mmu.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. #include <asm/vmx.h>
  34. /*
  35. * When setting this variable to true it enables Two-Dimensional-Paging
  36. * where the hardware walks 2 page tables:
  37. * 1. the guest-virtual to guest-physical
  38. * 2. while doing 1. it walks guest-physical to host-physical
  39. * If the hardware supports that we don't need to do shadow paging.
  40. */
  41. bool tdp_enabled = false;
  42. #undef MMU_DEBUG
  43. #undef AUDIT
  44. #ifdef AUDIT
  45. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  46. #else
  47. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  48. #endif
  49. #ifdef MMU_DEBUG
  50. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  51. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  52. #else
  53. #define pgprintk(x...) do { } while (0)
  54. #define rmap_printk(x...) do { } while (0)
  55. #endif
  56. #if defined(MMU_DEBUG) || defined(AUDIT)
  57. static int dbg = 0;
  58. module_param(dbg, bool, 0644);
  59. #endif
  60. static int oos_shadow = 1;
  61. module_param(oos_shadow, bool, 0644);
  62. #ifndef MMU_DEBUG
  63. #define ASSERT(x) do { } while (0)
  64. #else
  65. #define ASSERT(x) \
  66. if (!(x)) { \
  67. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  68. __FILE__, __LINE__, #x); \
  69. }
  70. #endif
  71. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  72. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  73. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  74. #define PT64_LEVEL_BITS 9
  75. #define PT64_LEVEL_SHIFT(level) \
  76. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  77. #define PT64_LEVEL_MASK(level) \
  78. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  79. #define PT64_INDEX(address, level)\
  80. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  81. #define PT32_LEVEL_BITS 10
  82. #define PT32_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  84. #define PT32_LEVEL_MASK(level) \
  85. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  86. #define PT32_LVL_OFFSET_MASK(level) \
  87. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  88. * PT32_LEVEL_BITS))) - 1))
  89. #define PT32_INDEX(address, level)\
  90. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  91. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  92. #define PT64_DIR_BASE_ADDR_MASK \
  93. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  94. #define PT64_LVL_ADDR_MASK(level) \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  96. * PT64_LEVEL_BITS))) - 1))
  97. #define PT64_LVL_OFFSET_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT32_BASE_ADDR_MASK PAGE_MASK
  101. #define PT32_DIR_BASE_ADDR_MASK \
  102. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  103. #define PT32_LVL_ADDR_MASK(level) \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  105. * PT32_LEVEL_BITS))) - 1))
  106. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  107. | PT64_NX_MASK)
  108. #define PFERR_PRESENT_MASK (1U << 0)
  109. #define PFERR_WRITE_MASK (1U << 1)
  110. #define PFERR_USER_MASK (1U << 2)
  111. #define PFERR_RSVD_MASK (1U << 3)
  112. #define PFERR_FETCH_MASK (1U << 4)
  113. #define PT_PDPE_LEVEL 3
  114. #define PT_DIRECTORY_LEVEL 2
  115. #define PT_PAGE_TABLE_LEVEL 1
  116. #define RMAP_EXT 4
  117. #define ACC_EXEC_MASK 1
  118. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  119. #define ACC_USER_MASK PT_USER_MASK
  120. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  121. #define CREATE_TRACE_POINTS
  122. #include "mmutrace.h"
  123. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  124. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  125. struct kvm_rmap_desc {
  126. u64 *sptes[RMAP_EXT];
  127. struct kvm_rmap_desc *more;
  128. };
  129. struct kvm_shadow_walk_iterator {
  130. u64 addr;
  131. hpa_t shadow_addr;
  132. int level;
  133. u64 *sptep;
  134. unsigned index;
  135. };
  136. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  137. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  138. shadow_walk_okay(&(_walker)); \
  139. shadow_walk_next(&(_walker)))
  140. struct kvm_unsync_walk {
  141. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  142. };
  143. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  144. static struct kmem_cache *pte_chain_cache;
  145. static struct kmem_cache *rmap_desc_cache;
  146. static struct kmem_cache *mmu_page_header_cache;
  147. static u64 __read_mostly shadow_trap_nonpresent_pte;
  148. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  149. static u64 __read_mostly shadow_base_present_pte;
  150. static u64 __read_mostly shadow_nx_mask;
  151. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  152. static u64 __read_mostly shadow_user_mask;
  153. static u64 __read_mostly shadow_accessed_mask;
  154. static u64 __read_mostly shadow_dirty_mask;
  155. static inline u64 rsvd_bits(int s, int e)
  156. {
  157. return ((1ULL << (e - s + 1)) - 1) << s;
  158. }
  159. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  160. {
  161. shadow_trap_nonpresent_pte = trap_pte;
  162. shadow_notrap_nonpresent_pte = notrap_pte;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  165. void kvm_mmu_set_base_ptes(u64 base_pte)
  166. {
  167. shadow_base_present_pte = base_pte;
  168. }
  169. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  170. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  171. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  172. {
  173. shadow_user_mask = user_mask;
  174. shadow_accessed_mask = accessed_mask;
  175. shadow_dirty_mask = dirty_mask;
  176. shadow_nx_mask = nx_mask;
  177. shadow_x_mask = x_mask;
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  180. static int is_write_protection(struct kvm_vcpu *vcpu)
  181. {
  182. return vcpu->arch.cr0 & X86_CR0_WP;
  183. }
  184. static int is_cpuid_PSE36(void)
  185. {
  186. return 1;
  187. }
  188. static int is_nx(struct kvm_vcpu *vcpu)
  189. {
  190. return vcpu->arch.shadow_efer & EFER_NX;
  191. }
  192. static int is_shadow_present_pte(u64 pte)
  193. {
  194. return pte != shadow_trap_nonpresent_pte
  195. && pte != shadow_notrap_nonpresent_pte;
  196. }
  197. static int is_large_pte(u64 pte)
  198. {
  199. return pte & PT_PAGE_SIZE_MASK;
  200. }
  201. static int is_writeble_pte(unsigned long pte)
  202. {
  203. return pte & PT_WRITABLE_MASK;
  204. }
  205. static int is_dirty_gpte(unsigned long pte)
  206. {
  207. return pte & PT_DIRTY_MASK;
  208. }
  209. static int is_rmap_spte(u64 pte)
  210. {
  211. return is_shadow_present_pte(pte);
  212. }
  213. static int is_last_spte(u64 pte, int level)
  214. {
  215. if (level == PT_PAGE_TABLE_LEVEL)
  216. return 1;
  217. if (is_large_pte(pte))
  218. return 1;
  219. return 0;
  220. }
  221. static pfn_t spte_to_pfn(u64 pte)
  222. {
  223. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  224. }
  225. static gfn_t pse36_gfn_delta(u32 gpte)
  226. {
  227. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  228. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  229. }
  230. static void __set_spte(u64 *sptep, u64 spte)
  231. {
  232. #ifdef CONFIG_X86_64
  233. set_64bit((unsigned long *)sptep, spte);
  234. #else
  235. set_64bit((unsigned long long *)sptep, spte);
  236. #endif
  237. }
  238. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  239. struct kmem_cache *base_cache, int min)
  240. {
  241. void *obj;
  242. if (cache->nobjs >= min)
  243. return 0;
  244. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  245. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  246. if (!obj)
  247. return -ENOMEM;
  248. cache->objects[cache->nobjs++] = obj;
  249. }
  250. return 0;
  251. }
  252. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  253. {
  254. while (mc->nobjs)
  255. kfree(mc->objects[--mc->nobjs]);
  256. }
  257. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  258. int min)
  259. {
  260. struct page *page;
  261. if (cache->nobjs >= min)
  262. return 0;
  263. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  264. page = alloc_page(GFP_KERNEL);
  265. if (!page)
  266. return -ENOMEM;
  267. set_page_private(page, 0);
  268. cache->objects[cache->nobjs++] = page_address(page);
  269. }
  270. return 0;
  271. }
  272. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  273. {
  274. while (mc->nobjs)
  275. free_page((unsigned long)mc->objects[--mc->nobjs]);
  276. }
  277. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  278. {
  279. int r;
  280. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  281. pte_chain_cache, 4);
  282. if (r)
  283. goto out;
  284. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  285. rmap_desc_cache, 4);
  286. if (r)
  287. goto out;
  288. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  289. if (r)
  290. goto out;
  291. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  292. mmu_page_header_cache, 4);
  293. out:
  294. return r;
  295. }
  296. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  297. {
  298. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  299. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  300. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  301. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  302. }
  303. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  304. size_t size)
  305. {
  306. void *p;
  307. BUG_ON(!mc->nobjs);
  308. p = mc->objects[--mc->nobjs];
  309. return p;
  310. }
  311. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  312. {
  313. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  314. sizeof(struct kvm_pte_chain));
  315. }
  316. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  317. {
  318. kfree(pc);
  319. }
  320. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  321. {
  322. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  323. sizeof(struct kvm_rmap_desc));
  324. }
  325. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  326. {
  327. kfree(rd);
  328. }
  329. /*
  330. * Return the pointer to the largepage write count for a given
  331. * gfn, handling slots that are not large page aligned.
  332. */
  333. static int *slot_largepage_idx(gfn_t gfn,
  334. struct kvm_memory_slot *slot,
  335. int level)
  336. {
  337. unsigned long idx;
  338. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  339. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  340. return &slot->lpage_info[level - 2][idx].write_count;
  341. }
  342. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  343. {
  344. struct kvm_memory_slot *slot;
  345. int *write_count;
  346. int i;
  347. gfn = unalias_gfn(kvm, gfn);
  348. slot = gfn_to_memslot_unaliased(kvm, gfn);
  349. for (i = PT_DIRECTORY_LEVEL;
  350. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  351. write_count = slot_largepage_idx(gfn, slot, i);
  352. *write_count += 1;
  353. }
  354. }
  355. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  356. {
  357. struct kvm_memory_slot *slot;
  358. int *write_count;
  359. int i;
  360. gfn = unalias_gfn(kvm, gfn);
  361. for (i = PT_DIRECTORY_LEVEL;
  362. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  363. slot = gfn_to_memslot_unaliased(kvm, gfn);
  364. write_count = slot_largepage_idx(gfn, slot, i);
  365. *write_count -= 1;
  366. WARN_ON(*write_count < 0);
  367. }
  368. }
  369. static int has_wrprotected_page(struct kvm *kvm,
  370. gfn_t gfn,
  371. int level)
  372. {
  373. struct kvm_memory_slot *slot;
  374. int *largepage_idx;
  375. gfn = unalias_gfn(kvm, gfn);
  376. slot = gfn_to_memslot_unaliased(kvm, gfn);
  377. if (slot) {
  378. largepage_idx = slot_largepage_idx(gfn, slot, level);
  379. return *largepage_idx;
  380. }
  381. return 1;
  382. }
  383. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  384. {
  385. unsigned long page_size = PAGE_SIZE;
  386. struct vm_area_struct *vma;
  387. unsigned long addr;
  388. int i, ret = 0;
  389. addr = gfn_to_hva(kvm, gfn);
  390. if (kvm_is_error_hva(addr))
  391. return page_size;
  392. down_read(&current->mm->mmap_sem);
  393. vma = find_vma(current->mm, addr);
  394. if (!vma)
  395. goto out;
  396. page_size = vma_kernel_pagesize(vma);
  397. out:
  398. up_read(&current->mm->mmap_sem);
  399. for (i = PT_PAGE_TABLE_LEVEL;
  400. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  401. if (page_size >= KVM_HPAGE_SIZE(i))
  402. ret = i;
  403. else
  404. break;
  405. }
  406. return ret;
  407. }
  408. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  409. {
  410. struct kvm_memory_slot *slot;
  411. int host_level;
  412. int level = PT_PAGE_TABLE_LEVEL;
  413. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  414. if (slot && slot->dirty_bitmap)
  415. return PT_PAGE_TABLE_LEVEL;
  416. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  417. if (host_level == PT_PAGE_TABLE_LEVEL)
  418. return host_level;
  419. for (level = PT_DIRECTORY_LEVEL; level <= host_level; ++level) {
  420. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  421. break;
  422. }
  423. return level - 1;
  424. }
  425. /*
  426. * Take gfn and return the reverse mapping to it.
