md.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/devfs_fs_kernel.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/suspend.h>
  35. #include <linux/init.h>
  36. #include <linux/file.h>
  37. #ifdef CONFIG_KMOD
  38. #include <linux/kmod.h>
  39. #endif
  40. #include <asm/unaligned.h>
  41. #define MAJOR_NR MD_MAJOR
  42. #define MD_DRIVER
  43. /* 63 partitions with the alternate major number (mdp) */
  44. #define MdpMinorShift 6
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays (int part);
  49. #endif
  50. static mdk_personality_t *pers[MAX_PERSONALITY];
  51. static DEFINE_SPINLOCK(pers_lock);
  52. /*
  53. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  54. * is 1000 KB/sec, so the extra system load does not show up that much.
  55. * Increase it if you want to have more _guaranteed_ speed. Note that
  56. * the RAID driver will use the maximum available bandwith if the IO
  57. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  58. * speed limit - in case reconstruction slows down your system despite
  59. * idle IO detection.
  60. *
  61. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  62. */
  63. static int sysctl_speed_limit_min = 1000;
  64. static int sysctl_speed_limit_max = 200000;
  65. static struct ctl_table_header *raid_table_header;
  66. static ctl_table raid_table[] = {
  67. {
  68. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  69. .procname = "speed_limit_min",
  70. .data = &sysctl_speed_limit_min,
  71. .maxlen = sizeof(int),
  72. .mode = 0644,
  73. .proc_handler = &proc_dointvec,
  74. },
  75. {
  76. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  77. .procname = "speed_limit_max",
  78. .data = &sysctl_speed_limit_max,
  79. .maxlen = sizeof(int),
  80. .mode = 0644,
  81. .proc_handler = &proc_dointvec,
  82. },
  83. { .ctl_name = 0 }
  84. };
  85. static ctl_table raid_dir_table[] = {
  86. {
  87. .ctl_name = DEV_RAID,
  88. .procname = "raid",
  89. .maxlen = 0,
  90. .mode = 0555,
  91. .child = raid_table,
  92. },
  93. { .ctl_name = 0 }
  94. };
  95. static ctl_table raid_root_table[] = {
  96. {
  97. .ctl_name = CTL_DEV,
  98. .procname = "dev",
  99. .maxlen = 0,
  100. .mode = 0555,
  101. .child = raid_dir_table,
  102. },
  103. { .ctl_name = 0 }
  104. };
  105. static struct block_device_operations md_fops;
  106. /*
  107. * Enables to iterate over all existing md arrays
  108. * all_mddevs_lock protects this list.
  109. */
  110. static LIST_HEAD(all_mddevs);
  111. static DEFINE_SPINLOCK(all_mddevs_lock);
  112. /*
  113. * iterates through all used mddevs in the system.
  114. * We take care to grab the all_mddevs_lock whenever navigating
  115. * the list, and to always hold a refcount when unlocked.
  116. * Any code which breaks out of this loop while own
  117. * a reference to the current mddev and must mddev_put it.
  118. */
  119. #define ITERATE_MDDEV(mddev,tmp) \
  120. \
  121. for (({ spin_lock(&all_mddevs_lock); \
  122. tmp = all_mddevs.next; \
  123. mddev = NULL;}); \
  124. ({ if (tmp != &all_mddevs) \
  125. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  126. spin_unlock(&all_mddevs_lock); \
  127. if (mddev) mddev_put(mddev); \
  128. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  129. tmp != &all_mddevs;}); \
  130. ({ spin_lock(&all_mddevs_lock); \
  131. tmp = tmp->next;}) \
  132. )
  133. static int md_fail_request (request_queue_t *q, struct bio *bio)
  134. {
  135. bio_io_error(bio, bio->bi_size);
  136. return 0;
  137. }
  138. static inline mddev_t *mddev_get(mddev_t *mddev)
  139. {
  140. atomic_inc(&mddev->active);
  141. return mddev;
  142. }
  143. static void mddev_put(mddev_t *mddev)
  144. {
  145. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  146. return;
  147. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  148. list_del(&mddev->all_mddevs);
  149. blk_put_queue(mddev->queue);
  150. kfree(mddev);
  151. }
  152. spin_unlock(&all_mddevs_lock);
  153. }
  154. static mddev_t * mddev_find(dev_t unit)
  155. {
  156. mddev_t *mddev, *new = NULL;
  157. retry:
  158. spin_lock(&all_mddevs_lock);
  159. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  160. if (mddev->unit == unit) {
  161. mddev_get(mddev);
  162. spin_unlock(&all_mddevs_lock);
  163. kfree(new);
  164. return mddev;
  165. }
  166. if (new) {
  167. list_add(&new->all_mddevs, &all_mddevs);
  168. spin_unlock(&all_mddevs_lock);
  169. return new;
  170. }
  171. spin_unlock(&all_mddevs_lock);
  172. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  173. if (!new)
  174. return NULL;
  175. memset(new, 0, sizeof(*new));
  176. new->unit = unit;
  177. if (MAJOR(unit) == MD_MAJOR)
  178. new->md_minor = MINOR(unit);
  179. else
  180. new->md_minor = MINOR(unit) >> MdpMinorShift;
  181. init_MUTEX(&new->reconfig_sem);
  182. INIT_LIST_HEAD(&new->disks);
  183. INIT_LIST_HEAD(&new->all_mddevs);
  184. init_timer(&new->safemode_timer);
  185. atomic_set(&new->active, 1);
  186. spin_lock_init(&new->write_lock);
  187. init_waitqueue_head(&new->sb_wait);
  188. new->queue = blk_alloc_queue(GFP_KERNEL);
  189. if (!new->queue) {
  190. kfree(new);
  191. return NULL;
  192. }
  193. blk_queue_make_request(new->queue, md_fail_request);
  194. goto retry;
  195. }
  196. static inline int mddev_lock(mddev_t * mddev)
  197. {
  198. return down_interruptible(&mddev->reconfig_sem);
  199. }
  200. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  201. {
  202. down(&mddev->reconfig_sem);
  203. }
  204. static inline int mddev_trylock(mddev_t * mddev)
  205. {
  206. return down_trylock(&mddev->reconfig_sem);
  207. }
  208. static inline void mddev_unlock(mddev_t * mddev)
  209. {
  210. up(&mddev->reconfig_sem);
  211. if (mddev->thread)
  212. md_wakeup_thread(mddev->thread);
  213. }
  214. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  215. {
  216. mdk_rdev_t * rdev;
  217. struct list_head *tmp;
  218. ITERATE_RDEV(mddev,rdev,tmp) {
  219. if (rdev->desc_nr == nr)
  220. return rdev;
  221. }
  222. return NULL;
  223. }
  224. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  225. {
  226. struct list_head *tmp;
  227. mdk_rdev_t *rdev;
  228. ITERATE_RDEV(mddev,rdev,tmp) {
  229. if (rdev->bdev->bd_dev == dev)
  230. return rdev;
  231. }
  232. return NULL;
  233. }
  234. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  235. {
  236. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  237. return MD_NEW_SIZE_BLOCKS(size);
  238. }
  239. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  240. {
  241. sector_t size;
  242. size = rdev->sb_offset;
  243. if (chunk_size)
  244. size &= ~((sector_t)chunk_size/1024 - 1);
  245. return size;
  246. }
  247. static int alloc_disk_sb(mdk_rdev_t * rdev)
  248. {
  249. if (rdev->sb_page)
  250. MD_BUG();
  251. rdev->sb_page = alloc_page(GFP_KERNEL);
  252. if (!rdev->sb_page) {
  253. printk(KERN_ALERT "md: out of memory.\n");
  254. return -EINVAL;
  255. }
  256. return 0;
  257. }
  258. static void free_disk_sb(mdk_rdev_t * rdev)
  259. {
  260. if (rdev->sb_page) {
  261. page_cache_release(rdev->sb_page);
  262. rdev->sb_loaded = 0;
  263. rdev->sb_page = NULL;
  264. rdev->sb_offset = 0;
  265. rdev->size = 0;
  266. }
  267. }
  268. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  269. {
  270. mdk_rdev_t *rdev = bio->bi_private;
  271. if (bio->bi_size)
  272. return 1;
  273. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  274. md_error(rdev->mddev, rdev);
  275. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  276. wake_up(&rdev->mddev->sb_wait);
  277. bio_put(bio);
  278. return 0;
  279. }
  280. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  281. sector_t sector, int size, struct page *page)
  282. {
  283. /* write first size bytes of page to sector of rdev
  284. * Increment mddev->pending_writes before returning
  285. * and decrement it on completion, waking up sb_wait
  286. * if zero is reached.
  287. * If an error occurred, call md_error
  288. */
  289. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  290. bio->bi_bdev = rdev->bdev;
  291. bio->bi_sector = sector;
  292. bio_add_page(bio, page, size, 0);
  293. bio->bi_private = rdev;
  294. bio->bi_end_io = super_written;
  295. atomic_inc(&mddev->pending_writes);
  296. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  297. }
  298. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  299. {
  300. if (bio->bi_size)
  301. return 1;
  302. complete((struct completion*)bio->bi_private);
  303. return 0;
  304. }
  305. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  306. struct page *page, int rw)
  307. {
  308. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  309. struct completion event;
  310. int ret;
  311. rw |= (1 << BIO_RW_SYNC);
  312. bio->bi_bdev = bdev;
  313. bio->bi_sector = sector;
  314. bio_add_page(bio, page, size, 0);
  315. init_completion(&event);
  316. bio->bi_private = &event;
  317. bio->bi_end_io = bi_complete;
  318. submit_bio(rw, bio);
  319. wait_for_completion(&event);
  320. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  321. bio_put(bio);
  322. return ret;
  323. }
  324. static int read_disk_sb(mdk_rdev_t * rdev)
  325. {
  326. char b[BDEVNAME_SIZE];
  327. if (!rdev->sb_page) {
  328. MD_BUG();
  329. return -EINVAL;
  330. }
  331. if (rdev->sb_loaded)
  332. return 0;
  333. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  334. goto fail;
  335. rdev->sb_loaded = 1;
  336. return 0;
  337. fail:
  338. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  339. bdevname(rdev->bdev,b));
  340. return -EINVAL;
  341. }
  342. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  343. {
  344. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  345. (sb1->set_uuid1 == sb2->set_uuid1) &&
  346. (sb1->set_uuid2 == sb2->set_uuid2) &&
  347. (sb1->set_uuid3 == sb2->set_uuid3))
  348. return 1;
  349. return 0;
  350. }
  351. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  352. {
  353. int ret;
  354. mdp_super_t *tmp1, *tmp2;
  355. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  356. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  357. if (!tmp1 || !tmp2) {
  358. ret = 0;
  359. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  360. goto abort;
  361. }
  362. *tmp1 = *sb1;
  363. *tmp2 = *sb2;
  364. /*
  365. * nr_disks is not constant
  366. */
  367. tmp1->nr_disks = 0;
  368. tmp2->nr_disks = 0;
  369. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  370. ret = 0;
  371. else
  372. ret = 1;
  373. abort:
  374. kfree(tmp1);
  375. kfree(tmp2);
  376. return ret;
  377. }
  378. static unsigned int calc_sb_csum(mdp_super_t * sb)
  379. {
  380. unsigned int disk_csum, csum;
  381. disk_csum = sb->sb_csum;
  382. sb->sb_csum = 0;
  383. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  384. sb->sb_csum = disk_csum;
  385. return csum;
  386. }
  387. /*
  388. * Handle superblock details.
  389. * We want to be able to handle multiple superblock formats
  390. * so we have a common interface to them all, and an array of
  391. * different handlers.
  392. * We rely on user-space to write the initial superblock, and support
  393. * reading and updating of superblocks.
  394. * Interface methods are:
  395. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  396. * loads and validates a superblock on dev.
  397. * if refdev != NULL, compare superblocks on both devices
  398. * Return:
  399. * 0 - dev has a superblock that is compatible with refdev
  400. * 1 - dev has a superblock that is compatible and newer than refdev
  401. * so dev should be used as the refdev in future
  402. * -EINVAL superblock incompatible or invalid
  403. * -othererror e.g. -EIO
  404. *
  405. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  406. * Verify that dev is acceptable into mddev.
  407. * The first time, mddev->raid_disks will be 0, and data from
  408. * dev should be merged in. Subsequent calls check that dev
  409. * is new enough. Return 0 or -EINVAL
  410. *
  411. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  412. * Update the superblock for rdev with data in mddev
  413. * This does not write to disc.
  414. *
  415. */
  416. struct super_type {
  417. char *name;
  418. struct module *owner;
  419. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  420. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  421. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  422. };
  423. /*
  424. * load_super for 0.90.0
  425. */
  426. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  427. {
  428. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  429. mdp_super_t *sb;
  430. int ret;
  431. sector_t sb_offset;
  432. /*
  433. * Calculate the position of the superblock,
  434. * it's at the end of the disk.
  435. *
  436. * It also happens to be a multiple of 4Kb.
  437. */
  438. sb_offset = calc_dev_sboffset(rdev->bdev);
  439. rdev->sb_offset = sb_offset;
  440. ret = read_disk_sb(rdev);
  441. if (ret) return ret;
  442. ret = -EINVAL;
  443. bdevname(rdev->bdev, b);
  444. sb = (mdp_super_t*)page_address(rdev->sb_page);
  445. if (sb->md_magic != MD_SB_MAGIC) {
  446. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  447. b);
  448. goto abort;
  449. }
  450. if (sb->major_version != 0 ||
  451. sb->minor_version != 90) {
  452. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  453. sb->major_version, sb->minor_version,
  454. b);
  455. goto abort;
  456. }
  457. if (sb->raid_disks <= 0)
  458. goto abort;
  459. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  460. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  461. b);
  462. goto abort;
  463. }
  464. rdev->preferred_minor = sb->md_minor;
  465. rdev->data_offset = 0;
  466. if (sb->level == LEVEL_MULTIPATH)
  467. rdev->desc_nr = -1;
  468. else
  469. rdev->desc_nr = sb->this_disk.number;
  470. if (refdev == 0)
  471. ret = 1;
  472. else {
  473. __u64 ev1, ev2;
  474. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  475. if (!uuid_equal(refsb, sb)) {
  476. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  477. b, bdevname(refdev->bdev,b2));
  478. goto abort;
  479. }
  480. if (!sb_equal(refsb, sb)) {
  481. printk(KERN_WARNING "md: %s has same UUID"
  482. " but different superblock to %s\n",
  483. b, bdevname(refdev->bdev, b2));
  484. goto abort;
  485. }
  486. ev1 = md_event(sb);
  487. ev2 = md_event(refsb);
  488. if (ev1 > ev2)
  489. ret = 1;
  490. else
  491. ret = 0;
  492. }
  493. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  494. abort:
  495. return ret;
  496. }
  497. /*
  498. * validate_super for 0.90.0
  499. */
  500. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  501. {
  502. mdp_disk_t *desc;
  503. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  504. rdev->raid_disk = -1;
  505. rdev->in_sync = 0;
  506. if (mddev->raid_disks == 0) {
  507. mddev->major_version = 0;
  508. mddev->minor_version = sb->minor_version;
  509. mddev->patch_version = sb->patch_version;
  510. mddev->persistent = ! sb->not_persistent;
  511. mddev->chunk_size = sb->chunk_size;
  512. mddev->ctime = sb->ctime;
  513. mddev->utime = sb->utime;
  514. mddev->level = sb->level;
  515. mddev->layout = sb->layout;
  516. mddev->raid_disks = sb->raid_disks;
  517. mddev->size = sb->size;
  518. mddev->events = md_event(sb);
  519. mddev->bitmap_offset = 0;
  520. if (sb->state & (1<<MD_SB_CLEAN))
  521. mddev->recovery_cp = MaxSector;
  522. else {
  523. if (sb->events_hi == sb->cp_events_hi &&
  524. sb->events_lo == sb->cp_events_lo) {
  525. mddev->recovery_cp = sb->recovery_cp;
  526. } else
  527. mddev->recovery_cp = 0;
  528. }
  529. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  530. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  531. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  532. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  533. mddev->max_disks = MD_SB_DISKS;
  534. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  535. mddev->bitmap_file == NULL) {
  536. if (mddev->level != 1) {
  537. /* FIXME use a better test */
  538. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  539. return -EINVAL;
  540. }
  541. mddev->bitmap_offset = (MD_SB_BYTES >> 9);
  542. }
  543. } else if (mddev->pers == NULL) {
  544. /* Insist on good event counter while assembling */
  545. __u64 ev1 = md_event(sb);
  546. ++ev1;
  547. if (ev1 < mddev->events)
  548. return -EINVAL;
  549. } else if (mddev->bitmap) {
  550. /* if adding to array with a bitmap, then we can accept an
  551. * older device ... but not too old.
