ring_buffer.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/trace_clock.h>
  8. #include <linux/ftrace_irq.h>
  9. #include <linux/spinlock.h>
  10. #include <linux/debugfs.h>
  11. #include <linux/uaccess.h>
  12. #include <linux/hardirq.h>
  13. #include <linux/module.h>
  14. #include <linux/percpu.h>
  15. #include <linux/mutex.h>
  16. #include <linux/init.h>
  17. #include <linux/hash.h>
  18. #include <linux/list.h>
  19. #include <linux/fs.h>
  20. #include "trace.h"
  21. /*
  22. * A fast way to enable or disable all ring buffers is to
  23. * call tracing_on or tracing_off. Turning off the ring buffers
  24. * prevents all ring buffers from being recorded to.
  25. * Turning this switch on, makes it OK to write to the
  26. * ring buffer, if the ring buffer is enabled itself.
  27. *
  28. * There's three layers that must be on in order to write
  29. * to the ring buffer.
  30. *
  31. * 1) This global flag must be set.
  32. * 2) The ring buffer must be enabled for recording.
  33. * 3) The per cpu buffer must be enabled for recording.
  34. *
  35. * In case of an anomaly, this global flag has a bit set that
  36. * will permantly disable all ring buffers.
  37. */
  38. /*
  39. * Global flag to disable all recording to ring buffers
  40. * This has two bits: ON, DISABLED
  41. *
  42. * ON DISABLED
  43. * ---- ----------
  44. * 0 0 : ring buffers are off
  45. * 1 0 : ring buffers are on
  46. * X 1 : ring buffers are permanently disabled
  47. */
  48. enum {
  49. RB_BUFFERS_ON_BIT = 0,
  50. RB_BUFFERS_DISABLED_BIT = 1,
  51. };
  52. enum {
  53. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  54. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  55. };
  56. static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  57. /**
  58. * tracing_on - enable all tracing buffers
  59. *
  60. * This function enables all tracing buffers that may have been
  61. * disabled with tracing_off.
  62. */
  63. void tracing_on(void)
  64. {
  65. set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  66. }
  67. EXPORT_SYMBOL_GPL(tracing_on);
  68. /**
  69. * tracing_off - turn off all tracing buffers
  70. *
  71. * This function stops all tracing buffers from recording data.
  72. * It does not disable any overhead the tracers themselves may
  73. * be causing. This function simply causes all recording to
  74. * the ring buffers to fail.
  75. */
  76. void tracing_off(void)
  77. {
  78. clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  79. }
  80. EXPORT_SYMBOL_GPL(tracing_off);
  81. /**
  82. * tracing_off_permanent - permanently disable ring buffers
  83. *
  84. * This function, once called, will disable all ring buffers
  85. * permanently.
  86. */
  87. void tracing_off_permanent(void)
  88. {
  89. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  90. }
  91. /**
  92. * tracing_is_on - show state of ring buffers enabled
  93. */
  94. int tracing_is_on(void)
  95. {
  96. return ring_buffer_flags == RB_BUFFERS_ON;
  97. }
  98. EXPORT_SYMBOL_GPL(tracing_is_on);
  99. #include "trace.h"
  100. /* Up this if you want to test the TIME_EXTENTS and normalization */
  101. #define DEBUG_SHIFT 0
  102. u64 ring_buffer_time_stamp(int cpu)
  103. {
  104. u64 time;
  105. preempt_disable_notrace();
  106. /* shift to debug/test normalization and TIME_EXTENTS */
  107. time = trace_clock_local() << DEBUG_SHIFT;
  108. preempt_enable_no_resched_notrace();
  109. return time;
  110. }
  111. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  112. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  113. {
  114. /* Just stupid testing the normalize function and deltas */
  115. *ts >>= DEBUG_SHIFT;
  116. }
  117. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  118. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  119. #define RB_ALIGNMENT 4U
  120. #define RB_MAX_SMALL_DATA 28
  121. enum {
  122. RB_LEN_TIME_EXTEND = 8,
  123. RB_LEN_TIME_STAMP = 16,
  124. };
  125. /* inline for ring buffer fast paths */
  126. static unsigned
  127. rb_event_length(struct ring_buffer_event *event)
  128. {
  129. unsigned length;
  130. switch (event->type) {
  131. case RINGBUF_TYPE_PADDING:
  132. /* undefined */
  133. return -1;
  134. case RINGBUF_TYPE_TIME_EXTEND:
  135. return RB_LEN_TIME_EXTEND;
  136. case RINGBUF_TYPE_TIME_STAMP:
  137. return RB_LEN_TIME_STAMP;
  138. case RINGBUF_TYPE_DATA:
  139. if (event->len)
  140. length = event->len * RB_ALIGNMENT;
  141. else
  142. length = event->array[0];
  143. return length + RB_EVNT_HDR_SIZE;
  144. default:
  145. BUG();
  146. }
  147. /* not hit */
  148. return 0;
  149. }
  150. /**
  151. * ring_buffer_event_length - return the length of the event
  152. * @event: the event to get the length of
  153. */
  154. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  155. {
  156. unsigned length = rb_event_length(event);
  157. if (event->type != RINGBUF_TYPE_DATA)
  158. return length;
  159. length -= RB_EVNT_HDR_SIZE;
  160. if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
  161. length -= sizeof(event->array[0]);
  162. return length;
  163. }
  164. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  165. /* inline for ring buffer fast paths */
  166. static void *
  167. rb_event_data(struct ring_buffer_event *event)
  168. {
  169. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  170. /* If length is in len field, then array[0] has the data */
  171. if (event->len)
  172. return (void *)&event->array[0];
  173. /* Otherwise length is in array[0] and array[1] has the data */
  174. return (void *)&event->array[1];
  175. }
  176. /**
  177. * ring_buffer_event_data - return the data of the event
  178. * @event: the event to get the data from
  179. */
  180. void *ring_buffer_event_data(struct ring_buffer_event *event)
  181. {
  182. return rb_event_data(event);
  183. }
  184. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  185. #define for_each_buffer_cpu(buffer, cpu) \
  186. for_each_cpu(cpu, buffer->cpumask)
  187. #define TS_SHIFT 27
  188. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  189. #define TS_DELTA_TEST (~TS_MASK)
  190. struct buffer_data_page {
  191. u64 time_stamp; /* page time stamp */
  192. local_t commit; /* write committed index */
  193. unsigned char data[]; /* data of buffer page */
  194. };
  195. struct buffer_page {
  196. local_t write; /* index for next write */
  197. unsigned read; /* index for next read */
  198. struct list_head list; /* list of free pages */
  199. struct buffer_data_page *page; /* Actual data page */
  200. };
  201. static void rb_init_page(struct buffer_data_page *bpage)
  202. {
  203. local_set(&bpage->commit, 0);
  204. }
  205. /*
  206. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  207. * this issue out.
  208. */
  209. static void free_buffer_page(struct buffer_page *bpage)
  210. {
  211. free_page((unsigned long)bpage->page);
  212. kfree(bpage);
  213. }
  214. /*
  215. * We need to fit the time_stamp delta into 27 bits.
  216. */
  217. static inline int test_time_stamp(u64 delta)
  218. {
  219. if (delta & TS_DELTA_TEST)
  220. return 1;
  221. return 0;
  222. }
  223. #define BUF_PAGE_SIZE (PAGE_SIZE - offsetof(struct buffer_data_page, data))
  224. /*
  225. * head_page == tail_page && head == tail then buffer is empty.
  226. */
  227. struct ring_buffer_per_cpu {
  228. int cpu;
  229. struct ring_buffer *buffer;
  230. spinlock_t reader_lock; /* serialize readers */
  231. raw_spinlock_t lock;
  232. struct lock_class_key lock_key;
  233. struct list_head pages;
  234. struct buffer_page *head_page; /* read from head */
  235. struct buffer_page *tail_page; /* write to tail */
  236. struct buffer_page *commit_page; /* committed pages */
  237. struct buffer_page *reader_page;
  238. unsigned long overrun;
  239. unsigned long entries;
  240. u64 write_stamp;
  241. u64 read_stamp;
  242. atomic_t record_disabled;
  243. };
  244. struct ring_buffer {
  245. unsigned pages;
  246. unsigned flags;
  247. int cpus;
  248. atomic_t record_disabled;
  249. cpumask_var_t cpumask;
  250. struct mutex mutex;
  251. struct ring_buffer_per_cpu **buffers;
  252. };
  253. struct ring_buffer_iter {
  254. struct ring_buffer_per_cpu *cpu_buffer;
  255. unsigned long head;
  256. struct buffer_page *head_page;
  257. u64 read_stamp;
  258. };
  259. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  260. #define RB_WARN_ON(buffer, cond) \
  261. ({ \
  262. int _____ret = unlikely(cond); \
  263. if (_____ret) { \
  264. atomic_inc(&buffer->record_disabled); \
  265. WARN_ON(1); \
  266. } \
  267. _____ret; \
  268. })
  269. /**
  270. * check_pages - integrity check of buffer pages
  271. * @cpu_buffer: CPU buffer with pages to test
  272. *
  273. * As a safety measure we check to make sure the data pages have not
  274. * been corrupted.
