i915_gem.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  41. bool write);
  42. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  43. uint64_t offset,
  44. uint64_t size);
  45. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  46. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  47. unsigned alignment,
  48. bool map_and_fenceable);
  49. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  50. struct drm_i915_fence_reg *reg);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev,
  52. struct drm_i915_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file);
  55. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  56. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57. struct shrink_control *sc);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. static int
  160. i915_gem_create(struct drm_file *file,
  161. struct drm_device *dev,
  162. uint64_t size,
  163. uint32_t *handle_p)
  164. {
  165. struct drm_i915_gem_object *obj;
  166. int ret;
  167. u32 handle;
  168. size = roundup(size, PAGE_SIZE);
  169. /* Allocate the new object */
  170. obj = i915_gem_alloc_object(dev, size);
  171. if (obj == NULL)
  172. return -ENOMEM;
  173. ret = drm_gem_handle_create(file, &obj->base, &handle);
  174. if (ret) {
  175. drm_gem_object_release(&obj->base);
  176. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  177. kfree(obj);
  178. return ret;
  179. }
  180. /* drop reference from allocate - handle holds it now */
  181. drm_gem_object_unreference(&obj->base);
  182. trace_i915_gem_object_create(obj);
  183. *handle_p = handle;
  184. return 0;
  185. }
  186. int
  187. i915_gem_dumb_create(struct drm_file *file,
  188. struct drm_device *dev,
  189. struct drm_mode_create_dumb *args)
  190. {
  191. /* have to work out size/pitch and return them */
  192. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  193. args->size = args->pitch * args->height;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. int i915_gem_dumb_destroy(struct drm_file *file,
  198. struct drm_device *dev,
  199. uint32_t handle)
  200. {
  201. return drm_gem_handle_delete(file, handle);
  202. }
  203. /**
  204. * Creates a new mm object and returns a handle to it.
  205. */
  206. int
  207. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  208. struct drm_file *file)
  209. {
  210. struct drm_i915_gem_create *args = data;
  211. return i915_gem_create(file, dev,
  212. args->size, &args->handle);
  213. }
  214. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  215. {
  216. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  217. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  218. obj->tiling_mode != I915_TILING_NONE;
  219. }
  220. static inline void
  221. slow_shmem_copy(struct page *dst_page,
  222. int dst_offset,
  223. struct page *src_page,
  224. int src_offset,
  225. int length)
  226. {
  227. char *dst_vaddr, *src_vaddr;
  228. dst_vaddr = kmap(dst_page);
  229. src_vaddr = kmap(src_page);
  230. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  231. kunmap(src_page);
  232. kunmap(dst_page);
  233. }
  234. static inline void
  235. slow_shmem_bit17_copy(struct page *gpu_page,
  236. int gpu_offset,
  237. struct page *cpu_page,
  238. int cpu_offset,
  239. int length,
  240. int is_read)
  241. {
  242. char *gpu_vaddr, *cpu_vaddr;
  243. /* Use the unswizzled path if this page isn't affected. */
  244. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  245. if (is_read)
  246. return slow_shmem_copy(cpu_page, cpu_offset,
  247. gpu_page, gpu_offset, length);
  248. else
  249. return slow_shmem_copy(gpu_page, gpu_offset,
  250. cpu_page, cpu_offset, length);
  251. }
  252. gpu_vaddr = kmap(gpu_page);
  253. cpu_vaddr = kmap(cpu_page);
  254. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  255. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  256. */
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. if (is_read) {
  262. memcpy(cpu_vaddr + cpu_offset,
  263. gpu_vaddr + swizzled_gpu_offset,
  264. this_length);
  265. } else {