  552. */
  553. __u64 ev1 = md_event(sb);
  554. if (ev1 < mddev->bitmap->events_cleared)
  555. return 0;
  556. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  557. return 0;
  558. if (mddev->level != LEVEL_MULTIPATH) {
  559. rdev->faulty = 0;
  560. desc = sb->disks + rdev->desc_nr;
  561. if (desc->state & (1<<MD_DISK_FAULTY))
  562. rdev->faulty = 1;
  563. else if (desc->state & (1<<MD_DISK_SYNC) &&
  564. desc->raid_disk < mddev->raid_disks) {
  565. rdev->in_sync = 1;
  566. rdev->raid_disk = desc->raid_disk;
  567. }
  568. } else /* MULTIPATH are always insync */
  569. rdev->in_sync = 1;
  570. return 0;
  571. }
  572. /*
  573. * sync_super for 0.90.0
  574. */
  575. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  576. {
  577. mdp_super_t *sb;
  578. struct list_head *tmp;
  579. mdk_rdev_t *rdev2;
  580. int next_spare = mddev->raid_disks;
  581. /* make rdev->sb match mddev data..
  582. *
  583. * 1/ zero out disks
  584. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  585. * 3/ any empty disks < next_spare become removed
  586. *
  587. * disks[0] gets initialised to REMOVED because
  588. * we cannot be sure from other fields if it has
  589. * been initialised or not.
  590. */
  591. int i;
  592. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  593. sb = (mdp_super_t*)page_address(rdev->sb_page);
  594. memset(sb, 0, sizeof(*sb));
  595. sb->md_magic = MD_SB_MAGIC;
  596. sb->major_version = mddev->major_version;
  597. sb->minor_version = mddev->minor_version;
  598. sb->patch_version = mddev->patch_version;
  599. sb->gvalid_words = 0; /* ignored */
  600. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  601. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  602. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  603. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  604. sb->ctime = mddev->ctime;
  605. sb->level = mddev->level;
  606. sb->size = mddev->size;
  607. sb->raid_disks = mddev->raid_disks;
  608. sb->md_minor = mddev->md_minor;
  609. sb->not_persistent = !mddev->persistent;
  610. sb->utime = mddev->utime;
  611. sb->state = 0;
  612. sb->events_hi = (mddev->events>>32);
  613. sb->events_lo = (u32)mddev->events;
  614. if (mddev->in_sync)
  615. {
  616. sb->recovery_cp = mddev->recovery_cp;
  617. sb->cp_events_hi = (mddev->events>>32);
  618. sb->cp_events_lo = (u32)mddev->events;
  619. if (mddev->recovery_cp == MaxSector)
  620. sb->state = (1<< MD_SB_CLEAN);
  621. } else
  622. sb->recovery_cp = 0;
  623. sb->layout = mddev->layout;
  624. sb->chunk_size = mddev->chunk_size;
  625. if (mddev->bitmap && mddev->bitmap_file == NULL)
  626. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  627. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  628. ITERATE_RDEV(mddev,rdev2,tmp) {
  629. mdp_disk_t *d;
  630. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  631. rdev2->desc_nr = rdev2->raid_disk;
  632. else
  633. rdev2->desc_nr = next_spare++;
  634. d = &sb->disks[rdev2->desc_nr];
  635. nr_disks++;
  636. d->number = rdev2->desc_nr;
  637. d->major = MAJOR(rdev2->bdev->bd_dev);
  638. d->minor = MINOR(rdev2->bdev->bd_dev);
  639. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  640. d->raid_disk = rdev2->raid_disk;
  641. else
  642. d->raid_disk = rdev2->desc_nr; /* compatibility */
  643. if (rdev2->faulty) {
  644. d->state = (1<<MD_DISK_FAULTY);
  645. failed++;
  646. } else if (rdev2->in_sync) {
  647. d->state = (1<<MD_DISK_ACTIVE);
  648. d->state |= (1<<MD_DISK_SYNC);
  649. active++;
  650. working++;
  651. } else {
  652. d->state = 0;
  653. spare++;
  654. working++;
  655. }
  656. }
  657. /* now set the "removed" and "faulty" bits on any missing devices */
  658. for (i=0 ; i < mddev->raid_disks ; i++) {
  659. mdp_disk_t *d = &sb->disks[i];
  660. if (d->state == 0 && d->number == 0) {
  661. d->number = i;
  662. d->raid_disk = i;
  663. d->state = (1<<MD_DISK_REMOVED);
  664. d->state |= (1<<MD_DISK_FAULTY);
  665. failed++;
  666. }
  667. }
  668. sb->nr_disks = nr_disks;
  669. sb->active_disks = active;
  670. sb->working_disks = working;
  671. sb->failed_disks = failed;
  672. sb->spare_disks = spare;
  673. sb->this_disk = sb->disks[rdev->desc_nr];
  674. sb->sb_csum = calc_sb_csum(sb);
  675. }
  676. /*
  677. * version 1 superblock
  678. */
  679. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  680. {
  681. unsigned int disk_csum, csum;
  682. unsigned long long newcsum;
  683. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  684. unsigned int *isuper = (unsigned int*)sb;
  685. int i;
  686. disk_csum = sb->sb_csum;
  687. sb->sb_csum = 0;
  688. newcsum = 0;
  689. for (i=0; size>=4; size -= 4 )
  690. newcsum += le32_to_cpu(*isuper++);
  691. if (size == 2)
  692. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  693. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  694. sb->sb_csum = disk_csum;
  695. return cpu_to_le32(csum);
  696. }
  697. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  698. {
  699. struct mdp_superblock_1 *sb;
  700. int ret;
  701. sector_t sb_offset;
  702. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  703. /*
  704. * Calculate the position of the superblock.
  705. * It is always aligned to a 4K boundary and
  706. * depeding on minor_version, it can be:
  707. * 0: At least 8K, but less than 12K, from end of device
  708. * 1: At start of device
  709. * 2: 4K from start of device.
  710. */
  711. switch(minor_version) {
  712. case 0:
  713. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  714. sb_offset -= 8*2;
  715. sb_offset &= ~(sector_t)(4*2-1);
  716. /* convert from sectors to K */
  717. sb_offset /= 2;
  718. break;
  719. case 1:
  720. sb_offset = 0;
  721. break;
  722. case 2:
  723. sb_offset = 4;
  724. break;
  725. default:
  726. return -EINVAL;
  727. }
  728. rdev->sb_offset = sb_offset;
  729. ret = read_disk_sb(rdev);
  730. if (ret) return ret;
  731. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  732. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  733. sb->major_version != cpu_to_le32(1) ||
  734. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  735. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  736. sb->feature_map != 0)
  737. return -EINVAL;
  738. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  739. printk("md: invalid superblock checksum on %s\n",
  740. bdevname(rdev->bdev,b));
  741. return -EINVAL;
  742. }
  743. if (le64_to_cpu(sb->data_size) < 10) {
  744. printk("md: data_size too small on %s\n",
  745. bdevname(rdev->bdev,b));
  746. return -EINVAL;
  747. }
  748. rdev->preferred_minor = 0xffff;
  749. rdev->data_offset = le64_to_cpu(sb->data_offset);
  750. if (refdev == 0)
  751. return 1;
  752. else {
  753. __u64 ev1, ev2;
  754. struct mdp_superblock_1 *refsb =
  755. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  756. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  757. sb->level != refsb->level ||
  758. sb->layout != refsb->layout ||
  759. sb->chunksize != refsb->chunksize) {
  760. printk(KERN_WARNING "md: %s has strangely different"
  761. " superblock to %s\n",
  762. bdevname(rdev->bdev,b),
  763. bdevname(refdev->bdev,b2));
  764. return -EINVAL;
  765. }
  766. ev1 = le64_to_cpu(sb->events);
  767. ev2 = le64_to_cpu(refsb->events);
  768. if (ev1 > ev2)
  769. return 1;
  770. }
  771. if (minor_version)
  772. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  773. else
  774. rdev->size = rdev->sb_offset;
  775. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  776. return -EINVAL;
  777. rdev->size = le64_to_cpu(sb->data_size)/2;
  778. if (le32_to_cpu(sb->chunksize))
  779. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  780. return 0;
  781. }
  782. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  783. {
  784. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  785. rdev->raid_disk = -1;
  786. rdev->in_sync = 0;
  787. if (mddev->raid_disks == 0) {
  788. mddev->major_version = 1;
  789. mddev->patch_version = 0;
  790. mddev->persistent = 1;
  791. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  792. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  793. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  794. mddev->level = le32_to_cpu(sb->level);
  795. mddev->layout = le32_to_cpu(sb->layout);
  796. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  797. mddev->size = le64_to_cpu(sb->size)/2;
  798. mddev->events = le64_to_cpu(sb->events);
  799. mddev->bitmap_offset = 0;
  800. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  801. memcpy(mddev->uuid, sb->set_uuid, 16);
  802. mddev->max_disks = (4096-256)/2;
  803. if ((le32_to_cpu(sb->feature_map) & 1) &&
  804. mddev->bitmap_file == NULL ) {
  805. if (mddev->level != 1) {
  806. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  807. return -EINVAL;
  808. }
  809. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  810. }
  811. } else if (mddev->pers == NULL) {
  812. /* Insist of good event counter while assembling */
  813. __u64 ev1 = le64_to_cpu(sb->events);
  814. ++ev1;
  815. if (ev1 < mddev->events)
  816. return -EINVAL;
  817. } else if (mddev->bitmap) {
  818. /* If adding to array with a bitmap, then we can accept an
  819. * older device, but not too old.
  820. */
  821. __u64 ev1 = le64_to_cpu(sb->events);
  822. if (ev1 < mddev->bitmap->events_cleared)
  823. return 0;
  824. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  825. return 0;
  826. if (mddev->level != LEVEL_MULTIPATH) {
  827. int role;
  828. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  829. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  830. switch(role) {
  831. case 0xffff: /* spare */
  832. rdev->faulty = 0;
  833. break;
  834. case 0xfffe: /* faulty */
  835. rdev->faulty = 1;
  836. break;
  837. default:
  838. rdev->in_sync = 1;
  839. rdev->faulty = 0;
  840. rdev->raid_disk = role;
  841. break;
  842. }
  843. } else /* MULTIPATH are always insync */
  844. rdev->in_sync = 1;
  845. return 0;
  846. }
  847. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  848. {
  849. struct mdp_superblock_1 *sb;
  850. struct list_head *tmp;
  851. mdk_rdev_t *rdev2;
  852. int max_dev, i;
  853. /* make rdev->sb match mddev and rdev data. */
  854. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  855. sb->feature_map = 0;
  856. sb->pad0 = 0;
  857. memset(sb->pad1, 0, sizeof(sb->pad1));
  858. memset(sb->pad2, 0, sizeof(sb->pad2));
  859. memset(sb->pad3, 0, sizeof(sb->pad3));
  860. sb->utime = cpu_to_le64((__u64)mddev->utime);
  861. sb->events = cpu_to_le64(mddev->events);
  862. if (mddev->in_sync)
  863. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  864. else
  865. sb->resync_offset = cpu_to_le64(0);
  866. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  867. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  868. sb->feature_map = cpu_to_le32(1);
  869. }
  870. max_dev = 0;
  871. ITERATE_RDEV(mddev,rdev2,tmp)
  872. if (rdev2->desc_nr+1 > max_dev)
  873. max_dev = rdev2->desc_nr+1;
  874. sb->max_dev = cpu_to_le32(max_dev);
  875. for (i=0; i<max_dev;i++)
  876. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  877. ITERATE_RDEV(mddev,rdev2,tmp) {
  878. i = rdev2->desc_nr;
  879. if (rdev2->faulty)
  880. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  881. else if (rdev2->in_sync)
  882. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  883. else
  884. sb->dev_roles[i] = cpu_to_le16(0xffff);
  885. }
  886. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  887. sb->sb_csum = calc_sb_1_csum(sb);
  888. }
  889. static struct super_type super_types[] = {
  890. [0] = {
  891. .name = "0.90.0",
  892. .owner = THIS_MODULE,
  893. .load_super = super_90_load,
  894. .validate_super = super_90_validate,
  895. .sync_super = super_90_sync,
  896. },
  897. [1] = {
  898. .name = "md-1",
  899. .owner = THIS_MODULE,
  900. .load_super = super_1_load,
  901. .validate_super = super_1_validate,
  902. .sync_super = super_1_sync,
  903. },
  904. };
  905. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  906. {
  907. struct list_head *tmp;
  908. mdk_rdev_t *rdev;
  909. ITERATE_RDEV(mddev,rdev,tmp)
  910. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  911. return rdev;
  912. return NULL;
  913. }
  914. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  915. {
  916. struct list_head *tmp;
  917. mdk_rdev_t *rdev;
  918. ITERATE_RDEV(mddev1,rdev,tmp)
  919. if (match_dev_unit(mddev2, rdev))
  920. return 1;
  921. return 0;
  922. }
  923. static LIST_HEAD(pending_raid_disks);
  924. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  925. {
  926. mdk_rdev_t *same_pdev;
  927. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  928. if (rdev->mddev) {
  929. MD_BUG();
  930. return -EINVAL;
  931. }
  932. same_pdev = match_dev_unit(mddev, rdev);
  933. if (same_pdev)
  934. printk(KERN_WARNING
  935. "%s: WARNING: %s appears to be on the same physical"
  936. " disk as %s. True\n protection against single-disk"
  937. " failure might be compromised.\n",
  938. mdname(mddev), bdevname(rdev->bdev,b),
  939. bdevname(same_pdev->bdev,b2));
  940. /* Verify rdev->desc_nr is unique.