  275. */
  276. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  277. {
  278. struct list_head *head = &cpu_buffer->pages;
  279. struct buffer_page *bpage, *tmp;
  280. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  281. return -1;
  282. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  283. return -1;
  284. list_for_each_entry_safe(bpage, tmp, head, list) {
  285. if (RB_WARN_ON(cpu_buffer,
  286. bpage->list.next->prev != &bpage->list))
  287. return -1;
  288. if (RB_WARN_ON(cpu_buffer,
  289. bpage->list.prev->next != &bpage->list))
  290. return -1;
  291. }
  292. return 0;
  293. }
  294. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  295. unsigned nr_pages)
  296. {
  297. struct list_head *head = &cpu_buffer->pages;
  298. struct buffer_page *bpage, *tmp;
  299. unsigned long addr;
  300. LIST_HEAD(pages);
  301. unsigned i;
  302. for (i = 0; i < nr_pages; i++) {
  303. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  304. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  305. if (!bpage)
  306. goto free_pages;
  307. list_add(&bpage->list, &pages);
  308. addr = __get_free_page(GFP_KERNEL);
  309. if (!addr)
  310. goto free_pages;
  311. bpage->page = (void *)addr;
  312. rb_init_page(bpage->page);
  313. }
  314. list_splice(&pages, head);
  315. rb_check_pages(cpu_buffer);
  316. return 0;
  317. free_pages:
  318. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  319. list_del_init(&bpage->list);
  320. free_buffer_page(bpage);
  321. }
  322. return -ENOMEM;
  323. }
  324. static struct ring_buffer_per_cpu *
  325. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  326. {
  327. struct ring_buffer_per_cpu *cpu_buffer;
  328. struct buffer_page *bpage;
  329. unsigned long addr;
  330. int ret;
  331. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  332. GFP_KERNEL, cpu_to_node(cpu));
  333. if (!cpu_buffer)
  334. return NULL;
  335. cpu_buffer->cpu = cpu;
  336. cpu_buffer->buffer = buffer;
  337. spin_lock_init(&cpu_buffer->reader_lock);
  338. cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  339. INIT_LIST_HEAD(&cpu_buffer->pages);
  340. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  341. GFP_KERNEL, cpu_to_node(cpu));
  342. if (!bpage)
  343. goto fail_free_buffer;
  344. cpu_buffer->reader_page = bpage;
  345. addr = __get_free_page(GFP_KERNEL);
  346. if (!addr)
  347. goto fail_free_reader;
  348. bpage->page = (void *)addr;
  349. rb_init_page(bpage->page);
  350. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  351. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  352. if (ret < 0)
  353. goto fail_free_reader;
  354. cpu_buffer->head_page
  355. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  356. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  357. return cpu_buffer;
  358. fail_free_reader:
  359. free_buffer_page(cpu_buffer->reader_page);
  360. fail_free_buffer:
  361. kfree(cpu_buffer);
  362. return NULL;
  363. }
  364. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  365. {
  366. struct list_head *head = &cpu_buffer->pages;
  367. struct buffer_page *bpage, *tmp;
  368. list_del_init(&cpu_buffer->reader_page->list);
  369. free_buffer_page(cpu_buffer->reader_page);
  370. list_for_each_entry_safe(bpage, tmp, head, list) {
  371. list_del_init(&bpage->list);
  372. free_buffer_page(bpage);
  373. }
  374. kfree(cpu_buffer);
  375. }
  376. /*
  377. * Causes compile errors if the struct buffer_page gets bigger
  378. * than the struct page.
  379. */
  380. extern int ring_buffer_page_too_big(void);
  381. /**
  382. * ring_buffer_alloc - allocate a new ring_buffer
  383. * @size: the size in bytes per cpu that is needed.
  384. * @flags: attributes to set for the ring buffer.
  385. *
  386. * Currently the only flag that is available is the RB_FL_OVERWRITE
  387. * flag. This flag means that the buffer will overwrite old data
  388. * when the buffer wraps. If this flag is not set, the buffer will
  389. * drop data when the tail hits the head.
  390. */
  391. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  392. {
  393. struct ring_buffer *buffer;
  394. int bsize;
  395. int cpu;
  396. /* Paranoid! Optimizes out when all is well */
  397. if (sizeof(struct buffer_page) > sizeof(struct page))
  398. ring_buffer_page_too_big();
  399. /* keep it in its own cache line */
  400. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  401. GFP_KERNEL);
  402. if (!buffer)
  403. return NULL;
  404. if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  405. goto fail_free_buffer;
  406. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  407. buffer->flags = flags;
  408. /* need at least two pages */
  409. if (buffer->pages == 1)
  410. buffer->pages++;
  411. cpumask_copy(buffer->cpumask, cpu_possible_mask);
  412. buffer->cpus = nr_cpu_ids;
  413. bsize = sizeof(void *) * nr_cpu_ids;
  414. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  415. GFP_KERNEL);
  416. if (!buffer->buffers)
  417. goto fail_free_cpumask;
  418. for_each_buffer_cpu(buffer, cpu) {
  419. buffer->buffers[cpu] =
  420. rb_allocate_cpu_buffer(buffer, cpu);
  421. if (!buffer->buffers[cpu])
  422. goto fail_free_buffers;
  423. }
  424. mutex_init(&buffer->mutex);
  425. return buffer;
  426. fail_free_buffers:
  427. for_each_buffer_cpu(buffer, cpu) {
  428. if (buffer->buffers[cpu])
  429. rb_free_cpu_buffer(buffer->buffers[cpu]);
  430. }
  431. kfree(buffer->buffers);
  432. fail_free_cpumask:
  433. free_cpumask_var(buffer->cpumask);
  434. fail_free_buffer:
  435. kfree(buffer);
  436. return NULL;
  437. }
  438. EXPORT_SYMBOL_GPL(ring_buffer_alloc);
  439. /**
  440. * ring_buffer_free - free a ring buffer.
  441. * @buffer: the buffer to free.
  442. */
  443. void
  444. ring_buffer_free(struct ring_buffer *buffer)
  445. {
  446. int cpu;
  447. for_each_buffer_cpu(buffer, cpu)
  448. rb_free_cpu_buffer(buffer->buffers[cpu]);
  449. free_cpumask_var(buffer->cpumask);
  450. kfree(buffer);
  451. }
  452. EXPORT_SYMBOL_GPL(ring_buffer_free);
  453. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  454. static void
  455. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  456. {
  457. struct buffer_page *bpage;
  458. struct list_head *p;
  459. unsigned i;
  460. atomic_inc(&cpu_buffer->record_disabled);
  461. synchronize_sched();
  462. for (i = 0; i < nr_pages; i++) {
  463. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  464. return;
  465. p = cpu_buffer->pages.next;
  466. bpage = list_entry(p, struct buffer_page, list);
  467. list_del_init(&bpage->list);
  468. free_buffer_page(bpage);
  469. }
  470. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  471. return;
  472. rb_reset_cpu(cpu_buffer);
  473. rb_check_pages(cpu_buffer);
  474. atomic_dec(&cpu_buffer->record_disabled);
  475. }
  476. static void
  477. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  478. struct list_head *pages, unsigned nr_pages)
  479. {
  480. struct buffer_page *bpage;
  481. struct list_head *p;
  482. unsigned i;
  483. atomic_inc(&cpu_buffer->record_disabled);
  484. synchronize_sched();
  485. for (i = 0; i < nr_pages; i++) {
  486. if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
  487. return;
  488. p = pages->next;
  489. bpage = list_entry(p, struct buffer_page, list);
  490. list_del_init(&bpage->list);
  491. list_add_tail(&bpage->list, &cpu_buffer->pages);
  492. }
  493. rb_reset_cpu(cpu_buffer);
  494. rb_check_pages(cpu_buffer);
  495. atomic_dec(&cpu_buffer->record_disabled);
  496. }
  497. /**
  498. * ring_buffer_resize - resize the ring buffer
  499. * @buffer: the buffer to resize.
  500. * @size: the new size.
  501. *
  502. * The tracer is responsible for making sure that the buffer is
  503. * not being used while changing the size.
  504. * Note: We may be able to change the above requirement by using
  505. * RCU synchronizations.
  506. *
  507. * Minimum size is 2 * BUF_PAGE_SIZE.
  508. *
  509. * Returns -1 on failure.