  427. * Note: gfn must be unaliased before this function get called
  428. */
  429. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  430. {
  431. struct kvm_memory_slot *slot;
  432. unsigned long idx;
  433. slot = gfn_to_memslot(kvm, gfn);
  434. if (likely(level == PT_PAGE_TABLE_LEVEL))
  435. return &slot->rmap[gfn - slot->base_gfn];
  436. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  437. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  438. return &slot->lpage_info[level - 2][idx].rmap_pde;
  439. }
  440. /*
  441. * Reverse mapping data structures:
  442. *
  443. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  444. * that points to page_address(page).
  445. *
  446. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  447. * containing more mappings.
  448. *
  449. * Returns the number of rmap entries before the spte was added or zero if
  450. * the spte was not added.
  451. *
  452. */
  453. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  454. {
  455. struct kvm_mmu_page *sp;
  456. struct kvm_rmap_desc *desc;
  457. unsigned long *rmapp;
  458. int i, count = 0;
  459. if (!is_rmap_spte(*spte))
  460. return count;
  461. gfn = unalias_gfn(vcpu->kvm, gfn);
  462. sp = page_header(__pa(spte));
  463. sp->gfns[spte - sp->spt] = gfn;
  464. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  465. if (!*rmapp) {
  466. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  467. *rmapp = (unsigned long)spte;
  468. } else if (!(*rmapp & 1)) {
  469. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  470. desc = mmu_alloc_rmap_desc(vcpu);
  471. desc->sptes[0] = (u64 *)*rmapp;
  472. desc->sptes[1] = spte;
  473. *rmapp = (unsigned long)desc | 1;
  474. } else {
  475. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  476. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  477. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  478. desc = desc->more;
  479. count += RMAP_EXT;
  480. }
  481. if (desc->sptes[RMAP_EXT-1]) {
  482. desc->more = mmu_alloc_rmap_desc(vcpu);
  483. desc = desc->more;
  484. }
  485. for (i = 0; desc->sptes[i]; ++i)
  486. ;
  487. desc->sptes[i] = spte;
  488. }
  489. return count;
  490. }
  491. static void rmap_desc_remove_entry(unsigned long *rmapp,
  492. struct kvm_rmap_desc *desc,
  493. int i,
  494. struct kvm_rmap_desc *prev_desc)
  495. {
  496. int j;
  497. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  498. ;
  499. desc->sptes[i] = desc->sptes[j];
  500. desc->sptes[j] = NULL;
  501. if (j != 0)
  502. return;
  503. if (!prev_desc && !desc->more)
  504. *rmapp = (unsigned long)desc->sptes[0];
  505. else
  506. if (prev_desc)
  507. prev_desc->more = desc->more;
  508. else
  509. *rmapp = (unsigned long)desc->more | 1;
  510. mmu_free_rmap_desc(desc);
  511. }
  512. static void rmap_remove(struct kvm *kvm, u64 *spte)
  513. {
  514. struct kvm_rmap_desc *desc;
  515. struct kvm_rmap_desc *prev_desc;
  516. struct kvm_mmu_page *sp;
  517. pfn_t pfn;
  518. unsigned long *rmapp;
  519. int i;
  520. if (!is_rmap_spte(*spte))
  521. return;
  522. sp = page_header(__pa(spte));
  523. pfn = spte_to_pfn(*spte);
  524. if (*spte & shadow_accessed_mask)
  525. kvm_set_pfn_accessed(pfn);
  526. if (is_writeble_pte(*spte))
  527. kvm_set_pfn_dirty(pfn);
  528. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  529. if (!*rmapp) {
  530. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  531. BUG();
  532. } else if (!(*rmapp & 1)) {
  533. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  534. if ((u64 *)*rmapp != spte) {
  535. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  536. spte, *spte);
  537. BUG();
  538. }
  539. *rmapp = 0;
  540. } else {
  541. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  542. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  543. prev_desc = NULL;
  544. while (desc) {
  545. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  546. if (desc->sptes[i] == spte) {
  547. rmap_desc_remove_entry(rmapp,
  548. desc, i,
  549. prev_desc);
  550. return;
  551. }
  552. prev_desc = desc;
  553. desc = desc->more;
  554. }
  555. BUG();
  556. }
  557. }
  558. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  559. {
  560. struct kvm_rmap_desc *desc;
  561. struct kvm_rmap_desc *prev_desc;
  562. u64 *prev_spte;
  563. int i;
  564. if (!*rmapp)
  565. return NULL;
  566. else if (!(*rmapp & 1)) {
  567. if (!spte)
  568. return (u64 *)*rmapp;
  569. return NULL;
  570. }
  571. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  572. prev_desc = NULL;
  573. prev_spte = NULL;
  574. while (desc) {
  575. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  576. if (prev_spte == spte)
  577. return desc->sptes[i];
  578. prev_spte = desc->sptes[i];
  579. }
  580. desc = desc->more;
  581. }
  582. return NULL;
  583. }
  584. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  585. {
  586. unsigned long *rmapp;
  587. u64 *spte;
  588. int i, write_protected = 0;
  589. gfn = unalias_gfn(kvm, gfn);
  590. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  591. spte = rmap_next(kvm, rmapp, NULL);
  592. while (spte) {
  593. BUG_ON(!spte);
  594. BUG_ON(!(*spte & PT_PRESENT_MASK));
  595. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  596. if (is_writeble_pte(*spte)) {
  597. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  598. write_protected = 1;
  599. }
  600. spte = rmap_next(kvm, rmapp, spte);
  601. }
  602. if (write_protected) {
  603. pfn_t pfn;
  604. spte = rmap_next(kvm, rmapp, NULL);
  605. pfn = spte_to_pfn(*spte);
  606. kvm_set_pfn_dirty(pfn);
  607. }
  608. /* check for huge page mappings */
  609. for (i = PT_DIRECTORY_LEVEL;
  610. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  611. rmapp = gfn_to_rmap(kvm, gfn, i);
  612. spte = rmap_next(kvm, rmapp, NULL);
  613. while (spte) {
  614. BUG_ON(!spte);
  615. BUG_ON(!(*spte & PT_PRESENT_MASK));
  616. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  617. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  618. if (is_writeble_pte(*spte)) {
  619. rmap_remove(kvm, spte);
  620. --kvm->stat.lpages;
  621. __set_spte(spte, shadow_trap_nonpresent_pte);
  622. spte = NULL;
  623. write_protected = 1;
  624. }
  625. spte = rmap_next(kvm, rmapp, spte);
  626. }
  627. }
  628. return write_protected;
  629. }
  630. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  631. {
  632. u64 *spte;
  633. int need_tlb_flush = 0;
  634. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  635. BUG_ON(!(*spte & PT_PRESENT_MASK));
  636. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  637. rmap_remove(kvm, spte);
  638. __set_spte(spte, shadow_trap_nonpresent_pte);
  639. need_tlb_flush = 1;
  640. }
  641. return need_tlb_flush;
  642. }
  643. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  644. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  645. {
  646. int i, j;
  647. int retval = 0;
  648. /*
  649. * If mmap_sem isn't taken, we can look the memslots with only
  650. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  651. */
  652. for (i = 0; i < kvm->nmemslots; i++) {
  653. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  654. unsigned long start = memslot->userspace_addr;
  655. unsigned long end;
  656. /* mmu_lock protects userspace_addr */
  657. if (!start)
  658. continue;
  659. end = start + (memslot->npages << PAGE_SHIFT);
  660. if (hva >= start && hva < end) {
  661. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  662. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  663. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  664. int idx = gfn_offset;
  665. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  666. retval |= handler(kvm,
  667. &memslot->lpage_info[j][idx].rmap_pde);
  668. }
  669. }
  670. }
  671. return retval;
  672. }
  673. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  674. {
  675. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  676. }
  677. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  678. {
  679. u64 *spte;
  680. int young = 0;
  681. /* always return old for EPT */
  682. if (!shadow_accessed_mask)
  683. return 0;
  684. spte = rmap_next(kvm, rmapp, NULL);
  685. while (spte) {
  686. int _young;
  687. u64 _spte = *spte;
  688. BUG_ON(!(_spte & PT_PRESENT_MASK));
  689. _young = _spte & PT_ACCESSED_MASK;
  690. if (_young) {
  691. young = 1;
  692. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  693. }
  694. spte = rmap_next(kvm, rmapp, spte);
  695. }
  696. return young;
  697. }
  698. #define RMAP_RECYCLE_THRESHOLD 1000
  699. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  700. {
  701. unsigned long *rmapp;
  702. struct kvm_mmu_page *sp;
  703. sp = page_header(__pa(spte));
  704. gfn = unalias_gfn(vcpu->kvm, gfn);
  705. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  706. kvm_unmap_rmapp(vcpu->kvm, rmapp);
  707. kvm_flush_remote_tlbs(vcpu->kvm);
  708. }
  709. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  710. {
  711. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  712. }
  713. #ifdef MMU_DEBUG
  714. static int is_empty_shadow_page(u64 *spt)
  715. {
  716. u64 *pos;
  717. u64 *end;
  718. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  719. if (is_shadow_present_pte(*pos)) {
  720. printk(KERN_ERR "%s: %p %llx\n", __func__,
  721. pos, *pos);
  722. return 0;
  723. }
  724. return 1;
  725. }
  726. #endif
  727. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  728. {
  729. ASSERT(is_empty_shadow_page(sp->spt));
  730. list_del(&sp->link);
  731. __free_page(virt_to_page(sp->spt));
  732. __free_page(virt_to_page(sp->gfns));
  733. kfree(sp);
  734. ++kvm->arch.n_free_mmu_pages;
  735. }
  736. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  737. {
  738. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  739. }
  740. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  741. u64 *parent_pte)
  742. {
  743. struct kvm_mmu_page *sp;
  744. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  745. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  746. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  747. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  748. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  749. INIT_LIST_HEAD(&sp->oos_link);
  750. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  751. sp->multimapped = 0;
  752. sp->parent_pte = parent_pte;
  753. --vcpu->kvm->arch.n_free_mmu_pages;
  754. return sp;
  755. }
  756. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  757. struct kvm_mmu_page *sp, u64 *parent_pte)
  758. {
  759. struct kvm_pte_chain *pte_chain;
  760. struct hlist_node *node;
  761. int i;
  762. if (!parent_pte)
  763. return;
  764. if (!sp->multimapped) {
  765. u64 *old = sp->parent_pte;
  766. if (!old) {
  767. sp->parent_pte = parent_pte;
  768. return;
  769. }
  770. sp->multimapped = 1;
  771. pte_chain = mmu_alloc_pte_chain(vcpu);
  772. INIT_HLIST_HEAD(&sp->parent_ptes);
  773. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  774. pte_chain->parent_ptes[0] = old;
  775. }
  776. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  777. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  778. continue;
  779. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  780. if (!pte_chain->parent_ptes[i]) {
  781. pte_chain->parent_ptes[i] = parent_pte;
  782. return;
  783. }
  784. }
  785. pte_chain = mmu_alloc_pte_chain(vcpu);
  786. BUG_ON(!pte_chain);
  787. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  788. pte_chain->parent_ptes[0] = parent_pte;
  789. }