  941. * If it is -1, assign a free number, else
  942. * check number is not in use
  943. */
  944. if (rdev->desc_nr < 0) {
  945. int choice = 0;
  946. if (mddev->pers) choice = mddev->raid_disks;
  947. while (find_rdev_nr(mddev, choice))
  948. choice++;
  949. rdev->desc_nr = choice;
  950. } else {
  951. if (find_rdev_nr(mddev, rdev->desc_nr))
  952. return -EBUSY;
  953. }
  954. list_add(&rdev->same_set, &mddev->disks);
  955. rdev->mddev = mddev;
  956. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  957. return 0;
  958. }
  959. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  960. {
  961. char b[BDEVNAME_SIZE];
  962. if (!rdev->mddev) {
  963. MD_BUG();
  964. return;
  965. }
  966. list_del_init(&rdev->same_set);
  967. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  968. rdev->mddev = NULL;
  969. }
  970. /*
  971. * prevent the device from being mounted, repartitioned or
  972. * otherwise reused by a RAID array (or any other kernel
  973. * subsystem), by bd_claiming the device.
  974. */
  975. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  976. {
  977. int err = 0;
  978. struct block_device *bdev;
  979. char b[BDEVNAME_SIZE];
  980. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  981. if (IS_ERR(bdev)) {
  982. printk(KERN_ERR "md: could not open %s.\n",
  983. __bdevname(dev, b));
  984. return PTR_ERR(bdev);
  985. }
  986. err = bd_claim(bdev, rdev);
  987. if (err) {
  988. printk(KERN_ERR "md: could not bd_claim %s.\n",
  989. bdevname(bdev, b));
  990. blkdev_put(bdev);
  991. return err;
  992. }
  993. rdev->bdev = bdev;
  994. return err;
  995. }
  996. static void unlock_rdev(mdk_rdev_t *rdev)
  997. {
  998. struct block_device *bdev = rdev->bdev;
  999. rdev->bdev = NULL;
  1000. if (!bdev)
  1001. MD_BUG();
  1002. bd_release(bdev);
  1003. blkdev_put(bdev);
  1004. }
  1005. void md_autodetect_dev(dev_t dev);
  1006. static void export_rdev(mdk_rdev_t * rdev)
  1007. {
  1008. char b[BDEVNAME_SIZE];
  1009. printk(KERN_INFO "md: export_rdev(%s)\n",
  1010. bdevname(rdev->bdev,b));
  1011. if (rdev->mddev)
  1012. MD_BUG();
  1013. free_disk_sb(rdev);
  1014. list_del_init(&rdev->same_set);
  1015. #ifndef MODULE
  1016. md_autodetect_dev(rdev->bdev->bd_dev);
  1017. #endif
  1018. unlock_rdev(rdev);
  1019. kfree(rdev);
  1020. }
  1021. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1022. {
  1023. unbind_rdev_from_array(rdev);
  1024. export_rdev(rdev);
  1025. }
  1026. static void export_array(mddev_t *mddev)
  1027. {
  1028. struct list_head *tmp;
  1029. mdk_rdev_t *rdev;
  1030. ITERATE_RDEV(mddev,rdev,tmp) {
  1031. if (!rdev->mddev) {
  1032. MD_BUG();
  1033. continue;
  1034. }
  1035. kick_rdev_from_array(rdev);
  1036. }
  1037. if (!list_empty(&mddev->disks))
  1038. MD_BUG();
  1039. mddev->raid_disks = 0;
  1040. mddev->major_version = 0;
  1041. }
  1042. static void print_desc(mdp_disk_t *desc)
  1043. {
  1044. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1045. desc->major,desc->minor,desc->raid_disk,desc->state);
  1046. }
  1047. static void print_sb(mdp_super_t *sb)
  1048. {
  1049. int i;
  1050. printk(KERN_INFO
  1051. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1052. sb->major_version, sb->minor_version, sb->patch_version,
  1053. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1054. sb->ctime);
  1055. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1056. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1057. sb->md_minor, sb->layout, sb->chunk_size);
  1058. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1059. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1060. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1061. sb->failed_disks, sb->spare_disks,
  1062. sb->sb_csum, (unsigned long)sb->events_lo);
  1063. printk(KERN_INFO);
  1064. for (i = 0; i < MD_SB_DISKS; i++) {
  1065. mdp_disk_t *desc;
  1066. desc = sb->disks + i;
  1067. if (desc->number || desc->major || desc->minor ||
  1068. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1069. printk(" D %2d: ", i);
  1070. print_desc(desc);
  1071. }
  1072. }
  1073. printk(KERN_INFO "md: THIS: ");
  1074. print_desc(&sb->this_disk);
  1075. }
  1076. static void print_rdev(mdk_rdev_t *rdev)
  1077. {
  1078. char b[BDEVNAME_SIZE];
  1079. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1080. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1081. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1082. if (rdev->sb_loaded) {
  1083. printk(KERN_INFO "md: rdev superblock:\n");
  1084. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1085. } else
  1086. printk(KERN_INFO "md: no rdev superblock!\n");
  1087. }
  1088. void md_print_devices(void)
  1089. {
  1090. struct list_head *tmp, *tmp2;
  1091. mdk_rdev_t *rdev;
  1092. mddev_t *mddev;
  1093. char b[BDEVNAME_SIZE];
  1094. printk("\n");
  1095. printk("md: **********************************\n");
  1096. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1097. printk("md: **********************************\n");
  1098. ITERATE_MDDEV(mddev,tmp) {
  1099. if (mddev->bitmap)
  1100. bitmap_print_sb(mddev->bitmap);
  1101. else
  1102. printk("%s: ", mdname(mddev));
  1103. ITERATE_RDEV(mddev,rdev,tmp2)
  1104. printk("<%s>", bdevname(rdev->bdev,b));
  1105. printk("\n");
  1106. ITERATE_RDEV(mddev,rdev,tmp2)
  1107. print_rdev(rdev);
  1108. }
  1109. printk("md: **********************************\n");
  1110. printk("\n");
  1111. }
  1112. static void sync_sbs(mddev_t * mddev)
  1113. {
  1114. mdk_rdev_t *rdev;
  1115. struct list_head *tmp;
  1116. ITERATE_RDEV(mddev,rdev,tmp) {
  1117. super_types[mddev->major_version].
  1118. sync_super(mddev, rdev);
  1119. rdev->sb_loaded = 1;
  1120. }
  1121. }
  1122. static void md_update_sb(mddev_t * mddev)
  1123. {
  1124. int err;
  1125. struct list_head *tmp;
  1126. mdk_rdev_t *rdev;
  1127. int sync_req;
  1128. repeat:
  1129. spin_lock(&mddev->write_lock);
  1130. sync_req = mddev->in_sync;
  1131. mddev->utime = get_seconds();
  1132. mddev->events ++;
  1133. if (!mddev->events) {
  1134. /*
  1135. * oops, this 64-bit counter should never wrap.
  1136. * Either we are in around ~1 trillion A.C., assuming
  1137. * 1 reboot per second, or we have a bug:
  1138. */
  1139. MD_BUG();
  1140. mddev->events --;
  1141. }
  1142. mddev->sb_dirty = 2;
  1143. sync_sbs(mddev);
  1144. /*
  1145. * do not write anything to disk if using
  1146. * nonpersistent superblocks
  1147. */
  1148. if (!mddev->persistent) {
  1149. mddev->sb_dirty = 0;
  1150. spin_unlock(&mddev->write_lock);
  1151. wake_up(&mddev->sb_wait);
  1152. return;
  1153. }
  1154. spin_unlock(&mddev->write_lock);
  1155. dprintk(KERN_INFO
  1156. "md: updating %s RAID superblock on device (in sync %d)\n",
  1157. mdname(mddev),mddev->in_sync);
  1158. err = bitmap_update_sb(mddev->bitmap);
  1159. ITERATE_RDEV(mddev,rdev,tmp) {
  1160. char b[BDEVNAME_SIZE];
  1161. dprintk(KERN_INFO "md: ");
  1162. if (rdev->faulty)
  1163. dprintk("(skipping faulty ");
  1164. dprintk("%s ", bdevname(rdev->bdev,b));
  1165. if (!rdev->faulty) {
  1166. md_super_write(mddev,rdev,
  1167. rdev->sb_offset<<1, MD_SB_BYTES,
  1168. rdev->sb_page);
  1169. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1170. bdevname(rdev->bdev,b),
  1171. (unsigned long long)rdev->sb_offset);
  1172. } else
  1173. dprintk(")\n");
  1174. if (mddev->level == LEVEL_MULTIPATH)
  1175. /* only need to write one superblock... */
  1176. break;
  1177. }
  1178. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1179. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1180. spin_lock(&mddev->write_lock);
  1181. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1182. /* have to write it out again */
  1183. spin_unlock(&mddev->write_lock);
  1184. goto repeat;
  1185. }
  1186. mddev->sb_dirty = 0;
  1187. spin_unlock(&mddev->write_lock);
  1188. wake_up(&mddev->sb_wait);
  1189. }
  1190. /*
  1191. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1192. *
  1193. * mark the device faulty if:
  1194. *
  1195. * - the device is nonexistent (zero size)
  1196. * - the device has no valid superblock
  1197. *
  1198. * a faulty rdev _never_ has rdev->sb set.
  1199. */
  1200. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1201. {
  1202. char b[BDEVNAME_SIZE];
  1203. int err;
  1204. mdk_rdev_t *rdev;
  1205. sector_t size;
  1206. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1207. if (!rdev) {
  1208. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1209. return ERR_PTR(-ENOMEM);
  1210. }
  1211. memset(rdev, 0, sizeof(*rdev));
  1212. if ((err = alloc_disk_sb(rdev)))
  1213. goto abort_free;
  1214. err = lock_rdev(rdev, newdev);
  1215. if (err)
  1216. goto abort_free;
  1217. rdev->desc_nr = -1;
  1218. rdev->faulty = 0;
  1219. rdev->in_sync = 0;
  1220. rdev->data_offset = 0;
  1221. atomic_set(&rdev->nr_pending, 0);
  1222. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1223. if (!size) {
  1224. printk(KERN_WARNING
  1225. "md: %s has zero or unknown size, marking faulty!\n",
  1226. bdevname(rdev->bdev,b));
  1227. err = -EINVAL;
  1228. goto abort_free;
  1229. }
  1230. if (super_format >= 0) {
  1231. err = super_types[super_format].
  1232. load_super(rdev, NULL, super_minor);
  1233. if (err == -EINVAL) {
  1234. printk(KERN_WARNING
  1235. "md: %s has invalid sb, not importing!\n",
  1236. bdevname(rdev->bdev,b));
  1237. goto abort_free;
  1238. }
  1239. if (err < 0) {
  1240. printk(KERN_WARNING
  1241. "md: could not read %s's sb, not importing!\n",
  1242. bdevname(rdev->bdev,b));
  1243. goto abort_free;
  1244. }
  1245. }
  1246. INIT_LIST_HEAD(&rdev->same_set);
  1247. return rdev;
  1248. abort_free:
  1249. if (rdev->sb_page) {
  1250. if (rdev->bdev)
  1251. unlock_rdev(rdev);
  1252. free_disk_sb(rdev);
  1253. }
  1254. kfree(rdev);
  1255. return ERR_PTR(err);
  1256. }
  1257. /*
  1258. * Check a full RAID array for plausibility
  1259. */
  1260. static void analyze_sbs(mddev_t * mddev)
  1261. {
  1262. int i;
  1263. struct list_head *tmp;
  1264. mdk_rdev_t *rdev, *freshest;
  1265. char b[BDEVNAME_SIZE];
  1266. freshest = NULL;
  1267. ITERATE_RDEV(mddev,rdev,tmp)
  1268. switch (super_types[mddev->major_version].
  1269. load_super(rdev, freshest, mddev->minor_version)) {
  1270. case 1:
  1271. freshest = rdev;
  1272. break;
  1273. case 0:
  1274. break;
  1275. default:
  1276. printk( KERN_ERR \
  1277. "md: fatal superblock inconsistency in %s"
  1278. " -- removing from array\n",
  1279. bdevname(rdev->bdev,b));
  1280. kick_rdev_from_array(rdev);
  1281. }
  1282. super_types[mddev->major_version].
  1283. validate_super(mddev, freshest);
  1284. i = 0;
  1285. ITERATE_RDEV(mddev,rdev,tmp) {
  1286. if (rdev != freshest)
  1287. if (super_types[mddev->major_version].
  1288. validate_super(mddev, rdev)) {
  1289. printk(KERN_WARNING "md: kicking non-fresh %s"
  1290. " from array!\n",
  1291. bdevname(rdev->bdev,b));
  1292. kick_rdev_from_array(rdev);
  1293. continue;
  1294. }
  1295. if (mddev->level == LEVEL_MULTIPATH) {
  1296. rdev->desc_nr = i++;
  1297. rdev->raid_disk = rdev->desc_nr;
  1298. rdev->in_sync = 1;
  1299. }
  1300. }
  1301. if (mddev->recovery_cp != MaxSector &&
  1302. mddev->level >= 1)
  1303. printk(KERN_ERR "md: %s: raid array is not clean"
  1304. " -- starting background reconstruction\n",
  1305. mdname(mddev));
  1306. }
  1307. int mdp_major = 0;
  1308. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1309. {
  1310. static DECLARE_MUTEX(disks_sem);
  1311. mddev_t *mddev = mddev_find(dev);
  1312. struct gendisk *disk;
  1313. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1314. int shift = partitioned ? MdpMinorShift : 0;
  1315. int unit = MINOR(dev) >> shift;
  1316. if (!mddev)
  1317. return NULL;
  1318. down(&disks_sem);
  1319. if (mddev->gendisk) {
  1320. up(&disks_sem);
  1321. mddev_put(mddev);
  1322. return NULL;
  1323. }
  1324. disk = alloc_disk(1 << shift);
  1325. if (!disk) {
  1326. up(&disks_sem);
  1327. mddev_put(mddev);
  1328. return NULL;
  1329. }
  1330. disk->major = MAJOR(dev);
  1331. disk->first_minor = unit << shift;
  1332. if (partitioned) {
  1333. sprintf(disk->disk_name, "md_d%d", unit);
  1334. sprintf(disk->devfs_name, "md/d%d", unit);
  1335. } else {
  1336. sprintf(disk->disk_name, "md%d", unit);
  1337. sprintf(disk->devfs_name, "md/%d", unit);
  1338. }
  1339. disk->fops = &md_fops;
  1340. disk->private_data = mddev;
  1341. disk->queue = mddev->queue;
  1342. add_disk(disk);
  1343. mddev->gendisk = disk;
  1344. up(&disks_sem);
  1345. return NULL;
  1346. }
  1347. void md_wakeup_thread(mdk_thread_t *thread);
  1348. static void md_safemode_timeout(unsigned long data)
  1349. {
  1350. mddev_t *mddev = (mddev_t *) data;
  1351. mddev->safemode = 1;
  1352. md_wakeup_thread(mddev->thread);
  1353. }
  1354. static int do_md_run(mddev_t * mddev)
  1355. {
  1356. int pnum, err;
  1357. int chunk_size;
  1358. struct list_head *tmp;
  1359. mdk_rdev_t *rdev;
  1360. struct gendisk *disk;
  1361. char b[BDEVNAME_SIZE];
  1362. if (list_empty(&mddev->disks))
  1363. /* cannot run an array with no devices.. */
  1364. return -EINVAL;
  1365. if (mddev->pers)
  1366. return -EBUSY;
  1367. /*
  1368. * Analyze all RAID superblock(s)
  1369. */
  1370. if (!mddev->raid_disks)
  1371. analyze_sbs(mddev);
  1372. chunk_size = mddev->chunk_size;
  1373. pnum = level_to_pers(mddev->level);
  1374. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1375. if (!chunk_size) {
  1376. /*
  1377. * 'default chunksize' in the old md code used to
  1378. * be PAGE_SIZE, baaad.