  510. */
  511. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  512. {
  513. struct ring_buffer_per_cpu *cpu_buffer;
  514. unsigned nr_pages, rm_pages, new_pages;
  515. struct buffer_page *bpage, *tmp;
  516. unsigned long buffer_size;
  517. unsigned long addr;
  518. LIST_HEAD(pages);
  519. int i, cpu;
  520. /*
  521. * Always succeed at resizing a non-existent buffer:
  522. */
  523. if (!buffer)
  524. return size;
  525. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  526. size *= BUF_PAGE_SIZE;
  527. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  528. /* we need a minimum of two pages */
  529. if (size < BUF_PAGE_SIZE * 2)
  530. size = BUF_PAGE_SIZE * 2;
  531. if (size == buffer_size)
  532. return size;
  533. mutex_lock(&buffer->mutex);
  534. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  535. if (size < buffer_size) {
  536. /* easy case, just free pages */
  537. if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
  538. mutex_unlock(&buffer->mutex);
  539. return -1;
  540. }
  541. rm_pages = buffer->pages - nr_pages;
  542. for_each_buffer_cpu(buffer, cpu) {
  543. cpu_buffer = buffer->buffers[cpu];
  544. rb_remove_pages(cpu_buffer, rm_pages);
  545. }
  546. goto out;
  547. }
  548. /*
  549. * This is a bit more difficult. We only want to add pages
  550. * when we can allocate enough for all CPUs. We do this
  551. * by allocating all the pages and storing them on a local
  552. * link list. If we succeed in our allocation, then we
  553. * add these pages to the cpu_buffers. Otherwise we just free
  554. * them all and return -ENOMEM;
  555. */
  556. if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
  557. mutex_unlock(&buffer->mutex);
  558. return -1;
  559. }
  560. new_pages = nr_pages - buffer->pages;
  561. for_each_buffer_cpu(buffer, cpu) {
  562. for (i = 0; i < new_pages; i++) {
  563. bpage = kzalloc_node(ALIGN(sizeof(*bpage),
  564. cache_line_size()),
  565. GFP_KERNEL, cpu_to_node(cpu));
  566. if (!bpage)
  567. goto free_pages;
  568. list_add(&bpage->list, &pages);
  569. addr = __get_free_page(GFP_KERNEL);
  570. if (!addr)
  571. goto free_pages;
  572. bpage->page = (void *)addr;
  573. rb_init_page(bpage->page);
  574. }
  575. }
  576. for_each_buffer_cpu(buffer, cpu) {
  577. cpu_buffer = buffer->buffers[cpu];
  578. rb_insert_pages(cpu_buffer, &pages, new_pages);
  579. }
  580. if (RB_WARN_ON(buffer, !list_empty(&pages))) {
  581. mutex_unlock(&buffer->mutex);
  582. return -1;
  583. }
  584. out:
  585. buffer->pages = nr_pages;
  586. mutex_unlock(&buffer->mutex);
  587. return size;
  588. free_pages:
  589. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  590. list_del_init(&bpage->list);
  591. free_buffer_page(bpage);
  592. }
  593. mutex_unlock(&buffer->mutex);
  594. return -ENOMEM;
  595. }
  596. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  597. static inline int rb_null_event(struct ring_buffer_event *event)
  598. {
  599. return event->type == RINGBUF_TYPE_PADDING;
  600. }
  601. static inline void *
  602. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  603. {
  604. return bpage->data + index;
  605. }
  606. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  607. {
  608. return bpage->page->data + index;
  609. }
  610. static inline struct ring_buffer_event *
  611. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  612. {
  613. return __rb_page_index(cpu_buffer->reader_page,
  614. cpu_buffer->reader_page->read);
  615. }
  616. static inline struct ring_buffer_event *
  617. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  618. {
  619. return __rb_page_index(cpu_buffer->head_page,
  620. cpu_buffer->head_page->read);
  621. }
  622. static inline struct ring_buffer_event *
  623. rb_iter_head_event(struct ring_buffer_iter *iter)
  624. {
  625. return __rb_page_index(iter->head_page, iter->head);
  626. }
  627. static inline unsigned rb_page_write(struct buffer_page *bpage)
  628. {
  629. return local_read(&bpage->write);
  630. }
  631. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  632. {
  633. return local_read(&bpage->page->commit);
  634. }
  635. /* Size is determined by what has been commited */
  636. static inline unsigned rb_page_size(struct buffer_page *bpage)
  637. {
  638. return rb_page_commit(bpage);
  639. }
  640. static inline unsigned
  641. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  642. {
  643. return rb_page_commit(cpu_buffer->commit_page);
  644. }
  645. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  646. {
  647. return rb_page_commit(cpu_buffer->head_page);
  648. }
  649. /*
  650. * When the tail hits the head and the buffer is in overwrite mode,
  651. * the head jumps to the next page and all content on the previous
  652. * page is discarded. But before doing so, we update the overrun
  653. * variable of the buffer.
  654. */
  655. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  656. {
  657. struct ring_buffer_event *event;
  658. unsigned long head;
  659. for (head = 0; head < rb_head_size(cpu_buffer);
  660. head += rb_event_length(event)) {
  661. event = __rb_page_index(cpu_buffer->head_page, head);
  662. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  663. return;
  664. /* Only count data entries */
  665. if (event->type != RINGBUF_TYPE_DATA)
  666. continue;
  667. cpu_buffer->overrun++;
  668. cpu_buffer->entries--;
  669. }
  670. }
  671. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  672. struct buffer_page **bpage)
  673. {
  674. struct list_head *p = (*bpage)->list.next;
  675. if (p == &cpu_buffer->pages)
  676. p = p->next;
  677. *bpage = list_entry(p, struct buffer_page, list);
  678. }
  679. static inline unsigned
  680. rb_event_index(struct ring_buffer_event *event)
  681. {
  682. unsigned long addr = (unsigned long)event;
  683. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  684. }
  685. static int
  686. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  687. struct ring_buffer_event *event)
  688. {
  689. unsigned long addr = (unsigned long)event;
  690. unsigned long index;
  691. index = rb_event_index(event);
  692. addr &= PAGE_MASK;
  693. return cpu_buffer->commit_page->page == (void *)addr &&
  694. rb_commit_index(cpu_buffer) == index;
  695. }
  696. static void
  697. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  698. struct ring_buffer_event *event)
  699. {
  700. unsigned long addr = (unsigned long)event;
  701. unsigned long index;
  702. index = rb_event_index(event);
  703. addr &= PAGE_MASK;
  704. while (cpu_buffer->commit_page->page != (void *)addr) {
  705. if (RB_WARN_ON(cpu_buffer,
  706. cpu_buffer->commit_page == cpu_buffer->tail_page))
  707. return;
  708. cpu_buffer->commit_page->page->commit =
  709. cpu_buffer->commit_page->write;
  710. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  711. cpu_buffer->write_stamp =
  712. cpu_buffer->commit_page->page->time_stamp;
  713. }
  714. /* Now set the commit to the event's index */
  715. local_set(&cpu_buffer->commit_page->page->commit, index);
  716. }
  717. static void
  718. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  719. {
  720. /*
  721. * We only race with interrupts and NMIs on this CPU.
  722. * If we own the commit event, then we can commit
  723. * all others that interrupted us, since the interruptions
  724. * are in stack format (they finish before they come
  725. * back to us). This allows us to do a simple loop to
  726. * assign the commit to the tail.
  727. */
  728. again:
  729. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  730. cpu_buffer->commit_page->page->commit =
  731. cpu_buffer->commit_page->write;
  732. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  733. cpu_buffer->write_stamp =
  734. cpu_buffer->commit_page->page->time_stamp;
  735. /* add barrier to keep gcc from optimizing too much */
  736. barrier();
  737. }
  738. while (rb_commit_index(cpu_buffer) !=
  739. rb_page_write(cpu_buffer->commit_page)) {
  740. cpu_buffer->commit_page->page->commit =
  741. cpu_buffer->commit_page->write;
  742. barrier();
  743. }
  744. /* again, keep gcc from optimizing */
  745. barrier();
  746. /*
  747. * If an interrupt came in just after the first while loop
  748. * and pushed the tail page forward, we will be left with
  749. * a dangling commit that will never go forward.
  750. */
  751. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  752. goto again;
  753. }
  754. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  755. {
  756. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  757. cpu_buffer->reader_page->read = 0;
  758. }
  759. static void rb_inc_iter(struct ring_buffer_iter *iter)
  760. {
  761. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  762. /*
  763. * The iterator could be on the reader page (it starts there).
  764. * But the head could have moved, since the reader was
  765. * found. Check for this case and assign the iterator
  766. * to the head page instead of next.
  767. */
  768. if (iter->head_page == cpu_buffer->reader_page)
  769. iter->head_page = cpu_buffer->head_page;
  770. else
  771. rb_inc_page(cpu_buffer, &iter->head_page);
  772. iter->read_stamp = iter->head_page->page->time_stamp;
  773. iter->head = 0;
  774. }
  775. /**
  776. * ring_buffer_update_event - update event type and data
  777. * @event: the even to update
  778. * @type: the type of event
  779. * @length: the size of the event field in the ring buffer
  780. *
  781. * Update the type and data fields of the event. The length
  782. * is the actual size that is written to the ring buffer,
  783. * and with this, we can determine what to place into the
  784. * data field.
  785. */
  786. static void
  787. rb_update_event(struct ring_buffer_event *event,
  788. unsigned type, unsigned length)
  789. {
  790. event->type = type;
  791. switch (type) {
  792. case RINGBUF_TYPE_PADDING:
  793. break;
  794. case RINGBUF_TYPE_TIME_EXTEND:
  795. event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
  796. break;
  797. case RINGBUF_TYPE_TIME_STAMP:
  798. event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
  799. break;
  800. case RINGBUF_TYPE_DATA:
  801. length -= RB_EVNT_HDR_SIZE;
  802. if (length > RB_MAX_SMALL_DATA) {
  803. event->len = 0;
  804. event->array[0] = length;
  805. } else
  806. event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
  807. break;
  808. default:
  809. BUG();
  810. }
  811. }
  812. static unsigned rb_calculate_event_length(unsigned length)
  813. {
  814. struct ring_buffer_event event; /* Used only for sizeof array */
  815. /* zero length can cause confusions */
  816. if (!length)
  817. length = 1;
  818. if (length > RB_MAX_SMALL_DATA)
  819. length += sizeof(event.array[0]);
  820. length += RB_EVNT_HDR_SIZE;
  821. length = ALIGN(length, RB_ALIGNMENT);
  822. return length;
  823. }
  824. static struct ring_buffer_event *
  825. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  826. unsigned type, unsigned long length, u64 *ts)
  827. {
  828. struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
  829. unsigned long tail, write;
  830. struct ring_buffer *buffer = cpu_buffer->buffer;
  831. struct ring_buffer_event *event;
  832. unsigned long flags;
  833. bool lock_taken = false;
  834. commit_page = cpu_buffer->commit_page;
  835. /* we just need to protect against interrupts */
  836. barrier();
  837. tail_page = cpu_buffer->tail_page;
  838. write = local_add_return(length, &tail_page->write);
  839. tail = write - length;
  840. /* See if we shot pass the end of this buffer page */
  841. if (write > BUF_PAGE_SIZE) {
  842. struct buffer_page *next_page = tail_page;
  843. local_irq_save(flags);
  844. /*
  845. * Since the write to the buffer is still not
  846. * fully lockless, we must be careful with NMIs.
