [1] = 64,
  32. [2 ... 3] = 128,
  33. [4] = 256,
  34. [5] = 512,
  35. [6] = 256,
  36. [7] = 512,
  37. [8 ... 9] = 1024,
  38. [10] = 2048,
  39. };
  40. static int ddr2_dbam[] = { [0] = 128,
  41. [1] = 256,
  42. [2 ... 4] = 512,
  43. [5 ... 6] = 1024,
  44. [7 ... 8] = 2048,
  45. [9 ... 10] = 4096,
  46. [11] = 8192,
  47. };
  48. static int ddr3_dbam[] = { [0] = -1,
  49. [1] = 256,
  50. [2] = 512,
  51. [3 ... 4] = -1,
  52. [5 ... 6] = 1024,
  53. [7 ... 8] = 2048,
  54. [9 ... 10] = 4096,
  55. [11] = 8192,
  56. };
  57. /*
  58. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  59. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  60. * or higher value'.
  61. *
  62. *FIXME: Produce a better mapping/linearisation.
  63. */
  64. struct scrubrate scrubrates[] = {
  65. { 0x01, 1600000000UL},
  66. { 0x02, 800000000UL},
  67. { 0x03, 400000000UL},
  68. { 0x04, 200000000UL},
  69. { 0x05, 100000000UL},
  70. { 0x06, 50000000UL},
  71. { 0x07, 25000000UL},
  72. { 0x08, 12284069UL},
  73. { 0x09, 6274509UL},
  74. { 0x0A, 3121951UL},
  75. { 0x0B, 1560975UL},
  76. { 0x0C, 781440UL},
  77. { 0x0D, 390720UL},
  78. { 0x0E, 195300UL},
  79. { 0x0F, 97650UL},
  80. { 0x10, 48854UL},
  81. { 0x11, 24427UL},
  82. { 0x12, 12213UL},
  83. { 0x13, 6101UL},
  84. { 0x14, 3051UL},
  85. { 0x15, 1523UL},
  86. { 0x16, 761UL},
  87. { 0x00, 0UL}, /* scrubbing off */
  88. };
  89. /*
  90. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  91. * hardware and can involve L2 cache, dcache as well as the main memory. With
  92. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  93. * functionality.
  94. *
  95. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  96. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  97. * bytes/sec for the setting.
  98. *
  99. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  100. * other archs, we might not have access to the caches directly.
  101. */
  102. /*
  103. * scan the scrub rate mapping table for a close or matching bandwidth value to
  104. * issue. If requested is too big, then use last maximum value found.
  105. */
  106. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  107. u32 min_scrubrate)
  108. {
  109. u32 scrubval;
  110. int i;
  111. /*
  112. * map the configured rate (new_bw) to a value specific to the AMD64
  113. * memory controller and apply to register. Search for the first
  114. * bandwidth entry that is greater or equal than the setting requested
  115. * and program that. If at last entry, turn off DRAM scrubbing.
  116. */
  117. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  118. /*
  119. * skip scrub rates which aren't recommended
  120. * (see F10 BKDG, F3x58)
  121. */
  122. if (scrubrates[i].scrubval < min_scrubrate)
  123. continue;
  124. if (scrubrates[i].bandwidth <= new_bw)
  125. break;
  126. /*
  127. * if no suitable bandwidth found, turn off DRAM scrubbing
  128. * entirely by falling back to the last element in the
  129. * scrubrates array.
  130. */
  131. }
  132. scrubval = scrubrates[i].scrubval;
  133. if (scrubval)
  134. edac_printk(KERN_DEBUG, EDAC_MC,
  135. "Setting scrub rate bandwidth: %u\n",
  136. scrubrates[i].bandwidth);
  137. else
  138. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  139. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  140. return 0;
  141. }
  142. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  143. {
  144. struct amd64_pvt *pvt = mci->pvt_info;
  145. u32 min_scrubrate = 0x0;
  146. switch (boot_cpu_data.x86) {
  147. case 0xf:
  148. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  149. break;
  150. case 0x10:
  151. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  152. break;
  153. case 0x11:
  154. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  155. break;
  156. default:
  157. amd64_printk(KERN_ERR, "Unsupported family!\n");
  158. break;
  159. }
  160. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  161. min_scrubrate);
  162. }
  163. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  164. {
  165. struct amd64_pvt *pvt = mci->pvt_info;
  166. u32 scrubval = 0;
  167. int status = -1, i;
  168. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  169. scrubval = scrubval & 0x001F;
  170. edac_printk(KERN_DEBUG, EDAC_MC,
  171. "pci-read, sdram scrub control value: %d \n", scrubval);
  172. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  173. if (scrubrates[i].scrubval == scrubval) {
  174. *bw = scrubrates[i].bandwidth;
  175. status = 0;
  176. break;
  177. }
  178. }
  179. return status;
  180. }
  181. /* Map from a CSROW entry to the mask entry that operates on it */
  182. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  183. {
  184. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
  185. return csrow;
  186. else
  187. return csrow >> 1;
  188. }
  189. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  190. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  191. {
  192. if (dct == 0)
  193. return pvt->dcsb0[csrow];
  194. else
  195. return pvt->dcsb1[csrow];
  196. }
  197. /*
  198. * Return the 'mask' address the i'th CS entry. This function is needed because
  199. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  200. * different.
  201. */
  202. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  203. {
  204. if (dct == 0)
  205. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  206. else
  207. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  208. }
  209. /*
  210. * In *base and *limit, pass back the full 40-bit base and limit physical
  211. * addresses for the node given by node_id. This information is obtained from
  212. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  213. * base and limit addresses are of type SysAddr, as defined at the start of
  214. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  215. * in the address range they represent.
  216. */
  217. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  218. u64 *base, u64 *limit)
  219. {
  220. *base = pvt->dram_base[node_id];
  221. *limit = pvt->dram_limit[node_id];
  222. }
  223. /*
  224. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  225. * with node_id
  226. */
  227. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  228. u64 sys_addr, int node_id)
  229. {
  230. u64 base, limit, addr;
  231. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  232. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  233. * all ones if the most significant implemented address bit is 1.
  234. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  235. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  236. * Application Programming.
  237. */
  238. addr = sys_addr & 0x000000ffffffffffull;
  239. return (addr >= base) && (addr <= limit);
  240. }
  241. /*
  242. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  243. * mem_ctl_info structure for the node that the SysAddr maps to.
  244. *
  245. * On failure, return NULL.
  246. */
  247. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  248. u64 sys_addr)
  249. {
  250. struct amd64_pvt *pvt;
  251. int node_id;
  252. u32 intlv_en, bits;
  253. /*
  254. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  255. * 3.4.4.2) registers to map the SysAddr to a node ID.
  256. */
  257. pvt = mci->pvt_info;
  258. /*
  259. * The value of this field should be the same for all DRAM Base
  260. * registers. Therefore we arbitrarily choose to read it from the
  261. * register for node 0.
  262. */
  263. intlv_en = pvt->dram_IntlvEn[0];
  264. if (intlv_en == 0) {
  265. for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
  266. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  267. goto found;
  268. }
  269. goto err_no_match;
  270. }
  271. if (unlikely((intlv_en != 0x01) &&
  272. (intlv_en != 0x03) &&
  273. (intlv_en != 0x07))) {
  274. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  275. "IntlvEn field of DRAM Base Register for node 0: "
  276. "this probably indicates a BIOS bug.\n", intlv_en);
  277. return NULL;
  278. }
  279. bits = (((u32) sys_addr) >> 12) & intlv_en;
  280. for (node_id = 0; ; ) {
  281. if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
  282. break; /* intlv_sel field matches */
  283. if (++node_id >= DRAM_REG_COUNT)
  284. goto err_no_match;
  285. }
  286. /* sanity test for sys_addr */
  287. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  288. amd64_printk(KERN_WARNING,
  289. "%s(): sys_addr 0x%llx falls outside base/limit "
  290. "address range for node %d with node interleaving "
  291. "enabled.\n",
  292. __func__, sys_addr, node_id);
  293. return NULL;
  294. }
  295. found:
  296. return edac_mc_find(node_id);
  297. err_no_match:
  298. debugf2("sys_addr 0x%lx doesn't match any node\n",
  299. (unsigned long)sys_addr);
  300. return NULL;
  301. }
  302. /*
  303. * Extract the DRAM CS base address from selected csrow register.
  304. */
  305. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  306. {
  307. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  308. pvt->dcs_shift;
  309. }
  310. /*
  311. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  312. */
  313. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  314. {
  315. u64 dcsm_bits, other_bits;
  316. u64 mask;
  317. /* Extract bits from DRAM CS Mask. */
  318. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  319. other_bits = pvt->dcsm_mask;
  320. other_bits = ~(other_bits << pvt->dcs_shift);
  321. /*
  322. * The extracted bits from DCSM belong in the spaces represented by
  323. * the cleared bits in other_bits.
  324. */
  325. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  326. return mask;
  327. }
  328. /*
  329. * @input_addr is an InputAddr associated with the node given by mci. Return the
  330. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  331. */
  332. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  333. {
  334. struct amd64_pvt *pvt;
  335. int csrow;
  336. u64 base, mask;
  337. pvt = mci->pvt_info;
  338. /*
  339. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  340. * base/mask register pair, test the condition shown near the start of
  341. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  342. */
  343. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  344. /* This DRAM chip select is disabled on this node */
  345. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  346. continue;
  347. base = base_from_dct_base(pvt, csrow);
  348. mask = ~mask_from_dct_mask(pvt, csrow);
  349. if ((input_addr & mask) == (base & mask)) {
  350. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  351. (unsigned long)input_addr, csrow,
  352. pvt->mc_node_id);
  353. return csrow;
  354. }
  355. }
  356. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  357. (unsigned long)input_addr, pvt->mc_node_id);
  358. return -1;
  359. }
  360. /*
  361. * Return the base value defined by the DRAM Base register for the node
  362. * represented by mci. This function returns the full 40-bit value despite the
  363. * fact that the register only stores bits 39-24 of the value. See section
  364. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  365. */
  366. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  367. {
  368. struct amd64_pvt *pvt = mci->pvt_info;
  369. return pvt->dram_base[pvt->mc_node_id];
  370. }
  371. /*
  372. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  373. * for the node represented by mci. Info is passed back in *hole_base,
  374. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  375. * info is invalid. Info may be invalid for either of the following reasons:
  376. *
  377. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  378. * Address Register does not exist.
  379. *
  380. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  381. * indicating that its contents are not valid.