  1379. * we abort here to be on the safe side. We don't
  1380. * want to continue the bad practice.
  1381. */
  1382. printk(KERN_ERR
  1383. "no chunksize specified, see 'man raidtab'\n");
  1384. return -EINVAL;
  1385. }
  1386. if (chunk_size > MAX_CHUNK_SIZE) {
  1387. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1388. chunk_size, MAX_CHUNK_SIZE);
  1389. return -EINVAL;
  1390. }
  1391. /*
  1392. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1393. */
  1394. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1395. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1396. return -EINVAL;
  1397. }
  1398. if (chunk_size < PAGE_SIZE) {
  1399. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1400. chunk_size, PAGE_SIZE);
  1401. return -EINVAL;
  1402. }
  1403. /* devices must have minimum size of one chunk */
  1404. ITERATE_RDEV(mddev,rdev,tmp) {
  1405. if (rdev->faulty)
  1406. continue;
  1407. if (rdev->size < chunk_size / 1024) {
  1408. printk(KERN_WARNING
  1409. "md: Dev %s smaller than chunk_size:"
  1410. " %lluk < %dk\n",
  1411. bdevname(rdev->bdev,b),
  1412. (unsigned long long)rdev->size,
  1413. chunk_size / 1024);
  1414. return -EINVAL;
  1415. }
  1416. }
  1417. }
  1418. #ifdef CONFIG_KMOD
  1419. if (!pers[pnum])
  1420. {
  1421. request_module("md-personality-%d", pnum);
  1422. }
  1423. #endif
  1424. /*
  1425. * Drop all container device buffers, from now on
  1426. * the only valid external interface is through the md
  1427. * device.
  1428. * Also find largest hardsector size
  1429. */
  1430. ITERATE_RDEV(mddev,rdev,tmp) {
  1431. if (rdev->faulty)
  1432. continue;
  1433. sync_blockdev(rdev->bdev);
  1434. invalidate_bdev(rdev->bdev, 0);
  1435. }
  1436. md_probe(mddev->unit, NULL, NULL);
  1437. disk = mddev->gendisk;
  1438. if (!disk)
  1439. return -ENOMEM;
  1440. spin_lock(&pers_lock);
  1441. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1442. spin_unlock(&pers_lock);
  1443. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1444. pnum);
  1445. return -EINVAL;
  1446. }
  1447. mddev->pers = pers[pnum];
  1448. spin_unlock(&pers_lock);
  1449. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1450. /* before we start the array running, initialise the bitmap */
  1451. err = bitmap_create(mddev);
  1452. if (err)
  1453. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1454. mdname(mddev), err);
  1455. else
  1456. err = mddev->pers->run(mddev);
  1457. if (err) {
  1458. printk(KERN_ERR "md: pers->run() failed ...\n");
  1459. module_put(mddev->pers->owner);
  1460. mddev->pers = NULL;
  1461. bitmap_destroy(mddev);
  1462. return err;
  1463. }
  1464. atomic_set(&mddev->writes_pending,0);
  1465. mddev->safemode = 0;
  1466. mddev->safemode_timer.function = md_safemode_timeout;
  1467. mddev->safemode_timer.data = (unsigned long) mddev;
  1468. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1469. mddev->in_sync = 1;
  1470. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1471. if (mddev->sb_dirty)
  1472. md_update_sb(mddev);
  1473. set_capacity(disk, mddev->array_size<<1);
  1474. /* If we call blk_queue_make_request here, it will
  1475. * re-initialise max_sectors etc which may have been
  1476. * refined inside -> run. So just set the bits we need to set.
  1477. * Most initialisation happended when we called
  1478. * blk_queue_make_request(..., md_fail_request)
  1479. * earlier.
  1480. */
  1481. mddev->queue->queuedata = mddev;
  1482. mddev->queue->make_request_fn = mddev->pers->make_request;
  1483. mddev->changed = 1;
  1484. return 0;
  1485. }
  1486. static int restart_array(mddev_t *mddev)
  1487. {
  1488. struct gendisk *disk = mddev->gendisk;
  1489. int err;
  1490. /*
  1491. * Complain if it has no devices
  1492. */
  1493. err = -ENXIO;
  1494. if (list_empty(&mddev->disks))
  1495. goto out;
  1496. if (mddev->pers) {
  1497. err = -EBUSY;
  1498. if (!mddev->ro)
  1499. goto out;
  1500. mddev->safemode = 0;
  1501. mddev->ro = 0;
  1502. set_disk_ro(disk, 0);
  1503. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1504. mdname(mddev));
  1505. /*
  1506. * Kick recovery or resync if necessary
  1507. */
  1508. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1509. md_wakeup_thread(mddev->thread);
  1510. err = 0;
  1511. } else {
  1512. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1513. mdname(mddev));
  1514. err = -EINVAL;
  1515. }
  1516. out:
  1517. return err;
  1518. }
  1519. static int do_md_stop(mddev_t * mddev, int ro)
  1520. {
  1521. int err = 0;
  1522. struct gendisk *disk = mddev->gendisk;
  1523. if (mddev->pers) {
  1524. if (atomic_read(&mddev->active)>2) {
  1525. printk("md: %s still in use.\n",mdname(mddev));
  1526. return -EBUSY;
  1527. }
  1528. if (mddev->sync_thread) {
  1529. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1530. md_unregister_thread(mddev->sync_thread);
  1531. mddev->sync_thread = NULL;
  1532. }
  1533. del_timer_sync(&mddev->safemode_timer);
  1534. invalidate_partition(disk, 0);
  1535. if (ro) {
  1536. err = -ENXIO;
  1537. if (mddev->ro)
  1538. goto out;
  1539. mddev->ro = 1;
  1540. } else {
  1541. bitmap_flush(mddev);
  1542. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1543. if (mddev->ro)
  1544. set_disk_ro(disk, 0);
  1545. blk_queue_make_request(mddev->queue, md_fail_request);
  1546. mddev->pers->stop(mddev);
  1547. module_put(mddev->pers->owner);
  1548. mddev->pers = NULL;
  1549. if (mddev->ro)
  1550. mddev->ro = 0;
  1551. }
  1552. if (!mddev->in_sync) {
  1553. /* mark array as shutdown cleanly */
  1554. mddev->in_sync = 1;
  1555. md_update_sb(mddev);
  1556. }
  1557. if (ro)
  1558. set_disk_ro(disk, 1);
  1559. }
  1560. bitmap_destroy(mddev);
  1561. if (mddev->bitmap_file) {
  1562. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1563. fput(mddev->bitmap_file);
  1564. mddev->bitmap_file = NULL;
  1565. }
  1566. mddev->bitmap_offset = 0;
  1567. /*
  1568. * Free resources if final stop
  1569. */
  1570. if (!ro) {
  1571. struct gendisk *disk;
  1572. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1573. export_array(mddev);
  1574. mddev->array_size = 0;
  1575. disk = mddev->gendisk;
  1576. if (disk)
  1577. set_capacity(disk, 0);
  1578. mddev->changed = 1;
  1579. } else
  1580. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1581. mdname(mddev));
  1582. err = 0;
  1583. out:
  1584. return err;
  1585. }
  1586. static void autorun_array(mddev_t *mddev)
  1587. {
  1588. mdk_rdev_t *rdev;
  1589. struct list_head *tmp;
  1590. int err;
  1591. if (list_empty(&mddev->disks))
  1592. return;
  1593. printk(KERN_INFO "md: running: ");
  1594. ITERATE_RDEV(mddev,rdev,tmp) {
  1595. char b[BDEVNAME_SIZE];
  1596. printk("<%s>", bdevname(rdev->bdev,b));
  1597. }
  1598. printk("\n");
  1599. err = do_md_run (mddev);
  1600. if (err) {
  1601. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1602. do_md_stop (mddev, 0);
  1603. }
  1604. }
  1605. /*
  1606. * lets try to run arrays based on all disks that have arrived
  1607. * until now. (those are in pending_raid_disks)
  1608. *
  1609. * the method: pick the first pending disk, collect all disks with
  1610. * the same UUID, remove all from the pending list and put them into
  1611. * the 'same_array' list. Then order this list based on superblock
  1612. * update time (freshest comes first), kick out 'old' disks and
  1613. * compare superblocks. If everything's fine then run it.
  1614. *
  1615. * If "unit" is allocated, then bump its reference count
  1616. */
  1617. static void autorun_devices(int part)
  1618. {
  1619. struct list_head candidates;
  1620. struct list_head *tmp;
  1621. mdk_rdev_t *rdev0, *rdev;
  1622. mddev_t *mddev;
  1623. char b[BDEVNAME_SIZE];
  1624. printk(KERN_INFO "md: autorun ...\n");
  1625. while (!list_empty(&pending_raid_disks)) {
  1626. dev_t dev;
  1627. rdev0 = list_entry(pending_raid_disks.next,
  1628. mdk_rdev_t, same_set);
  1629. printk(KERN_INFO "md: considering %s ...\n",
  1630. bdevname(rdev0->bdev,b));
  1631. INIT_LIST_HEAD(&candidates);
  1632. ITERATE_RDEV_PENDING(rdev,tmp)
  1633. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1634. printk(KERN_INFO "md: adding %s ...\n",
  1635. bdevname(rdev->bdev,b));
  1636. list_move(&rdev->same_set, &candidates);
  1637. }
  1638. /*
  1639. * now we have a set of devices, with all of them having
  1640. * mostly sane superblocks. It's time to allocate the
  1641. * mddev.
  1642. */
  1643. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1644. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1645. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1646. break;
  1647. }
  1648. if (part)
  1649. dev = MKDEV(mdp_major,
  1650. rdev0->preferred_minor << MdpMinorShift);
  1651. else
  1652. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1653. md_probe(dev, NULL, NULL);
  1654. mddev = mddev_find(dev);
  1655. if (!mddev) {
  1656. printk(KERN_ERR
  1657. "md: cannot allocate memory for md drive.\n");
  1658. break;
  1659. }
  1660. if (mddev_lock(mddev))
  1661. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1662. mdname(mddev));
  1663. else if (mddev->raid_disks || mddev->major_version
  1664. || !list_empty(&mddev->disks)) {
  1665. printk(KERN_WARNING
  1666. "md: %s already running, cannot run %s\n",
  1667. mdname(mddev), bdevname(rdev0->bdev,b));
  1668. mddev_unlock(mddev);
  1669. } else {
  1670. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1671. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1672. list_del_init(&rdev->same_set);
  1673. if (bind_rdev_to_array(rdev, mddev))
  1674. export_rdev(rdev);
  1675. }
  1676. autorun_array(mddev);
  1677. mddev_unlock(mddev);
  1678. }
  1679. /* on success, candidates will be empty, on error
  1680. * it won't...
  1681. */
  1682. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1683. export_rdev(rdev);
  1684. mddev_put(mddev);
  1685. }
  1686. printk(KERN_INFO "md: ... autorun DONE.\n");
  1687. }
  1688. /*
  1689. * import RAID devices based on one partition
  1690. * if possible, the array gets run as well.