  847. * The locks in the writers are taken when a write
  848. * crosses to a new page. The locks protect against
  849. * races with the readers (this will soon be fixed
  850. * with a lockless solution).
  851. *
  852. * Because we can not protect against NMIs, and we
  853. * want to keep traces reentrant, we need to manage
  854. * what happens when we are in an NMI.
  855. *
  856. * NMIs can happen after we take the lock.
  857. * If we are in an NMI, only take the lock
  858. * if it is not already taken. Otherwise
  859. * simply fail.
  860. */
  861. if (unlikely(in_nmi())) {
  862. if (!__raw_spin_trylock(&cpu_buffer->lock))
  863. goto out_reset;
  864. } else
  865. __raw_spin_lock(&cpu_buffer->lock);
  866. lock_taken = true;
  867. rb_inc_page(cpu_buffer, &next_page);
  868. head_page = cpu_buffer->head_page;
  869. reader_page = cpu_buffer->reader_page;
  870. /* we grabbed the lock before incrementing */
  871. if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
  872. goto out_reset;
  873. /*
  874. * If for some reason, we had an interrupt storm that made
  875. * it all the way around the buffer, bail, and warn
  876. * about it.
  877. */
  878. if (unlikely(next_page == commit_page)) {
  879. WARN_ON_ONCE(1);
  880. goto out_reset;
  881. }
  882. if (next_page == head_page) {
  883. if (!(buffer->flags & RB_FL_OVERWRITE))
  884. goto out_reset;
  885. /* tail_page has not moved yet? */
  886. if (tail_page == cpu_buffer->tail_page) {
  887. /* count overflows */
  888. rb_update_overflow(cpu_buffer);
  889. rb_inc_page(cpu_buffer, &head_page);
  890. cpu_buffer->head_page = head_page;
  891. cpu_buffer->head_page->read = 0;
  892. }
  893. }
  894. /*
  895. * If the tail page is still the same as what we think
  896. * it is, then it is up to us to update the tail
  897. * pointer.
  898. */
  899. if (tail_page == cpu_buffer->tail_page) {
  900. local_set(&next_page->write, 0);
  901. local_set(&next_page->page->commit, 0);
  902. cpu_buffer->tail_page = next_page;
  903. /* reread the time stamp */
  904. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  905. cpu_buffer->tail_page->page->time_stamp = *ts;
  906. }
  907. /*
  908. * The actual tail page has moved forward.
  909. */
  910. if (tail < BUF_PAGE_SIZE) {
  911. /* Mark the rest of the page with padding */
  912. event = __rb_page_index(tail_page, tail);
  913. event->type = RINGBUF_TYPE_PADDING;
  914. }
  915. if (tail <= BUF_PAGE_SIZE)
  916. /* Set the write back to the previous setting */
  917. local_set(&tail_page->write, tail);
  918. /*
  919. * If this was a commit entry that failed,
  920. * increment that too
  921. */
  922. if (tail_page == cpu_buffer->commit_page &&
  923. tail == rb_commit_index(cpu_buffer)) {
  924. rb_set_commit_to_write(cpu_buffer);
  925. }
  926. __raw_spin_unlock(&cpu_buffer->lock);
  927. local_irq_restore(flags);
  928. /* fail and let the caller try again */
  929. return ERR_PTR(-EAGAIN);
  930. }
  931. /* We reserved something on the buffer */
  932. if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
  933. return NULL;
  934. event = __rb_page_index(tail_page, tail);
  935. rb_update_event(event, type, length);
  936. /*
  937. * If this is a commit and the tail is zero, then update
  938. * this page's time stamp.
  939. */
  940. if (!tail && rb_is_commit(cpu_buffer, event))
  941. cpu_buffer->commit_page->page->time_stamp = *ts;
  942. return event;
  943. out_reset:
  944. /* reset write */
  945. if (tail <= BUF_PAGE_SIZE)
  946. local_set(&tail_page->write, tail);
  947. if (likely(lock_taken))
  948. __raw_spin_unlock(&cpu_buffer->lock);
  949. local_irq_restore(flags);
  950. return NULL;
  951. }
  952. static int
  953. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  954. u64 *ts, u64 *delta)
  955. {
  956. struct ring_buffer_event *event;
  957. static int once;
  958. int ret;
  959. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  960. printk(KERN_WARNING "Delta way too big! %llu"
  961. " ts=%llu write stamp = %llu\n",
  962. (unsigned long long)*delta,
  963. (unsigned long long)*ts,
  964. (unsigned long long)cpu_buffer->write_stamp);
  965. WARN_ON(1);
  966. }
  967. /*
  968. * The delta is too big, we to add a
  969. * new timestamp.
  970. */
  971. event = __rb_reserve_next(cpu_buffer,
  972. RINGBUF_TYPE_TIME_EXTEND,
  973. RB_LEN_TIME_EXTEND,
  974. ts);
  975. if (!event)
  976. return -EBUSY;
  977. if (PTR_ERR(event) == -EAGAIN)
  978. return -EAGAIN;
  979. /* Only a commited time event can update the write stamp */
  980. if (rb_is_commit(cpu_buffer, event)) {
  981. /*
  982. * If this is the first on the page, then we need to
  983. * update the page itself, and just put in a zero.
  984. */
  985. if (rb_event_index(event)) {
  986. event->time_delta = *delta & TS_MASK;
  987. event->array[0] = *delta >> TS_SHIFT;
  988. } else {
  989. cpu_buffer->commit_page->page->time_stamp = *ts;
  990. event->time_delta = 0;
  991. event->array[0] = 0;
  992. }
  993. cpu_buffer->write_stamp = *ts;
  994. /* let the caller know this was the commit */
  995. ret = 1;
  996. } else {
  997. /* Darn, this is just wasted space */
  998. event->time_delta = 0;
  999. event->array[0] = 0;
  1000. ret = 0;
  1001. }
  1002. *delta = 0;
  1003. return ret;
  1004. }
  1005. static struct ring_buffer_event *
  1006. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  1007. unsigned type, unsigned long length)
  1008. {
  1009. struct ring_buffer_event *event;
  1010. u64 ts, delta;
  1011. int commit = 0;
  1012. int nr_loops = 0;
  1013. again:
  1014. /*
  1015. * We allow for interrupts to reenter here and do a trace.
  1016. * If one does, it will cause this original code to loop
  1017. * back here. Even with heavy interrupts happening, this
  1018. * should only happen a few times in a row. If this happens
  1019. * 1000 times in a row, there must be either an interrupt
  1020. * storm or we have something buggy.
  1021. * Bail!
  1022. */
  1023. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  1024. return NULL;
  1025. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  1026. /*
  1027. * Only the first commit can update the timestamp.
  1028. * Yes there is a race here. If an interrupt comes in
  1029. * just after the conditional and it traces too, then it
  1030. * will also check the deltas. More than one timestamp may
  1031. * also be made. But only the entry that did the actual
  1032. * commit will be something other than zero.
  1033. */
  1034. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  1035. rb_page_write(cpu_buffer->tail_page) ==
  1036. rb_commit_index(cpu_buffer)) {
  1037. delta = ts - cpu_buffer->write_stamp;
  1038. /* make sure this delta is calculated here */
  1039. barrier();
  1040. /* Did the write stamp get updated already? */
  1041. if (unlikely(ts < cpu_buffer->write_stamp))
  1042. delta = 0;
  1043. if (test_time_stamp(delta)) {
  1044. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  1045. if (commit == -EBUSY)
  1046. return NULL;
  1047. if (commit == -EAGAIN)
  1048. goto again;
  1049. RB_WARN_ON(cpu_buffer, commit < 0);
  1050. }
  1051. } else
  1052. /* Non commits have zero deltas */
  1053. delta = 0;
  1054. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  1055. if (PTR_ERR(event) == -EAGAIN)
  1056. goto again;
  1057. if (!event) {
  1058. if (unlikely(commit))
  1059. /*
  1060. * Ouch! We needed a timestamp and it was commited. But
  1061. * we didn't get our event reserved.
  1062. */
  1063. rb_set_commit_to_write(cpu_buffer);
  1064. return NULL;
  1065. }
  1066. /*
  1067. * If the timestamp was commited, make the commit our entry
  1068. * now so that we will update it when needed.
  1069. */
  1070. if (commit)
  1071. rb_set_commit_event(cpu_buffer, event);
  1072. else if (!rb_is_commit(cpu_buffer, event))
  1073. delta = 0;
  1074. event->time_delta = delta;
  1075. return event;
  1076. }
  1077. static DEFINE_PER_CPU(int, rb_need_resched);
  1078. /**
  1079. * ring_buffer_lock_reserve - reserve a part of the buffer
  1080. * @buffer: the ring buffer to reserve from
  1081. * @length: the length of the data to reserve (excluding event header)
  1082. *
  1083. * Returns a reseverd event on the ring buffer to copy directly to.