  790. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  791. u64 *parent_pte)
  792. {
  793. struct kvm_pte_chain *pte_chain;
  794. struct hlist_node *node;
  795. int i;
  796. if (!sp->multimapped) {
  797. BUG_ON(sp->parent_pte != parent_pte);
  798. sp->parent_pte = NULL;
  799. return;
  800. }
  801. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  802. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  803. if (!pte_chain->parent_ptes[i])
  804. break;
  805. if (pte_chain->parent_ptes[i] != parent_pte)
  806. continue;
  807. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  808. && pte_chain->parent_ptes[i + 1]) {
  809. pte_chain->parent_ptes[i]
  810. = pte_chain->parent_ptes[i + 1];
  811. ++i;
  812. }
  813. pte_chain->parent_ptes[i] = NULL;
  814. if (i == 0) {
  815. hlist_del(&pte_chain->link);
  816. mmu_free_pte_chain(pte_chain);
  817. if (hlist_empty(&sp->parent_ptes)) {
  818. sp->multimapped = 0;
  819. sp->parent_pte = NULL;
  820. }
  821. }
  822. return;
  823. }
  824. BUG();
  825. }
  826. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  827. mmu_parent_walk_fn fn)
  828. {
  829. struct kvm_pte_chain *pte_chain;
  830. struct hlist_node *node;
  831. struct kvm_mmu_page *parent_sp;
  832. int i;
  833. if (!sp->multimapped && sp->parent_pte) {
  834. parent_sp = page_header(__pa(sp->parent_pte));
  835. fn(vcpu, parent_sp);
  836. mmu_parent_walk(vcpu, parent_sp, fn);
  837. return;
  838. }
  839. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  840. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  841. if (!pte_chain->parent_ptes[i])
  842. break;
  843. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  844. fn(vcpu, parent_sp);
  845. mmu_parent_walk(vcpu, parent_sp, fn);
  846. }
  847. }
  848. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  849. {
  850. unsigned int index;
  851. struct kvm_mmu_page *sp = page_header(__pa(spte));
  852. index = spte - sp->spt;
  853. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  854. sp->unsync_children++;
  855. WARN_ON(!sp->unsync_children);
  856. }
  857. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  858. {
  859. struct kvm_pte_chain *pte_chain;
  860. struct hlist_node *node;
  861. int i;
  862. if (!sp->parent_pte)
  863. return;
  864. if (!sp->multimapped) {
  865. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  866. return;
  867. }
  868. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  869. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  870. if (!pte_chain->parent_ptes[i])
  871. break;
  872. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  873. }
  874. }
  875. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  876. {
  877. kvm_mmu_update_parents_unsync(sp);
  878. return 1;
  879. }
  880. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  881. struct kvm_mmu_page *sp)
  882. {
  883. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  884. kvm_mmu_update_parents_unsync(sp);
  885. }
  886. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  887. struct kvm_mmu_page *sp)
  888. {
  889. int i;
  890. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  891. sp->spt[i] = shadow_trap_nonpresent_pte;
  892. }
  893. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  894. struct kvm_mmu_page *sp)
  895. {
  896. return 1;
  897. }
  898. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  899. {
  900. }
  901. #define KVM_PAGE_ARRAY_NR 16
  902. struct kvm_mmu_pages {
  903. struct mmu_page_and_offset {
  904. struct kvm_mmu_page *sp;
  905. unsigned int idx;
  906. } page[KVM_PAGE_ARRAY_NR];
  907. unsigned int nr;
  908. };
  909. #define for_each_unsync_children(bitmap, idx) \
  910. for (idx = find_first_bit(bitmap, 512); \
  911. idx < 512; \
  912. idx = find_next_bit(bitmap, 512, idx+1))
  913. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  914. int idx)
  915. {
  916. int i;
  917. if (sp->unsync)
  918. for (i=0; i < pvec->nr; i++)
  919. if (pvec->page[i].sp == sp)
  920. return 0;
  921. pvec->page[pvec->nr].sp = sp;
  922. pvec->page[pvec->nr].idx = idx;
  923. pvec->nr++;
  924. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  925. }
  926. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  927. struct kvm_mmu_pages *pvec)
  928. {
  929. int i, ret, nr_unsync_leaf = 0;
  930. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  931. u64 ent = sp->spt[i];
  932. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  933. struct kvm_mmu_page *child;
  934. child = page_header(ent & PT64_BASE_ADDR_MASK);
  935. if (child->unsync_children) {
  936. if (mmu_pages_add(pvec, child, i))
  937. return -ENOSPC;
  938. ret = __mmu_unsync_walk(child, pvec);
  939. if (!ret)
  940. __clear_bit(i, sp->unsync_child_bitmap);
  941. else if (ret > 0)
  942. nr_unsync_leaf += ret;
  943. else
  944. return ret;
  945. }
  946. if (child->unsync) {
  947. nr_unsync_leaf++;
  948. if (mmu_pages_add(pvec, child, i))
  949. return -ENOSPC;
  950. }
  951. }
  952. }
  953. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  954. sp->unsync_children = 0;
  955. return nr_unsync_leaf;
  956. }
  957. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  958. struct kvm_mmu_pages *pvec)
  959. {
  960. if (!sp->unsync_children)
  961. return 0;
  962. mmu_pages_add(pvec, sp, 0);
  963. return __mmu_unsync_walk(sp, pvec);
  964. }
  965. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  966. {
  967. unsigned index;
  968. struct hlist_head *bucket;
  969. struct kvm_mmu_page *sp;
  970. struct hlist_node *node;
  971. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  972. index = kvm_page_table_hashfn(gfn);
  973. bucket = &kvm->arch.mmu_page_hash[index];
  974. hlist_for_each_entry(sp, node, bucket, hash_link)
  975. if (sp->gfn == gfn && !sp->role.direct
  976. && !sp->role.invalid) {
  977. pgprintk("%s: found role %x\n",
  978. __func__, sp->role.word);
  979. return sp;
  980. }
  981. return NULL;
  982. }
  983. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  984. {
  985. WARN_ON(!sp->unsync);
  986. sp->unsync = 0;
  987. --kvm->stat.mmu_unsync;
  988. }
  989. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  990. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  991. {
  992. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  993. kvm_mmu_zap_page(vcpu->kvm, sp);
  994. return 1;
  995. }
  996. trace_kvm_mmu_sync_page(sp);
  997. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  998. kvm_flush_remote_tlbs(vcpu->kvm);
  999. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1000. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1001. kvm_mmu_zap_page(vcpu->kvm, sp);
  1002. return 1;
  1003. }
  1004. kvm_mmu_flush_tlb(vcpu);
  1005. return 0;
  1006. }
  1007. struct mmu_page_path {
  1008. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1009. unsigned int idx[PT64_ROOT_LEVEL-1];
  1010. };
  1011. #define for_each_sp(pvec, sp, parents, i) \
  1012. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1013. sp = pvec.page[i].sp; \
  1014. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1015. i = mmu_pages_next(&pvec, &parents, i))
  1016. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1017. struct mmu_page_path *parents,
  1018. int i)
  1019. {
  1020. int n;
  1021. for (n = i+1; n < pvec->nr; n++) {
  1022. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1023. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1024. parents->idx[0] = pvec->page[n].idx;
  1025. return n;
  1026. }
  1027. parents->parent[sp->role.level-2] = sp;
  1028. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1029. }
  1030. return n;
  1031. }
  1032. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1033. {
  1034. struct kvm_mmu_page *sp;
  1035. unsigned int level = 0;
  1036. do {
  1037. unsigned int idx = parents->idx[level];
  1038. sp = parents->parent[level];
  1039. if (!sp)
  1040. return;
  1041. --sp->unsync_children;
  1042. WARN_ON((int)sp->unsync_children < 0);
  1043. __clear_bit(idx, sp->unsync_child_bitmap);
  1044. level++;
  1045. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1046. }
  1047. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1048. struct mmu_page_path *parents,
  1049. struct kvm_mmu_pages *pvec)
  1050. {
  1051. parents->parent[parent->role.level-1] = NULL;
  1052. pvec->nr = 0;
  1053. }
  1054. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1055. struct kvm_mmu_page *parent)
  1056. {
  1057. int i;
  1058. struct kvm_mmu_page *sp;
  1059. struct mmu_page_path parents;
  1060. struct kvm_mmu_pages pages;
  1061. kvm_mmu_pages_init(parent, &parents, &pages);
  1062. while (mmu_unsync_walk(parent, &pages)) {
  1063. int protected = 0;
  1064. for_each_sp(pages, sp, parents, i)
  1065. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1066. if (protected)
  1067. kvm_flush_remote_tlbs(vcpu->kvm);
  1068. for_each_sp(pages, sp, parents, i) {
  1069. kvm_sync_page(vcpu, sp);
  1070. mmu_pages_clear_parents(&parents);
  1071. }
  1072. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1073. kvm_mmu_pages_init(parent, &parents, &pages);
  1074. }
  1075. }
  1076. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1077. gfn_t gfn,
  1078. gva_t gaddr,
  1079. unsigned level,
  1080. int direct,
  1081. unsigned access,
  1082. u64 *parent_pte)
  1083. {
  1084. union kvm_mmu_page_role role;
  1085. unsigned index;
  1086. unsigned quadrant;
  1087. struct hlist_head *bucket;
  1088. struct kvm_mmu_page *sp;
  1089. struct hlist_node *node, *tmp;
  1090. role = vcpu->arch.mmu.base_role;
  1091. role.level = level;
  1092. role.direct = direct;
  1093. role.access = access;
  1094. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1095. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1096. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1097. role.quadrant = quadrant;
  1098. }
  1099. index = kvm_page_table_hashfn(gfn);
  1100. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1101. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1102. if (sp->gfn == gfn) {
  1103. if (sp->unsync)
  1104. if (kvm_sync_page(vcpu, sp))
  1105. continue;
  1106. if (sp->role.word != role.word)
  1107. continue;
  1108. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1109. if (sp->unsync_children) {
  1110. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1111. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1112. }
  1113. trace_kvm_mmu_get_page(sp, false);
  1114. return sp;
  1115. }
  1116. ++vcpu->kvm->stat.mmu_cache_miss;
  1117. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1118. if (!sp)
  1119. return sp;
  1120. sp->gfn = gfn;
  1121. sp->role = role;
  1122. hlist_add_head(&sp->hash_link, bucket);
  1123. if (!direct) {
  1124. if (rmap_write_protect(vcpu->kvm, gfn))
  1125. kvm_flush_remote_tlbs(vcpu->kvm);
  1126. account_shadowed(vcpu->kvm, gfn);
  1127. }
  1128. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1129. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1130. else
  1131. nonpaging_prefetch_page(vcpu, sp);
  1132. trace_kvm_mmu_get_page(sp, true);
  1133. return sp;
  1134. }
  1135. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1136. struct kvm_vcpu *vcpu, u64 addr)
  1137. {
  1138. iterator->addr = addr;
  1139. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1140. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1141. if (iterator->level == PT32E_ROOT_LEVEL) {
  1142. iterator->shadow_addr
  1143. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1144. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1145. --iterator->level;
  1146. if (!iterator->shadow_addr)