  1691. */
  1692. static int autostart_array(dev_t startdev)
  1693. {
  1694. char b[BDEVNAME_SIZE];
  1695. int err = -EINVAL, i;
  1696. mdp_super_t *sb = NULL;
  1697. mdk_rdev_t *start_rdev = NULL, *rdev;
  1698. start_rdev = md_import_device(startdev, 0, 0);
  1699. if (IS_ERR(start_rdev))
  1700. return err;
  1701. /* NOTE: this can only work for 0.90.0 superblocks */
  1702. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1703. if (sb->major_version != 0 ||
  1704. sb->minor_version != 90 ) {
  1705. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1706. export_rdev(start_rdev);
  1707. return err;
  1708. }
  1709. if (start_rdev->faulty) {
  1710. printk(KERN_WARNING
  1711. "md: can not autostart based on faulty %s!\n",
  1712. bdevname(start_rdev->bdev,b));
  1713. export_rdev(start_rdev);
  1714. return err;
  1715. }
  1716. list_add(&start_rdev->same_set, &pending_raid_disks);
  1717. for (i = 0; i < MD_SB_DISKS; i++) {
  1718. mdp_disk_t *desc = sb->disks + i;
  1719. dev_t dev = MKDEV(desc->major, desc->minor);
  1720. if (!dev)
  1721. continue;
  1722. if (dev == startdev)
  1723. continue;
  1724. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1725. continue;
  1726. rdev = md_import_device(dev, 0, 0);
  1727. if (IS_ERR(rdev))
  1728. continue;
  1729. list_add(&rdev->same_set, &pending_raid_disks);
  1730. }
  1731. /*
  1732. * possibly return codes
  1733. */
  1734. autorun_devices(0);
  1735. return 0;
  1736. }
  1737. static int get_version(void __user * arg)
  1738. {
  1739. mdu_version_t ver;
  1740. ver.major = MD_MAJOR_VERSION;
  1741. ver.minor = MD_MINOR_VERSION;
  1742. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1743. if (copy_to_user(arg, &ver, sizeof(ver)))
  1744. return -EFAULT;
  1745. return 0;
  1746. }
  1747. static int get_array_info(mddev_t * mddev, void __user * arg)
  1748. {
  1749. mdu_array_info_t info;
  1750. int nr,working,active,failed,spare;
  1751. mdk_rdev_t *rdev;
  1752. struct list_head *tmp;
  1753. nr=working=active=failed=spare=0;
  1754. ITERATE_RDEV(mddev,rdev,tmp) {
  1755. nr++;
  1756. if (rdev->faulty)
  1757. failed++;
  1758. else {
  1759. working++;
  1760. if (rdev->in_sync)
  1761. active++;
  1762. else
  1763. spare++;
  1764. }
  1765. }
  1766. info.major_version = mddev->major_version;
  1767. info.minor_version = mddev->minor_version;
  1768. info.patch_version = MD_PATCHLEVEL_VERSION;
  1769. info.ctime = mddev->ctime;
  1770. info.level = mddev->level;
  1771. info.size = mddev->size;
  1772. info.nr_disks = nr;
  1773. info.raid_disks = mddev->raid_disks;
  1774. info.md_minor = mddev->md_minor;
  1775. info.not_persistent= !mddev->persistent;
  1776. info.utime = mddev->utime;
  1777. info.state = 0;
  1778. if (mddev->in_sync)
  1779. info.state = (1<<MD_SB_CLEAN);
  1780. info.active_disks = active;
  1781. info.working_disks = working;
  1782. info.failed_disks = failed;
  1783. info.spare_disks = spare;
  1784. info.layout = mddev->layout;
  1785. info.chunk_size = mddev->chunk_size;
  1786. if (copy_to_user(arg, &info, sizeof(info)))
  1787. return -EFAULT;
  1788. return 0;
  1789. }
  1790. static int get_bitmap_file(mddev_t * mddev, void * arg)
  1791. {
  1792. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  1793. char *ptr, *buf = NULL;
  1794. int err = -ENOMEM;
  1795. file = kmalloc(sizeof(*file), GFP_KERNEL);
  1796. if (!file)
  1797. goto out;
  1798. /* bitmap disabled, zero the first byte and copy out */
  1799. if (!mddev->bitmap || !mddev->bitmap->file) {
  1800. file->pathname[0] = '\0';
  1801. goto copy_out;
  1802. }
  1803. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  1804. if (!buf)
  1805. goto out;
  1806. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  1807. if (!ptr)
  1808. goto out;
  1809. strcpy(file->pathname, ptr);
  1810. copy_out:
  1811. err = 0;
  1812. if (copy_to_user(arg, file, sizeof(*file)))
  1813. err = -EFAULT;
  1814. out:
  1815. kfree(buf);
  1816. kfree(file);
  1817. return err;
  1818. }
  1819. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1820. {
  1821. mdu_disk_info_t info;
  1822. unsigned int nr;
  1823. mdk_rdev_t *rdev;
  1824. if (copy_from_user(&info, arg, sizeof(info)))
  1825. return -EFAULT;
  1826. nr = info.number;
  1827. rdev = find_rdev_nr(mddev, nr);
  1828. if (rdev) {
  1829. info.major = MAJOR(rdev->bdev->bd_dev);
  1830. info.minor = MINOR(rdev->bdev->bd_dev);
  1831. info.raid_disk = rdev->raid_disk;
  1832. info.state = 0;
  1833. if (rdev->faulty)
  1834. info.state |= (1<<MD_DISK_FAULTY);
  1835. else if (rdev->in_sync) {
  1836. info.state |= (1<<MD_DISK_ACTIVE);
  1837. info.state |= (1<<MD_DISK_SYNC);
  1838. }
  1839. } else {
  1840. info.major = info.minor = 0;
  1841. info.raid_disk = -1;
  1842. info.state = (1<<MD_DISK_REMOVED);
  1843. }
  1844. if (copy_to_user(arg, &info, sizeof(info)))
  1845. return -EFAULT;
  1846. return 0;
  1847. }
  1848. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1849. {
  1850. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1851. mdk_rdev_t *rdev;
  1852. dev_t dev = MKDEV(info->major,info->minor);
  1853. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1854. return -EOVERFLOW;
  1855. if (!mddev->raid_disks) {
  1856. int err;
  1857. /* expecting a device which has a superblock */
  1858. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1859. if (IS_ERR(rdev)) {
  1860. printk(KERN_WARNING
  1861. "md: md_import_device returned %ld\n",
  1862. PTR_ERR(rdev));
  1863. return PTR_ERR(rdev);
  1864. }
  1865. if (!list_empty(&mddev->disks)) {
  1866. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1867. mdk_rdev_t, same_set);
  1868. int err = super_types[mddev->major_version]
  1869. .load_super(rdev, rdev0, mddev->minor_version);
  1870. if (err < 0) {
  1871. printk(KERN_WARNING
  1872. "md: %s has different UUID to %s\n",
  1873. bdevname(rdev->bdev,b),
  1874. bdevname(rdev0->bdev,b2));
  1875. export_rdev(rdev);
  1876. return -EINVAL;
  1877. }
  1878. }
  1879. err = bind_rdev_to_array(rdev, mddev);
  1880. if (err)
  1881. export_rdev(rdev);
  1882. return err;
  1883. }
  1884. /*
  1885. * add_new_disk can be used once the array is assembled
  1886. * to add "hot spares". They must already have a superblock
  1887. * written
  1888. */
  1889. if (mddev->pers) {
  1890. int err;
  1891. if (!mddev->pers->hot_add_disk) {
  1892. printk(KERN_WARNING
  1893. "%s: personality does not support diskops!\n",
  1894. mdname(mddev));
  1895. return -EINVAL;
  1896. }
  1897. rdev = md_import_device(dev, mddev->major_version,
  1898. mddev->minor_version);
  1899. if (IS_ERR(rdev)) {
  1900. printk(KERN_WARNING
  1901. "md: md_import_device returned %ld\n",
  1902. PTR_ERR(rdev));
  1903. return PTR_ERR(rdev);
  1904. }
  1905. /* set save_raid_disk if appropriate */
  1906. if (!mddev->persistent) {
  1907. if (info->state & (1<<MD_DISK_SYNC) &&
  1908. info->raid_disk < mddev->raid_disks)
  1909. rdev->raid_disk = info->raid_disk;
  1910. else
  1911. rdev->raid_disk = -1;
  1912. } else
  1913. super_types[mddev->major_version].
  1914. validate_super(mddev, rdev);
  1915. rdev->saved_raid_disk = rdev->raid_disk;
  1916. rdev->in_sync = 0; /* just to be sure */
  1917. rdev->raid_disk = -1;
  1918. err = bind_rdev_to_array(rdev, mddev);
  1919. if (err)
  1920. export_rdev(rdev);
  1921. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1922. if (mddev->thread)
  1923. md_wakeup_thread(mddev->thread);
  1924. return err;
  1925. }
  1926. /* otherwise, add_new_disk is only allowed
  1927. * for major_version==0 superblocks
  1928. */
  1929. if (mddev->major_version != 0) {
  1930. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1931. mdname(mddev));
  1932. return -EINVAL;
  1933. }
  1934. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1935. int err;
  1936. rdev = md_import_device (dev, -1, 0);
  1937. if (IS_ERR(rdev)) {
  1938. printk(KERN_WARNING
  1939. "md: error, md_import_device() returned %ld\n",
  1940. PTR_ERR(rdev));
  1941. return PTR_ERR(rdev);
  1942. }
  1943. rdev->desc_nr = info->number;
  1944. if (info->raid_disk < mddev->raid_disks)
  1945. rdev->raid_disk = info->raid_disk;
  1946. else
  1947. rdev->raid_disk = -1;
  1948. rdev->faulty = 0;
  1949. if (rdev->raid_disk < mddev->raid_disks)
  1950. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1951. else
  1952. rdev->in_sync = 0;
  1953. err = bind_rdev_to_array(rdev, mddev);
  1954. if (err) {
  1955. export_rdev(rdev);
  1956. return err;
  1957. }
  1958. if (!mddev->persistent) {
  1959. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1960. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1961. } else
  1962. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1963. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1964. if (!mddev->size || (mddev->size > rdev->size))
  1965. mddev->size = rdev->size;
  1966. }
  1967. return 0;
  1968. }
  1969. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1970. {
  1971. char b[BDEVNAME_SIZE];
  1972. mdk_rdev_t *rdev;
  1973. if (!mddev->pers)
  1974. return -ENODEV;
  1975. rdev = find_rdev(mddev, dev);
  1976. if (!rdev)
  1977. return -ENXIO;
  1978. if (rdev->raid_disk >= 0)
  1979. goto busy;
  1980. kick_rdev_from_array(rdev);
  1981. md_update_sb(mddev);
  1982. return 0;
  1983. busy:
  1984. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  1985. bdevname(rdev->bdev,b), mdname(mddev));
  1986. return -EBUSY;
  1987. }
  1988. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  1989. {
  1990. char b[BDEVNAME_SIZE];
  1991. int err;
  1992. unsigned int size;
  1993. mdk_rdev_t *rdev;
  1994. if (!mddev->pers)
  1995. return -ENODEV;
  1996. if (mddev->major_version != 0) {
  1997. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  1998. " version-0 superblocks.\n",
  1999. mdname(mddev));
  2000. return -EINVAL;
  2001. }
  2002. if (!mddev->pers->hot_add_disk) {
  2003. printk(KERN_WARNING
  2004. "%s: personality does not support diskops!\n",
  2005. mdname(mddev));
  2006. return -EINVAL;
  2007. }
  2008. rdev = md_import_device (dev, -1, 0);
  2009. if (IS_ERR(rdev)) {
  2010. printk(KERN_WARNING
  2011. "md: error, md_import_device() returned %ld\n",
  2012. PTR_ERR(rdev));
  2013. return -EINVAL;
  2014. }
  2015. if (mddev->persistent)
  2016. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2017. else
  2018. rdev->sb_offset =
  2019. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2020. size = calc_dev_size(rdev, mddev->chunk_size);
  2021. rdev->size = size;
  2022. if (size < mddev->size) {
  2023. printk(KERN_WARNING
  2024. "%s: disk size %llu blocks < array size %llu\n",
  2025. mdname(mddev), (unsigned long long)size,
  2026. (unsigned long long)mddev->size);
  2027. err = -ENOSPC;
  2028. goto abort_export;
  2029. }
  2030. if (rdev->faulty) {
  2031. printk(KERN_WARNING
  2032. "md: can not hot-add faulty %s disk to %s!\n",
  2033. bdevname(rdev->bdev,b), mdname(mddev));
  2034. err = -EINVAL;
  2035. goto abort_export;
  2036. }
  2037. rdev->in_sync = 0;
  2038. rdev->desc_nr = -1;
  2039. bind_rdev_to_array(rdev, mddev);
  2040. /*
  2041. * The rest should better be atomic, we can have disk failures
  2042. * noticed in interrupt contexts ...
  2043. */
  2044. if (rdev->desc_nr == mddev->max_disks) {
  2045. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2046. mdname(mddev));
  2047. err = -EBUSY;
  2048. goto abort_unbind_export;
  2049. }
  2050. rdev->raid_disk = -1;
  2051. md_update_sb(mddev);
  2052. /*
  2053. * Kick recovery, maybe this spare has to be added to the
  2054. * array immediately.
  2055. */
  2056. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2057. md_wakeup_thread(mddev->thread);
  2058. return 0;
  2059. abort_unbind_export:
  2060. unbind_rdev_from_array(rdev);
  2061. abort_export:
  2062. export_rdev(rdev);
  2063. return err;
  2064. }
  2065. /* similar to deny_write_access, but accounts for our holding a reference
  2066. * to the file ourselves */
  2067. static int deny_bitmap_write_access(struct file * file)
  2068. {
  2069. struct inode *inode = file->f_mapping->host;
  2070. spin_lock(&inode->i_lock);
  2071. if (atomic_read(&inode->i_writecount) > 1) {
  2072. spin_unlock(&inode->i_lock);
  2073. return -ETXTBSY;
  2074. }
  2075. atomic_set(&inode->i_writecount, -1);
  2076. spin_unlock(&inode->i_lock);
  2077. return 0;
  2078. }
  2079. static int set_bitmap_file(mddev_t *mddev, int fd)
  2080. {
  2081. int err;
  2082. if (mddev->pers)
  2083. return -EBUSY;
  2084. mddev->bitmap_file = fget(fd);
  2085. if (mddev->bitmap_file == NULL) {
  2086. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2087. mdname(mddev));
  2088. return -EBADF;
  2089. }
  2090. err = deny_bitmap_write_access(mddev->bitmap_file);
  2091. if (err) {
  2092. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2093. mdname(mddev));
  2094. fput(mddev->bitmap_file);
  2095. mddev->bitmap_file = NULL;
  2096. } else
  2097. mddev->bitmap_offset = 0; /* file overrides offset */
  2098. return err;
  2099. }
  2100. /*
  2101. * set_array_info is used two different ways
  2102. * The original usage is when creating a new array.
  2103. * In this usage, raid_disks is > 0 and it together with
  2104. * level, size, not_persistent,layout,chunksize determine the
  2105. * shape of the array.
  2106. * This will always create an array with a type-0.90.0 superblock.
  2107. * The newer usage is when assembling an array.
  2108. * In this case raid_disks will be 0, and the major_version field is
  2109. * use to determine which style super-blocks are to be found on the devices.
  2110. * The minor and patch _version numbers are also kept incase the
  2111. * super_block handler wishes to interpret them.
  2112. */
  2113. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2114. {
  2115. if (info->raid_disks == 0) {
  2116. /* just setting version number for superblock loading */
  2117. if (info->major_version < 0 ||
  2118. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2119. super_types[info->major_version].name == NULL) {
  2120. /* maybe try to auto-load a module? */
  2121. printk(KERN_INFO
  2122. "md: superblock version %d not known\n",
  2123. info->major_version);
  2124. return -EINVAL;
  2125. }
  2126. mddev->major_version = info->major_version;
  2127. mddev->minor_version = info->minor_version;
  2128. mddev->patch_version = info->patch_version;
  2129. return 0;
  2130. }
  2131. mddev->major_version = MD_MAJOR_VERSION;
  2132. mddev->minor_version = MD_MINOR_VERSION;
  2133. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2134. mddev->ctime = get_seconds();
  2135. mddev->level = info->level;
  2136. mddev->size = info->size;
  2137. mddev->raid_disks = info->raid_disks;
  2138. /* don't set md_minor, it is determined by which /dev/md* was
  2139. * openned
  2140. */
  2141. if (info->state & (1<<MD_SB_CLEAN))
  2142. mddev->recovery_cp = MaxSector;
  2143. else
  2144. mddev->recovery_cp = 0;
  2145. mddev->persistent = ! info->not_persistent;
  2146. mddev->layout = info->layout;
  2147. mddev->chunk_size = info->chunk_size;
  2148. mddev->max_disks = MD_SB_DISKS;
  2149. mddev->sb_dirty = 1;
  2150. /*
  2151. * Generate a 128 bit UUID
  2152. */
  2153. get_random_bytes(mddev->uuid, 16);
  2154. return 0;
  2155. }
  2156. /*
  2157. * update_array_info is used to change the configuration of an
  2158. * on-line array.
  2159. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2160. * fields in the info are checked against the array.
  2161. * Any differences that cannot be handled will cause an error.
  2162. * Normally, only one change can be managed at a time.
  2163. */
  2164. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2165. {
  2166. int rv = 0;
  2167. int cnt = 0;
  2168. if (mddev->major_version != info->major_version ||
  2169. mddev->minor_version != info->minor_version ||
  2170. /* mddev->patch_version != info->patch_version || */
  2171. mddev->ctime != info->ctime ||
  2172. mddev->level != info->level ||
  2173. /* mddev->layout != info->layout || */
  2174. !mddev->persistent != info->not_persistent||
  2175. mddev->chunk_size != info->chunk_size )
  2176. return -EINVAL;
  2177. /* Check there is only one change */
  2178. if (mddev->size != info->size) cnt++;
  2179. if (mddev->raid_disks != info->raid_disks) cnt++;
  2180. if (mddev->layout != info->layout) cnt++;
  2181. if (cnt == 0) return 0;
  2182. if (cnt > 1) return -EINVAL;
  2183. if (mddev->layout != info->layout) {
  2184. /* Change layout
  2185. * we don't need to do anything at the md level, the
  2186. * personality will take care of it all.