  1084. * The user of this interface will need to get the body to write into
  1085. * and can use the ring_buffer_event_data() interface.
  1086. *
  1087. * The length is the length of the data needed, not the event length
  1088. * which also includes the event header.
  1089. *
  1090. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  1091. * If NULL is returned, then nothing has been allocated or locked.
  1092. */
  1093. struct ring_buffer_event *
  1094. ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
  1095. {
  1096. struct ring_buffer_per_cpu *cpu_buffer;
  1097. struct ring_buffer_event *event;
  1098. int cpu, resched;
  1099. if (ring_buffer_flags != RB_BUFFERS_ON)
  1100. return NULL;
  1101. if (atomic_read(&buffer->record_disabled))
  1102. return NULL;
  1103. /* If we are tracing schedule, we don't want to recurse */
  1104. resched = ftrace_preempt_disable();
  1105. cpu = raw_smp_processor_id();
  1106. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1107. goto out;
  1108. cpu_buffer = buffer->buffers[cpu];
  1109. if (atomic_read(&cpu_buffer->record_disabled))
  1110. goto out;
  1111. length = rb_calculate_event_length(length);
  1112. if (length > BUF_PAGE_SIZE)
  1113. goto out;
  1114. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  1115. if (!event)
  1116. goto out;
  1117. /*
  1118. * Need to store resched state on this cpu.
  1119. * Only the first needs to.
  1120. */
  1121. if (preempt_count() == 1)
  1122. per_cpu(rb_need_resched, cpu) = resched;
  1123. return event;
  1124. out:
  1125. ftrace_preempt_enable(resched);
  1126. return NULL;
  1127. }
  1128. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  1129. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1130. struct ring_buffer_event *event)
  1131. {
  1132. cpu_buffer->entries++;
  1133. /* Only process further if we own the commit */
  1134. if (!rb_is_commit(cpu_buffer, event))
  1135. return;
  1136. cpu_buffer->write_stamp += event->time_delta;
  1137. rb_set_commit_to_write(cpu_buffer);
  1138. }
  1139. /**
  1140. * ring_buffer_unlock_commit - commit a reserved
  1141. * @buffer: The buffer to commit to
  1142. * @event: The event pointer to commit.
  1143. *
  1144. * This commits the data to the ring buffer, and releases any locks held.
  1145. *
  1146. * Must be paired with ring_buffer_lock_reserve.
  1147. */
  1148. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  1149. struct ring_buffer_event *event)
  1150. {
  1151. struct ring_buffer_per_cpu *cpu_buffer;
  1152. int cpu = raw_smp_processor_id();
  1153. cpu_buffer = buffer->buffers[cpu];
  1154. rb_commit(cpu_buffer, event);
  1155. /*
  1156. * Only the last preempt count needs to restore preemption.
  1157. */
  1158. if (preempt_count() == 1)
  1159. ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
  1160. else
  1161. preempt_enable_no_resched_notrace();
  1162. return 0;
  1163. }
  1164. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  1165. /**
  1166. * ring_buffer_write - write data to the buffer without reserving
  1167. * @buffer: The ring buffer to write to.
  1168. * @length: The length of the data being written (excluding the event header)
  1169. * @data: The data to write to the buffer.
  1170. *
  1171. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1172. * one function. If you already have the data to write to the buffer, it
  1173. * may be easier to simply call this function.
  1174. *
  1175. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1176. * and not the length of the event which would hold the header.
  1177. */
  1178. int ring_buffer_write(struct ring_buffer *buffer,
  1179. unsigned long length,
  1180. void *data)
  1181. {
  1182. struct ring_buffer_per_cpu *cpu_buffer;
  1183. struct ring_buffer_event *event;
  1184. unsigned long event_length;
  1185. void *body;
  1186. int ret = -EBUSY;
  1187. int cpu, resched;
  1188. if (ring_buffer_flags != RB_BUFFERS_ON)
  1189. return -EBUSY;
  1190. if (atomic_read(&buffer->record_disabled))
  1191. return -EBUSY;
  1192. resched = ftrace_preempt_disable();
  1193. cpu = raw_smp_processor_id();
  1194. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1195. goto out;
  1196. cpu_buffer = buffer->buffers[cpu];
  1197. if (atomic_read(&cpu_buffer->record_disabled))
  1198. goto out;
  1199. event_length = rb_calculate_event_length(length);
  1200. event = rb_reserve_next_event(cpu_buffer,
  1201. RINGBUF_TYPE_DATA, event_length);
  1202. if (!event)
  1203. goto out;
  1204. body = rb_event_data(event);
  1205. memcpy(body, data, length);
  1206. rb_commit(cpu_buffer, event);
  1207. ret = 0;
  1208. out:
  1209. ftrace_preempt_enable(resched);
  1210. return ret;
  1211. }
  1212. EXPORT_SYMBOL_GPL(ring_buffer_write);
  1213. static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1214. {
  1215. struct buffer_page *reader = cpu_buffer->reader_page;
  1216. struct buffer_page *head = cpu_buffer->head_page;
  1217. struct buffer_page *commit = cpu_buffer->commit_page;
  1218. return reader->read == rb_page_commit(reader) &&
  1219. (commit == reader ||
  1220. (commit == head &&
  1221. head->read == rb_page_commit(commit)));
  1222. }
  1223. /**
  1224. * ring_buffer_record_disable - stop all writes into the buffer
  1225. * @buffer: The ring buffer to stop writes to.
  1226. *
  1227. * This prevents all writes to the buffer. Any attempt to write
  1228. * to the buffer after this will fail and return NULL.
  1229. *
  1230. * The caller should call synchronize_sched() after this.
  1231. */
  1232. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1233. {
  1234. atomic_inc(&buffer->record_disabled);
  1235. }
  1236. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  1237. /**
  1238. * ring_buffer_record_enable - enable writes to the buffer
  1239. * @buffer: The ring buffer to enable writes
  1240. *
  1241. * Note, multiple disables will need the same number of enables
  1242. * to truely enable the writing (much like preempt_disable).
  1243. */
  1244. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1245. {
  1246. atomic_dec(&buffer->record_disabled);
  1247. }
  1248. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  1249. /**
  1250. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1251. * @buffer: The ring buffer to stop writes to.
  1252. * @cpu: The CPU buffer to stop
  1253. *
  1254. * This prevents all writes to the buffer. Any attempt to write
  1255. * to the buffer after this will fail and return NULL.
  1256. *
  1257. * The caller should call synchronize_sched() after this.
  1258. */
  1259. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1260. {
  1261. struct ring_buffer_per_cpu *cpu_buffer;
  1262. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1263. return;
  1264. cpu_buffer = buffer->buffers[cpu];
  1265. atomic_inc(&cpu_buffer->record_disabled);
  1266. }
  1267. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  1268. /**
  1269. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1270. * @buffer: The ring buffer to enable writes
  1271. * @cpu: The CPU to enable.
  1272. *
  1273. * Note, multiple disables will need the same number of enables
  1274. * to truely enable the writing (much like preempt_disable).
  1275. */
  1276. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1277. {
  1278. struct ring_buffer_per_cpu *cpu_buffer;
  1279. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1280. return;
  1281. cpu_buffer = buffer->buffers[cpu];
  1282. atomic_dec(&cpu_buffer->record_disabled);
  1283. }
  1284. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  1285. /**
  1286. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1287. * @buffer: The ring buffer
  1288. * @cpu: The per CPU buffer to get the entries from.
  1289. */
  1290. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1291. {
  1292. struct ring_buffer_per_cpu *cpu_buffer;
  1293. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1294. return 0;
  1295. cpu_buffer = buffer->buffers[cpu];
  1296. return cpu_buffer->entries;
  1297. }
  1298. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  1299. /**
  1300. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1301. * @buffer: The ring buffer
  1302. * @cpu: The per CPU buffer to get the number of overruns from
  1303. */
  1304. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1305. {
  1306. struct ring_buffer_per_cpu *cpu_buffer;
  1307. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1308. return 0;
  1309. cpu_buffer = buffer->buffers[cpu];
  1310. return cpu_buffer->overrun;
  1311. }
  1312. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  1313. /**
  1314. * ring_buffer_entries - get the number of entries in a buffer
  1315. * @buffer: The ring buffer
  1316. *
  1317. * Returns the total number of entries in the ring buffer
  1318. * (all CPU entries)
  1319. */
  1320. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1321. {
  1322. struct ring_buffer_per_cpu *cpu_buffer;
  1323. unsigned long entries = 0;
  1324. int cpu;
  1325. /* if you care about this being correct, lock the buffer */
  1326. for_each_buffer_cpu(buffer, cpu) {
  1327. cpu_buffer = buffer->buffers[cpu];
  1328. entries += cpu_buffer->entries;
  1329. }
  1330. return entries;
  1331. }
  1332. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  1333. /**
  1334. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1335. * @buffer: The ring buffer
  1336. *
  1337. * Returns the total number of overruns in the ring buffer
  1338. * (all CPU entries)
  1339. */
  1340. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1341. {
  1342. struct ring_buffer_per_cpu *cpu_buffer;
  1343. unsigned long overruns = 0;
  1344. int cpu;
  1345. /* if you care about this being correct, lock the buffer */
  1346. for_each_buffer_cpu(buffer, cpu) {
  1347. cpu_buffer = buffer->buffers[cpu];
  1348. overruns += cpu_buffer->overrun;
  1349. }
  1350. return overruns;
  1351. }
  1352. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  1353. static void rb_iter_reset(struct ring_buffer_iter *iter)
  1354. {
  1355. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1356. /* Iterator usage is expected to have record disabled */
  1357. if (list_empty(&cpu_buffer->reader_page->list)) {
  1358. iter->head_page = cpu_buffer->head_page;
  1359. iter->head = cpu_buffer->head_page->read;
  1360. } else {
  1361. iter->head_page = cpu_buffer->reader_page;
  1362. iter->head = cpu_buffer->reader_page->read;
  1363. }
  1364. if (iter->head)
  1365. iter->read_stamp = cpu_buffer->read_stamp;
  1366. else
  1367. iter->read_stamp = iter->head_page->page->time_stamp;
  1368. }
  1369. /**
  1370. * ring_buffer_iter_reset - reset an iterator
  1371. * @iter: The iterator to reset
  1372. *
  1373. * Resets the iterator, so that it will start from the beginning
  1374. * again.