  382. *
  383. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  384. * complete 32-bit values despite the fact that the bitfields in the DHAR
  385. * only represent bits 31-24 of the base and offset values.
  386. */
  387. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  388. u64 *hole_offset, u64 *hole_size)
  389. {
  390. struct amd64_pvt *pvt = mci->pvt_info;
  391. u64 base;
  392. /* only revE and later have the DRAM Hole Address Register */
  393. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  394. debugf1(" revision %d for node %d does not support DHAR\n",
  395. pvt->ext_model, pvt->mc_node_id);
  396. return 1;
  397. }
  398. /* only valid for Fam10h */
  399. if (boot_cpu_data.x86 == 0x10 &&
  400. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  401. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  402. return 1;
  403. }
  404. if ((pvt->dhar & DHAR_VALID) == 0) {
  405. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  406. pvt->mc_node_id);
  407. return 1;
  408. }
  409. /* This node has Memory Hoisting */
  410. /* +------------------+--------------------+--------------------+-----
  411. * | memory | DRAM hole | relocated |
  412. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  413. * | | | DRAM hole |
  414. * | | | [0x100000000, |
  415. * | | | (0x100000000+ |
  416. * | | | (0xffffffff-x))] |
  417. * +------------------+--------------------+--------------------+-----
  418. *
  419. * Above is a diagram of physical memory showing the DRAM hole and the
  420. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  421. * starts at address x (the base address) and extends through address
  422. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  423. * addresses in the hole so that they start at 0x100000000.
  424. */
  425. base = dhar_base(pvt->dhar);
  426. *hole_base = base;
  427. *hole_size = (0x1ull << 32) - base;
  428. if (boot_cpu_data.x86 > 0xf)
  429. *hole_offset = f10_dhar_offset(pvt->dhar);
  430. else
  431. *hole_offset = k8_dhar_offset(pvt->dhar);
  432. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  433. pvt->mc_node_id, (unsigned long)*hole_base,
  434. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  435. return 0;
  436. }
  437. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  438. /*
  439. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  440. * assumed that sys_addr maps to the node given by mci.
  441. *
  442. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  443. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  444. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  445. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  446. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  447. * These parts of the documentation are unclear. I interpret them as follows:
  448. *
  449. * When node n receives a SysAddr, it processes the SysAddr as follows:
  450. *
  451. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  452. * Limit registers for node n. If the SysAddr is not within the range
  453. * specified by the base and limit values, then node n ignores the Sysaddr
  454. * (since it does not map to node n). Otherwise continue to step 2 below.
  455. *
  456. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  457. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  458. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  459. * hole. If not, skip to step 3 below. Else get the value of the
  460. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  461. * offset defined by this value from the SysAddr.
  462. *
  463. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  464. * Base register for node n. To obtain the DramAddr, subtract the base
  465. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  466. */
  467. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  468. {
  469. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  470. int ret = 0;
  471. dram_base = get_dram_base(mci);
  472. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  473. &hole_size);
  474. if (!ret) {
  475. if ((sys_addr >= (1ull << 32)) &&
  476. (sys_addr < ((1ull << 32) + hole_size))) {
  477. /* use DHAR to translate SysAddr to DramAddr */
  478. dram_addr = sys_addr - hole_offset;
  479. debugf2("using DHAR to translate SysAddr 0x%lx to "
  480. "DramAddr 0x%lx\n",
  481. (unsigned long)sys_addr,
  482. (unsigned long)dram_addr);
  483. return dram_addr;
  484. }
  485. }
  486. /*
  487. * Translate the SysAddr to a DramAddr as shown near the start of
  488. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  489. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  490. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  491. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  492. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  493. * Programmer's Manual Volume 1 Application Programming.
  494. */
  495. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  496. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  497. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  498. (unsigned long)dram_addr);
  499. return dram_addr;
  500. }
  501. /*
  502. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  503. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  504. * for node interleaving.
  505. */
  506. static int num_node_interleave_bits(unsigned intlv_en)
  507. {
  508. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  509. int n;
  510. BUG_ON(intlv_en > 7);
  511. n = intlv_shift_table[intlv_en];
  512. return n;
  513. }
  514. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  515. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  516. {
  517. struct amd64_pvt *pvt;
  518. int intlv_shift;
  519. u64 input_addr;
  520. pvt = mci->pvt_info;
  521. /*
  522. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  523. * concerning translating a DramAddr to an InputAddr.
  524. */
  525. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  526. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  527. (dram_addr & 0xfff);
  528. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  529. intlv_shift, (unsigned long)dram_addr,
  530. (unsigned long)input_addr);
  531. return input_addr;
  532. }
  533. /*
  534. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  535. * assumed that @sys_addr maps to the node given by mci.
  536. */
  537. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  538. {
  539. u64 input_addr;
  540. input_addr =
  541. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  542. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  543. (unsigned long)sys_addr, (unsigned long)input_addr);
  544. return input_addr;
  545. }
  546. /*
  547. * @input_addr is an InputAddr associated with the node represented by mci.
  548. * Translate @input_addr to a DramAddr and return the result.
  549. */
  550. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  551. {
  552. struct amd64_pvt *pvt;
  553. int node_id, intlv_shift;
  554. u64 bits, dram_addr;
  555. u32 intlv_sel;
  556. /*
  557. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  558. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  559. * this procedure. When translating from a DramAddr to an InputAddr, the
  560. * bits used for node interleaving are discarded. Here we recover these
  561. * bits from the IntlvSel field of the DRAM Limit register (section
  562. * 3.4.4.2) for the node that input_addr is associated with.
  563. */
  564. pvt = mci->pvt_info;
  565. node_id = pvt->mc_node_id;
  566. BUG_ON((node_id < 0) || (node_id > 7));
  567. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  568. if (intlv_shift == 0) {
  569. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  570. "same value\n", (unsigned long)input_addr);
  571. return input_addr;
  572. }
  573. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  574. (input_addr & 0xfff);
  575. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  576. dram_addr = bits + (intlv_sel << 12);
  577. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  578. "(%d node interleave bits)\n", (unsigned long)input_addr,
  579. (unsigned long)dram_addr, intlv_shift);
  580. return dram_addr;
  581. }
  582. /*
  583. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  584. * @dram_addr to a SysAddr.
  585. */
  586. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  587. {
  588. struct amd64_pvt *pvt = mci->pvt_info;
  589. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  590. int ret = 0;
  591. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  592. &hole_size);
  593. if (!ret) {
  594. if ((dram_addr >= hole_base) &&
  595. (dram_addr < (hole_base + hole_size))) {
  596. sys_addr = dram_addr + hole_offset;
  597. debugf1("using DHAR to translate DramAddr 0x%lx to "
  598. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  599. (unsigned long)sys_addr);
  600. return sys_addr;
  601. }
  602. }
  603. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  604. sys_addr = dram_addr + base;
  605. /*
  606. * The sys_addr we have computed up to this point is a 40-bit value
  607. * because the k8 deals with 40-bit values. However, the value we are
  608. * supposed to return is a full 64-bit physical address. The AMD
  609. * x86-64 architecture specifies that the most significant implemented
  610. * address bit through bit 63 of a physical address must be either all
  611. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  612. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  613. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  614. * Programming.
  615. */
  616. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  617. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  618. pvt->mc_node_id, (unsigned long)dram_addr,
  619. (unsigned long)sys_addr);
  620. return sys_addr;
  621. }
  622. /*
  623. * @input_addr is an InputAddr associated with the node given by mci. Translate
  624. * @input_addr to a SysAddr.
  625. */
  626. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  627. u64 input_addr)
  628. {
  629. return dram_addr_to_sys_addr(mci,
  630. input_addr_to_dram_addr(mci, input_addr));
  631. }
  632. /*
  633. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  634. * Pass back these values in *input_addr_min and *input_addr_max.
  635. */
  636. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  637. u64 *input_addr_min, u64 *input_addr_max)
  638. {
  639. struct amd64_pvt *pvt;
  640. u64 base, mask;
  641. pvt = mci->pvt_info;
  642. BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
  643. base = base_from_dct_base(pvt, csrow);
  644. mask = mask_from_dct_mask(pvt, csrow);
  645. *input_addr_min = base & ~mask;
  646. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  647. }
  648. /*
  649. * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
  650. * Address High (section 3.6.4.6) register values and return the result. Address
  651. * is located in the info structure (nbeah and nbeal), the encoding is device
  652. * specific.
  653. */
  654. static u64 extract_error_address(struct mem_ctl_info *mci,
  655. struct err_regs *info)
  656. {
  657. struct amd64_pvt *pvt = mci->pvt_info;
  658. return pvt->ops->get_error_address(mci, info);
  659. }
  660. /* Map the Error address to a PAGE and PAGE OFFSET. */
  661. static inline void error_address_to_page_and_offset(u64 error_address,
  662. u32 *page, u32 *offset)
  663. {
  664. *page = (u32) (error_address >> PAGE_SHIFT);
  665. *offset = ((u32) error_address) & ~PAGE_MASK;
  666. }
  667. /*
  668. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  669. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  670. * of a node that detected an ECC memory error. mci represents the node that
  671. * the error address maps to (possibly different from the node that detected
  672. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  673. * error.
  674. */
  675. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  676. {
  677. int csrow;
  678. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  679. if (csrow == -1)
  680. amd64_mc_printk(mci, KERN_ERR,
  681. "Failed to translate InputAddr to csrow for "
  682. "address 0x%lx\n", (unsigned long)sys_addr);
  683. return csrow;
  684. }
  685. static int get_channel_from_ecc_syndrome(unsigned short syndrome);
  686. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  687. {
  688. if (boot_cpu_data.x86 == 0x11)
  689. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  690. else if (boot_cpu_data.x86 == 0x10)
  691. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  692. else if (boot_cpu_data.x86 == 0xf)
  693. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  694. (pvt->ext_model >= K8_REV_F) ?
  695. "Rev F or later" : "Rev E or earlier");
  696. else
  697. /* we'll hardly ever ever get here */
  698. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  699. }
  700. /*
  701. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  702. * are ECC capable.