  266. memcpy(gpu_vaddr + swizzled_gpu_offset,
  267. cpu_vaddr + cpu_offset,
  268. this_length);
  269. }
  270. cpu_offset += this_length;
  271. gpu_offset += this_length;
  272. length -= this_length;
  273. }
  274. kunmap(cpu_page);
  275. kunmap(gpu_page);
  276. }
  277. /**
  278. * This is the fast shmem pread path, which attempts to copy_from_user directly
  279. * from the backing pages of the object to the user's address space. On a
  280. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  281. */
  282. static int
  283. i915_gem_shmem_pread_fast(struct drm_device *dev,
  284. struct drm_i915_gem_object *obj,
  285. struct drm_i915_gem_pread *args,
  286. struct drm_file *file)
  287. {
  288. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  289. ssize_t remain;
  290. loff_t offset;
  291. char __user *user_data;
  292. int page_offset, page_length;
  293. user_data = (char __user *) (uintptr_t) args->data_ptr;
  294. remain = args->size;
  295. offset = args->offset;
  296. while (remain > 0) {
  297. struct page *page;
  298. char *vaddr;
  299. int ret;
  300. /* Operation in this page
  301. *
  302. * page_offset = offset within page
  303. * page_length = bytes to copy for this page
  304. */
  305. page_offset = offset_in_page(offset);
  306. page_length = remain;
  307. if ((page_offset + remain) > PAGE_SIZE)
  308. page_length = PAGE_SIZE - page_offset;
  309. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  310. if (IS_ERR(page))
  311. return PTR_ERR(page);
  312. vaddr = kmap_atomic(page);
  313. ret = __copy_to_user_inatomic(user_data,
  314. vaddr + page_offset,
  315. page_length);
  316. kunmap_atomic(vaddr);
  317. mark_page_accessed(page);
  318. page_cache_release(page);
  319. if (ret)
  320. return -EFAULT;
  321. remain -= page_length;
  322. user_data += page_length;
  323. offset += page_length;
  324. }
  325. return 0;
  326. }
  327. /**
  328. * This is the fallback shmem pread path, which allocates temporary storage
  329. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  330. * can copy out of the object's backing pages while holding the struct mutex
  331. * and not take page faults.
  332. */
  333. static int
  334. i915_gem_shmem_pread_slow(struct drm_device *dev,
  335. struct drm_i915_gem_object *obj,
  336. struct drm_i915_gem_pread *args,
  337. struct drm_file *file)
  338. {
  339. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  340. struct mm_struct *mm = current->mm;
  341. struct page **user_pages;
  342. ssize_t remain;
  343. loff_t offset, pinned_pages, i;
  344. loff_t first_data_page, last_data_page, num_pages;
  345. int shmem_page_offset;
  346. int data_page_index, data_page_offset;
  347. int page_length;
  348. int ret;
  349. uint64_t data_ptr = args->data_ptr;
  350. int do_bit17_swizzling;
  351. remain = args->size;
  352. /* Pin the user pages containing the data. We can't fault while
  353. * holding the struct mutex, yet we want to hold it while
  354. * dereferencing the user data.
  355. */
  356. first_data_page = data_ptr / PAGE_SIZE;
  357. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  358. num_pages = last_data_page - first_data_page + 1;
  359. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  360. if (user_pages == NULL)
  361. return -ENOMEM;
  362. mutex_unlock(&dev->struct_mutex);
  363. down_read(&mm->mmap_sem);
  364. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  365. num_pages, 1, 0, user_pages, NULL);
  366. up_read(&mm->mmap_sem);
  367. mutex_lock(&dev->struct_mutex);
  368. if (pinned_pages < num_pages) {
  369. ret = -EFAULT;
  370. goto out;
  371. }
  372. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  373. args->offset,
  374. args->size);
  375. if (ret)
  376. goto out;
  377. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  378. offset = args->offset;
  379. while (remain > 0) {
  380. struct page *page;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * data_page_index = page number in get_user_pages return
  385. * data_page_offset = offset with data_page_index page.