  1147. iterator->level = 0;
  1148. }
  1149. }
  1150. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1151. {
  1152. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1153. return false;
  1154. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1155. if (is_large_pte(*iterator->sptep))
  1156. return false;
  1157. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1158. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1159. return true;
  1160. }
  1161. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1162. {
  1163. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1164. --iterator->level;
  1165. }
  1166. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1167. struct kvm_mmu_page *sp)
  1168. {
  1169. unsigned i;
  1170. u64 *pt;
  1171. u64 ent;
  1172. pt = sp->spt;
  1173. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1174. ent = pt[i];
  1175. if (is_shadow_present_pte(ent)) {
  1176. if (!is_last_spte(ent, sp->role.level)) {
  1177. ent &= PT64_BASE_ADDR_MASK;
  1178. mmu_page_remove_parent_pte(page_header(ent),
  1179. &pt[i]);
  1180. } else {
  1181. if (is_large_pte(ent))
  1182. --kvm->stat.lpages;
  1183. rmap_remove(kvm, &pt[i]);
  1184. }
  1185. }
  1186. pt[i] = shadow_trap_nonpresent_pte;
  1187. }
  1188. }
  1189. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1190. {
  1191. mmu_page_remove_parent_pte(sp, parent_pte);
  1192. }
  1193. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1194. {
  1195. int i;
  1196. struct kvm_vcpu *vcpu;
  1197. kvm_for_each_vcpu(i, vcpu, kvm)
  1198. vcpu->arch.last_pte_updated = NULL;
  1199. }
  1200. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1201. {
  1202. u64 *parent_pte;
  1203. while (sp->multimapped || sp->parent_pte) {
  1204. if (!sp->multimapped)
  1205. parent_pte = sp->parent_pte;
  1206. else {
  1207. struct kvm_pte_chain *chain;
  1208. chain = container_of(sp->parent_ptes.first,
  1209. struct kvm_pte_chain, link);
  1210. parent_pte = chain->parent_ptes[0];
  1211. }
  1212. BUG_ON(!parent_pte);
  1213. kvm_mmu_put_page(sp, parent_pte);
  1214. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1215. }
  1216. }
  1217. static int mmu_zap_unsync_children(struct kvm *kvm,
  1218. struct kvm_mmu_page *parent)
  1219. {
  1220. int i, zapped = 0;
  1221. struct mmu_page_path parents;
  1222. struct kvm_mmu_pages pages;
  1223. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1224. return 0;
  1225. kvm_mmu_pages_init(parent, &parents, &pages);
  1226. while (mmu_unsync_walk(parent, &pages)) {
  1227. struct kvm_mmu_page *sp;
  1228. for_each_sp(pages, sp, parents, i) {
  1229. kvm_mmu_zap_page(kvm, sp);
  1230. mmu_pages_clear_parents(&parents);
  1231. }
  1232. zapped += pages.nr;
  1233. kvm_mmu_pages_init(parent, &parents, &pages);
  1234. }
  1235. return zapped;
  1236. }
  1237. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1238. {
  1239. int ret;
  1240. trace_kvm_mmu_zap_page(sp);
  1241. ++kvm->stat.mmu_shadow_zapped;
  1242. ret = mmu_zap_unsync_children(kvm, sp);
  1243. kvm_mmu_page_unlink_children(kvm, sp);
  1244. kvm_mmu_unlink_parents(kvm, sp);
  1245. kvm_flush_remote_tlbs(kvm);
  1246. if (!sp->role.invalid && !sp->role.direct)
  1247. unaccount_shadowed(kvm, sp->gfn);
  1248. if (sp->unsync)
  1249. kvm_unlink_unsync_page(kvm, sp);
  1250. if (!sp->root_count) {
  1251. hlist_del(&sp->hash_link);
  1252. kvm_mmu_free_page(kvm, sp);
  1253. } else {
  1254. sp->role.invalid = 1;
  1255. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1256. kvm_reload_remote_mmus(kvm);
  1257. }
  1258. kvm_mmu_reset_last_pte_updated(kvm);
  1259. return ret;
  1260. }
  1261. /*
  1262. * Changing the number of mmu pages allocated to the vm
  1263. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1264. */
  1265. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1266. {
  1267. int used_pages;
  1268. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1269. used_pages = max(0, used_pages);
  1270. /*
  1271. * If we set the number of mmu pages to be smaller be than the
  1272. * number of actived pages , we must to free some mmu pages before we
  1273. * change the value
  1274. */
  1275. if (used_pages > kvm_nr_mmu_pages) {
  1276. while (used_pages > kvm_nr_mmu_pages) {
  1277. struct kvm_mmu_page *page;
  1278. page = container_of(kvm->arch.active_mmu_pages.prev,
  1279. struct kvm_mmu_page, link);
  1280. kvm_mmu_zap_page(kvm, page);
  1281. used_pages--;
  1282. }
  1283. kvm->arch.n_free_mmu_pages = 0;
  1284. }
  1285. else
  1286. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1287. - kvm->arch.n_alloc_mmu_pages;
  1288. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1289. }
  1290. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1291. {
  1292. unsigned index;
  1293. struct hlist_head *bucket;
  1294. struct kvm_mmu_page *sp;
  1295. struct hlist_node *node, *n;
  1296. int r;
  1297. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1298. r = 0;
  1299. index = kvm_page_table_hashfn(gfn);
  1300. bucket = &kvm->arch.mmu_page_hash[index];
  1301. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1302. if (sp->gfn == gfn && !sp->role.direct) {
  1303. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1304. sp->role.word);
  1305. r = 1;
  1306. if (kvm_mmu_zap_page(kvm, sp))
  1307. n = bucket->first;
  1308. }
  1309. return r;
  1310. }
  1311. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1312. {
  1313. unsigned index;
  1314. struct hlist_head *bucket;
  1315. struct kvm_mmu_page *sp;
  1316. struct hlist_node *node, *nn;
  1317. index = kvm_page_table_hashfn(gfn);
  1318. bucket = &kvm->arch.mmu_page_hash[index];
  1319. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1320. if (sp->gfn == gfn && !sp->role.direct
  1321. && !sp->role.invalid) {
  1322. pgprintk("%s: zap %lx %x\n",
  1323. __func__, gfn, sp->role.word);
  1324. kvm_mmu_zap_page(kvm, sp);
  1325. }
  1326. }
  1327. }
  1328. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1329. {
  1330. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1331. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1332. __set_bit(slot, sp->slot_bitmap);
  1333. }
  1334. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1335. {
  1336. int i;
  1337. u64 *pt = sp->spt;
  1338. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1339. return;
  1340. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1341. if (pt[i] == shadow_notrap_nonpresent_pte)
  1342. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1343. }
  1344. }
  1345. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1346. {
  1347. struct page *page;
  1348. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1349. if (gpa == UNMAPPED_GVA)
  1350. return NULL;
  1351. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1352. return page;
  1353. }
  1354. /*
  1355. * The function is based on mtrr_type_lookup() in
  1356. * arch/x86/kernel/cpu/mtrr/generic.c
  1357. */
  1358. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1359. u64 start, u64 end)
  1360. {
  1361. int i;
  1362. u64 base, mask;
  1363. u8 prev_match, curr_match;
  1364. int num_var_ranges = KVM_NR_VAR_MTRR;
  1365. if (!mtrr_state->enabled)
  1366. return 0xFF;
  1367. /* Make end inclusive end, instead of exclusive */
  1368. end--;
  1369. /* Look in fixed ranges. Just return the type as per start */
  1370. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1371. int idx;
  1372. if (start < 0x80000) {
  1373. idx = 0;
  1374. idx += (start >> 16);
  1375. return mtrr_state->fixed_ranges[idx];
  1376. } else if (start < 0xC0000) {
  1377. idx = 1 * 8;
  1378. idx += ((start - 0x80000) >> 14);
  1379. return mtrr_state->fixed_ranges[idx];
  1380. } else if (start < 0x1000000) {
  1381. idx = 3 * 8;
  1382. idx += ((start - 0xC0000) >> 12);
  1383. return mtrr_state->fixed_ranges[idx];
  1384. }
  1385. }
  1386. /*
  1387. * Look in variable ranges
  1388. * Look of multiple ranges matching this address and pick type
  1389. * as per MTRR precedence
  1390. */
  1391. if (!(mtrr_state->enabled & 2))
  1392. return mtrr_state->def_type;
  1393. prev_match = 0xFF;
  1394. for (i = 0; i < num_var_ranges; ++i) {
  1395. unsigned short start_state, end_state;
  1396. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1397. continue;
  1398. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1399. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1400. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1401. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1402. start_state = ((start & mask) == (base & mask));
  1403. end_state = ((end & mask) == (base & mask));
  1404. if (start_state != end_state)
  1405. return 0xFE;
  1406. if ((start & mask) != (base & mask))
  1407. continue;
  1408. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1409. if (prev_match == 0xFF) {
  1410. prev_match = curr_match;
  1411. continue;
  1412. }
  1413. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1414. curr_match == MTRR_TYPE_UNCACHABLE)
  1415. return MTRR_TYPE_UNCACHABLE;
  1416. if ((prev_match == MTRR_TYPE_WRBACK &&
  1417. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1418. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1419. curr_match == MTRR_TYPE_WRBACK)) {
  1420. prev_match = MTRR_TYPE_WRTHROUGH;
  1421. curr_match = MTRR_TYPE_WRTHROUGH;
  1422. }
  1423. if (prev_match != curr_match)
  1424. return MTRR_TYPE_UNCACHABLE;
  1425. }
  1426. if (prev_match != 0xFF)
  1427. return prev_match;
  1428. return mtrr_state->def_type;
  1429. }
  1430. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1431. {
  1432. u8 mtrr;
  1433. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1434. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1435. if (mtrr == 0xfe || mtrr == 0xff)
  1436. mtrr = MTRR_TYPE_WRBACK;
  1437. return mtrr;
  1438. }
  1439. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1440. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1441. {
  1442. unsigned index;
  1443. struct hlist_head *bucket;
  1444. struct kvm_mmu_page *s;
  1445. struct hlist_node *node, *n;
  1446. trace_kvm_mmu_unsync_page(sp);
  1447. index = kvm_page_table_hashfn(sp->gfn);
  1448. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1449. /* don't unsync if pagetable is shadowed with multiple roles */
  1450. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1451. if (s->gfn != sp->gfn || s->role.direct)
  1452. continue;
  1453. if (s->role.word != sp->role.word)
  1454. return 1;
  1455. }
  1456. ++vcpu->kvm->stat.mmu_unsync;
  1457. sp->unsync = 1;
  1458. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1459. mmu_convert_notrap(sp);
  1460. return 0;
  1461. }
  1462. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1463. bool can_unsync)
  1464. {
  1465. struct kvm_mmu_page *shadow;
  1466. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1467. if (shadow) {
  1468. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1469. return 1;
  1470. if (shadow->unsync)
  1471. return 0;
  1472. if (can_unsync && oos_shadow)
  1473. return kvm_unsync_page(vcpu, shadow);
  1474. return 1;
  1475. }
  1476. return 0;
  1477. }
  1478. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1479. unsigned pte_access, int user_fault,
  1480. int write_fault, int dirty, int level,
  1481. gfn_t gfn, pfn_t pfn, bool speculative,
  1482. bool can_unsync, bool reset_host_protection)
  1483. {
  1484. u64 spte;
  1485. int ret = 0;
  1486. /*
  1487. * We don't set the accessed bit, since we sometimes want to see
  1488. * whether the guest actually used the pte (in order to detect
  1489. * demand paging).