  2187. */
  2188. if (mddev->pers->reconfig == NULL)
  2189. return -EINVAL;
  2190. else
  2191. return mddev->pers->reconfig(mddev, info->layout, -1);
  2192. }
  2193. if (mddev->size != info->size) {
  2194. mdk_rdev_t * rdev;
  2195. struct list_head *tmp;
  2196. if (mddev->pers->resize == NULL)
  2197. return -EINVAL;
  2198. /* The "size" is the amount of each device that is used.
  2199. * This can only make sense for arrays with redundancy.
  2200. * linear and raid0 always use whatever space is available
  2201. * We can only consider changing the size if no resync
  2202. * or reconstruction is happening, and if the new size
  2203. * is acceptable. It must fit before the sb_offset or,
  2204. * if that is <data_offset, it must fit before the
  2205. * size of each device.
  2206. * If size is zero, we find the largest size that fits.
  2207. */
  2208. if (mddev->sync_thread)
  2209. return -EBUSY;
  2210. ITERATE_RDEV(mddev,rdev,tmp) {
  2211. sector_t avail;
  2212. int fit = (info->size == 0);
  2213. if (rdev->sb_offset > rdev->data_offset)
  2214. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2215. else
  2216. avail = get_capacity(rdev->bdev->bd_disk)
  2217. - rdev->data_offset;
  2218. if (fit && (info->size == 0 || info->size > avail/2))
  2219. info->size = avail/2;
  2220. if (avail < ((sector_t)info->size << 1))
  2221. return -ENOSPC;
  2222. }
  2223. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2224. if (!rv) {
  2225. struct block_device *bdev;
  2226. bdev = bdget_disk(mddev->gendisk, 0);
  2227. if (bdev) {
  2228. down(&bdev->bd_inode->i_sem);
  2229. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2230. up(&bdev->bd_inode->i_sem);
  2231. bdput(bdev);
  2232. }
  2233. }
  2234. }
  2235. if (mddev->raid_disks != info->raid_disks) {
  2236. /* change the number of raid disks */
  2237. if (mddev->pers->reshape == NULL)
  2238. return -EINVAL;
  2239. if (info->raid_disks <= 0 ||
  2240. info->raid_disks >= mddev->max_disks)
  2241. return -EINVAL;
  2242. if (mddev->sync_thread)
  2243. return -EBUSY;
  2244. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2245. if (!rv) {
  2246. struct block_device *bdev;
  2247. bdev = bdget_disk(mddev->gendisk, 0);
  2248. if (bdev) {
  2249. down(&bdev->bd_inode->i_sem);
  2250. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2251. up(&bdev->bd_inode->i_sem);
  2252. bdput(bdev);
  2253. }
  2254. }
  2255. }
  2256. md_update_sb(mddev);
  2257. return rv;
  2258. }
  2259. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2260. {
  2261. mdk_rdev_t *rdev;
  2262. if (mddev->pers == NULL)
  2263. return -ENODEV;
  2264. rdev = find_rdev(mddev, dev);
  2265. if (!rdev)
  2266. return -ENODEV;
  2267. md_error(mddev, rdev);
  2268. return 0;
  2269. }
  2270. static int md_ioctl(struct inode *inode, struct file *file,
  2271. unsigned int cmd, unsigned long arg)
  2272. {
  2273. int err = 0;
  2274. void __user *argp = (void __user *)arg;
  2275. struct hd_geometry __user *loc = argp;
  2276. mddev_t *mddev = NULL;
  2277. if (!capable(CAP_SYS_ADMIN))
  2278. return -EACCES;
  2279. /*
  2280. * Commands dealing with the RAID driver but not any
  2281. * particular array:
  2282. */
  2283. switch (cmd)
  2284. {
  2285. case RAID_VERSION:
  2286. err = get_version(argp);
  2287. goto done;
  2288. case PRINT_RAID_DEBUG:
  2289. err = 0;
  2290. md_print_devices();
  2291. goto done;
  2292. #ifndef MODULE
  2293. case RAID_AUTORUN:
  2294. err = 0;
  2295. autostart_arrays(arg);
  2296. goto done;
  2297. #endif
  2298. default:;
  2299. }
  2300. /*
  2301. * Commands creating/starting a new array:
  2302. */
  2303. mddev = inode->i_bdev->bd_disk->private_data;
  2304. if (!mddev) {
  2305. BUG();
  2306. goto abort;
  2307. }
  2308. if (cmd == START_ARRAY) {
  2309. /* START_ARRAY doesn't need to lock the array as autostart_array
  2310. * does the locking, and it could even be a different array
  2311. */
  2312. static int cnt = 3;
  2313. if (cnt > 0 ) {
  2314. printk(KERN_WARNING
  2315. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2316. "This will not be supported beyond 2.6\n",
  2317. current->comm, current->pid);
  2318. cnt--;
  2319. }
  2320. err = autostart_array(new_decode_dev(arg));
  2321. if (err) {
  2322. printk(KERN_WARNING "md: autostart failed!\n");
  2323. goto abort;
  2324. }
  2325. goto done;
  2326. }
  2327. err = mddev_lock(mddev);
  2328. if (err) {
  2329. printk(KERN_INFO
  2330. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2331. err, cmd);
  2332. goto abort;
  2333. }
  2334. switch (cmd)
  2335. {
  2336. case SET_ARRAY_INFO:
  2337. {
  2338. mdu_array_info_t info;
  2339. if (!arg)
  2340. memset(&info, 0, sizeof(info));
  2341. else if (copy_from_user(&info, argp, sizeof(info))) {
  2342. err = -EFAULT;
  2343. goto abort_unlock;
  2344. }
  2345. if (mddev->pers) {
  2346. err = update_array_info(mddev, &info);
  2347. if (err) {
  2348. printk(KERN_WARNING "md: couldn't update"
  2349. " array info. %d\n", err);
  2350. goto abort_unlock;
  2351. }
  2352. goto done_unlock;
  2353. }
  2354. if (!list_empty(&mddev->disks)) {
  2355. printk(KERN_WARNING
  2356. "md: array %s already has disks!\n",
  2357. mdname(mddev));
  2358. err = -EBUSY;
  2359. goto abort_unlock;
  2360. }
  2361. if (mddev->raid_disks) {
  2362. printk(KERN_WARNING
  2363. "md: array %s already initialised!\n",
  2364. mdname(mddev));
  2365. err = -EBUSY;
  2366. goto abort_unlock;
  2367. }
  2368. err = set_array_info(mddev, &info);
  2369. if (err) {
  2370. printk(KERN_WARNING "md: couldn't set"
  2371. " array info. %d\n", err);
  2372. goto abort_unlock;
  2373. }
  2374. }
  2375. goto done_unlock;
  2376. default:;
  2377. }
  2378. /*
  2379. * Commands querying/configuring an existing array:
  2380. */
  2381. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2382. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2383. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2384. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2385. err = -ENODEV;
  2386. goto abort_unlock;
  2387. }
  2388. /*
  2389. * Commands even a read-only array can execute:
  2390. */
  2391. switch (cmd)
  2392. {
  2393. case GET_ARRAY_INFO:
  2394. err = get_array_info(mddev, argp);
  2395. goto done_unlock;
  2396. case GET_BITMAP_FILE:
  2397. err = get_bitmap_file(mddev, (void *)arg);
  2398. goto done_unlock;
  2399. case GET_DISK_INFO:
  2400. err = get_disk_info(mddev, argp);
  2401. goto done_unlock;
  2402. case RESTART_ARRAY_RW:
  2403. err = restart_array(mddev);
  2404. goto done_unlock;
  2405. case STOP_ARRAY:
  2406. err = do_md_stop (mddev, 0);
  2407. goto done_unlock;
  2408. case STOP_ARRAY_RO:
  2409. err = do_md_stop (mddev, 1);
  2410. goto done_unlock;
  2411. /*
  2412. * We have a problem here : there is no easy way to give a CHS
  2413. * virtual geometry. We currently pretend that we have a 2 heads
  2414. * 4 sectors (with a BIG number of cylinders...). This drives
  2415. * dosfs just mad... ;-)
  2416. */
  2417. case HDIO_GETGEO:
  2418. if (!loc) {
  2419. err = -EINVAL;
  2420. goto abort_unlock;
  2421. }
  2422. err = put_user (2, (char __user *) &loc->heads);
  2423. if (err)
  2424. goto abort_unlock;
  2425. err = put_user (4, (char __user *) &loc->sectors);
  2426. if (err)
  2427. goto abort_unlock;
  2428. err = put_user(get_capacity(mddev->gendisk)/8,
  2429. (short __user *) &loc->cylinders);
  2430. if (err)
  2431. goto abort_unlock;
  2432. err = put_user (get_start_sect(inode->i_bdev),
  2433. (long __user *) &loc->start);
  2434. goto done_unlock;
  2435. }
  2436. /*
  2437. * The remaining ioctls are changing the state of the
  2438. * superblock, so we do not allow read-only arrays
  2439. * here:
  2440. */
  2441. if (mddev->ro) {
  2442. err = -EROFS;
  2443. goto abort_unlock;
  2444. }
  2445. switch (cmd)
  2446. {
  2447. case ADD_NEW_DISK:
  2448. {
  2449. mdu_disk_info_t info;
  2450. if (copy_from_user(&info, argp, sizeof(info)))
  2451. err = -EFAULT;
  2452. else
  2453. err = add_new_disk(mddev, &info);
  2454. goto done_unlock;
  2455. }
  2456. case HOT_REMOVE_DISK:
  2457. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2458. goto done_unlock;
  2459. case HOT_ADD_DISK:
  2460. err = hot_add_disk(mddev, new_decode_dev(arg));
  2461. goto done_unlock;
  2462. case SET_DISK_FAULTY:
  2463. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2464. goto done_unlock;
  2465. case RUN_ARRAY:
  2466. err = do_md_run (mddev);
  2467. goto done_unlock;
  2468. case SET_BITMAP_FILE:
  2469. err = set_bitmap_file(mddev, (int)arg);
  2470. goto done_unlock;
  2471. default:
  2472. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2473. printk(KERN_WARNING "md: %s(pid %d) used"
  2474. " obsolete MD ioctl, upgrade your"
  2475. " software to use new ictls.\n",
  2476. current->comm, current->pid);
  2477. err = -EINVAL;
  2478. goto abort_unlock;
  2479. }
  2480. done_unlock:
  2481. abort_unlock:
  2482. mddev_unlock(mddev);
  2483. return err;
  2484. done:
  2485. if (err)
  2486. MD_BUG();
  2487. abort:
  2488. return err;
  2489. }
  2490. static int md_open(struct inode *inode, struct file *file)
  2491. {
  2492. /*
  2493. * Succeed if we can lock the mddev, which confirms that
  2494. * it isn't being stopped right now.
  2495. */
  2496. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2497. int err;
  2498. if ((err = mddev_lock(mddev)))
  2499. goto out;
  2500. err = 0;
  2501. mddev_get(mddev);
  2502. mddev_unlock(mddev);
  2503. check_disk_change(inode->i_bdev);
  2504. out:
  2505. return err;
  2506. }
  2507. static int md_release(struct inode *inode, struct file * file)
  2508. {
  2509. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2510. if (!mddev)
  2511. BUG();
  2512. mddev_put(mddev);
  2513. return 0;
  2514. }
  2515. static int md_media_changed(struct gendisk *disk)
  2516. {
  2517. mddev_t *mddev = disk->private_data;
  2518. return mddev->changed;
  2519. }
  2520. static int md_revalidate(struct gendisk *disk)
  2521. {
  2522. mddev_t *mddev = disk->private_data;
  2523. mddev->changed = 0;
  2524. return 0;
  2525. }
  2526. static struct block_device_operations md_fops =
  2527. {
  2528. .owner = THIS_MODULE,
  2529. .open = md_open,
  2530. .release = md_release,
  2531. .ioctl = md_ioctl,
  2532. .media_changed = md_media_changed,
  2533. .revalidate_disk= md_revalidate,
  2534. };
  2535. static int md_thread(void * arg)
  2536. {
  2537. mdk_thread_t *thread = arg;
  2538. lock_kernel();
  2539. /*
  2540. * Detach thread
  2541. */
  2542. daemonize(thread->name, mdname(thread->mddev));
  2543. current->exit_signal = SIGCHLD;
  2544. allow_signal(SIGKILL);
  2545. thread->tsk = current;
  2546. /*
  2547. * md_thread is a 'system-thread', it's priority should be very
  2548. * high. We avoid resource deadlocks individually in each
  2549. * raid personality. (RAID5 does preallocation) We also use RR and
  2550. * the very same RT priority as kswapd, thus we will never get
  2551. * into a priority inversion deadlock.
  2552. *
  2553. * we definitely have to have equal or higher priority than
  2554. * bdflush, otherwise bdflush will deadlock if there are too
  2555. * many dirty RAID5 blocks.