  703. */
  704. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  705. {
  706. int bit;
  707. enum dev_type edac_cap = EDAC_FLAG_NONE;
  708. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  709. ? 19
  710. : 17;
  711. if (pvt->dclr0 & BIT(bit))
  712. edac_cap = EDAC_FLAG_SECDED;
  713. return edac_cap;
  714. }
  715. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  716. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  717. {
  718. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  719. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  720. (dclr & BIT(16)) ? "un" : "",
  721. (dclr & BIT(19)) ? "yes" : "no");
  722. debugf1(" PAR/ERR parity: %s\n",
  723. (dclr & BIT(8)) ? "enabled" : "disabled");
  724. debugf1(" DCT 128bit mode width: %s\n",
  725. (dclr & BIT(11)) ? "128b" : "64b");
  726. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  727. (dclr & BIT(12)) ? "yes" : "no",
  728. (dclr & BIT(13)) ? "yes" : "no",
  729. (dclr & BIT(14)) ? "yes" : "no",
  730. (dclr & BIT(15)) ? "yes" : "no");
  731. }
  732. /* Display and decode various NB registers for debug purposes. */
  733. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  734. {
  735. int ganged;
  736. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  737. debugf1(" NB two channel DRAM capable: %s\n",
  738. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
  739. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  740. (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
  741. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
  742. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  743. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  744. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  745. "offset: 0x%08x\n",
  746. pvt->dhar,
  747. dhar_base(pvt->dhar),
  748. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
  749. : f10_dhar_offset(pvt->dhar));
  750. debugf1(" DramHoleValid: %s\n",
  751. (pvt->dhar & DHAR_VALID) ? "yes" : "no");
  752. /* everything below this point is Fam10h and above */
  753. if (boot_cpu_data.x86 == 0xf) {
  754. amd64_debug_display_dimm_sizes(0, pvt);
  755. return;
  756. }
  757. /* Only if NOT ganged does dclr1 have valid info */
  758. if (!dct_ganging_enabled(pvt))
  759. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  760. /*
  761. * Determine if ganged and then dump memory sizes for first controller,
  762. * and if NOT ganged dump info for 2nd controller.
  763. */
  764. ganged = dct_ganging_enabled(pvt);
  765. amd64_debug_display_dimm_sizes(0, pvt);
  766. if (!ganged)
  767. amd64_debug_display_dimm_sizes(1, pvt);
  768. }
  769. /* Read in both of DBAM registers */
  770. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  771. {
  772. amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
  773. if (boot_cpu_data.x86 >= 0x10)
  774. amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
  775. }
  776. /*
  777. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  778. *
  779. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  780. * set the shift factor for the DCSB and DCSM values.
  781. *
  782. * ->dcs_mask_notused, RevE:
  783. *
  784. * To find the max InputAddr for the csrow, start with the base address and set
  785. * all bits that are "don't care" bits in the test at the start of section
  786. * 3.5.4 (p. 84).
  787. *
  788. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  789. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  790. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  791. * gaps.
  792. *
  793. * ->dcs_mask_notused, RevF and later:
  794. *
  795. * To find the max InputAddr for the csrow, start with the base address and set
  796. * all bits that are "don't care" bits in the test at the start of NPT section
  797. * 4.5.4 (p. 87).
  798. *
  799. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  800. * between bit ranges [36:27] and [21:13].
  801. *
  802. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  803. * which are all bits in the above-mentioned gaps.
  804. */
  805. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  806. {
  807. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  808. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  809. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  810. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  811. pvt->dcs_shift = REV_E_DCS_SHIFT;
  812. pvt->cs_count = 8;
  813. pvt->num_dcsm = 8;
  814. } else {
  815. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  816. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  817. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  818. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  819. if (boot_cpu_data.x86 == 0x11) {
  820. pvt->cs_count = 4;
  821. pvt->num_dcsm = 2;
  822. } else {
  823. pvt->cs_count = 8;
  824. pvt->num_dcsm = 4;
  825. }
  826. }
  827. }
  828. /*
  829. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  830. */
  831. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  832. {
  833. int cs, reg;
  834. amd64_set_dct_base_and_mask(pvt);
  835. for (cs = 0; cs < pvt->cs_count; cs++) {
  836. reg = K8_DCSB0 + (cs * 4);
  837. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
  838. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  839. cs, pvt->dcsb0[cs], reg);
  840. /* If DCT are NOT ganged, then read in DCT1's base */
  841. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  842. reg = F10_DCSB1 + (cs * 4);
  843. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
  844. &pvt->dcsb1[cs]))
  845. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  846. cs, pvt->dcsb1[cs], reg);
  847. } else {
  848. pvt->dcsb1[cs] = 0;
  849. }
  850. }
  851. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  852. reg = K8_DCSM0 + (cs * 4);
  853. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
  854. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  855. cs, pvt->dcsm0[cs], reg);
  856. /* If DCT are NOT ganged, then read in DCT1's mask */
  857. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  858. reg = F10_DCSM1 + (cs * 4);
  859. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
  860. &pvt->dcsm1[cs]))
  861. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  862. cs, pvt->dcsm1[cs], reg);
  863. } else {
  864. pvt->dcsm1[cs] = 0;
  865. }
  866. }
  867. }
  868. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  869. {
  870. enum mem_type type;
  871. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
  872. /* Rev F and later */
  873. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  874. } else {
  875. /* Rev E and earlier */
  876. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  877. }
  878. debugf1(" Memory type is: %s\n",
  879. (type == MEM_DDR2) ? "MEM_DDR2" :
  880. (type == MEM_RDDR2) ? "MEM_RDDR2" :
  881. (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
  882. return type;
  883. }
  884. /*
  885. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  886. * and the later RevF memory controllers (DDR vs DDR2)
  887. *
  888. * Return:
  889. * number of memory channels in operation
  890. * Pass back:
  891. * contents of the DCL0_LOW register
  892. */
  893. static int k8_early_channel_count(struct amd64_pvt *pvt)
  894. {
  895. int flag, err = 0;
  896. err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  897. if (err)
  898. return err;
  899. if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
  900. /* RevF (NPT) and later */
  901. flag = pvt->dclr0 & F10_WIDTH_128;
  902. } else {
  903. /* RevE and earlier */
  904. flag = pvt->dclr0 & REVE_WIDTH_128;
  905. }
  906. /* not used */
  907. pvt->dclr1 = 0;
  908. return (flag) ? 2 : 1;
  909. }
  910. /* extract the ERROR ADDRESS for the K8 CPUs */
  911. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  912. struct err_regs *info)
  913. {
  914. return (((u64) (info->nbeah & 0xff)) << 32) +
  915. (info->nbeal & ~0x03);
  916. }
  917. /*
  918. * Read the Base and Limit registers for K8 based Memory controllers; extract
  919. * fields from the 'raw' reg into separate data fields
  920. *
  921. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  922. */
  923. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  924. {
  925. u32 low;
  926. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  927. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
  928. /* Extract parts into separate data entries */
  929. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  930. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  931. pvt->dram_rw_en[dram] = (low & 0x3);
  932. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
  933. /*
  934. * Extract parts into separate data entries. Limit is the HIGHEST memory
  935. * location of the region, so lower 24 bits need to be all ones
  936. */
  937. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  938. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  939. pvt->dram_DstNode[dram] = (low & 0x7);
  940. }
  941. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  942. struct err_regs *info,
  943. u64 SystemAddress)
  944. {
  945. struct mem_ctl_info *src_mci;
  946. unsigned short syndrome;
  947. int channel, csrow;
  948. u32 page, offset;
  949. /* Extract the syndrome parts and form a 16-bit syndrome */
  950. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  951. syndrome |= LOW_SYNDROME(info->nbsh);
  952. /* CHIPKILL enabled */
  953. if (info->nbcfg & K8_NBCFG_CHIPKILL) {
  954. channel = get_channel_from_ecc_syndrome(syndrome);
  955. if (channel < 0) {
  956. /*
  957. * Syndrome didn't map, so we don't know which of the
  958. * 2 DIMMs is in error. So we need to ID 'both' of them
  959. * as suspect.
  960. */
  961. amd64_mc_printk(mci, KERN_WARNING,
  962. "unknown syndrome 0x%x - possible error "
  963. "reporting race\n", syndrome);
  964. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  965. return;
  966. }
  967. } else {
  968. /*
  969. * non-chipkill ecc mode
  970. *
  971. * The k8 documentation is unclear about how to determine the
  972. * channel number when using non-chipkill memory. This method
  973. * was obtained from email communication with someone at AMD.
  974. * (Wish the email was placed in this comment - norsk)
  975. */
  976. channel = ((SystemAddress & BIT(3)) != 0);
  977. }
  978. /*
  979. * Find out which node the error address belongs to. This may be
  980. * different from the node that detected the error.
  981. */
  982. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  983. if (!src_mci) {
  984. amd64_mc_printk(mci, KERN_ERR,
  985. "failed to map error address 0x%lx to a node\n",
  986. (unsigned long)SystemAddress);
  987. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  988. return;
  989. }
  990. /* Now map the SystemAddress to a CSROW */
  991. csrow = sys_addr_to_csrow(src_mci, SystemAddress);
  992. if (csrow < 0) {
  993. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  994. } else {
  995. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  996. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  997. channel, EDAC_MOD_STR);
  998. }
  999. }
  1000. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  1001. {
  1002. int *dbam_map;
  1003. if (pvt->ext_model >= K8_REV_F)
  1004. dbam_map = ddr2_dbam;
  1005. else if (pvt->ext_model >= K8_REV_D)
  1006. dbam_map = ddr2_dbam_revD;
  1007. else
  1008. dbam_map = ddr2_dbam_revCG;
  1009. return dbam_map[cs_mode];
  1010. }
  1011. /*
  1012. * Get the number of DCT channels in use.
  1013. *
  1014. * Return:
  1015. * number of Memory Channels in operation
  1016. * Pass back:
  1017. * contents of the DCL0_LOW register
  1018. */
  1019. static int f10_early_channel_count(struct amd64_pvt *pvt)
  1020. {
  1021. int dbams[] = { DBAM0, DBAM1 };
  1022. int i, j, channels = 0;
  1023. u32 dbam;
  1024. /* If we are in 128 bit mode, then we are using 2 channels */
  1025. if (pvt->dclr0 & F10_WIDTH_128) {
  1026. channels = 2;
  1027. return channels;
  1028. }
  1029. /*
  1030. * Need to check if in unganged mode: In such, there are 2 channels,
  1031. * but they are not in 128 bit mode and thus the above 'dclr0' status
  1032. * bit will be OFF.
  1033. *
  1034. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1035. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1036. */
  1037. debugf0("Data width is not 128 bits - need more decoding\n");
  1038. /*
  1039. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1040. * is more than just one DIMM present in unganged mode. Need to check
  1041. * both controllers since DIMMs can be placed in either one.