  1490. */
  1491. spte = shadow_base_present_pte | shadow_dirty_mask;
  1492. if (!speculative)
  1493. spte |= shadow_accessed_mask;
  1494. if (!dirty)
  1495. pte_access &= ~ACC_WRITE_MASK;
  1496. if (pte_access & ACC_EXEC_MASK)
  1497. spte |= shadow_x_mask;
  1498. else
  1499. spte |= shadow_nx_mask;
  1500. if (pte_access & ACC_USER_MASK)
  1501. spte |= shadow_user_mask;
  1502. if (level > PT_PAGE_TABLE_LEVEL)
  1503. spte |= PT_PAGE_SIZE_MASK;
  1504. if (tdp_enabled)
  1505. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1506. kvm_is_mmio_pfn(pfn));
  1507. if (reset_host_protection)
  1508. spte |= SPTE_HOST_WRITEABLE;
  1509. spte |= (u64)pfn << PAGE_SHIFT;
  1510. if ((pte_access & ACC_WRITE_MASK)
  1511. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1512. if (level > PT_PAGE_TABLE_LEVEL &&
  1513. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1514. ret = 1;
  1515. spte = shadow_trap_nonpresent_pte;
  1516. goto set_pte;
  1517. }
  1518. spte |= PT_WRITABLE_MASK;
  1519. /*
  1520. * Optimization: for pte sync, if spte was writable the hash
  1521. * lookup is unnecessary (and expensive). Write protection
  1522. * is responsibility of mmu_get_page / kvm_sync_page.
  1523. * Same reasoning can be applied to dirty page accounting.
  1524. */
  1525. if (!can_unsync && is_writeble_pte(*sptep))
  1526. goto set_pte;
  1527. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1528. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1529. __func__, gfn);
  1530. ret = 1;
  1531. pte_access &= ~ACC_WRITE_MASK;
  1532. if (is_writeble_pte(spte))
  1533. spte &= ~PT_WRITABLE_MASK;
  1534. }
  1535. }
  1536. if (pte_access & ACC_WRITE_MASK)
  1537. mark_page_dirty(vcpu->kvm, gfn);
  1538. set_pte:
  1539. __set_spte(sptep, spte);
  1540. return ret;
  1541. }
  1542. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1543. unsigned pt_access, unsigned pte_access,
  1544. int user_fault, int write_fault, int dirty,
  1545. int *ptwrite, int level, gfn_t gfn,
  1546. pfn_t pfn, bool speculative,
  1547. bool reset_host_protection)
  1548. {
  1549. int was_rmapped = 0;
  1550. int was_writeble = is_writeble_pte(*sptep);
  1551. int rmap_count;
  1552. pgprintk("%s: spte %llx access %x write_fault %d"
  1553. " user_fault %d gfn %lx\n",
  1554. __func__, *sptep, pt_access,
  1555. write_fault, user_fault, gfn);
  1556. if (is_rmap_spte(*sptep)) {
  1557. /*
  1558. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1559. * the parent of the now unreachable PTE.
  1560. */
  1561. if (level > PT_PAGE_TABLE_LEVEL &&
  1562. !is_large_pte(*sptep)) {
  1563. struct kvm_mmu_page *child;
  1564. u64 pte = *sptep;
  1565. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1566. mmu_page_remove_parent_pte(child, sptep);
  1567. } else if (pfn != spte_to_pfn(*sptep)) {
  1568. pgprintk("hfn old %lx new %lx\n",
  1569. spte_to_pfn(*sptep), pfn);
  1570. rmap_remove(vcpu->kvm, sptep);
  1571. } else
  1572. was_rmapped = 1;
  1573. }
  1574. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1575. dirty, level, gfn, pfn, speculative, true,
  1576. reset_host_protection)) {
  1577. if (write_fault)
  1578. *ptwrite = 1;
  1579. kvm_x86_ops->tlb_flush(vcpu);
  1580. }
  1581. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1582. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1583. is_large_pte(*sptep)? "2MB" : "4kB",
  1584. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1585. *sptep, sptep);
  1586. if (!was_rmapped && is_large_pte(*sptep))
  1587. ++vcpu->kvm->stat.lpages;
  1588. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1589. if (!was_rmapped) {
  1590. rmap_count = rmap_add(vcpu, sptep, gfn);
  1591. kvm_release_pfn_clean(pfn);
  1592. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1593. rmap_recycle(vcpu, sptep, gfn);
  1594. } else {
  1595. if (was_writeble)
  1596. kvm_release_pfn_dirty(pfn);
  1597. else
  1598. kvm_release_pfn_clean(pfn);
  1599. }
  1600. if (speculative) {
  1601. vcpu->arch.last_pte_updated = sptep;
  1602. vcpu->arch.last_pte_gfn = gfn;
  1603. }
  1604. }
  1605. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1606. {
  1607. }
  1608. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1609. int level, gfn_t gfn, pfn_t pfn)
  1610. {
  1611. struct kvm_shadow_walk_iterator iterator;
  1612. struct kvm_mmu_page *sp;
  1613. int pt_write = 0;
  1614. gfn_t pseudo_gfn;
  1615. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1616. if (iterator.level == level) {
  1617. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1618. 0, write, 1, &pt_write,
  1619. level, gfn, pfn, false, true);
  1620. ++vcpu->stat.pf_fixed;
  1621. break;
  1622. }
  1623. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1624. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1625. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1626. iterator.level - 1,
  1627. 1, ACC_ALL, iterator.sptep);
  1628. if (!sp) {
  1629. pgprintk("nonpaging_map: ENOMEM\n");
  1630. kvm_release_pfn_clean(pfn);
  1631. return -ENOMEM;
  1632. }
  1633. __set_spte(iterator.sptep,
  1634. __pa(sp->spt)
  1635. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1636. | shadow_user_mask | shadow_x_mask);
  1637. }
  1638. }
  1639. return pt_write;
  1640. }
  1641. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1642. {
  1643. int r;
  1644. int level;
  1645. pfn_t pfn;
  1646. unsigned long mmu_seq;
  1647. level = mapping_level(vcpu, gfn);
  1648. /*
  1649. * This path builds a PAE pagetable - so we can map 2mb pages at
  1650. * maximum. Therefore check if the level is larger than that.
  1651. */
  1652. if (level > PT_DIRECTORY_LEVEL)
  1653. level = PT_DIRECTORY_LEVEL;
  1654. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1655. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1656. smp_rmb();
  1657. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1658. /* mmio */
  1659. if (is_error_pfn(pfn)) {
  1660. kvm_release_pfn_clean(pfn);
  1661. return 1;
  1662. }
  1663. spin_lock(&vcpu->kvm->mmu_lock);
  1664. if (mmu_notifier_retry(vcpu, mmu_seq))
  1665. goto out_unlock;
  1666. kvm_mmu_free_some_pages(vcpu);
  1667. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1668. spin_unlock(&vcpu->kvm->mmu_lock);
  1669. return r;
  1670. out_unlock:
  1671. spin_unlock(&vcpu->kvm->mmu_lock);
  1672. kvm_release_pfn_clean(pfn);
  1673. return 0;
  1674. }
  1675. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1676. {
  1677. int i;
  1678. struct kvm_mmu_page *sp;
  1679. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1680. return;
  1681. spin_lock(&vcpu->kvm->mmu_lock);
  1682. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1683. hpa_t root = vcpu->arch.mmu.root_hpa;
  1684. sp = page_header(root);
  1685. --sp->root_count;
  1686. if (!sp->root_count && sp->role.invalid)
  1687. kvm_mmu_zap_page(vcpu->kvm, sp);
  1688. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1689. spin_unlock(&vcpu->kvm->mmu_lock);
  1690. return;
  1691. }
  1692. for (i = 0; i < 4; ++i) {
  1693. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1694. if (root) {
  1695. root &= PT64_BASE_ADDR_MASK;
  1696. sp = page_header(root);
  1697. --sp->root_count;
  1698. if (!sp->root_count && sp->role.invalid)
  1699. kvm_mmu_zap_page(vcpu->kvm, sp);
  1700. }
  1701. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1702. }
  1703. spin_unlock(&vcpu->kvm->mmu_lock);
  1704. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1705. }
  1706. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1707. {
  1708. int ret = 0;
  1709. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1710. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1711. ret = 1;
  1712. }
  1713. return ret;
  1714. }
  1715. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1716. {
  1717. int i;
  1718. gfn_t root_gfn;
  1719. struct kvm_mmu_page *sp;
  1720. int direct = 0;
  1721. u64 pdptr;
  1722. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1723. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1724. hpa_t root = vcpu->arch.mmu.root_hpa;
  1725. ASSERT(!VALID_PAGE(root));
  1726. if (tdp_enabled)
  1727. direct = 1;
  1728. if (mmu_check_root(vcpu, root_gfn))
  1729. return 1;
  1730. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1731. PT64_ROOT_LEVEL, direct,
  1732. ACC_ALL, NULL);
  1733. root = __pa(sp->spt);
  1734. ++sp->root_count;
  1735. vcpu->arch.mmu.root_hpa = root;
  1736. return 0;
  1737. }
  1738. direct = !is_paging(vcpu);
  1739. if (tdp_enabled)
  1740. direct = 1;
  1741. for (i = 0; i < 4; ++i) {
  1742. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1743. ASSERT(!VALID_PAGE(root));
  1744. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1745. pdptr = kvm_pdptr_read(vcpu, i);
  1746. if (!is_present_gpte(pdptr)) {
  1747. vcpu->arch.mmu.pae_root[i] = 0;
  1748. continue;
  1749. }
  1750. root_gfn = pdptr >> PAGE_SHIFT;
  1751. } else if (vcpu->arch.mmu.root_level == 0)
  1752. root_gfn = 0;
  1753. if (mmu_check_root(vcpu, root_gfn))
  1754. return 1;
  1755. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1756. PT32_ROOT_LEVEL, direct,
  1757. ACC_ALL, NULL);
  1758. root = __pa(sp->spt);
  1759. ++sp->root_count;
  1760. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1761. }
  1762. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1763. return 0;
  1764. }
  1765. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1766. {
  1767. int i;
  1768. struct kvm_mmu_page *sp;
  1769. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1770. return;
  1771. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1772. hpa_t root = vcpu->arch.mmu.root_hpa;
  1773. sp = page_header(root);
  1774. mmu_sync_children(vcpu, sp);
  1775. return;
  1776. }
  1777. for (i = 0; i < 4; ++i) {
  1778. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1779. if (root && VALID_PAGE(root)) {
  1780. root &= PT64_BASE_ADDR_MASK;
  1781. sp = page_header(root);
  1782. mmu_sync_children(vcpu, sp);
  1783. }
  1784. }
  1785. }
  1786. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1787. {
  1788. spin_lock(&vcpu->kvm->mmu_lock);
  1789. mmu_sync_roots(vcpu);
  1790. spin_unlock(&vcpu->kvm->mmu_lock);
  1791. }
  1792. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1793. {
  1794. return vaddr;
  1795. }
  1796. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1797. u32 error_code)
  1798. {
  1799. gfn_t gfn;
  1800. int r;
  1801. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1802. r = mmu_topup_memory_caches(vcpu);
  1803. if (r)
  1804. return r;
  1805. ASSERT(vcpu);
  1806. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1807. gfn = gva >> PAGE_SHIFT;
  1808. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1809. error_code & PFERR_WRITE_MASK, gfn);
  1810. }
  1811. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1812. u32 error_code)
  1813. {
  1814. pfn_t pfn;
  1815. int r;
  1816. int level;
  1817. gfn_t gfn = gpa >> PAGE_SHIFT;
  1818. unsigned long mmu_seq;
  1819. ASSERT(vcpu);
  1820. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1821. r = mmu_topup_memory_caches(vcpu);
  1822. if (r)
  1823. return r;
  1824. level = mapping_level(vcpu, gfn);
  1825. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1826. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1827. smp_rmb();
  1828. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1829. if (is_error_pfn(pfn)) {
  1830. kvm_release_pfn_clean(pfn);