  1375. */
  1376. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1377. {
  1378. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1379. unsigned long flags;
  1380. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1381. rb_iter_reset(iter);
  1382. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1383. }
  1384. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  1385. /**
  1386. * ring_buffer_iter_empty - check if an iterator has no more to read
  1387. * @iter: The iterator to check
  1388. */
  1389. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1390. {
  1391. struct ring_buffer_per_cpu *cpu_buffer;
  1392. cpu_buffer = iter->cpu_buffer;
  1393. return iter->head_page == cpu_buffer->commit_page &&
  1394. iter->head == rb_commit_index(cpu_buffer);
  1395. }
  1396. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  1397. static void
  1398. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1399. struct ring_buffer_event *event)
  1400. {
  1401. u64 delta;
  1402. switch (event->type) {
  1403. case RINGBUF_TYPE_PADDING:
  1404. return;
  1405. case RINGBUF_TYPE_TIME_EXTEND:
  1406. delta = event->array[0];
  1407. delta <<= TS_SHIFT;
  1408. delta += event->time_delta;
  1409. cpu_buffer->read_stamp += delta;
  1410. return;
  1411. case RINGBUF_TYPE_TIME_STAMP:
  1412. /* FIXME: not implemented */
  1413. return;
  1414. case RINGBUF_TYPE_DATA:
  1415. cpu_buffer->read_stamp += event->time_delta;
  1416. return;
  1417. default:
  1418. BUG();
  1419. }
  1420. return;
  1421. }
  1422. static void
  1423. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1424. struct ring_buffer_event *event)
  1425. {
  1426. u64 delta;
  1427. switch (event->type) {
  1428. case RINGBUF_TYPE_PADDING:
  1429. return;
  1430. case RINGBUF_TYPE_TIME_EXTEND:
  1431. delta = event->array[0];
  1432. delta <<= TS_SHIFT;
  1433. delta += event->time_delta;
  1434. iter->read_stamp += delta;
  1435. return;
  1436. case RINGBUF_TYPE_TIME_STAMP:
  1437. /* FIXME: not implemented */
  1438. return;
  1439. case RINGBUF_TYPE_DATA:
  1440. iter->read_stamp += event->time_delta;
  1441. return;
  1442. default:
  1443. BUG();
  1444. }
  1445. return;
  1446. }
  1447. static struct buffer_page *
  1448. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1449. {
  1450. struct buffer_page *reader = NULL;
  1451. unsigned long flags;
  1452. int nr_loops = 0;
  1453. local_irq_save(flags);
  1454. __raw_spin_lock(&cpu_buffer->lock);
  1455. again:
  1456. /*
  1457. * This should normally only loop twice. But because the
  1458. * start of the reader inserts an empty page, it causes
  1459. * a case where we will loop three times. There should be no
  1460. * reason to loop four times (that I know of).
  1461. */
  1462. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  1463. reader = NULL;
  1464. goto out;
  1465. }
  1466. reader = cpu_buffer->reader_page;
  1467. /* If there's more to read, return this page */
  1468. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1469. goto out;
  1470. /* Never should we have an index greater than the size */
  1471. if (RB_WARN_ON(cpu_buffer,
  1472. cpu_buffer->reader_page->read > rb_page_size(reader)))
  1473. goto out;
  1474. /* check if we caught up to the tail */
  1475. reader = NULL;
  1476. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1477. goto out;
  1478. /*
  1479. * Splice the empty reader page into the list around the head.
  1480. * Reset the reader page to size zero.
  1481. */
  1482. reader = cpu_buffer->head_page;
  1483. cpu_buffer->reader_page->list.next = reader->list.next;
  1484. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1485. local_set(&cpu_buffer->reader_page->write, 0);
  1486. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1487. /* Make the reader page now replace the head */
  1488. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1489. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1490. /*
  1491. * If the tail is on the reader, then we must set the head
  1492. * to the inserted page, otherwise we set it one before.
  1493. */
  1494. cpu_buffer->head_page = cpu_buffer->reader_page;
  1495. if (cpu_buffer->commit_page != reader)
  1496. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1497. /* Finally update the reader page to the new head */
  1498. cpu_buffer->reader_page = reader;
  1499. rb_reset_reader_page(cpu_buffer);
  1500. goto again;
  1501. out:
  1502. __raw_spin_unlock(&cpu_buffer->lock);
  1503. local_irq_restore(flags);
  1504. return reader;
  1505. }
  1506. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1507. {
  1508. struct ring_buffer_event *event;
  1509. struct buffer_page *reader;
  1510. unsigned length;
  1511. reader = rb_get_reader_page(cpu_buffer);
  1512. /* This function should not be called when buffer is empty */
  1513. if (RB_WARN_ON(cpu_buffer, !reader))
  1514. return;
  1515. event = rb_reader_event(cpu_buffer);
  1516. if (event->type == RINGBUF_TYPE_DATA)
  1517. cpu_buffer->entries--;
  1518. rb_update_read_stamp(cpu_buffer, event);
  1519. length = rb_event_length(event);
  1520. cpu_buffer->reader_page->read += length;
  1521. }
  1522. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1523. {
  1524. struct ring_buffer *buffer;
  1525. struct ring_buffer_per_cpu *cpu_buffer;
  1526. struct ring_buffer_event *event;
  1527. unsigned length;
  1528. cpu_buffer = iter->cpu_buffer;
  1529. buffer = cpu_buffer->buffer;
  1530. /*
  1531. * Check if we are at the end of the buffer.
  1532. */
  1533. if (iter->head >= rb_page_size(iter->head_page)) {
  1534. if (RB_WARN_ON(buffer,
  1535. iter->head_page == cpu_buffer->commit_page))
  1536. return;
  1537. rb_inc_iter(iter);
  1538. return;
  1539. }
  1540. event = rb_iter_head_event(iter);
  1541. length = rb_event_length(event);
  1542. /*
  1543. * This should not be called to advance the header if we are
  1544. * at the tail of the buffer.
  1545. */
  1546. if (RB_WARN_ON(cpu_buffer,
  1547. (iter->head_page == cpu_buffer->commit_page) &&
  1548. (iter->head + length > rb_commit_index(cpu_buffer))))
  1549. return;
  1550. rb_update_iter_read_stamp(iter, event);
  1551. iter->head += length;
  1552. /* check for end of page padding */
  1553. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1554. (iter->head_page != cpu_buffer->commit_page))
  1555. rb_advance_iter(iter);
  1556. }
  1557. static struct ring_buffer_event *
  1558. rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1559. {
  1560. struct ring_buffer_per_cpu *cpu_buffer;
  1561. struct ring_buffer_event *event;
  1562. struct buffer_page *reader;
  1563. int nr_loops = 0;
  1564. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1565. return NULL;
  1566. cpu_buffer = buffer->buffers[cpu];
  1567. again:
  1568. /*
  1569. * We repeat when a timestamp is encountered. It is possible
  1570. * to get multiple timestamps from an interrupt entering just
  1571. * as one timestamp is about to be written. The max times
  1572. * that this can happen is the number of nested interrupts we
  1573. * can have. Nesting 10 deep of interrupts is clearly
  1574. * an anomaly.
  1575. */
  1576. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1577. return NULL;
  1578. reader = rb_get_reader_page(cpu_buffer);
  1579. if (!reader)
  1580. return NULL;
  1581. event = rb_reader_event(cpu_buffer);
  1582. switch (event->type) {
  1583. case RINGBUF_TYPE_PADDING:
  1584. RB_WARN_ON(cpu_buffer, 1);
  1585. rb_advance_reader(cpu_buffer);
  1586. return NULL;
  1587. case RINGBUF_TYPE_TIME_EXTEND:
  1588. /* Internal data, OK to advance */
  1589. rb_advance_reader(cpu_buffer);
  1590. goto again;
  1591. case RINGBUF_TYPE_TIME_STAMP:
  1592. /* FIXME: not implemented */
  1593. rb_advance_reader(cpu_buffer);
  1594. goto again;
  1595. case RINGBUF_TYPE_DATA:
  1596. if (ts) {
  1597. *ts = cpu_buffer->read_stamp + event->time_delta;
  1598. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1599. }
  1600. return event;
  1601. default:
  1602. BUG();
  1603. }
  1604. return NULL;
  1605. }
  1606. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  1607. static struct ring_buffer_event *
  1608. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1609. {
  1610. struct ring_buffer *buffer;
  1611. struct ring_buffer_per_cpu *cpu_buffer;
  1612. struct ring_buffer_event *event;
  1613. int nr_loops = 0;
  1614. if (ring_buffer_iter_empty(iter))
  1615. return NULL;
  1616. cpu_buffer = iter->cpu_buffer;
  1617. buffer = cpu_buffer->buffer;
  1618. again:
  1619. /*
  1620. * We repeat when a timestamp is encountered. It is possible
  1621. * to get multiple timestamps from an interrupt entering just
  1622. * as one timestamp is about to be written. The max times
  1623. * that this can happen is the number of nested interrupts we
  1624. * can have. Nesting 10 deep of interrupts is clearly
  1625. * an anomaly.