  1042. */
  1043. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  1044. if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
  1045. goto err_reg;
  1046. for (j = 0; j < 4; j++) {
  1047. if (DBAM_DIMM(j, dbam) > 0) {
  1048. channels++;
  1049. break;
  1050. }
  1051. }
  1052. }
  1053. if (channels > 2)
  1054. channels = 2;
  1055. debugf0("MCT channel count: %d\n", channels);
  1056. return channels;
  1057. err_reg:
  1058. return -1;
  1059. }
  1060. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  1061. {
  1062. int *dbam_map;
  1063. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1064. dbam_map = ddr3_dbam;
  1065. else
  1066. dbam_map = ddr2_dbam;
  1067. return dbam_map[cs_mode];
  1068. }
  1069. /* Enable extended configuration access via 0xCF8 feature */
  1070. static void amd64_setup(struct amd64_pvt *pvt)
  1071. {
  1072. u32 reg;
  1073. amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1074. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1075. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1076. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1077. }
  1078. /* Restore the extended configuration access via 0xCF8 feature */
  1079. static void amd64_teardown(struct amd64_pvt *pvt)
  1080. {
  1081. u32 reg;
  1082. amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1083. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1084. if (pvt->flags.cf8_extcfg)
  1085. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1086. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1087. }
  1088. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1089. struct err_regs *info)
  1090. {
  1091. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1092. (info->nbeal & ~0x01);
  1093. }
  1094. /*
  1095. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1096. * fields from the 'raw' reg into separate data fields.
  1097. *
  1098. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1099. */
  1100. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1101. {
  1102. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1103. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1104. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1105. /* read the 'raw' DRAM BASE Address register */
  1106. amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
  1107. /* Read from the ECS data register */
  1108. amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
  1109. /* Extract parts into separate data entries */
  1110. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1111. if (pvt->dram_rw_en[dram] == 0)
  1112. return;
  1113. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1114. pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
  1115. (((u64)low_base & 0xFFFF0000) << 8);
  1116. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1117. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1118. /* read the 'raw' LIMIT registers */
  1119. amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
  1120. /* Read from the ECS data register for the HIGH portion */
  1121. amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
  1122. debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
  1123. high_base, low_base, high_limit, low_limit);
  1124. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1125. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1126. /*
  1127. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1128. * memory location of the region, so low 24 bits need to be all ones.
  1129. */
  1130. pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
  1131. (((u64) low_limit & 0xFFFF0000) << 8) |
  1132. 0x00FFFFFF;
  1133. }
  1134. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1135. {
  1136. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1137. &pvt->dram_ctl_select_low)) {
  1138. debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
  1139. "High range addresses at: 0x%x\n",
  1140. pvt->dram_ctl_select_low,
  1141. dct_sel_baseaddr(pvt));
  1142. debugf0(" DCT mode: %s, All DCTs on: %s\n",
  1143. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  1144. (dct_dram_enabled(pvt) ? "yes" : "no"));
  1145. if (!dct_ganging_enabled(pvt))
  1146. debugf0(" Address range split per DCT: %s\n",
  1147. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1148. debugf0(" DCT data interleave for ECC: %s, "
  1149. "DRAM cleared since last warm reset: %s\n",
  1150. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1151. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1152. debugf0(" DCT channel interleave: %s, "
  1153. "DCT interleave bits selector: 0x%x\n",
  1154. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1155. dct_sel_interleave_addr(pvt));
  1156. }
  1157. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1158. &pvt->dram_ctl_select_high);
  1159. }
  1160. /*
  1161. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1162. * Interleaving Modes.
  1163. */
  1164. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1165. int hi_range_sel, u32 intlv_en)
  1166. {
  1167. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1168. if (dct_ganging_enabled(pvt))
  1169. cs = 0;
  1170. else if (hi_range_sel)
  1171. cs = dct_sel_high;
  1172. else if (dct_interleave_enabled(pvt)) {
  1173. /*
  1174. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1175. */
  1176. if (dct_sel_interleave_addr(pvt) == 0)
  1177. cs = sys_addr >> 6 & 1;
  1178. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1179. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1180. if (dct_sel_interleave_addr(pvt) & 1)
  1181. cs = (sys_addr >> 9 & 1) ^ temp;
  1182. else
  1183. cs = (sys_addr >> 6 & 1) ^ temp;
  1184. } else if (intlv_en & 4)
  1185. cs = sys_addr >> 15 & 1;
  1186. else if (intlv_en & 2)
  1187. cs = sys_addr >> 14 & 1;
  1188. else if (intlv_en & 1)
  1189. cs = sys_addr >> 13 & 1;
  1190. else
  1191. cs = sys_addr >> 12 & 1;
  1192. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1193. cs = ~dct_sel_high & 1;
  1194. else
  1195. cs = 0;
  1196. return cs;
  1197. }
  1198. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1199. {
  1200. if (intlv_en == 1)
  1201. return 1;
  1202. else if (intlv_en == 3)
  1203. return 2;
  1204. else if (intlv_en == 7)
  1205. return 3;
  1206. return 0;
  1207. }
  1208. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1209. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1210. u32 dct_sel_base_addr,
  1211. u64 dct_sel_base_off,
  1212. u32 hole_valid, u32 hole_off,
  1213. u64 dram_base)
  1214. {
  1215. u64 chan_off;
  1216. if (hi_range_sel) {
  1217. if (!(dct_sel_base_addr & 0xFFFFF800) &&
  1218. hole_valid && (sys_addr >= 0x100000000ULL))
  1219. chan_off = hole_off << 16;
  1220. else
  1221. chan_off = dct_sel_base_off;
  1222. } else {
  1223. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1224. chan_off = hole_off << 16;
  1225. else
  1226. chan_off = dram_base & 0xFFFFF8000000ULL;
  1227. }
  1228. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1229. (chan_off & 0x0000FFFFFF800000ULL);
  1230. }
  1231. /* Hack for the time being - Can we get this from BIOS?? */
  1232. #define CH0SPARE_RANK 0
  1233. #define CH1SPARE_RANK 1
  1234. /*
  1235. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1236. * spare row
  1237. */
  1238. static inline int f10_process_possible_spare(int csrow,
  1239. u32 cs, struct amd64_pvt *pvt)
  1240. {
  1241. u32 swap_done;
  1242. u32 bad_dram_cs;
  1243. /* Depending on channel, isolate respective SPARING info */
  1244. if (cs) {
  1245. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1246. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1247. if (swap_done && (csrow == bad_dram_cs))
  1248. csrow = CH1SPARE_RANK;
  1249. } else {
  1250. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1251. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1252. if (swap_done && (csrow == bad_dram_cs))
  1253. csrow = CH0SPARE_RANK;
  1254. }
  1255. return csrow;
  1256. }
  1257. /*
  1258. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1259. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1260. *
  1261. * Return:
  1262. * -EINVAL: NOT FOUND
  1263. * 0..csrow = Chip-Select Row
  1264. */
  1265. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1266. {
  1267. struct mem_ctl_info *mci;
  1268. struct amd64_pvt *pvt;
  1269. u32 cs_base, cs_mask;
  1270. int cs_found = -EINVAL;
  1271. int csrow;
  1272. mci = mci_lookup[nid];
  1273. if (!mci)
  1274. return cs_found;
  1275. pvt = mci->pvt_info;
  1276. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1277. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  1278. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1279. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1280. continue;
  1281. /*
  1282. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1283. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1284. * of the actual address.
  1285. */
  1286. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1287. /*
  1288. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1289. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1290. */
  1291. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1292. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1293. csrow, cs_base, cs_mask);
  1294. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1295. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1296. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1297. "(CSBase & ~CSMask)=0x%x\n",
  1298. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1299. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1300. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1301. debugf1(" MATCH csrow=%d\n", cs_found);
  1302. break;
  1303. }
  1304. }
  1305. return cs_found;
  1306. }
  1307. /* For a given @dram_range, check if @sys_addr falls within it. */
  1308. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1309. u64 sys_addr, int *nid, int *chan_sel)
  1310. {
  1311. int node_id, cs_found = -EINVAL, high_range = 0;
  1312. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1313. u32 hole_valid, tmp, dct_sel_base, channel;
  1314. u64 dram_base, chan_addr, dct_sel_base_off;
  1315. dram_base = pvt->dram_base[dram_range];
  1316. intlv_en = pvt->dram_IntlvEn[dram_range];
  1317. node_id = pvt->dram_DstNode[dram_range];
  1318. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1319. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1320. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1321. /*
  1322. * This assumes that one node's DHAR is the same as all the other
  1323. * nodes' DHAR.
  1324. */
  1325. hole_off = (pvt->dhar & 0x0000FF80);
  1326. hole_valid = (pvt->dhar & 0x1);
  1327. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1328. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1329. hole_off, hole_valid, intlv_sel);
  1330. if (intlv_en ||
  1331. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1332. return -EINVAL;
  1333. dct_sel_base = dct_sel_baseaddr(pvt);
  1334. /*
  1335. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1336. * select between DCT0 and DCT1.
  1337. */
  1338. if (dct_high_range_enabled(pvt) &&
  1339. !dct_ganging_enabled(pvt) &&
  1340. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1341. high_range = 1;
  1342. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1343. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1344. dct_sel_base_off, hole_valid,
  1345. hole_off, dram_base);
  1346. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1347. /* remove Node ID (in case of memory interleaving) */
  1348. tmp = chan_addr & 0xFC0;
  1349. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1350. /* remove channel interleave and hash */
  1351. if (dct_interleave_enabled(pvt) &&
  1352. !dct_high_range_enabled(pvt) &&
  1353. !dct_ganging_enabled(pvt)) {
  1354. if (dct_sel_interleave_addr(pvt) != 1)
  1355. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1356. else {
  1357. tmp = chan_addr & 0xFC0;
  1358. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1359. | tmp;
  1360. }
  1361. }
  1362. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1363. chan_addr, (u32)(chan_addr >> 8));
  1364. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1365. if (cs_found >= 0) {
  1366. *nid = node_id;
  1367. *chan_sel = channel;
  1368. }
  1369. return cs_found;
  1370. }
  1371. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1372. int *node, int *chan_sel)
  1373. {
  1374. int dram_range, cs_found = -EINVAL;
  1375. u64 dram_base, dram_limit;
  1376. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1377. if (!pvt->dram_rw_en[dram_range])
  1378. continue;
  1379. dram_base = pvt->dram_base[dram_range];
  1380. dram_limit = pvt->dram_limit[dram_range];
  1381. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1382. cs_found = f10_match_to_this_node(pvt, dram_range,
  1383. sys_addr, node,
  1384. chan_sel);
  1385. if (cs_found >= 0)
  1386. break;
  1387. }
  1388. }
  1389. return cs_found;
  1390. }
  1391. /*
  1392. * This the F10h reference code from AMD to map a @sys_addr to NodeID,
  1393. * CSROW, Channel.