  1831. return 1;
  1832. }
  1833. spin_lock(&vcpu->kvm->mmu_lock);
  1834. if (mmu_notifier_retry(vcpu, mmu_seq))
  1835. goto out_unlock;
  1836. kvm_mmu_free_some_pages(vcpu);
  1837. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1838. level, gfn, pfn);
  1839. spin_unlock(&vcpu->kvm->mmu_lock);
  1840. return r;
  1841. out_unlock:
  1842. spin_unlock(&vcpu->kvm->mmu_lock);
  1843. kvm_release_pfn_clean(pfn);
  1844. return 0;
  1845. }
  1846. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1847. {
  1848. mmu_free_roots(vcpu);
  1849. }
  1850. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1851. {
  1852. struct kvm_mmu *context = &vcpu->arch.mmu;
  1853. context->new_cr3 = nonpaging_new_cr3;
  1854. context->page_fault = nonpaging_page_fault;
  1855. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1856. context->free = nonpaging_free;
  1857. context->prefetch_page = nonpaging_prefetch_page;
  1858. context->sync_page = nonpaging_sync_page;
  1859. context->invlpg = nonpaging_invlpg;
  1860. context->root_level = 0;
  1861. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1862. context->root_hpa = INVALID_PAGE;
  1863. return 0;
  1864. }
  1865. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1866. {
  1867. ++vcpu->stat.tlb_flush;
  1868. kvm_x86_ops->tlb_flush(vcpu);
  1869. }
  1870. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1871. {
  1872. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1873. mmu_free_roots(vcpu);
  1874. }
  1875. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1876. u64 addr,
  1877. u32 err_code)
  1878. {
  1879. kvm_inject_page_fault(vcpu, addr, err_code);
  1880. }
  1881. static void paging_free(struct kvm_vcpu *vcpu)
  1882. {
  1883. nonpaging_free(vcpu);
  1884. }
  1885. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1886. {
  1887. int bit7;
  1888. bit7 = (gpte >> 7) & 1;
  1889. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1890. }
  1891. #define PTTYPE 64
  1892. #include "paging_tmpl.h"
  1893. #undef PTTYPE
  1894. #define PTTYPE 32
  1895. #include "paging_tmpl.h"
  1896. #undef PTTYPE
  1897. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1898. {
  1899. struct kvm_mmu *context = &vcpu->arch.mmu;
  1900. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1901. u64 exb_bit_rsvd = 0;
  1902. if (!is_nx(vcpu))
  1903. exb_bit_rsvd = rsvd_bits(63, 63);
  1904. switch (level) {
  1905. case PT32_ROOT_LEVEL:
  1906. /* no rsvd bits for 2 level 4K page table entries */
  1907. context->rsvd_bits_mask[0][1] = 0;
  1908. context->rsvd_bits_mask[0][0] = 0;
  1909. if (is_cpuid_PSE36())
  1910. /* 36bits PSE 4MB page */
  1911. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1912. else
  1913. /* 32 bits PSE 4MB page */
  1914. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1915. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1916. break;
  1917. case PT32E_ROOT_LEVEL:
  1918. context->rsvd_bits_mask[0][2] =
  1919. rsvd_bits(maxphyaddr, 63) |
  1920. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1921. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1922. rsvd_bits(maxphyaddr, 62); /* PDE */
  1923. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1924. rsvd_bits(maxphyaddr, 62); /* PTE */
  1925. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1926. rsvd_bits(maxphyaddr, 62) |
  1927. rsvd_bits(13, 20); /* large page */
  1928. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1929. break;
  1930. case PT64_ROOT_LEVEL:
  1931. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1932. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1933. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1934. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1935. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1936. rsvd_bits(maxphyaddr, 51);
  1937. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1938. rsvd_bits(maxphyaddr, 51);
  1939. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1940. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1941. rsvd_bits(maxphyaddr, 51) |
  1942. rsvd_bits(13, 29);
  1943. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1944. rsvd_bits(maxphyaddr, 51) |
  1945. rsvd_bits(13, 20); /* large page */
  1946. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1947. break;
  1948. }
  1949. }
  1950. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1951. {
  1952. struct kvm_mmu *context = &vcpu->arch.mmu;
  1953. ASSERT(is_pae(vcpu));
  1954. context->new_cr3 = paging_new_cr3;
  1955. context->page_fault = paging64_page_fault;
  1956. context->gva_to_gpa = paging64_gva_to_gpa;
  1957. context->prefetch_page = paging64_prefetch_page;
  1958. context->sync_page = paging64_sync_page;
  1959. context->invlpg = paging64_invlpg;
  1960. context->free = paging_free;
  1961. context->root_level = level;
  1962. context->shadow_root_level = level;
  1963. context->root_hpa = INVALID_PAGE;
  1964. return 0;
  1965. }
  1966. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1967. {
  1968. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1969. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1970. }
  1971. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1972. {
  1973. struct kvm_mmu *context = &vcpu->arch.mmu;
  1974. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  1975. context->new_cr3 = paging_new_cr3;
  1976. context->page_fault = paging32_page_fault;
  1977. context->gva_to_gpa = paging32_gva_to_gpa;
  1978. context->free = paging_free;
  1979. context->prefetch_page = paging32_prefetch_page;
  1980. context->sync_page = paging32_sync_page;
  1981. context->invlpg = paging32_invlpg;
  1982. context->root_level = PT32_ROOT_LEVEL;
  1983. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1984. context->root_hpa = INVALID_PAGE;
  1985. return 0;
  1986. }
  1987. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1988. {
  1989. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  1990. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1991. }
  1992. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1993. {
  1994. struct kvm_mmu *context = &vcpu->arch.mmu;
  1995. context->new_cr3 = nonpaging_new_cr3;
  1996. context->page_fault = tdp_page_fault;
  1997. context->free = nonpaging_free;
  1998. context->prefetch_page = nonpaging_prefetch_page;
  1999. context->sync_page = nonpaging_sync_page;
  2000. context->invlpg = nonpaging_invlpg;
  2001. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2002. context->root_hpa = INVALID_PAGE;
  2003. if (!is_paging(vcpu)) {
  2004. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2005. context->root_level = 0;
  2006. } else if (is_long_mode(vcpu)) {
  2007. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2008. context->gva_to_gpa = paging64_gva_to_gpa;
  2009. context->root_level = PT64_ROOT_LEVEL;
  2010. } else if (is_pae(vcpu)) {
  2011. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2012. context->gva_to_gpa = paging64_gva_to_gpa;
  2013. context->root_level = PT32E_ROOT_LEVEL;
  2014. } else {
  2015. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2016. context->gva_to_gpa = paging32_gva_to_gpa;
  2017. context->root_level = PT32_ROOT_LEVEL;
  2018. }
  2019. return 0;
  2020. }
  2021. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2022. {
  2023. int r;
  2024. ASSERT(vcpu);
  2025. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2026. if (!is_paging(vcpu))
  2027. r = nonpaging_init_context(vcpu);
  2028. else if (is_long_mode(vcpu))
  2029. r = paging64_init_context(vcpu);
  2030. else if (is_pae(vcpu))
  2031. r = paging32E_init_context(vcpu);
  2032. else
  2033. r = paging32_init_context(vcpu);
  2034. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2035. return r;
  2036. }
  2037. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2038. {
  2039. vcpu->arch.update_pte.pfn = bad_pfn;
  2040. if (tdp_enabled)
  2041. return init_kvm_tdp_mmu(vcpu);
  2042. else
  2043. return init_kvm_softmmu(vcpu);
  2044. }
  2045. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2046. {
  2047. ASSERT(vcpu);
  2048. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2049. vcpu->arch.mmu.free(vcpu);
  2050. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2051. }
  2052. }
  2053. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2054. {
  2055. destroy_kvm_mmu(vcpu);
  2056. return init_kvm_mmu(vcpu);
  2057. }
  2058. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2059. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2060. {
  2061. int r;
  2062. r = mmu_topup_memory_caches(vcpu);
  2063. if (r)
  2064. goto out;
  2065. spin_lock(&vcpu->kvm->mmu_lock);
  2066. kvm_mmu_free_some_pages(vcpu);
  2067. r = mmu_alloc_roots(vcpu);
  2068. mmu_sync_roots(vcpu);
  2069. spin_unlock(&vcpu->kvm->mmu_lock);
  2070. if (r)
  2071. goto out;
  2072. /* set_cr3() should ensure TLB has been flushed */
  2073. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2074. out:
  2075. return r;
  2076. }
  2077. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2078. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2079. {
  2080. mmu_free_roots(vcpu);
  2081. }
  2082. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2083. struct kvm_mmu_page *sp,
  2084. u64 *spte)
  2085. {
  2086. u64 pte;
  2087. struct kvm_mmu_page *child;
  2088. pte = *spte;
  2089. if (is_shadow_present_pte(pte)) {
  2090. if (is_last_spte(pte, sp->role.level))
  2091. rmap_remove(vcpu->kvm, spte);
  2092. else {
  2093. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2094. mmu_page_remove_parent_pte(child, spte);
  2095. }
  2096. }
  2097. __set_spte(spte, shadow_trap_nonpresent_pte);
  2098. if (is_large_pte(pte))
  2099. --vcpu->kvm->stat.lpages;
  2100. }
  2101. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2102. struct kvm_mmu_page *sp,
  2103. u64 *spte,
  2104. const void *new)
  2105. {
  2106. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2107. ++vcpu->kvm->stat.mmu_pde_zapped;
  2108. return;
  2109. }
  2110. ++vcpu->kvm->stat.mmu_pte_updated;
  2111. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2112. paging32_update_pte(vcpu, sp, spte, new);
  2113. else
  2114. paging64_update_pte(vcpu, sp, spte, new);
  2115. }
  2116. static bool need_remote_flush(u64 old, u64 new)
  2117. {
  2118. if (!is_shadow_present_pte(old))
  2119. return false;
  2120. if (!is_shadow_present_pte(new))
  2121. return true;
  2122. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2123. return true;
  2124. old ^= PT64_NX_MASK;
  2125. new ^= PT64_NX_MASK;
  2126. return (old & ~new & PT64_PERM_MASK) != 0;
  2127. }
  2128. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2129. {
  2130. if (need_remote_flush(old, new))
  2131. kvm_flush_remote_tlbs(vcpu->kvm);
  2132. else
  2133. kvm_mmu_flush_tlb(vcpu);
  2134. }
  2135. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2136. {
  2137. u64 *spte = vcpu->arch.last_pte_updated;
  2138. return !!(spte && (*spte & shadow_accessed_mask));
  2139. }
  2140. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2141. const u8 *new, int bytes)
  2142. {
  2143. gfn_t gfn;
  2144. int r;
  2145. u64 gpte = 0;
  2146. pfn_t pfn;
  2147. if (bytes != 4 && bytes != 8)
  2148. return;
  2149. /*
  2150. * Assume that the pte write on a page table of the same type
  2151. * as the current vcpu paging mode. This is nearly always true
  2152. * (might be false while changing modes). Note it is verified later
  2153. * by update_pte().