  2556. */
  2557. unlock_kernel();
  2558. complete(thread->event);
  2559. while (thread->run) {
  2560. void (*run)(mddev_t *);
  2561. wait_event_interruptible_timeout(thread->wqueue,
  2562. test_bit(THREAD_WAKEUP, &thread->flags),
  2563. thread->timeout);
  2564. try_to_freeze();
  2565. clear_bit(THREAD_WAKEUP, &thread->flags);
  2566. run = thread->run;
  2567. if (run)
  2568. run(thread->mddev);
  2569. if (signal_pending(current))
  2570. flush_signals(current);
  2571. }
  2572. complete(thread->event);
  2573. return 0;
  2574. }
  2575. void md_wakeup_thread(mdk_thread_t *thread)
  2576. {
  2577. if (thread) {
  2578. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2579. set_bit(THREAD_WAKEUP, &thread->flags);
  2580. wake_up(&thread->wqueue);
  2581. }
  2582. }
  2583. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2584. const char *name)
  2585. {
  2586. mdk_thread_t *thread;
  2587. int ret;
  2588. struct completion event;
  2589. thread = (mdk_thread_t *) kmalloc
  2590. (sizeof(mdk_thread_t), GFP_KERNEL);
  2591. if (!thread)
  2592. return NULL;
  2593. memset(thread, 0, sizeof(mdk_thread_t));
  2594. init_waitqueue_head(&thread->wqueue);
  2595. init_completion(&event);
  2596. thread->event = &event;
  2597. thread->run = run;
  2598. thread->mddev = mddev;
  2599. thread->name = name;
  2600. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2601. ret = kernel_thread(md_thread, thread, 0);
  2602. if (ret < 0) {
  2603. kfree(thread);
  2604. return NULL;
  2605. }
  2606. wait_for_completion(&event);
  2607. return thread;
  2608. }
  2609. void md_unregister_thread(mdk_thread_t *thread)
  2610. {
  2611. struct completion event;
  2612. init_completion(&event);
  2613. thread->event = &event;
  2614. /* As soon as ->run is set to NULL, the task could disappear,
  2615. * so we need to hold tasklist_lock until we have sent the signal
  2616. */
  2617. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2618. read_lock(&tasklist_lock);
  2619. thread->run = NULL;
  2620. send_sig(SIGKILL, thread->tsk, 1);
  2621. read_unlock(&tasklist_lock);
  2622. wait_for_completion(&event);
  2623. kfree(thread);
  2624. }
  2625. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2626. {
  2627. if (!mddev) {
  2628. MD_BUG();
  2629. return;
  2630. }
  2631. if (!rdev || rdev->faulty)
  2632. return;
  2633. /*
  2634. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2635. mdname(mddev),
  2636. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2637. __builtin_return_address(0),__builtin_return_address(1),
  2638. __builtin_return_address(2),__builtin_return_address(3));
  2639. */
  2640. if (!mddev->pers->error_handler)
  2641. return;
  2642. mddev->pers->error_handler(mddev,rdev);
  2643. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2644. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2645. md_wakeup_thread(mddev->thread);
  2646. }
  2647. /* seq_file implementation /proc/mdstat */
  2648. static void status_unused(struct seq_file *seq)
  2649. {
  2650. int i = 0;
  2651. mdk_rdev_t *rdev;
  2652. struct list_head *tmp;
  2653. seq_printf(seq, "unused devices: ");
  2654. ITERATE_RDEV_PENDING(rdev,tmp) {
  2655. char b[BDEVNAME_SIZE];
  2656. i++;
  2657. seq_printf(seq, "%s ",
  2658. bdevname(rdev->bdev,b));
  2659. }
  2660. if (!i)
  2661. seq_printf(seq, "<none>");
  2662. seq_printf(seq, "\n");
  2663. }
  2664. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2665. {
  2666. unsigned long max_blocks, resync, res, dt, db, rt;
  2667. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2668. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2669. max_blocks = mddev->resync_max_sectors >> 1;
  2670. else
  2671. max_blocks = mddev->size;
  2672. /*
  2673. * Should not happen.
  2674. */
  2675. if (!max_blocks) {
  2676. MD_BUG();
  2677. return;
  2678. }
  2679. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2680. {
  2681. int i, x = res/50, y = 20-x;
  2682. seq_printf(seq, "[");
  2683. for (i = 0; i < x; i++)
  2684. seq_printf(seq, "=");
  2685. seq_printf(seq, ">");
  2686. for (i = 0; i < y; i++)
  2687. seq_printf(seq, ".");
  2688. seq_printf(seq, "] ");
  2689. }
  2690. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2691. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2692. "resync" : "recovery"),
  2693. res/10, res % 10, resync, max_blocks);
  2694. /*
  2695. * We do not want to overflow, so the order of operands and
  2696. * the * 100 / 100 trick are important. We do a +1 to be
  2697. * safe against division by zero. We only estimate anyway.
  2698. *
  2699. * dt: time from mark until now
  2700. * db: blocks written from mark until now
  2701. * rt: remaining time
  2702. */
  2703. dt = ((jiffies - mddev->resync_mark) / HZ);
  2704. if (!dt) dt++;
  2705. db = resync - (mddev->resync_mark_cnt/2);
  2706. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2707. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2708. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2709. }
  2710. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2711. {
  2712. struct list_head *tmp;
  2713. loff_t l = *pos;
  2714. mddev_t *mddev;
  2715. if (l >= 0x10000)
  2716. return NULL;
  2717. if (!l--)
  2718. /* header */
  2719. return (void*)1;
  2720. spin_lock(&all_mddevs_lock);
  2721. list_for_each(tmp,&all_mddevs)
  2722. if (!l--) {
  2723. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2724. mddev_get(mddev);
  2725. spin_unlock(&all_mddevs_lock);
  2726. return mddev;
  2727. }
  2728. spin_unlock(&all_mddevs_lock);
  2729. if (!l--)
  2730. return (void*)2;/* tail */
  2731. return NULL;
  2732. }
  2733. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2734. {
  2735. struct list_head *tmp;
  2736. mddev_t *next_mddev, *mddev = v;
  2737. ++*pos;
  2738. if (v == (void*)2)
  2739. return NULL;
  2740. spin_lock(&all_mddevs_lock);
  2741. if (v == (void*)1)
  2742. tmp = all_mddevs.next;
  2743. else
  2744. tmp = mddev->all_mddevs.next;
  2745. if (tmp != &all_mddevs)
  2746. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2747. else {
  2748. next_mddev = (void*)2;
  2749. *pos = 0x10000;
  2750. }
  2751. spin_unlock(&all_mddevs_lock);
  2752. if (v != (void*)1)
  2753. mddev_put(mddev);
  2754. return next_mddev;
  2755. }
  2756. static void md_seq_stop(struct seq_file *seq, void *v)
  2757. {
  2758. mddev_t *mddev = v;
  2759. if (mddev && v != (void*)1 && v != (void*)2)
  2760. mddev_put(mddev);
  2761. }
  2762. static int md_seq_show(struct seq_file *seq, void *v)
  2763. {
  2764. mddev_t *mddev = v;
  2765. sector_t size;
  2766. struct list_head *tmp2;
  2767. mdk_rdev_t *rdev;
  2768. int i;
  2769. struct bitmap *bitmap;
  2770. if (v == (void*)1) {
  2771. seq_printf(seq, "Personalities : ");
  2772. spin_lock(&pers_lock);
  2773. for (i = 0; i < MAX_PERSONALITY; i++)
  2774. if (pers[i])
  2775. seq_printf(seq, "[%s] ", pers[i]->name);
  2776. spin_unlock(&pers_lock);
  2777. seq_printf(seq, "\n");
  2778. return 0;
  2779. }
  2780. if (v == (void*)2) {
  2781. status_unused(seq);
  2782. return 0;
  2783. }
  2784. if (mddev_lock(mddev)!=0)
  2785. return -EINTR;
  2786. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2787. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2788. mddev->pers ? "" : "in");
  2789. if (mddev->pers) {
  2790. if (mddev->ro)
  2791. seq_printf(seq, " (read-only)");
  2792. seq_printf(seq, " %s", mddev->pers->name);
  2793. }
  2794. size = 0;
  2795. ITERATE_RDEV(mddev,rdev,tmp2) {
  2796. char b[BDEVNAME_SIZE];
  2797. seq_printf(seq, " %s[%d]",
  2798. bdevname(rdev->bdev,b), rdev->desc_nr);
  2799. if (rdev->faulty) {
  2800. seq_printf(seq, "(F)");
  2801. continue;
  2802. }
  2803. size += rdev->size;
  2804. }
  2805. if (!list_empty(&mddev->disks)) {
  2806. if (mddev->pers)
  2807. seq_printf(seq, "\n %llu blocks",
  2808. (unsigned long long)mddev->array_size);
  2809. else
  2810. seq_printf(seq, "\n %llu blocks",
  2811. (unsigned long long)size);
  2812. }
  2813. if (mddev->pers) {
  2814. mddev->pers->status (seq, mddev);
  2815. seq_printf(seq, "\n ");
  2816. if (mddev->curr_resync > 2) {
  2817. status_resync (seq, mddev);
  2818. seq_printf(seq, "\n ");
  2819. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2820. seq_printf(seq, " resync=DELAYED\n ");
  2821. } else
  2822. seq_printf(seq, "\n ");
  2823. if ((bitmap = mddev->bitmap)) {
  2824. unsigned long chunk_kb;
  2825. unsigned long flags;
  2826. spin_lock_irqsave(&bitmap->lock, flags);
  2827. chunk_kb = bitmap->chunksize >> 10;
  2828. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  2829. "%lu%s chunk",
  2830. bitmap->pages - bitmap->missing_pages,
  2831. bitmap->pages,
  2832. (bitmap->pages - bitmap->missing_pages)
  2833. << (PAGE_SHIFT - 10),
  2834. chunk_kb ? chunk_kb : bitmap->chunksize,
  2835. chunk_kb ? "KB" : "B");
  2836. if (bitmap->file) {
  2837. seq_printf(seq, ", file: ");
  2838. seq_path(seq, bitmap->file->f_vfsmnt,
  2839. bitmap->file->f_dentry," \t\n");
  2840. }
  2841. seq_printf(seq, "\n");
  2842. spin_unlock_irqrestore(&bitmap->lock, flags);
  2843. }
  2844. seq_printf(seq, "\n");
  2845. }
  2846. mddev_unlock(mddev);
  2847. return 0;
  2848. }
  2849. static struct seq_operations md_seq_ops = {
  2850. .start = md_seq_start,
  2851. .next = md_seq_next,
  2852. .stop = md_seq_stop,
  2853. .show = md_seq_show,
  2854. };
  2855. static int md_seq_open(struct inode *inode, struct file *file)
  2856. {
  2857. int error;
  2858. error = seq_open(file, &md_seq_ops);
  2859. return error;
  2860. }
  2861. static struct file_operations md_seq_fops = {
  2862. .open = md_seq_open,
  2863. .read = seq_read,
  2864. .llseek = seq_lseek,
  2865. .release = seq_release,
  2866. };
  2867. int register_md_personality(int pnum, mdk_personality_t *p)
  2868. {
  2869. if (pnum >= MAX_PERSONALITY) {
  2870. printk(KERN_ERR
  2871. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2872. p->name, pnum, MAX_PERSONALITY-1);
  2873. return -EINVAL;
  2874. }
  2875. spin_lock(&pers_lock);
  2876. if (pers[pnum]) {
  2877. spin_unlock(&pers_lock);
  2878. return -EBUSY;
  2879. }
  2880. pers[pnum] = p;
  2881. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2882. spin_unlock(&pers_lock);
  2883. return 0;
  2884. }
  2885. int unregister_md_personality(int pnum)
  2886. {
  2887. if (pnum >= MAX_PERSONALITY)
  2888. return -EINVAL;
  2889. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2890. spin_lock(&pers_lock);
  2891. pers[pnum] = NULL;
  2892. spin_unlock(&pers_lock);
  2893. return 0;
  2894. }
  2895. static int is_mddev_idle(mddev_t *mddev)
  2896. {
  2897. mdk_rdev_t * rdev;
  2898. struct list_head *tmp;
  2899. int idle;
  2900. unsigned long curr_events;
  2901. idle = 1;
  2902. ITERATE_RDEV(mddev,rdev,tmp) {
  2903. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2904. curr_events = disk_stat_read(disk, read_sectors) +
  2905. disk_stat_read(disk, write_sectors) -
  2906. atomic_read(&disk->sync_io);
  2907. /* Allow some slack between valud of curr_events and last_events,
  2908. * as there are some uninteresting races.
  2909. * Note: the following is an unsigned comparison.
  2910. */
  2911. if ((curr_events - rdev->last_events + 32) > 64) {
  2912. rdev->last_events = curr_events;
  2913. idle = 0;
  2914. }
  2915. }
  2916. return idle;
  2917. }
  2918. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  2919. {
  2920. /* another "blocks" (512byte) blocks have been synced */
  2921. atomic_sub(blocks, &mddev->recovery_active);
  2922. wake_up(&mddev->recovery_wait);
  2923. if (!ok) {
  2924. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2925. md_wakeup_thread(mddev->thread);
  2926. // stop recovery, signal do_sync ....
  2927. }
  2928. }
  2929. /* md_write_start(mddev, bi)
  2930. * If we need to update some array metadata (e.g. 'active' flag
  2931. * in superblock) before writing, schedule a superblock update
  2932. * and wait for it to complete.
  2933. */
  2934. void md_write_start(mddev_t *mddev, struct bio *bi)
  2935. {
  2936. DEFINE_WAIT(w);
  2937. if (bio_data_dir(bi) != WRITE)
  2938. return;
  2939. atomic_inc(&mddev->writes_pending);
  2940. if (mddev->in_sync) {
  2941. spin_lock(&mddev->write_lock);
  2942. if (mddev->in_sync) {
  2943. mddev->in_sync = 0;
  2944. mddev->sb_dirty = 1;
  2945. md_wakeup_thread(mddev->thread);
  2946. }
  2947. spin_unlock(&mddev->write_lock);
  2948. }
  2949. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  2950. }
  2951. void md_write_end(mddev_t *mddev)
  2952. {
  2953. if (atomic_dec_and_test(&mddev->writes_pending)) {
  2954. if (mddev->safemode == 2)
  2955. md_wakeup_thread(mddev->thread);
  2956. else
  2957. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  2958. }
  2959. }
  2960. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  2961. #define SYNC_MARKS 10
  2962. #define SYNC_MARK_STEP (3*HZ)
  2963. static void md_do_sync(mddev_t *mddev)
  2964. {
  2965. mddev_t *mddev2;
  2966. unsigned int currspeed = 0,
  2967. window;
  2968. sector_t max_sectors,j, io_sectors;
  2969. unsigned long mark[SYNC_MARKS];
  2970. sector_t mark_cnt[SYNC_MARKS];
  2971. int last_mark,m;
  2972. struct list_head *tmp;
  2973. sector_t last_check;
  2974. int skipped = 0;
  2975. /* just incase thread restarts... */
  2976. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  2977. return;
  2978. /* we overload curr_resync somewhat here.
  2979. * 0 == not engaged in resync at all
  2980. * 2 == checking that there is no conflict with another sync
  2981. * 1 == like 2, but have yielded to allow conflicting resync to
  2982. * commense
  2983. * other == active in resync - this many blocks
  2984. *
  2985. * Before starting a resync we must have set curr_resync to
  2986. * 2, and then checked that every "conflicting" array has curr_resync
  2987. * less than ours. When we find one that is the same or higher
  2988. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  2989. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  2990. * This will mean we have to start checking from the beginning again.