  1394. *
  1395. * The @sys_addr is usually an error address received from the hardware.
  1396. */
  1397. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1398. struct err_regs *info,
  1399. u64 sys_addr)
  1400. {
  1401. struct amd64_pvt *pvt = mci->pvt_info;
  1402. u32 page, offset;
  1403. unsigned short syndrome;
  1404. int nid, csrow, chan = 0;
  1405. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1406. if (csrow >= 0) {
  1407. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1408. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  1409. syndrome |= LOW_SYNDROME(info->nbsh);
  1410. /*
  1411. * Is CHIPKILL on? If so, then we can attempt to use the
  1412. * syndrome to isolate which channel the error was on.
  1413. */
  1414. if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
  1415. chan = get_channel_from_ecc_syndrome(syndrome);
  1416. if (chan >= 0) {
  1417. edac_mc_handle_ce(mci, page, offset, syndrome,
  1418. csrow, chan, EDAC_MOD_STR);
  1419. } else {
  1420. /*
  1421. * Channel unknown, report all channels on this
  1422. * CSROW as failed.
  1423. */
  1424. for (chan = 0; chan < mci->csrows[csrow].nr_channels;
  1425. chan++) {
  1426. edac_mc_handle_ce(mci, page, offset,
  1427. syndrome,
  1428. csrow, chan,
  1429. EDAC_MOD_STR);
  1430. }
  1431. }
  1432. } else {
  1433. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1434. }
  1435. }
  1436. /*
  1437. * debug routine to display the memory sizes of all logical DIMMs and its
  1438. * CSROWs as well
  1439. */
  1440. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1441. {
  1442. int dimm, size0, size1;
  1443. u32 dbam;
  1444. u32 *dcsb;
  1445. if (boot_cpu_data.x86 == 0xf) {
  1446. /* K8 families < revF not supported yet */
  1447. if (pvt->ext_model < K8_REV_F)
  1448. return;
  1449. else
  1450. WARN_ON(ctrl != 0);
  1451. }
  1452. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1453. ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
  1454. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1455. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1456. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1457. /* Dump memory sizes for DIMM and its CSROWs */
  1458. for (dimm = 0; dimm < 4; dimm++) {
  1459. size0 = 0;
  1460. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1461. size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1462. size1 = 0;
  1463. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1464. size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1465. edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
  1466. dimm * 2, size0, dimm * 2 + 1, size1);
  1467. }
  1468. }
  1469. /*
  1470. * Very early hardware probe on pci_probe thread to determine if this module
  1471. * supports the hardware.
  1472. *
  1473. * Return:
  1474. * 0 for OK
  1475. * 1 for error
  1476. */
  1477. static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
  1478. {
  1479. int ret = 0;
  1480. /*
  1481. * If we are on a DDR3 machine, we don't know yet if
  1482. * we support that properly at this time
  1483. */
  1484. if ((pvt->dchr0 & DDR3_MODE) ||
  1485. (pvt->dchr1 & DDR3_MODE)) {
  1486. amd64_printk(KERN_WARNING,
  1487. "%s() This machine is running with DDR3 memory. "
  1488. "This is not currently supported. "
  1489. "DCHR0=0x%x DCHR1=0x%x\n",
  1490. __func__, pvt->dchr0, pvt->dchr1);
  1491. amd64_printk(KERN_WARNING,
  1492. " Contact '%s' module MAINTAINER to help add"
  1493. " support.\n",
  1494. EDAC_MOD_STR);
  1495. ret = 1;
  1496. }
  1497. return ret;
  1498. }
  1499. /*
  1500. * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  1501. * (as per PCI DEVICE_IDs):
  1502. *
  1503. * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
  1504. * DEVICE ID, even though there is differences between the different Revisions
  1505. * (CG,D,E,F).
  1506. *
  1507. * Family F10h and F11h.
  1508. *
  1509. */
  1510. static struct amd64_family_type amd64_family_types[] = {
  1511. [K8_CPUS] = {
  1512. .ctl_name = "RevF",
  1513. .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1514. .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1515. .ops = {
  1516. .early_channel_count = k8_early_channel_count,
  1517. .get_error_address = k8_get_error_address,
  1518. .read_dram_base_limit = k8_read_dram_base_limit,
  1519. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1520. .dbam_to_cs = k8_dbam_to_chip_select,
  1521. }
  1522. },
  1523. [F10_CPUS] = {
  1524. .ctl_name = "Family 10h",
  1525. .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1526. .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1527. .ops = {
  1528. .probe_valid_hardware = f10_probe_valid_hardware,
  1529. .early_channel_count = f10_early_channel_count,
  1530. .get_error_address = f10_get_error_address,
  1531. .read_dram_base_limit = f10_read_dram_base_limit,
  1532. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1533. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1534. .dbam_to_cs = f10_dbam_to_chip_select,
  1535. }
  1536. },
  1537. [F11_CPUS] = {
  1538. .ctl_name = "Family 11h",
  1539. .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
  1540. .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
  1541. .ops = {
  1542. .probe_valid_hardware = f10_probe_valid_hardware,
  1543. .early_channel_count = f10_early_channel_count,
  1544. .get_error_address = f10_get_error_address,
  1545. .read_dram_base_limit = f10_read_dram_base_limit,
  1546. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1547. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1548. .dbam_to_cs = f10_dbam_to_chip_select,
  1549. }
  1550. },
  1551. };
  1552. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1553. unsigned int device,
  1554. struct pci_dev *related)
  1555. {
  1556. struct pci_dev *dev = NULL;
  1557. dev = pci_get_device(vendor, device, dev);
  1558. while (dev) {
  1559. if ((dev->bus->number == related->bus->number) &&
  1560. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1561. break;
  1562. dev = pci_get_device(vendor, device, dev);
  1563. }
  1564. return dev;
  1565. }
  1566. /*
  1567. * syndrome mapping table for ECC ChipKill devices
  1568. *
  1569. * The comment in each row is the token (nibble) number that is in error.
  1570. * The least significant nibble of the syndrome is the mask for the bits
  1571. * that are in error (need to be toggled) for the particular nibble.
  1572. *
  1573. * Each row contains 16 entries.
  1574. * The first entry (0th) is the channel number for that row of syndromes.
  1575. * The remaining 15 entries are the syndromes for the respective Error
  1576. * bit mask index.
  1577. *
  1578. * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
  1579. * bit in error.
  1580. * The 2nd index entry is 0x0010 that the second bit is damaged.
  1581. * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
  1582. * are damaged.
  1583. * Thus so on until index 15, 0x1111, whose entry has the syndrome
  1584. * indicating that all 4 bits are damaged.
  1585. *
  1586. * A search is performed on this table looking for a given syndrome.
  1587. *
  1588. * See the AMD documentation for ECC syndromes. This ECC table is valid
  1589. * across all the versions of the AMD64 processors.
  1590. *
  1591. * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
  1592. * COLUMN index, then search all ROWS of that column, looking for a match
  1593. * with the input syndrome. The ROW value will be the token number.
  1594. *
  1595. * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
  1596. * error.
  1597. */
  1598. #define NUMBER_ECC_ROWS 36
  1599. static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
  1600. /* Channel 0 syndromes */
  1601. {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
  1602. 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
  1603. {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
  1604. 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
  1605. {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
  1606. 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
  1607. {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
  1608. 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
  1609. {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
  1610. 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
  1611. {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
  1612. 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
  1613. {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
  1614. 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
  1615. {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
  1616. 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
  1617. {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
  1618. 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
  1619. {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
  1620. 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
  1621. {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
  1622. 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
  1623. {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
  1624. 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
  1625. {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
  1626. 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
  1627. {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
  1628. 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
  1629. {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
  1630. 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
  1631. {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
  1632. 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
  1633. /* Channel 1 syndromes */
  1634. {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
  1635. 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
  1636. {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
  1637. 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
  1638. {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
  1639. 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
  1640. {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
  1641. 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
  1642. {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
  1643. 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
  1644. {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
  1645. 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
  1646. {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
  1647. 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
  1648. {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
  1649. 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
  1650. {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
  1651. 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
  1652. {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
  1653. 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
  1654. {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
  1655. 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
  1656. {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
  1657. 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
  1658. {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
  1659. 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
  1660. {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
  1661. 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
  1662. {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
  1663. 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
  1664. {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
  1665. 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
  1666. /* ECC bits are also in the set of tokens and they too can go bad
  1667. * first 2 cover channel 0, while the second 2 cover channel 1
  1668. */
  1669. {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
  1670. 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
  1671. {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
  1672. 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
  1673. {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
  1674. 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
  1675. {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
  1676. 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
  1677. };
  1678. /*
  1679. * Given the syndrome argument, scan each of the channel tables for a syndrome
  1680. * match. Depending on which table it is found, return the channel number.
  1681. */
  1682. static int get_channel_from_ecc_syndrome(unsigned short syndrome)
  1683. {
  1684. int row;
  1685. int column;
  1686. /* Determine column to scan */
  1687. column = syndrome & 0xF;
  1688. /* Scan all rows, looking for syndrome, or end of table */
  1689. for (row = 0; row < NUMBER_ECC_ROWS; row++) {
  1690. if (ecc_chipkill_syndromes[row][column] == syndrome)
  1691. return ecc_chipkill_syndromes[row][0];
  1692. }
  1693. debugf0("syndrome(%x) not found\n", syndrome);
  1694. return -1;
  1695. }
  1696. /*
  1697. * Check for valid error in the NB Status High register. If so, proceed to read
  1698. * NB Status Low, NB Address Low and NB Address High registers and store data
  1699. * into error structure.
  1700. *
  1701. * Returns:
  1702. * - 1: if hardware regs contains valid error info
  1703. * - 0: if no valid error is indicated
  1704. */
  1705. static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
  1706. struct err_regs *regs)
  1707. {
  1708. struct amd64_pvt *pvt;
  1709. struct pci_dev *misc_f3_ctl;
  1710. pvt = mci->pvt_info;
  1711. misc_f3_ctl = pvt->misc_f3_ctl;
  1712. if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
  1713. return 0;
  1714. if (!(regs->nbsh & K8_NBSH_VALID_BIT))
  1715. return 0;
  1716. /* valid error, read remaining error information registers */
  1717. if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
  1718. amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
  1719. amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
  1720. amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
  1721. return 0;
  1722. return 1;
  1723. }
  1724. /*
  1725. * This function is called to retrieve the error data from hardware and store it
  1726. * in the info structure.