  1626. */
  1627. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1628. return NULL;
  1629. if (rb_per_cpu_empty(cpu_buffer))
  1630. return NULL;
  1631. event = rb_iter_head_event(iter);
  1632. switch (event->type) {
  1633. case RINGBUF_TYPE_PADDING:
  1634. rb_inc_iter(iter);
  1635. goto again;
  1636. case RINGBUF_TYPE_TIME_EXTEND:
  1637. /* Internal data, OK to advance */
  1638. rb_advance_iter(iter);
  1639. goto again;
  1640. case RINGBUF_TYPE_TIME_STAMP:
  1641. /* FIXME: not implemented */
  1642. rb_advance_iter(iter);
  1643. goto again;
  1644. case RINGBUF_TYPE_DATA:
  1645. if (ts) {
  1646. *ts = iter->read_stamp + event->time_delta;
  1647. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1648. }
  1649. return event;
  1650. default:
  1651. BUG();
  1652. }
  1653. return NULL;
  1654. }
  1655. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  1656. /**
  1657. * ring_buffer_peek - peek at the next event to be read
  1658. * @buffer: The ring buffer to read
  1659. * @cpu: The cpu to peak at
  1660. * @ts: The timestamp counter of this event.
  1661. *
  1662. * This will return the event that will be read next, but does
  1663. * not consume the data.
  1664. */
  1665. struct ring_buffer_event *
  1666. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1667. {
  1668. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1669. struct ring_buffer_event *event;
  1670. unsigned long flags;
  1671. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1672. event = rb_buffer_peek(buffer, cpu, ts);
  1673. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1674. return event;
  1675. }
  1676. /**
  1677. * ring_buffer_iter_peek - peek at the next event to be read
  1678. * @iter: The ring buffer iterator
  1679. * @ts: The timestamp counter of this event.
  1680. *
  1681. * This will return the event that will be read next, but does
  1682. * not increment the iterator.
  1683. */
  1684. struct ring_buffer_event *
  1685. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1686. {
  1687. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1688. struct ring_buffer_event *event;
  1689. unsigned long flags;
  1690. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1691. event = rb_iter_peek(iter, ts);
  1692. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1693. return event;
  1694. }
  1695. /**
  1696. * ring_buffer_consume - return an event and consume it
  1697. * @buffer: The ring buffer to get the next event from
  1698. *
  1699. * Returns the next event in the ring buffer, and that event is consumed.
  1700. * Meaning, that sequential reads will keep returning a different event,
  1701. * and eventually empty the ring buffer if the producer is slower.
  1702. */
  1703. struct ring_buffer_event *
  1704. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1705. {
  1706. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1707. struct ring_buffer_event *event;
  1708. unsigned long flags;
  1709. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1710. return NULL;
  1711. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1712. event = rb_buffer_peek(buffer, cpu, ts);
  1713. if (!event)
  1714. goto out;
  1715. rb_advance_reader(cpu_buffer);
  1716. out:
  1717. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1718. return event;
  1719. }
  1720. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  1721. /**
  1722. * ring_buffer_read_start - start a non consuming read of the buffer
  1723. * @buffer: The ring buffer to read from
  1724. * @cpu: The cpu buffer to iterate over
  1725. *
  1726. * This starts up an iteration through the buffer. It also disables
  1727. * the recording to the buffer until the reading is finished.
  1728. * This prevents the reading from being corrupted. This is not
  1729. * a consuming read, so a producer is not expected.
  1730. *
  1731. * Must be paired with ring_buffer_finish.
  1732. */
  1733. struct ring_buffer_iter *
  1734. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1735. {
  1736. struct ring_buffer_per_cpu *cpu_buffer;
  1737. struct ring_buffer_iter *iter;
  1738. unsigned long flags;
  1739. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1740. return NULL;
  1741. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1742. if (!iter)
  1743. return NULL;
  1744. cpu_buffer = buffer->buffers[cpu];
  1745. iter->cpu_buffer = cpu_buffer;
  1746. atomic_inc(&cpu_buffer->record_disabled);
  1747. synchronize_sched();
  1748. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1749. __raw_spin_lock(&cpu_buffer->lock);
  1750. rb_iter_reset(iter);
  1751. __raw_spin_unlock(&cpu_buffer->lock);
  1752. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1753. return iter;
  1754. }
  1755. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  1756. /**
  1757. * ring_buffer_finish - finish reading the iterator of the buffer
  1758. * @iter: The iterator retrieved by ring_buffer_start
  1759. *
  1760. * This re-enables the recording to the buffer, and frees the
  1761. * iterator.
  1762. */
  1763. void
  1764. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1765. {
  1766. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1767. atomic_dec(&cpu_buffer->record_disabled);
  1768. kfree(iter);
  1769. }
  1770. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  1771. /**
  1772. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1773. * @iter: The ring buffer iterator
  1774. * @ts: The time stamp of the event read.
  1775. *
  1776. * This reads the next event in the ring buffer and increments the iterator.
  1777. */
  1778. struct ring_buffer_event *
  1779. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1780. {
  1781. struct ring_buffer_event *event;
  1782. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1783. unsigned long flags;
  1784. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1785. event = rb_iter_peek(iter, ts);
  1786. if (!event)
  1787. goto out;
  1788. rb_advance_iter(iter);
  1789. out:
  1790. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1791. return event;
  1792. }
  1793. EXPORT_SYMBOL_GPL(ring_buffer_read);
  1794. /**
  1795. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1796. * @buffer: The ring buffer.
  1797. */
  1798. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1799. {
  1800. return BUF_PAGE_SIZE * buffer->pages;
  1801. }
  1802. EXPORT_SYMBOL_GPL(ring_buffer_size);
  1803. static void
  1804. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1805. {
  1806. cpu_buffer->head_page
  1807. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1808. local_set(&cpu_buffer->head_page->write, 0);
  1809. local_set(&cpu_buffer->head_page->page->commit, 0);
  1810. cpu_buffer->head_page->read = 0;
  1811. cpu_buffer->tail_page = cpu_buffer->head_page;
  1812. cpu_buffer->commit_page = cpu_buffer->head_page;
  1813. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1814. local_set(&cpu_buffer->reader_page->write, 0);
  1815. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1816. cpu_buffer->reader_page->read = 0;
  1817. cpu_buffer->overrun = 0;
  1818. cpu_buffer->entries = 0;
  1819. cpu_buffer->write_stamp = 0;
  1820. cpu_buffer->read_stamp = 0;
  1821. }
  1822. /**
  1823. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1824. * @buffer: The ring buffer to reset a per cpu buffer of
  1825. * @cpu: The CPU buffer to be reset
  1826. */
  1827. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1828. {
  1829. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1830. unsigned long flags;
  1831. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1832. return;
  1833. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1834. __raw_spin_lock(&cpu_buffer->lock);
  1835. rb_reset_cpu(cpu_buffer);
  1836. __raw_spin_unlock(&cpu_buffer->lock);
  1837. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1838. }
  1839. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  1840. /**
  1841. * ring_buffer_reset - reset a ring buffer
  1842. * @buffer: The ring buffer to reset all cpu buffers
  1843. */
  1844. void ring_buffer_reset(struct ring_buffer *buffer)
  1845. {
  1846. int cpu;
  1847. for_each_buffer_cpu(buffer, cpu)
  1848. ring_buffer_reset_cpu(buffer, cpu);
  1849. }
  1850. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  1851. /**
  1852. * rind_buffer_empty - is the ring buffer empty?
  1853. * @buffer: The ring buffer to test
  1854. */
  1855. int ring_buffer_empty(struct ring_buffer *buffer)
  1856. {
  1857. struct ring_buffer_per_cpu *cpu_buffer;
  1858. int cpu;
  1859. /* yes this is racy, but if you don't like the race, lock the buffer */
  1860. for_each_buffer_cpu(buffer, cpu) {
  1861. cpu_buffer = buffer->buffers[cpu];
  1862. if (!rb_per_cpu_empty(cpu_buffer))
  1863. return 0;
  1864. }
  1865. return 1;
  1866. }
  1867. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  1868. /**
  1869. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1870. * @buffer: The ring buffer
  1871. * @cpu: The CPU buffer to test
  1872. */
  1873. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1874. {
  1875. struct ring_buffer_per_cpu *cpu_buffer;
  1876. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1877. return 1;
  1878. cpu_buffer = buffer->buffers[cpu];
  1879. return rb_per_cpu_empty(cpu_buffer);
  1880. }
  1881. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  1882. /**
  1883. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1884. * @buffer_a: One buffer to swap with
  1885. * @buffer_b: The other buffer to swap with
  1886. *
  1887. * This function is useful for tracers that want to take a "snapshot"
  1888. * of a CPU buffer and has another back up buffer lying around.
  1889. * it is expected that the tracer handles the cpu buffer not being
  1890. * used at the moment.