  2154. */
  2155. if (is_pae(vcpu)) {
  2156. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2157. if ((bytes == 4) && (gpa % 4 == 0)) {
  2158. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2159. if (r)
  2160. return;
  2161. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2162. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2163. memcpy((void *)&gpte, new, 8);
  2164. }
  2165. } else {
  2166. if ((bytes == 4) && (gpa % 4 == 0))
  2167. memcpy((void *)&gpte, new, 4);
  2168. }
  2169. if (!is_present_gpte(gpte))
  2170. return;
  2171. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2172. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2173. smp_rmb();
  2174. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2175. if (is_error_pfn(pfn)) {
  2176. kvm_release_pfn_clean(pfn);
  2177. return;
  2178. }
  2179. vcpu->arch.update_pte.gfn = gfn;
  2180. vcpu->arch.update_pte.pfn = pfn;
  2181. }
  2182. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2183. {
  2184. u64 *spte = vcpu->arch.last_pte_updated;
  2185. if (spte
  2186. && vcpu->arch.last_pte_gfn == gfn
  2187. && shadow_accessed_mask
  2188. && !(*spte & shadow_accessed_mask)
  2189. && is_shadow_present_pte(*spte))
  2190. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2191. }
  2192. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2193. const u8 *new, int bytes,
  2194. bool guest_initiated)
  2195. {
  2196. gfn_t gfn = gpa >> PAGE_SHIFT;
  2197. struct kvm_mmu_page *sp;
  2198. struct hlist_node *node, *n;
  2199. struct hlist_head *bucket;
  2200. unsigned index;
  2201. u64 entry, gentry;
  2202. u64 *spte;
  2203. unsigned offset = offset_in_page(gpa);
  2204. unsigned pte_size;
  2205. unsigned page_offset;
  2206. unsigned misaligned;
  2207. unsigned quadrant;
  2208. int level;
  2209. int flooded = 0;
  2210. int npte;
  2211. int r;
  2212. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2213. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2214. spin_lock(&vcpu->kvm->mmu_lock);
  2215. kvm_mmu_access_page(vcpu, gfn);
  2216. kvm_mmu_free_some_pages(vcpu);
  2217. ++vcpu->kvm->stat.mmu_pte_write;
  2218. kvm_mmu_audit(vcpu, "pre pte write");
  2219. if (guest_initiated) {
  2220. if (gfn == vcpu->arch.last_pt_write_gfn
  2221. && !last_updated_pte_accessed(vcpu)) {
  2222. ++vcpu->arch.last_pt_write_count;
  2223. if (vcpu->arch.last_pt_write_count >= 3)
  2224. flooded = 1;
  2225. } else {
  2226. vcpu->arch.last_pt_write_gfn = gfn;
  2227. vcpu->arch.last_pt_write_count = 1;
  2228. vcpu->arch.last_pte_updated = NULL;
  2229. }
  2230. }
  2231. index = kvm_page_table_hashfn(gfn);
  2232. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2233. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2234. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2235. continue;
  2236. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2237. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2238. misaligned |= bytes < 4;
  2239. if (misaligned || flooded) {
  2240. /*
  2241. * Misaligned accesses are too much trouble to fix
  2242. * up; also, they usually indicate a page is not used
  2243. * as a page table.
  2244. *
  2245. * If we're seeing too many writes to a page,
  2246. * it may no longer be a page table, or we may be
  2247. * forking, in which case it is better to unmap the
  2248. * page.
  2249. */
  2250. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2251. gpa, bytes, sp->role.word);
  2252. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2253. n = bucket->first;
  2254. ++vcpu->kvm->stat.mmu_flooded;
  2255. continue;
  2256. }
  2257. page_offset = offset;
  2258. level = sp->role.level;
  2259. npte = 1;
  2260. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2261. page_offset <<= 1; /* 32->64 */
  2262. /*
  2263. * A 32-bit pde maps 4MB while the shadow pdes map
  2264. * only 2MB. So we need to double the offset again
  2265. * and zap two pdes instead of one.
  2266. */
  2267. if (level == PT32_ROOT_LEVEL) {
  2268. page_offset &= ~7; /* kill rounding error */
  2269. page_offset <<= 1;
  2270. npte = 2;
  2271. }
  2272. quadrant = page_offset >> PAGE_SHIFT;
  2273. page_offset &= ~PAGE_MASK;
  2274. if (quadrant != sp->role.quadrant)
  2275. continue;
  2276. }
  2277. spte = &sp->spt[page_offset / sizeof(*spte)];
  2278. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2279. gentry = 0;
  2280. r = kvm_read_guest_atomic(vcpu->kvm,
  2281. gpa & ~(u64)(pte_size - 1),
  2282. &gentry, pte_size);
  2283. new = (const void *)&gentry;
  2284. if (r < 0)
  2285. new = NULL;
  2286. }
  2287. while (npte--) {
  2288. entry = *spte;
  2289. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2290. if (new)
  2291. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2292. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2293. ++spte;
  2294. }
  2295. }
  2296. kvm_mmu_audit(vcpu, "post pte write");
  2297. spin_unlock(&vcpu->kvm->mmu_lock);
  2298. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2299. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2300. vcpu->arch.update_pte.pfn = bad_pfn;
  2301. }
  2302. }
  2303. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2304. {
  2305. gpa_t gpa;
  2306. int r;
  2307. if (tdp_enabled)
  2308. return 0;
  2309. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2310. spin_lock(&vcpu->kvm->mmu_lock);
  2311. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2312. spin_unlock(&vcpu->kvm->mmu_lock);
  2313. return r;
  2314. }
  2315. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2316. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2317. {
  2318. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2319. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2320. struct kvm_mmu_page *sp;
  2321. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2322. struct kvm_mmu_page, link);
  2323. kvm_mmu_zap_page(vcpu->kvm, sp);
  2324. ++vcpu->kvm->stat.mmu_recycled;
  2325. }
  2326. }
  2327. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2328. {
  2329. int r;
  2330. enum emulation_result er;
  2331. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2332. if (r < 0)
  2333. goto out;
  2334. if (!r) {
  2335. r = 1;
  2336. goto out;
  2337. }
  2338. r = mmu_topup_memory_caches(vcpu);
  2339. if (r)
  2340. goto out;
  2341. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2342. switch (er) {
  2343. case EMULATE_DONE:
  2344. return 1;
  2345. case EMULATE_DO_MMIO:
  2346. ++vcpu->stat.mmio_exits;
  2347. return 0;
  2348. case EMULATE_FAIL:
  2349. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2350. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2351. return 0;
  2352. default:
  2353. BUG();
  2354. }
  2355. out:
  2356. return r;
  2357. }
  2358. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2359. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2360. {
  2361. vcpu->arch.mmu.invlpg(vcpu, gva);
  2362. kvm_mmu_flush_tlb(vcpu);
  2363. ++vcpu->stat.invlpg;
  2364. }
  2365. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2366. void kvm_enable_tdp(void)
  2367. {
  2368. tdp_enabled = true;
  2369. }
  2370. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2371. void kvm_disable_tdp(void)
  2372. {
  2373. tdp_enabled = false;
  2374. }
  2375. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2376. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2377. {
  2378. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2379. }
  2380. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2381. {
  2382. struct page *page;
  2383. int i;
  2384. ASSERT(vcpu);
  2385. /*
  2386. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2387. * Therefore we need to allocate shadow page tables in the first
  2388. * 4GB of memory, which happens to fit the DMA32 zone.
  2389. */
  2390. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2391. if (!page)
  2392. goto error_1;
  2393. vcpu->arch.mmu.pae_root = page_address(page);
  2394. for (i = 0; i < 4; ++i)
  2395. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2396. return 0;
  2397. error_1:
  2398. free_mmu_pages(vcpu);
  2399. return -ENOMEM;
  2400. }
  2401. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2402. {
  2403. ASSERT(vcpu);
  2404. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2405. return alloc_mmu_pages(vcpu);
  2406. }
  2407. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2408. {
  2409. ASSERT(vcpu);
  2410. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2411. return init_kvm_mmu(vcpu);
  2412. }
  2413. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2414. {
  2415. ASSERT(vcpu);
  2416. destroy_kvm_mmu(vcpu);
  2417. free_mmu_pages(vcpu);
  2418. mmu_free_memory_caches(vcpu);
  2419. }
  2420. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2421. {
  2422. struct kvm_mmu_page *sp;
  2423. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2424. int i;
  2425. u64 *pt;
  2426. if (!test_bit(slot, sp->slot_bitmap))
  2427. continue;
  2428. pt = sp->spt;
  2429. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2430. /* avoid RMW */
  2431. if (pt[i] & PT_WRITABLE_MASK)
  2432. pt[i] &= ~PT_WRITABLE_MASK;
  2433. }
  2434. kvm_flush_remote_tlbs(kvm);
  2435. }
  2436. void kvm_mmu_zap_all(struct kvm *kvm)
  2437. {
  2438. struct kvm_mmu_page *sp, *node;
  2439. spin_lock(&kvm->mmu_lock);
  2440. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2441. if (kvm_mmu_zap_page(kvm, sp))
  2442. node = container_of(kvm->arch.active_mmu_pages.next,
  2443. struct kvm_mmu_page, link);
  2444. spin_unlock(&kvm->mmu_lock);
  2445. kvm_flush_remote_tlbs(kvm);
  2446. }
  2447. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2448. {
  2449. struct kvm_mmu_page *page;
  2450. page = container_of(kvm->arch.active_mmu_pages.prev,
  2451. struct kvm_mmu_page, link);
  2452. kvm_mmu_zap_page(kvm, page);
  2453. }
  2454. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2455. {
  2456. struct kvm *kvm;
  2457. struct kvm *kvm_freed = NULL;
  2458. int cache_count = 0;
  2459. spin_lock(&kvm_lock);
  2460. list_for_each_entry(kvm, &vm_list, vm_list) {
  2461. int npages;
  2462. if (!down_read_trylock(&kvm->slots_lock))
  2463. continue;
  2464. spin_lock(&kvm->mmu_lock);
  2465. npages = kvm->arch.n_alloc_mmu_pages -
  2466. kvm->arch.n_free_mmu_pages;
  2467. cache_count += npages;
  2468. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2469. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2470. cache_count--;
  2471. kvm_freed = kvm;
  2472. }
  2473. nr_to_scan--;
  2474. spin_unlock(&kvm->mmu_lock);
  2475. up_read(&kvm->slots_lock);
  2476. }
  2477. if (kvm_freed)
  2478. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2479. spin_unlock(&kvm_lock);
  2480. return cache_count;
  2481. }
  2482. static struct shrinker mmu_shrinker = {
  2483. .shrink = mmu_shrink,
  2484. .seeks = DEFAULT_SEEKS * 10,
  2485. };
  2486. static void mmu_destroy_caches(void)
  2487. {
  2488. if (pte_chain_cache)
  2489. kmem_cache_destroy(pte_chain_cache);
  2490. if (rmap_desc_cache)
  2491. kmem_cache_destroy(rmap_desc_cache);
  2492. if (mmu_page_header_cache)
  2493. kmem_cache_destroy(mmu_page_header_cache);
  2494. }
  2495. void kvm_mmu_module_exit(void)
  2496. {
  2497. mmu_destroy_caches();
  2498. unregister_shrinker(&mmu_shrinker);
  2499. }
  2500. int kvm_mmu_module_init(void)
  2501. {
  2502. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2503. sizeof(struct kvm_pte_chain),
  2504. 0, 0, NULL);
  2505. if (!pte_chain_cache)
  2506. goto nomem;
  2507. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2508. sizeof(struct kvm_rmap_desc),
  2509. 0, 0, NULL);
  2510. if (!rmap_desc_cache)
  2511. goto nomem;
  2512. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2513. sizeof(struct kvm_mmu_page),
  2514. 0, 0, NULL);
  2515. if (!mmu_page_header_cache)
  2516. goto nomem;
  2517. register_shrinker(&mmu_shrinker);
  2518. return 0;
  2519. nomem:
  2520. mmu_destroy_caches();
  2521. return -ENOMEM;
  2522. }
  2523. /*
  2524. * Caculate mmu pages needed for kvm.