  1727. *
  1728. * Returns:
  1729. * - 1: if a valid error is found
  1730. * - 0: if no error is found
  1731. */
  1732. static int amd64_get_error_info(struct mem_ctl_info *mci,
  1733. struct err_regs *info)
  1734. {
  1735. struct amd64_pvt *pvt;
  1736. struct err_regs regs;
  1737. pvt = mci->pvt_info;
  1738. if (!amd64_get_error_info_regs(mci, info))
  1739. return 0;
  1740. /*
  1741. * Here's the problem with the K8's EDAC reporting: There are four
  1742. * registers which report pieces of error information. They are shared
  1743. * between CEs and UEs. Furthermore, contrary to what is stated in the
  1744. * BKDG, the overflow bit is never used! Every error always updates the
  1745. * reporting registers.
  1746. *
  1747. * Can you see the race condition? All four error reporting registers
  1748. * must be read before a new error updates them! There is no way to read
  1749. * all four registers atomically. The best than can be done is to detect
  1750. * that a race has occured and then report the error without any kind of
  1751. * precision.
  1752. *
  1753. * What is still positive is that errors are still reported and thus
  1754. * problems can still be detected - just not localized because the
  1755. * syndrome and address are spread out across registers.
  1756. *
  1757. * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
  1758. * UEs and CEs should have separate register sets with proper overflow
  1759. * bits that are used! At very least the problem can be fixed by
  1760. * honoring the ErrValid bit in 'nbsh' and not updating registers - just
  1761. * set the overflow bit - unless the current error is CE and the new
  1762. * error is UE which would be the only situation for overwriting the
  1763. * current values.
  1764. */
  1765. regs = *info;
  1766. /* Use info from the second read - most current */
  1767. if (unlikely(!amd64_get_error_info_regs(mci, info)))
  1768. return 0;
  1769. /* clear the error bits in hardware */
  1770. pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
  1771. /* Check for the possible race condition */
  1772. if ((regs.nbsh != info->nbsh) ||
  1773. (regs.nbsl != info->nbsl) ||
  1774. (regs.nbeah != info->nbeah) ||
  1775. (regs.nbeal != info->nbeal)) {
  1776. amd64_mc_printk(mci, KERN_WARNING,
  1777. "hardware STATUS read access race condition "
  1778. "detected!\n");
  1779. return 0;
  1780. }
  1781. return 1;
  1782. }
  1783. /*
  1784. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1785. * ADDRESS and process.
  1786. */
  1787. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1788. struct err_regs *info)
  1789. {
  1790. struct amd64_pvt *pvt = mci->pvt_info;
  1791. u64 SystemAddress;
  1792. /* Ensure that the Error Address is VALID */
  1793. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1794. amd64_mc_printk(mci, KERN_ERR,
  1795. "HW has no ERROR_ADDRESS available\n");
  1796. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1797. return;
  1798. }
  1799. SystemAddress = extract_error_address(mci, info);
  1800. amd64_mc_printk(mci, KERN_ERR,
  1801. "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
  1802. pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
  1803. }
  1804. /* Handle any Un-correctable Errors (UEs) */
  1805. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1806. struct err_regs *info)
  1807. {
  1808. int csrow;
  1809. u64 SystemAddress;
  1810. u32 page, offset;
  1811. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1812. log_mci = mci;
  1813. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1814. amd64_mc_printk(mci, KERN_CRIT,
  1815. "HW has no ERROR_ADDRESS available\n");
  1816. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1817. return;
  1818. }
  1819. SystemAddress = extract_error_address(mci, info);
  1820. /*
  1821. * Find out which node the error address belongs to. This may be
  1822. * different from the node that detected the error.
  1823. */
  1824. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1825. if (!src_mci) {
  1826. amd64_mc_printk(mci, KERN_CRIT,
  1827. "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
  1828. (unsigned long)SystemAddress);
  1829. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1830. return;
  1831. }
  1832. log_mci = src_mci;
  1833. csrow = sys_addr_to_csrow(log_mci, SystemAddress);
  1834. if (csrow < 0) {
  1835. amd64_mc_printk(mci, KERN_CRIT,
  1836. "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
  1837. (unsigned long)SystemAddress);
  1838. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1839. } else {
  1840. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1841. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1842. }
  1843. }
  1844. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1845. struct err_regs *info)
  1846. {
  1847. u32 ec = ERROR_CODE(info->nbsl);
  1848. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1849. int ecc_type = (info->nbsh >> 13) & 0x3;
  1850. /* Bail early out if this was an 'observed' error */
  1851. if (PP(ec) == K8_NBSL_PP_OBS)
  1852. return;
  1853. /* Do only ECC errors */
  1854. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1855. return;
  1856. if (ecc_type == 2)
  1857. amd64_handle_ce(mci, info);
  1858. else if (ecc_type == 1)
  1859. amd64_handle_ue(mci, info);
  1860. /*
  1861. * If main error is CE then overflow must be CE. If main error is UE
  1862. * then overflow is unknown. We'll call the overflow a CE - if
  1863. * panic_on_ue is set then we're already panic'ed and won't arrive
  1864. * here. Else, then apparently someone doesn't think that UE's are
  1865. * catastrophic.
  1866. */
  1867. if (info->nbsh & K8_NBSH_OVERFLOW)
  1868. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
  1869. }
  1870. void amd64_decode_bus_error(int node_id, struct err_regs *regs)
  1871. {
  1872. struct mem_ctl_info *mci = mci_lookup[node_id];
  1873. __amd64_decode_bus_error(mci, regs);
  1874. /*
  1875. * Check the UE bit of the NB status high register, if set generate some
  1876. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1877. * If it was a GART error, skip that process.
  1878. *
  1879. * FIXME: this should go somewhere else, if at all.
  1880. */
  1881. if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1882. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1883. }
  1884. /*
  1885. * The main polling 'check' function, called FROM the edac core to perform the
  1886. * error checking and if an error is encountered, error processing.
  1887. */
  1888. static void amd64_check(struct mem_ctl_info *mci)
  1889. {
  1890. struct err_regs regs;
  1891. if (amd64_get_error_info(mci, &regs)) {
  1892. struct amd64_pvt *pvt = mci->pvt_info;
  1893. amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
  1894. }
  1895. }
  1896. /*
  1897. * Input:
  1898. * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
  1899. * 2) AMD Family index value
  1900. *
  1901. * Ouput:
  1902. * Upon return of 0, the following filled in:
  1903. *
  1904. * struct pvt->addr_f1_ctl
  1905. * struct pvt->misc_f3_ctl
  1906. *
  1907. * Filled in with related device funcitions of 'dram_f2_ctl'
  1908. * These devices are "reserved" via the pci_get_device()
  1909. *
  1910. * Upon return of 1 (error status):
  1911. *
  1912. * Nothing reserved
  1913. */
  1914. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
  1915. {
  1916. const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
  1917. /* Reserve the ADDRESS MAP Device */
  1918. pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1919. amd64_dev->addr_f1_ctl,
  1920. pvt->dram_f2_ctl);
  1921. if (!pvt->addr_f1_ctl) {
  1922. amd64_printk(KERN_ERR, "error address map device not found: "
  1923. "vendor %x device 0x%x (broken BIOS?)\n",
  1924. PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
  1925. return 1;
  1926. }
  1927. /* Reserve the MISC Device */
  1928. pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1929. amd64_dev->misc_f3_ctl,
  1930. pvt->dram_f2_ctl);
  1931. if (!pvt->misc_f3_ctl) {
  1932. pci_dev_put(pvt->addr_f1_ctl);
  1933. pvt->addr_f1_ctl = NULL;
  1934. amd64_printk(KERN_ERR, "error miscellaneous device not found: "
  1935. "vendor %x device 0x%x (broken BIOS?)\n",
  1936. PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
  1937. return 1;
  1938. }
  1939. debugf1(" Addr Map device PCI Bus ID:\t%s\n",
  1940. pci_name(pvt->addr_f1_ctl));
  1941. debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
  1942. pci_name(pvt->dram_f2_ctl));
  1943. debugf1(" Misc device PCI Bus ID:\t%s\n",
  1944. pci_name(pvt->misc_f3_ctl));
  1945. return 0;
  1946. }
  1947. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  1948. {
  1949. pci_dev_put(pvt->addr_f1_ctl);
  1950. pci_dev_put(pvt->misc_f3_ctl);
  1951. }
  1952. /*
  1953. * Retrieve the hardware registers of the memory controller (this includes the
  1954. * 'Address Map' and 'Misc' device regs)
  1955. */
  1956. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  1957. {
  1958. u64 msr_val;
  1959. int dram;
  1960. /*
  1961. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1962. * those are Read-As-Zero
  1963. */
  1964. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1965. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1966. /* check first whether TOP_MEM2 is enabled */
  1967. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1968. if (msr_val & (1U << 21)) {
  1969. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1970. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1971. } else
  1972. debugf0(" TOP_MEM2 disabled.\n");
  1973. amd64_cpu_display_info(pvt);
  1974. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
  1975. if (pvt->ops->read_dram_ctl_register)
  1976. pvt->ops->read_dram_ctl_register(pvt);
  1977. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  1978. /*
  1979. * Call CPU specific READ function to get the DRAM Base and
  1980. * Limit values from the DCT.
  1981. */
  1982. pvt->ops->read_dram_base_limit(pvt, dram);
  1983. /*
  1984. * Only print out debug info on rows with both R and W Enabled.
  1985. * Normal processing, compiler should optimize this whole 'if'
  1986. * debug output block away.
  1987. */
  1988. if (pvt->dram_rw_en[dram] != 0) {
  1989. debugf1(" DRAM-BASE[%d]: 0x%016llx "
  1990. "DRAM-LIMIT: 0x%016llx\n",
  1991. dram,
  1992. pvt->dram_base[dram],
  1993. pvt->dram_limit[dram]);
  1994. debugf1(" IntlvEn=%s %s %s "
  1995. "IntlvSel=%d DstNode=%d\n",
  1996. pvt->dram_IntlvEn[dram] ?