  1891. */
  1892. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1893. struct ring_buffer *buffer_b, int cpu)
  1894. {
  1895. struct ring_buffer_per_cpu *cpu_buffer_a;
  1896. struct ring_buffer_per_cpu *cpu_buffer_b;
  1897. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  1898. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  1899. return -EINVAL;
  1900. /* At least make sure the two buffers are somewhat the same */
  1901. if (buffer_a->pages != buffer_b->pages)
  1902. return -EINVAL;
  1903. if (ring_buffer_flags != RB_BUFFERS_ON)
  1904. return -EAGAIN;
  1905. if (atomic_read(&buffer_a->record_disabled))
  1906. return -EAGAIN;
  1907. if (atomic_read(&buffer_b->record_disabled))
  1908. return -EAGAIN;
  1909. cpu_buffer_a = buffer_a->buffers[cpu];
  1910. cpu_buffer_b = buffer_b->buffers[cpu];
  1911. if (atomic_read(&cpu_buffer_a->record_disabled))
  1912. return -EAGAIN;
  1913. if (atomic_read(&cpu_buffer_b->record_disabled))
  1914. return -EAGAIN;
  1915. /*
  1916. * We can't do a synchronize_sched here because this
  1917. * function can be called in atomic context.
  1918. * Normally this will be called from the same CPU as cpu.
  1919. * If not it's up to the caller to protect this.
  1920. */
  1921. atomic_inc(&cpu_buffer_a->record_disabled);
  1922. atomic_inc(&cpu_buffer_b->record_disabled);
  1923. buffer_a->buffers[cpu] = cpu_buffer_b;
  1924. buffer_b->buffers[cpu] = cpu_buffer_a;
  1925. cpu_buffer_b->buffer = buffer_a;
  1926. cpu_buffer_a->buffer = buffer_b;
  1927. atomic_dec(&cpu_buffer_a->record_disabled);
  1928. atomic_dec(&cpu_buffer_b->record_disabled);
  1929. return 0;
  1930. }
  1931. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  1932. static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
  1933. struct buffer_data_page *bpage,
  1934. unsigned int offset)
  1935. {
  1936. struct ring_buffer_event *event;
  1937. unsigned long head;
  1938. __raw_spin_lock(&cpu_buffer->lock);
  1939. for (head = offset; head < local_read(&bpage->commit);
  1940. head += rb_event_length(event)) {
  1941. event = __rb_data_page_index(bpage, head);
  1942. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  1943. return;
  1944. /* Only count data entries */
  1945. if (event->type != RINGBUF_TYPE_DATA)
  1946. continue;
  1947. cpu_buffer->entries--;
  1948. }
  1949. __raw_spin_unlock(&cpu_buffer->lock);
  1950. }
  1951. /**
  1952. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  1953. * @buffer: the buffer to allocate for.
  1954. *
  1955. * This function is used in conjunction with ring_buffer_read_page.
  1956. * When reading a full page from the ring buffer, these functions
  1957. * can be used to speed up the process. The calling function should
  1958. * allocate a few pages first with this function. Then when it
  1959. * needs to get pages from the ring buffer, it passes the result
  1960. * of this function into ring_buffer_read_page, which will swap
  1961. * the page that was allocated, with the read page of the buffer.
  1962. *
  1963. * Returns:
  1964. * The page allocated, or NULL on error.
  1965. */
  1966. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
  1967. {
  1968. unsigned long addr;
  1969. struct buffer_data_page *bpage;
  1970. addr = __get_free_page(GFP_KERNEL);
  1971. if (!addr)
  1972. return NULL;
  1973. bpage = (void *)addr;
  1974. return bpage;
  1975. }
  1976. /**
  1977. * ring_buffer_free_read_page - free an allocated read page
  1978. * @buffer: the buffer the page was allocate for
  1979. * @data: the page to free
  1980. *
  1981. * Free a page allocated from ring_buffer_alloc_read_page.
  1982. */
  1983. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  1984. {
  1985. free_page((unsigned long)data);
  1986. }
  1987. /**
  1988. * ring_buffer_read_page - extract a page from the ring buffer
  1989. * @buffer: buffer to extract from
  1990. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  1991. * @cpu: the cpu of the buffer to extract
  1992. * @full: should the extraction only happen when the page is full.
  1993. *
  1994. * This function will pull out a page from the ring buffer and consume it.
  1995. * @data_page must be the address of the variable that was returned
  1996. * from ring_buffer_alloc_read_page. This is because the page might be used
  1997. * to swap with a page in the ring buffer.
  1998. *
  1999. * for example:
  2000. * rpage = ring_buffer_alloc_read_page(buffer);
  2001. * if (!rpage)
  2002. * return error;
  2003. * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
  2004. * if (ret >= 0)
  2005. * process_page(rpage, ret);
  2006. *
  2007. * When @full is set, the function will not return true unless
  2008. * the writer is off the reader page.
  2009. *
  2010. * Note: it is up to the calling functions to handle sleeps and wakeups.
  2011. * The ring buffer can be used anywhere in the kernel and can not
  2012. * blindly call wake_up. The layer that uses the ring buffer must be
  2013. * responsible for that.
  2014. *
  2015. * Returns:
  2016. * >=0 if data has been transferred, returns the offset of consumed data.
  2017. * <0 if no data has been transferred.
  2018. */
  2019. int ring_buffer_read_page(struct ring_buffer *buffer,
  2020. void **data_page, int cpu, int full)
  2021. {
  2022. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  2023. struct ring_buffer_event *event;
  2024. struct buffer_data_page *bpage;
  2025. unsigned long flags;
  2026. unsigned int read;
  2027. int ret = -1;
  2028. if (!data_page)
  2029. return 0;
  2030. bpage = *data_page;
  2031. if (!bpage)
  2032. return 0;
  2033. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2034. /*
  2035. * rb_buffer_peek will get the next ring buffer if
  2036. * the current reader page is empty.
  2037. */
  2038. event = rb_buffer_peek(buffer, cpu, NULL);
  2039. if (!event)
  2040. goto out;
  2041. /* check for data */
  2042. if (!local_read(&cpu_buffer->reader_page->page->commit))
  2043. goto out;
  2044. read = cpu_buffer->reader_page->read;
  2045. /*
  2046. * If the writer is already off of the read page, then simply
  2047. * switch the read page with the given page. Otherwise
  2048. * we need to copy the data from the reader to the writer.
  2049. */
  2050. if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
  2051. unsigned int commit = rb_page_commit(cpu_buffer->reader_page);
  2052. struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
  2053. if (full)
  2054. goto out;
  2055. /* The writer is still on the reader page, we must copy */
  2056. memcpy(bpage->data + read, rpage->data + read, commit - read);
  2057. /* consume what was read */
  2058. cpu_buffer->reader_page->read = commit;
  2059. /* update bpage */
  2060. local_set(&bpage->commit, commit);
  2061. if (!read)
  2062. bpage->time_stamp = rpage->time_stamp;
  2063. } else {
  2064. /* swap the pages */
  2065. rb_init_page(bpage);
  2066. bpage = cpu_buffer->reader_page->page;
  2067. cpu_buffer->reader_page->page = *data_page;
  2068. cpu_buffer->reader_page->read = 0;
  2069. *data_page = bpage;
  2070. }
  2071. ret = read;
  2072. /* update the entry counter */
  2073. rb_remove_entries(cpu_buffer, bpage, read);
  2074. out:
  2075. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2076. return ret;
  2077. }
  2078. static ssize_t
  2079. rb_simple_read(struct file *filp, char __user *ubuf,
  2080. size_t cnt, loff_t *ppos)
  2081. {
  2082. unsigned long *p = filp->private_data;
  2083. char buf[64];
  2084. int r;
  2085. if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
  2086. r = sprintf(buf, "permanently disabled\n");
  2087. else
  2088. r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
  2089. return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  2090. }
  2091. static ssize_t
  2092. rb_simple_write(struct file *filp, const char __user *ubuf,
  2093. size_t cnt, loff_t *ppos)
  2094. {
  2095. unsigned long *p = filp->private_data;
  2096. char buf[64];
  2097. unsigned long val;
  2098. int ret;
  2099. if (cnt >= sizeof(buf))
  2100. return -EINVAL;
  2101. if (copy_from_user(&buf, ubuf, cnt))
  2102. return -EFAULT;
  2103. buf[cnt] = 0;
  2104. ret = strict_strtoul(buf, 10, &val);
  2105. if (ret < 0)
  2106. return ret;
  2107. if (val)
  2108. set_bit(RB_BUFFERS_ON_BIT, p);
  2109. else
  2110. clear_bit(RB_BUFFERS_ON_BIT, p);
  2111. (*ppos)++;
  2112. return cnt;
  2113. }
  2114. static struct file_operations rb_simple_fops = {
  2115. .open = tracing_open_generic,
  2116. .read = rb_simple_read,
  2117. .write = rb_simple_write,
  2118. };
  2119. static __init int rb_init_debugfs(void)
  2120. {
  2121. struct dentry *d_tracer;
  2122. struct dentry *entry;
  2123. d_tracer = tracing_init_dentry();
  2124. entry = debugfs_create_file("tracing_on", 0644, d_tracer,
  2125. &ring_buffer_flags, &rb_simple_fops);
  2126. if (!entry)
  2127. pr_warning("Could not create debugfs 'tracing_on' entry\n");
  2128. return 0;
  2129. }
  2130. fs_initcall(rb_init_debugfs);