  2991. *
  2992. */
  2993. do {
  2994. mddev->curr_resync = 2;
  2995. try_again:
  2996. if (signal_pending(current)) {
  2997. flush_signals(current);
  2998. goto skip;
  2999. }
  3000. ITERATE_MDDEV(mddev2,tmp) {
  3001. if (mddev2 == mddev)
  3002. continue;
  3003. if (mddev2->curr_resync &&
  3004. match_mddev_units(mddev,mddev2)) {
  3005. DEFINE_WAIT(wq);
  3006. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3007. /* arbitrarily yield */
  3008. mddev->curr_resync = 1;
  3009. wake_up(&resync_wait);
  3010. }
  3011. if (mddev > mddev2 && mddev->curr_resync == 1)
  3012. /* no need to wait here, we can wait the next
  3013. * time 'round when curr_resync == 2
  3014. */
  3015. continue;
  3016. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3017. if (!signal_pending(current)
  3018. && mddev2->curr_resync >= mddev->curr_resync) {
  3019. printk(KERN_INFO "md: delaying resync of %s"
  3020. " until %s has finished resync (they"
  3021. " share one or more physical units)\n",
  3022. mdname(mddev), mdname(mddev2));
  3023. mddev_put(mddev2);
  3024. schedule();
  3025. finish_wait(&resync_wait, &wq);
  3026. goto try_again;
  3027. }
  3028. finish_wait(&resync_wait, &wq);
  3029. }
  3030. }
  3031. } while (mddev->curr_resync < 2);
  3032. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3033. /* resync follows the size requested by the personality,
  3034. * which defaults to physical size, but can be virtual size
  3035. */
  3036. max_sectors = mddev->resync_max_sectors;
  3037. else
  3038. /* recovery follows the physical size of devices */
  3039. max_sectors = mddev->size << 1;
  3040. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3041. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3042. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3043. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  3044. "(but not more than %d KB/sec) for reconstruction.\n",
  3045. sysctl_speed_limit_max);
  3046. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3047. /* we don't use the checkpoint if there's a bitmap */
  3048. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  3049. j = mddev->recovery_cp;
  3050. else
  3051. j = 0;
  3052. io_sectors = 0;
  3053. for (m = 0; m < SYNC_MARKS; m++) {
  3054. mark[m] = jiffies;
  3055. mark_cnt[m] = io_sectors;
  3056. }
  3057. last_mark = 0;
  3058. mddev->resync_mark = mark[last_mark];
  3059. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3060. /*
  3061. * Tune reconstruction:
  3062. */
  3063. window = 32*(PAGE_SIZE/512);
  3064. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3065. window/2,(unsigned long long) max_sectors/2);
  3066. atomic_set(&mddev->recovery_active, 0);
  3067. init_waitqueue_head(&mddev->recovery_wait);
  3068. last_check = 0;
  3069. if (j>2) {
  3070. printk(KERN_INFO
  3071. "md: resuming recovery of %s from checkpoint.\n",
  3072. mdname(mddev));
  3073. mddev->curr_resync = j;
  3074. }
  3075. while (j < max_sectors) {
  3076. sector_t sectors;
  3077. skipped = 0;
  3078. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3079. currspeed < sysctl_speed_limit_min);
  3080. if (sectors == 0) {
  3081. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3082. goto out;
  3083. }
  3084. if (!skipped) { /* actual IO requested */
  3085. io_sectors += sectors;
  3086. atomic_add(sectors, &mddev->recovery_active);
  3087. }
  3088. j += sectors;
  3089. if (j>1) mddev->curr_resync = j;
  3090. if (last_check + window > io_sectors || j == max_sectors)
  3091. continue;
  3092. last_check = io_sectors;
  3093. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3094. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3095. break;
  3096. repeat:
  3097. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3098. /* step marks */
  3099. int next = (last_mark+1) % SYNC_MARKS;
  3100. mddev->resync_mark = mark[next];
  3101. mddev->resync_mark_cnt = mark_cnt[next];
  3102. mark[next] = jiffies;
  3103. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3104. last_mark = next;
  3105. }
  3106. if (signal_pending(current)) {
  3107. /*
  3108. * got a signal, exit.
  3109. */
  3110. printk(KERN_INFO
  3111. "md: md_do_sync() got signal ... exiting\n");
  3112. flush_signals(current);
  3113. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3114. goto out;
  3115. }
  3116. /*
  3117. * this loop exits only if either when we are slower than
  3118. * the 'hard' speed limit, or the system was IO-idle for
  3119. * a jiffy.
  3120. * the system might be non-idle CPU-wise, but we only care
  3121. * about not overloading the IO subsystem. (things like an
  3122. * e2fsck being done on the RAID array should execute fast)
  3123. */
  3124. mddev->queue->unplug_fn(mddev->queue);
  3125. cond_resched();
  3126. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3127. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3128. if (currspeed > sysctl_speed_limit_min) {
  3129. if ((currspeed > sysctl_speed_limit_max) ||
  3130. !is_mddev_idle(mddev)) {
  3131. msleep_interruptible(250);
  3132. goto repeat;
  3133. }
  3134. }
  3135. }
  3136. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3137. /*
  3138. * this also signals 'finished resyncing' to md_stop
  3139. */
  3140. out:
  3141. mddev->queue->unplug_fn(mddev->queue);
  3142. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3143. /* tell personality that we are finished */
  3144. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3145. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3146. mddev->curr_resync > 2 &&
  3147. mddev->curr_resync >= mddev->recovery_cp) {
  3148. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3149. printk(KERN_INFO
  3150. "md: checkpointing recovery of %s.\n",
  3151. mdname(mddev));
  3152. mddev->recovery_cp = mddev->curr_resync;
  3153. } else
  3154. mddev->recovery_cp = MaxSector;
  3155. }
  3156. skip:
  3157. mddev->curr_resync = 0;
  3158. wake_up(&resync_wait);
  3159. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3160. md_wakeup_thread(mddev->thread);
  3161. }
  3162. /*
  3163. * This routine is regularly called by all per-raid-array threads to
  3164. * deal with generic issues like resync and super-block update.
  3165. * Raid personalities that don't have a thread (linear/raid0) do not
  3166. * need this as they never do any recovery or update the superblock.
  3167. *
  3168. * It does not do any resync itself, but rather "forks" off other threads
  3169. * to do that as needed.
  3170. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3171. * "->recovery" and create a thread at ->sync_thread.
  3172. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3173. * and wakeups up this thread which will reap the thread and finish up.
  3174. * This thread also removes any faulty devices (with nr_pending == 0).
  3175. *
  3176. * The overall approach is:
  3177. * 1/ if the superblock needs updating, update it.
  3178. * 2/ If a recovery thread is running, don't do anything else.
  3179. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3180. * 4/ If there are any faulty devices, remove them.
  3181. * 5/ If array is degraded, try to add spares devices
  3182. * 6/ If array has spares or is not in-sync, start a resync thread.
  3183. */
  3184. void md_check_recovery(mddev_t *mddev)
  3185. {
  3186. mdk_rdev_t *rdev;
  3187. struct list_head *rtmp;
  3188. if (mddev->bitmap)
  3189. bitmap_daemon_work(mddev->bitmap);
  3190. if (mddev->ro)
  3191. return;
  3192. if (signal_pending(current)) {
  3193. if (mddev->pers->sync_request) {
  3194. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3195. mdname(mddev));
  3196. mddev->safemode = 2;
  3197. }
  3198. flush_signals(current);
  3199. }
  3200. if ( ! (
  3201. mddev->sb_dirty ||
  3202. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3203. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3204. (mddev->safemode == 1) ||
  3205. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3206. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3207. ))
  3208. return;
  3209. if (mddev_trylock(mddev)==0) {
  3210. int spares =0;
  3211. spin_lock(&mddev->write_lock);
  3212. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3213. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3214. mddev->in_sync = 1;
  3215. mddev->sb_dirty = 1;
  3216. }
  3217. if (mddev->safemode == 1)
  3218. mddev->safemode = 0;
  3219. spin_unlock(&mddev->write_lock);
  3220. if (mddev->sb_dirty)
  3221. md_update_sb(mddev);
  3222. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3223. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3224. /* resync/recovery still happening */
  3225. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3226. goto unlock;
  3227. }
  3228. if (mddev->sync_thread) {
  3229. /* resync has finished, collect result */
  3230. md_unregister_thread(mddev->sync_thread);
  3231. mddev->sync_thread = NULL;
  3232. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3233. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3234. /* success...*/
  3235. /* activate any spares */
  3236. mddev->pers->spare_active(mddev);
  3237. }
  3238. md_update_sb(mddev);
  3239. /* if array is no-longer degraded, then any saved_raid_disk
  3240. * information must be scrapped
  3241. */
  3242. if (!mddev->degraded)
  3243. ITERATE_RDEV(mddev,rdev,rtmp)
  3244. rdev->saved_raid_disk = -1;
  3245. mddev->recovery = 0;
  3246. /* flag recovery needed just to double check */
  3247. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3248. goto unlock;
  3249. }
  3250. if (mddev->recovery)
  3251. /* probably just the RECOVERY_NEEDED flag */
  3252. mddev->recovery = 0;
  3253. /* no recovery is running.
  3254. * remove any failed drives, then
  3255. * add spares if possible.
  3256. * Spare are also removed and re-added, to allow
  3257. * the personality to fail the re-add.
  3258. */
  3259. ITERATE_RDEV(mddev,rdev,rtmp)
  3260. if (rdev->raid_disk >= 0 &&
  3261. (rdev->faulty || ! rdev->in_sync) &&
  3262. atomic_read(&rdev->nr_pending)==0) {
  3263. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3264. rdev->raid_disk = -1;
  3265. }
  3266. if (mddev->degraded) {
  3267. ITERATE_RDEV(mddev,rdev,rtmp)
  3268. if (rdev->raid_disk < 0
  3269. && !rdev->faulty) {
  3270. if (mddev->pers->hot_add_disk(mddev,rdev))
  3271. spares++;
  3272. else
  3273. break;
  3274. }
  3275. }
  3276. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3277. /* nothing we can do ... */
  3278. goto unlock;
  3279. }
  3280. if (mddev->pers->sync_request) {
  3281. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3282. if (!spares)
  3283. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3284. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3285. /* We are adding a device or devices to an array
  3286. * which has the bitmap stored on all devices.
  3287. * So make sure all bitmap pages get written
  3288. */
  3289. bitmap_write_all(mddev->bitmap);
  3290. }
  3291. mddev->sync_thread = md_register_thread(md_do_sync,
  3292. mddev,
  3293. "%s_resync");
  3294. if (!mddev->sync_thread) {
  3295. printk(KERN_ERR "%s: could not start resync"
  3296. " thread...\n",
  3297. mdname(mddev));
  3298. /* leave the spares where they are, it shouldn't hurt */
  3299. mddev->recovery = 0;
  3300. } else {
  3301. md_wakeup_thread(mddev->sync_thread);
  3302. }
  3303. }
  3304. unlock:
  3305. mddev_unlock(mddev);
  3306. }
  3307. }
  3308. static int md_notify_reboot(struct notifier_block *this,
  3309. unsigned long code, void *x)
  3310. {
  3311. struct list_head *tmp;
  3312. mddev_t *mddev;
  3313. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3314. printk(KERN_INFO "md: stopping all md devices.\n");
  3315. ITERATE_MDDEV(mddev,tmp)
  3316. if (mddev_trylock(mddev)==0)
  3317. do_md_stop (mddev, 1);
  3318. /*
  3319. * certain more exotic SCSI devices are known to be
  3320. * volatile wrt too early system reboots. While the
  3321. * right place to handle this issue is the given
  3322. * driver, we do want to have a safe RAID driver ...
  3323. */
  3324. mdelay(1000*1);
  3325. }
  3326. return NOTIFY_DONE;
  3327. }
  3328. static struct notifier_block md_notifier = {
  3329. .notifier_call = md_notify_reboot,
  3330. .next = NULL,
  3331. .priority = INT_MAX, /* before any real devices */
  3332. };
  3333. static void md_geninit(void)
  3334. {
  3335. struct proc_dir_entry *p;
  3336. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3337. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3338. if (p)
  3339. p->proc_fops = &md_seq_fops;
  3340. }
  3341. static int __init md_init(void)
  3342. {
  3343. int minor;
  3344. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3345. " MD_SB_DISKS=%d\n",
  3346. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3347. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3348. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3349. BITMAP_MINOR);
  3350. if (register_blkdev(MAJOR_NR, "md"))
  3351. return -1;
  3352. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3353. unregister_blkdev(MAJOR_NR, "md");
  3354. return -1;
  3355. }
  3356. devfs_mk_dir("md");
  3357. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3358. md_probe, NULL, NULL);
  3359. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3360. md_probe, NULL, NULL);
  3361. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3362. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3363. S_IFBLK|S_IRUSR|S_IWUSR,
  3364. "md/%d", minor);
  3365. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3366. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3367. S_IFBLK|S_IRUSR|S_IWUSR,
  3368. "md/mdp%d", minor);
  3369. register_reboot_notifier(&md_notifier);
  3370. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3371. md_geninit();
  3372. return (0);
  3373. }
  3374. #ifndef MODULE
  3375. /*
  3376. * Searches all registered partitions for autorun RAID arrays
  3377. * at boot time.
  3378. */
  3379. static dev_t detected_devices[128];
  3380. static int dev_cnt;
  3381. void md_autodetect_dev(dev_t dev)
  3382. {
  3383. if (dev_cnt >= 0 && dev_cnt < 127)
  3384. detected_devices[dev_cnt++] = dev;
  3385. }
  3386. static void autostart_arrays(int part)
  3387. {
  3388. mdk_rdev_t *rdev;
  3389. int i;
  3390. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3391. for (i = 0; i < dev_cnt; i++) {
  3392. dev_t dev = detected_devices[i];
  3393. rdev = md_import_device(dev,0, 0);
  3394. if (IS_ERR(rdev))
  3395. continue;
  3396. if (rdev->faulty) {
  3397. MD_BUG();
  3398. continue;
  3399. }
  3400. list_add(&rdev->same_set, &pending_raid_disks);
  3401. }
  3402. dev_cnt = 0;
  3403. autorun_devices(part);
  3404. }
  3405. #endif
  3406. static __exit void md_exit(void)
  3407. {
  3408. mddev_t *mddev;
  3409. struct list_head *tmp;
  3410. int i;
  3411. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3412. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3413. for (i=0; i < MAX_MD_DEVS; i++)
  3414. devfs_remove("md/%d", i);
  3415. for (i=0; i < MAX_MD_DEVS; i++)
  3416. devfs_remove("md/d%d", i);
  3417. devfs_remove("md");
  3418. unregister_blkdev(MAJOR_NR,"md");
  3419. unregister_blkdev(mdp_major, "mdp");
  3420. unregister_reboot_notifier(&md_notifier);
  3421. unregister_sysctl_table(raid_table_header);
  3422. remove_proc_entry("mdstat", NULL);
  3423. ITERATE_MDDEV(mddev,tmp) {
  3424. struct gendisk *disk = mddev->gendisk;
  3425. if (!disk)
  3426. continue;
  3427. export_array(mddev);
  3428. del_gendisk(disk);
  3429. put_disk(disk);
  3430. mddev->gendisk = NULL;
  3431. mddev_put(mddev);
  3432. }
  3433. }
  3434. module_init(md_init)
  3435. module_exit(md_exit)
  3436. EXPORT_SYMBOL(register_md_personality);
  3437. EXPORT_SYMBOL(unregister_md_personality);
  3438. EXPORT_SYMBOL(md_error);
  3439. EXPORT_SYMBOL(md_done_sync);
  3440. EXPORT_SYMBOL(md_write_start);
  3441. EXPORT_SYMBOL(md_write_end);
  3442. EXPORT_SYMBOL(md_register_thread);
  3443. EXPORT_SYMBOL(md_unregister_thread);
  3444. EXPORT_SYMBOL(md_wakeup_thread);
  3445. EXPORT_SYMBOL(md_print_devices);
  3446. EXPORT_SYMBOL(md_check_recovery);
  3447. MODULE_LICENSE("GPL");
  3448. MODULE_ALIAS("md");