  1997. "Enabled" : "Disabled",
  1998. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  1999. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  2000. pvt->dram_IntlvSel[dram],
  2001. pvt->dram_DstNode[dram]);
  2002. }
  2003. }
  2004. amd64_read_dct_base_mask(pvt);
  2005. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
  2006. amd64_read_dbam_reg(pvt);
  2007. amd64_read_pci_cfg(pvt->misc_f3_ctl,
  2008. F10_ONLINE_SPARE, &pvt->online_spare);
  2009. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  2010. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
  2011. if (!dct_ganging_enabled(pvt)) {
  2012. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  2013. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
  2014. }
  2015. amd64_dump_misc_regs(pvt);
  2016. }
  2017. /*
  2018. * NOTE: CPU Revision Dependent code
  2019. *
  2020. * Input:
  2021. * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
  2022. * k8 private pointer to -->
  2023. * DRAM Bank Address mapping register
  2024. * node_id
  2025. * DCL register where dual_channel_active is
  2026. *
  2027. * The DBAM register consists of 4 sets of 4 bits each definitions:
  2028. *
  2029. * Bits: CSROWs
  2030. * 0-3 CSROWs 0 and 1
  2031. * 4-7 CSROWs 2 and 3
  2032. * 8-11 CSROWs 4 and 5
  2033. * 12-15 CSROWs 6 and 7
  2034. *
  2035. * Values range from: 0 to 15
  2036. * The meaning of the values depends on CPU revision and dual-channel state,
  2037. * see relevant BKDG more info.
  2038. *
  2039. * The memory controller provides for total of only 8 CSROWs in its current
  2040. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2041. * single channel or two (2) DIMMs in dual channel mode.
  2042. *
  2043. * The following code logic collapses the various tables for CSROW based on CPU
  2044. * revision.
  2045. *
  2046. * Returns:
  2047. * The number of PAGE_SIZE pages on the specified CSROW number it
  2048. * encompasses
  2049. *
  2050. */
  2051. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  2052. {
  2053. u32 cs_mode, nr_pages;
  2054. /*
  2055. * The math on this doesn't look right on the surface because x/2*4 can
  2056. * be simplified to x*2 but this expression makes use of the fact that
  2057. * it is integral math where 1/2=0. This intermediate value becomes the
  2058. * number of bits to shift the DBAM register to extract the proper CSROW
  2059. * field.
  2060. */
  2061. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  2062. nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
  2063. /*
  2064. * If dual channel then double the memory size of single channel.
  2065. * Channel count is 1 or 2
  2066. */
  2067. nr_pages <<= (pvt->channel_count - 1);
  2068. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  2069. debugf0(" nr_pages= %u channel-count = %d\n",
  2070. nr_pages, pvt->channel_count);
  2071. return nr_pages;
  2072. }
  2073. /*
  2074. * Initialize the array of csrow attribute instances, based on the values
  2075. * from pci config hardware registers.
  2076. */
  2077. static int amd64_init_csrows(struct mem_ctl_info *mci)
  2078. {
  2079. struct csrow_info *csrow;
  2080. struct amd64_pvt *pvt;
  2081. u64 input_addr_min, input_addr_max, sys_addr;
  2082. int i, empty = 1;
  2083. pvt = mci->pvt_info;
  2084. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
  2085. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  2086. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2087. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  2088. );
  2089. for (i = 0; i < pvt->cs_count; i++) {
  2090. csrow = &mci->csrows[i];
  2091. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  2092. debugf1("----CSROW %d EMPTY for node %d\n", i,
  2093. pvt->mc_node_id);
  2094. continue;
  2095. }
  2096. debugf1("----CSROW %d VALID for MC node %d\n",
  2097. i, pvt->mc_node_id);
  2098. empty = 0;
  2099. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  2100. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  2101. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  2102. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  2103. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  2104. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  2105. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  2106. /* 8 bytes of resolution */
  2107. csrow->mtype = amd64_determine_memory_type(pvt);
  2108. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  2109. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  2110. (unsigned long)input_addr_min,
  2111. (unsigned long)input_addr_max);
  2112. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  2113. (unsigned long)sys_addr, csrow->page_mask);
  2114. debugf1(" nr_pages: %u first_page: 0x%lx "
  2115. "last_page: 0x%lx\n",
  2116. (unsigned)csrow->nr_pages,
  2117. csrow->first_page, csrow->last_page);
  2118. /*
  2119. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2120. */
  2121. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  2122. csrow->edac_mode =
  2123. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  2124. EDAC_S4ECD4ED : EDAC_SECDED;
  2125. else
  2126. csrow->edac_mode = EDAC_NONE;
  2127. }
  2128. return empty;
  2129. }
  2130. /* get all cores on this DCT */
  2131. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  2132. {
  2133. int cpu;
  2134. for_each_online_cpu(cpu)
  2135. if (amd_get_nb_id(cpu) == nid)
  2136. cpumask_set_cpu(cpu, mask);
  2137. }
  2138. /* check MCG_CTL on all the cpus on this node */
  2139. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  2140. {
  2141. cpumask_var_t mask;
  2142. struct msr *msrs;
  2143. int cpu, nbe, idx = 0;
  2144. bool ret = false;
  2145. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  2146. amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
  2147. __func__);
  2148. return false;
  2149. }
  2150. get_cpus_on_this_dct_cpumask(mask, nid);
  2151. msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
  2152. if (!msrs) {
  2153. amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
  2154. __func__);
  2155. free_cpumask_var(mask);
  2156. return false;
  2157. }
  2158. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  2159. for_each_cpu(cpu, mask) {
  2160. nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
  2161. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2162. cpu, msrs[idx].q,
  2163. (nbe ? "enabled" : "disabled"));
  2164. if (!nbe)
  2165. goto out;
  2166. idx++;
  2167. }
  2168. ret = true;
  2169. out:
  2170. kfree(msrs);
  2171. free_cpumask_var(mask);
  2172. return ret;
  2173. }
  2174. static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
  2175. {
  2176. cpumask_var_t cmask;
  2177. struct msr *msrs = NULL;
  2178. int cpu, idx = 0;
  2179. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  2180. amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
  2181. __func__);
  2182. return false;
  2183. }
  2184. get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
  2185. msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
  2186. if (!msrs) {
  2187. amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
  2188. __func__);
  2189. return -ENOMEM;
  2190. }
  2191. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2192. for_each_cpu(cpu, cmask) {
  2193. if (on) {
  2194. if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
  2195. pvt->flags.ecc_report = 1;
  2196. msrs[idx].l |= K8_MSR_MCGCTL_NBE;
  2197. } else {
  2198. /*
  2199. * Turn off ECC reporting only when it was off before
  2200. */
  2201. if (!pvt->flags.ecc_report)
  2202. msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
  2203. }
  2204. idx++;
  2205. }
  2206. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2207. kfree(msrs);
  2208. free_cpumask_var(cmask);
  2209. return 0;
  2210. }
  2211. /*
  2212. * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
  2213. * enable it.
  2214. */
  2215. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  2216. {
  2217. struct amd64_pvt *pvt = mci->pvt_info;
  2218. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2219. if (!ecc_enable_override)
  2220. return;
  2221. amd64_printk(KERN_WARNING,
  2222. "'ecc_enable_override' parameter is active, "
  2223. "Enabling AMD ECC hardware now: CAUTION\n");
  2224. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2225. /* turn on UECCn and CECCEn bits */
  2226. pvt->old_nbctl = value & mask;
  2227. pvt->nbctl_mcgctl_saved = 1;
  2228. value |= mask;
  2229. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2230. if (amd64_toggle_ecc_err_reporting(pvt, ON))
  2231. amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
  2232. "MCGCTL!\n");
  2233. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2234. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2235. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2236. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2237. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2238. amd64_printk(KERN_WARNING,
  2239. "This node reports that DRAM ECC is "
  2240. "currently Disabled; ENABLING now\n");
  2241. /* Attempt to turn on DRAM ECC Enable */
  2242. value |= K8_NBCFG_ECC_ENABLE;
  2243. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2244. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2245. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2246. amd64_printk(KERN_WARNING,
  2247. "Hardware rejects Enabling DRAM ECC checking\n"
  2248. "Check memory DIMM configuration\n");
  2249. } else {
  2250. amd64_printk(KERN_DEBUG,
  2251. "Hardware accepted DRAM ECC Enable\n");
  2252. }
  2253. }
  2254. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2255. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2256. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2257. pvt->ctl_error_info.nbcfg = value;
  2258. }
  2259. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  2260. {
  2261. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2262. if (!pvt->nbctl_mcgctl_saved)
  2263. return;
  2264. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2265. value &= ~mask;
  2266. value |= pvt->old_nbctl;
  2267. /* restore the NB Enable MCGCTL bit */
  2268. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2269. if (amd64_toggle_ecc_err_reporting(pvt, OFF))
  2270. amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
  2271. "MCGCTL!\n");
  2272. }
  2273. /*
  2274. * EDAC requires that the BIOS have ECC enabled before taking over the
  2275. * processing of ECC errors. This is because the BIOS can properly initialize
  2276. * the memory system completely. A command line option allows to force-enable
  2277. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2278. */
  2279. static const char *ecc_warning =
  2280. "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
  2281. " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
  2282. " Also, use of the override can cause unknown side effects.\n";
  2283. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2284. {
  2285. u32 value;
  2286. u8 ecc_enabled = 0;
  2287. bool nb_mce_en = false;
  2288. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2289. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2290. if (!ecc_enabled)
  2291. amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
  2292. "is currently disabled, set F3x%x[22] (%s).\n",
  2293. K8_NBCFG, pci_name(pvt->misc_f3_ctl));
  2294. else
  2295. amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
  2296. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
  2297. if (!nb_mce_en)
  2298. amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
  2299. "0x%08x[4] on node %d to enable.\n",
  2300. MSR_IA32_MCG_CTL, pvt->mc_node_id);
  2301. if (!ecc_enabled || !nb_mce_en) {
  2302. if (!ecc_enable_override) {
  2303. amd64_printk(KERN_WARNING, "%s", ecc_warning);
  2304. return -ENODEV;
  2305. }
  2306. } else
  2307. /* CLEAR the override, since BIOS controlled it */
  2308. ecc_enable_override = 0;
  2309. return 0;
  2310. }
  2311. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2312. ARRAY_SIZE(amd64_inj_attrs) +
  2313. 1];
  2314. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2315. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2316. {
  2317. unsigned int i = 0, j = 0;
  2318. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2319. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2320. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2321. sysfs_attrs[i] = amd64_inj_attrs[j];
  2322. sysfs_attrs[i] = terminator;
  2323. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2324. }
  2325. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2326. {
  2327. struct amd64_pvt *pvt = mci->pvt_info;
  2328. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2329. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2330. if (pvt->nbcap & K8_NBCAP_SECDED)
  2331. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2332. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2333. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2334. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2335. mci->mod_name = EDAC_MOD_STR;
  2336. mci->mod_ver = EDAC_AMD64_VERSION;
  2337. mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
  2338. mci->dev_name = pci_name(pvt->dram_f2_ctl);
  2339. mci->ctl_page_to_phys = NULL;
  2340. /* IMPORTANT: Set the polling 'check' function in this module */
  2341. mci->edac_check = amd64_check;
  2342. /* memory scrubber interface */
  2343. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2344. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2345. }
  2346. /*
  2347. * Init stuff for this DRAM Controller device.