  2525. */
  2526. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2527. {
  2528. int i;
  2529. unsigned int nr_mmu_pages;
  2530. unsigned int nr_pages = 0;
  2531. for (i = 0; i < kvm->nmemslots; i++)
  2532. nr_pages += kvm->memslots[i].npages;
  2533. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2534. nr_mmu_pages = max(nr_mmu_pages,
  2535. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2536. return nr_mmu_pages;
  2537. }
  2538. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2539. unsigned len)
  2540. {
  2541. if (len > buffer->len)
  2542. return NULL;
  2543. return buffer->ptr;
  2544. }
  2545. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2546. unsigned len)
  2547. {
  2548. void *ret;
  2549. ret = pv_mmu_peek_buffer(buffer, len);
  2550. if (!ret)
  2551. return ret;
  2552. buffer->ptr += len;
  2553. buffer->len -= len;
  2554. buffer->processed += len;
  2555. return ret;
  2556. }
  2557. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2558. gpa_t addr, gpa_t value)
  2559. {
  2560. int bytes = 8;
  2561. int r;
  2562. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2563. bytes = 4;
  2564. r = mmu_topup_memory_caches(vcpu);
  2565. if (r)
  2566. return r;
  2567. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2568. return -EFAULT;
  2569. return 1;
  2570. }
  2571. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2572. {
  2573. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2574. return 1;
  2575. }
  2576. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2577. {
  2578. spin_lock(&vcpu->kvm->mmu_lock);
  2579. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2580. spin_unlock(&vcpu->kvm->mmu_lock);
  2581. return 1;
  2582. }
  2583. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2584. struct kvm_pv_mmu_op_buffer *buffer)
  2585. {
  2586. struct kvm_mmu_op_header *header;
  2587. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2588. if (!header)
  2589. return 0;
  2590. switch (header->op) {
  2591. case KVM_MMU_OP_WRITE_PTE: {
  2592. struct kvm_mmu_op_write_pte *wpte;
  2593. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2594. if (!wpte)
  2595. return 0;
  2596. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2597. wpte->pte_val);
  2598. }
  2599. case KVM_MMU_OP_FLUSH_TLB: {
  2600. struct kvm_mmu_op_flush_tlb *ftlb;
  2601. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2602. if (!ftlb)
  2603. return 0;
  2604. return kvm_pv_mmu_flush_tlb(vcpu);
  2605. }
  2606. case KVM_MMU_OP_RELEASE_PT: {
  2607. struct kvm_mmu_op_release_pt *rpt;
  2608. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2609. if (!rpt)
  2610. return 0;
  2611. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2612. }
  2613. default: return 0;
  2614. }
  2615. }
  2616. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2617. gpa_t addr, unsigned long *ret)
  2618. {
  2619. int r;
  2620. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2621. buffer->ptr = buffer->buf;
  2622. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2623. buffer->processed = 0;
  2624. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2625. if (r)
  2626. goto out;
  2627. while (buffer->len) {
  2628. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2629. if (r < 0)
  2630. goto out;
  2631. if (r == 0)
  2632. break;
  2633. }
  2634. r = 1;
  2635. out:
  2636. *ret = buffer->processed;
  2637. return r;
  2638. }
  2639. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2640. {
  2641. struct kvm_shadow_walk_iterator iterator;
  2642. int nr_sptes = 0;
  2643. spin_lock(&vcpu->kvm->mmu_lock);
  2644. for_each_shadow_entry(vcpu, addr, iterator) {
  2645. sptes[iterator.level-1] = *iterator.sptep;
  2646. nr_sptes++;
  2647. if (!is_shadow_present_pte(*iterator.sptep))
  2648. break;
  2649. }
  2650. spin_unlock(&vcpu->kvm->mmu_lock);
  2651. return nr_sptes;
  2652. }
  2653. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2654. #ifdef AUDIT
  2655. static const char *audit_msg;
  2656. static gva_t canonicalize(gva_t gva)
  2657. {
  2658. #ifdef CONFIG_X86_64
  2659. gva = (long long)(gva << 16) >> 16;
  2660. #endif
  2661. return gva;
  2662. }
  2663. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2664. u64 *sptep);
  2665. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2666. inspect_spte_fn fn)
  2667. {
  2668. int i;
  2669. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2670. u64 ent = sp->spt[i];
  2671. if (is_shadow_present_pte(ent)) {
  2672. if (!is_last_spte(ent, sp->role.level)) {
  2673. struct kvm_mmu_page *child;
  2674. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2675. __mmu_spte_walk(kvm, child, fn);
  2676. } else
  2677. fn(kvm, sp, &sp->spt[i]);
  2678. }
  2679. }
  2680. }
  2681. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2682. {
  2683. int i;
  2684. struct kvm_mmu_page *sp;
  2685. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2686. return;
  2687. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2688. hpa_t root = vcpu->arch.mmu.root_hpa;
  2689. sp = page_header(root);
  2690. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2691. return;
  2692. }
  2693. for (i = 0; i < 4; ++i) {
  2694. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2695. if (root && VALID_PAGE(root)) {
  2696. root &= PT64_BASE_ADDR_MASK;
  2697. sp = page_header(root);
  2698. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2699. }
  2700. }
  2701. return;
  2702. }
  2703. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2704. gva_t va, int level)
  2705. {
  2706. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2707. int i;
  2708. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2709. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2710. u64 ent = pt[i];
  2711. if (ent == shadow_trap_nonpresent_pte)
  2712. continue;
  2713. va = canonicalize(va);
  2714. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2715. audit_mappings_page(vcpu, ent, va, level - 1);
  2716. else {
  2717. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2718. gfn_t gfn = gpa >> PAGE_SHIFT;
  2719. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2720. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2721. if (is_error_pfn(pfn)) {
  2722. kvm_release_pfn_clean(pfn);
  2723. continue;
  2724. }
  2725. if (is_shadow_present_pte(ent)
  2726. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2727. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2728. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2729. audit_msg, vcpu->arch.mmu.root_level,
  2730. va, gpa, hpa, ent,
  2731. is_shadow_present_pte(ent));
  2732. else if (ent == shadow_notrap_nonpresent_pte
  2733. && !is_error_hpa(hpa))
  2734. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2735. " valid guest gva %lx\n", audit_msg, va);
  2736. kvm_release_pfn_clean(pfn);
  2737. }
  2738. }
  2739. }
  2740. static void audit_mappings(struct kvm_vcpu *vcpu)
  2741. {
  2742. unsigned i;
  2743. if (vcpu->arch.mmu.root_level == 4)
  2744. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2745. else
  2746. for (i = 0; i < 4; ++i)
  2747. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2748. audit_mappings_page(vcpu,
  2749. vcpu->arch.mmu.pae_root[i],
  2750. i << 30,
  2751. 2);
  2752. }
  2753. static int count_rmaps(struct kvm_vcpu *vcpu)
  2754. {
  2755. int nmaps = 0;
  2756. int i, j, k;
  2757. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2758. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2759. struct kvm_rmap_desc *d;
  2760. for (j = 0; j < m->npages; ++j) {
  2761. unsigned long *rmapp = &m->rmap[j];
  2762. if (!*rmapp)
  2763. continue;
  2764. if (!(*rmapp & 1)) {
  2765. ++nmaps;
  2766. continue;
  2767. }
  2768. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2769. while (d) {
  2770. for (k = 0; k < RMAP_EXT; ++k)
  2771. if (d->sptes[k])
  2772. ++nmaps;
  2773. else
  2774. break;
  2775. d = d->more;
  2776. }
  2777. }
  2778. }
  2779. return nmaps;
  2780. }
  2781. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2782. {
  2783. unsigned long *rmapp;
  2784. struct kvm_mmu_page *rev_sp;
  2785. gfn_t gfn;
  2786. if (*sptep & PT_WRITABLE_MASK) {
  2787. rev_sp = page_header(__pa(sptep));
  2788. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2789. if (!gfn_to_memslot(kvm, gfn)) {
  2790. if (!printk_ratelimit())
  2791. return;
  2792. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2793. audit_msg, gfn);
  2794. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2795. audit_msg, sptep - rev_sp->spt,
  2796. rev_sp->gfn);
  2797. dump_stack();
  2798. return;
  2799. }
  2800. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2801. is_large_pte(*sptep));
  2802. if (!*rmapp) {
  2803. if (!printk_ratelimit())
  2804. return;
  2805. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2806. audit_msg, *sptep);
  2807. dump_stack();
  2808. }
  2809. }
  2810. }
  2811. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2812. {
  2813. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2814. }
  2815. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2816. {
  2817. struct kvm_mmu_page *sp;
  2818. int i;
  2819. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2820. u64 *pt = sp->spt;
  2821. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2822. continue;
  2823. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2824. u64 ent = pt[i];
  2825. if (!(ent & PT_PRESENT_MASK))
  2826. continue;
  2827. if (!(ent & PT_WRITABLE_MASK))
  2828. continue;
  2829. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2830. }
  2831. }
  2832. return;
  2833. }
  2834. static void audit_rmap(struct kvm_vcpu *vcpu)
  2835. {
  2836. check_writable_mappings_rmap(vcpu);
  2837. count_rmaps(vcpu);
  2838. }
  2839. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2840. {
  2841. struct kvm_mmu_page *sp;
  2842. struct kvm_memory_slot *slot;
  2843. unsigned long *rmapp;
  2844. u64 *spte;
  2845. gfn_t gfn;
  2846. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2847. if (sp->role.direct)
  2848. continue;
  2849. if (sp->unsync)
  2850. continue;
  2851. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2852. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2853. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2854. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2855. while (spte) {
  2856. if (*spte & PT_WRITABLE_MASK)
  2857. printk(KERN_ERR "%s: (%s) shadow page has "
  2858. "writable mappings: gfn %lx role %x\n",
  2859. __func__, audit_msg, sp->gfn,
  2860. sp->role.word);
  2861. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2862. }
  2863. }
  2864. }
  2865. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2866. {
  2867. int olddbg = dbg;
  2868. dbg = 0;
  2869. audit_msg = msg;
  2870. audit_rmap(vcpu);
  2871. audit_write_protection(vcpu);
  2872. if (strcmp("pre pte write", audit_msg) != 0)
  2873. audit_mappings(vcpu);
  2874. audit_writable_sptes_have_rmaps(vcpu);
  2875. dbg = olddbg;
  2876. }
  2877. #endif