  2348. *
  2349. * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
  2350. * Space feature MUST be enabled on ALL Processors prior to actually reading
  2351. * from the ECS registers. Since the loading of the module can occur on any
  2352. * 'core', and cores don't 'see' all the other processors ECS data when the
  2353. * others are NOT enabled. Our solution is to first enable ECS access in this
  2354. * routine on all processors, gather some data in a amd64_pvt structure and
  2355. * later come back in a finish-setup function to perform that final
  2356. * initialization. See also amd64_init_2nd_stage() for that.
  2357. */
  2358. static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
  2359. int mc_type_index)
  2360. {
  2361. struct amd64_pvt *pvt = NULL;
  2362. int err = 0, ret;
  2363. ret = -ENOMEM;
  2364. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2365. if (!pvt)
  2366. goto err_exit;
  2367. pvt->mc_node_id = get_node_id(dram_f2_ctl);
  2368. pvt->dram_f2_ctl = dram_f2_ctl;
  2369. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2370. pvt->mc_type_index = mc_type_index;
  2371. pvt->ops = family_ops(mc_type_index);
  2372. /*
  2373. * We have the dram_f2_ctl device as an argument, now go reserve its
  2374. * sibling devices from the PCI system.
  2375. */
  2376. ret = -ENODEV;
  2377. err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
  2378. if (err)
  2379. goto err_free;
  2380. ret = -EINVAL;
  2381. err = amd64_check_ecc_enabled(pvt);
  2382. if (err)
  2383. goto err_put;
  2384. /*
  2385. * Key operation here: setup of HW prior to performing ops on it. Some
  2386. * setup is required to access ECS data. After this is performed, the
  2387. * 'teardown' function must be called upon error and normal exit paths.
  2388. */
  2389. if (boot_cpu_data.x86 >= 0x10)
  2390. amd64_setup(pvt);
  2391. /*
  2392. * Save the pointer to the private data for use in 2nd initialization
  2393. * stage
  2394. */
  2395. pvt_lookup[pvt->mc_node_id] = pvt;
  2396. return 0;
  2397. err_put:
  2398. amd64_free_mc_sibling_devices(pvt);
  2399. err_free:
  2400. kfree(pvt);
  2401. err_exit:
  2402. return ret;
  2403. }
  2404. /*
  2405. * This is the finishing stage of the init code. Needs to be performed after all
  2406. * MCs' hardware have been prepped for accessing extended config space.
  2407. */
  2408. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2409. {
  2410. int node_id = pvt->mc_node_id;
  2411. struct mem_ctl_info *mci;
  2412. int ret, err = 0;
  2413. amd64_read_mc_registers(pvt);
  2414. ret = -ENODEV;
  2415. if (pvt->ops->probe_valid_hardware) {
  2416. err = pvt->ops->probe_valid_hardware(pvt);
  2417. if (err)
  2418. goto err_exit;
  2419. }
  2420. /*
  2421. * We need to determine how many memory channels there are. Then use
  2422. * that information for calculating the size of the dynamic instance
  2423. * tables in the 'mci' structure
  2424. */
  2425. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2426. if (pvt->channel_count < 0)
  2427. goto err_exit;
  2428. ret = -ENOMEM;
  2429. mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
  2430. if (!mci)
  2431. goto err_exit;
  2432. mci->pvt_info = pvt;
  2433. mci->dev = &pvt->dram_f2_ctl->dev;
  2434. amd64_setup_mci_misc_attributes(mci);
  2435. if (amd64_init_csrows(mci))
  2436. mci->edac_cap = EDAC_FLAG_NONE;
  2437. amd64_enable_ecc_error_reporting(mci);
  2438. amd64_set_mc_sysfs_attributes(mci);
  2439. ret = -ENODEV;
  2440. if (edac_mc_add_mc(mci)) {
  2441. debugf1("failed edac_mc_add_mc()\n");
  2442. goto err_add_mc;
  2443. }
  2444. mci_lookup[node_id] = mci;
  2445. pvt_lookup[node_id] = NULL;
  2446. /* register stuff with EDAC MCE */
  2447. if (report_gart_errors)
  2448. amd_report_gart_errors(true);
  2449. amd_register_ecc_decoder(amd64_decode_bus_error);
  2450. return 0;
  2451. err_add_mc:
  2452. edac_mc_free(mci);
  2453. err_exit:
  2454. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2455. amd64_restore_ecc_error_reporting(pvt);
  2456. if (boot_cpu_data.x86 > 0xf)
  2457. amd64_teardown(pvt);
  2458. amd64_free_mc_sibling_devices(pvt);
  2459. kfree(pvt_lookup[pvt->mc_node_id]);
  2460. pvt_lookup[node_id] = NULL;
  2461. return ret;
  2462. }
  2463. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2464. const struct pci_device_id *mc_type)
  2465. {
  2466. int ret = 0;
  2467. debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
  2468. get_amd_family_name(mc_type->driver_data));
  2469. ret = pci_enable_device(pdev);
  2470. if (ret < 0)
  2471. ret = -EIO;
  2472. else
  2473. ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
  2474. if (ret < 0)
  2475. debugf0("ret=%d\n", ret);
  2476. return ret;
  2477. }
  2478. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2479. {
  2480. struct mem_ctl_info *mci;
  2481. struct amd64_pvt *pvt;
  2482. /* Remove from EDAC CORE tracking list */
  2483. mci = edac_mc_del_mc(&pdev->dev);
  2484. if (!mci)
  2485. return;
  2486. pvt = mci->pvt_info;
  2487. amd64_restore_ecc_error_reporting(pvt);
  2488. if (boot_cpu_data.x86 > 0xf)
  2489. amd64_teardown(pvt);
  2490. amd64_free_mc_sibling_devices(pvt);
  2491. kfree(pvt);
  2492. mci->pvt_info = NULL;
  2493. mci_lookup[pvt->mc_node_id] = NULL;
  2494. /* unregister from EDAC MCE */
  2495. amd_report_gart_errors(false);
  2496. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2497. /* Free the EDAC CORE resources */
  2498. edac_mc_free(mci);
  2499. }
  2500. /*
  2501. * This table is part of the interface for loading drivers for PCI devices. The
  2502. * PCI core identifies what devices are on a system during boot, and then
  2503. * inquiry this table to see if this driver is for a given device found.
  2504. */
  2505. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2506. {
  2507. .vendor = PCI_VENDOR_ID_AMD,
  2508. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2509. .subvendor = PCI_ANY_ID,
  2510. .subdevice = PCI_ANY_ID,
  2511. .class = 0,
  2512. .class_mask = 0,
  2513. .driver_data = K8_CPUS
  2514. },
  2515. {
  2516. .vendor = PCI_VENDOR_ID_AMD,
  2517. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2518. .subvendor = PCI_ANY_ID,
  2519. .subdevice = PCI_ANY_ID,
  2520. .class = 0,
  2521. .class_mask = 0,
  2522. .driver_data = F10_CPUS
  2523. },
  2524. {
  2525. .vendor = PCI_VENDOR_ID_AMD,
  2526. .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
  2527. .subvendor = PCI_ANY_ID,
  2528. .subdevice = PCI_ANY_ID,
  2529. .class = 0,
  2530. .class_mask = 0,
  2531. .driver_data = F11_CPUS
  2532. },
  2533. {0, }
  2534. };
  2535. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2536. static struct pci_driver amd64_pci_driver = {
  2537. .name = EDAC_MOD_STR,
  2538. .probe = amd64_init_one_instance,
  2539. .remove = __devexit_p(amd64_remove_one_instance),
  2540. .id_table = amd64_pci_table,
  2541. };
  2542. static void amd64_setup_pci_device(void)
  2543. {
  2544. struct mem_ctl_info *mci;
  2545. struct amd64_pvt *pvt;
  2546. if (amd64_ctl_pci)
  2547. return;
  2548. mci = mci_lookup[0];
  2549. if (mci) {
  2550. pvt = mci->pvt_info;
  2551. amd64_ctl_pci =
  2552. edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
  2553. EDAC_MOD_STR);
  2554. if (!amd64_ctl_pci) {
  2555. pr_warning("%s(): Unable to create PCI control\n",
  2556. __func__);
  2557. pr_warning("%s(): PCI error report via EDAC not set\n",
  2558. __func__);
  2559. }
  2560. }
  2561. }
  2562. static int __init amd64_edac_init(void)
  2563. {
  2564. int nb, err = -ENODEV;
  2565. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2566. opstate_init();
  2567. if (cache_k8_northbridges() < 0)
  2568. return err;
  2569. err = pci_register_driver(&amd64_pci_driver);
  2570. if (err)
  2571. return err;
  2572. /*
  2573. * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
  2574. * amd64_pvt structs. These will be used in the 2nd stage init function
  2575. * to finish initialization of the MC instances.
  2576. */
  2577. for (nb = 0; nb < num_k8_northbridges; nb++) {
  2578. if (!pvt_lookup[nb])
  2579. continue;
  2580. err = amd64_init_2nd_stage(pvt_lookup[nb]);
  2581. if (err)
  2582. goto err_2nd_stage;
  2583. }
  2584. amd64_setup_pci_device();
  2585. return 0;
  2586. err_2nd_stage:
  2587. debugf0("2nd stage failed\n");
  2588. pci_unregister_driver(&amd64_pci_driver);
  2589. return err;
  2590. }
  2591. static void __exit amd64_edac_exit(void)
  2592. {
  2593. if (amd64_ctl_pci)
  2594. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2595. pci_unregister_driver(&amd64_pci_driver);
  2596. }
  2597. module_init(amd64_edac_init);
  2598. module_exit(amd64_edac_exit);
  2599. MODULE_LICENSE("GPL");
  2600. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2601. "Dave Peterson, Thayne Harbaugh");
  2602. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2603. EDAC_AMD64_VERSION);
  2604. module_param(edac_op_state, int, 0444);
  2605. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");