  386. * page_length = bytes to copy for this page
  387. */
  388. shmem_page_offset = offset_in_page(offset);
  389. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  390. data_page_offset = offset_in_page(data_ptr);
  391. page_length = remain;
  392. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  393. page_length = PAGE_SIZE - shmem_page_offset;
  394. if ((data_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - data_page_offset;
  396. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  397. if (IS_ERR(page)) {
  398. ret = PTR_ERR(page);
  399. goto out;
  400. }
  401. if (do_bit17_swizzling) {
  402. slow_shmem_bit17_copy(page,
  403. shmem_page_offset,
  404. user_pages[data_page_index],
  405. data_page_offset,
  406. page_length,
  407. 1);
  408. } else {
  409. slow_shmem_copy(user_pages[data_page_index],
  410. data_page_offset,
  411. page,
  412. shmem_page_offset,
  413. page_length);
  414. }
  415. mark_page_accessed(page);
  416. page_cache_release(page);
  417. remain -= page_length;
  418. data_ptr += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. mark_page_accessed(user_pages[i]);
  425. page_cache_release(user_pages[i]);
  426. }
  427. drm_free_large(user_pages);
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  449. args->size);
  450. if (ret)
  451. return -EFAULT;
  452. ret = i915_mutex_lock_interruptible(dev);
  453. if (ret)
  454. return ret;
  455. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  456. if (&obj->base == NULL) {
  457. ret = -ENOENT;
  458. goto unlock;
  459. }
  460. /* Bounds check source. */
  461. if (args->offset > obj->base.size ||
  462. args->size > obj->base.size - args->offset) {
  463. ret = -EINVAL;
  464. goto out;
  465. }
  466. trace_i915_gem_object_pread(obj, args->offset, args->size);
  467. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  468. args->offset,
  469. args->size);
  470. if (ret)
  471. goto out;
  472. ret = -EFAULT;
  473. if (!i915_gem_object_needs_bit17_swizzle(obj))
  474. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  475. if (ret == -EFAULT)
  476. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  477. out:
  478. drm_gem_object_unreference(&obj->base);
  479. unlock:
  480. mutex_unlock(&dev->struct_mutex);
  481. return ret;
  482. }
  483. /* This is the fast write path which cannot handle
  484. * page faults in the source data
  485. */
  486. static inline int
  487. fast_user_write(struct io_mapping *mapping,
  488. loff_t page_base, int page_offset,
  489. char __user *user_data,
  490. int length)
  491. {
  492. char *vaddr_atomic;
  493. unsigned long unwritten;
  494. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  495. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  496. user_data, length);
  497. io_mapping_unmap_atomic(vaddr_atomic);
  498. return unwritten;
  499. }
  500. /* Here's the write path which can sleep for
  501. * page faults
  502. */
  503. static inline void
  504. slow_kernel_write(struct io_mapping *mapping,
  505. loff_t gtt_base, int gtt_offset,
  506. struct page *user_page, int user_offset,
  507. int length)
  508. {
  509. char __iomem *dst_vaddr;
  510. char *src_vaddr;
  511. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  512. src_vaddr = kmap(user_page);
  513. memcpy_toio(dst_vaddr + gtt_offset,
  514. src_vaddr + user_offset,
  515. length);
  516. kunmap(user_page);
  517. io_mapping_unmap(dst_vaddr);
  518. }
  519. /**
  520. * This is the fast pwrite path, where we copy the data directly from the
  521. * user into the GTT, uncached.
  522. */
  523. static int
  524. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  525. struct drm_i915_gem_object *obj,
  526. struct drm_i915_gem_pwrite *args,
  527. struct drm_file *file)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. ssize_t remain;
  531. loff_t offset, page_base;
  532. char __user *user_data;
  533. int page_offset, page_length;
  534. user_data = (char __user *) (uintptr_t) args->data_ptr;
  535. remain = args->size;
  536. offset = obj->gtt_offset + args->offset;
  537. while (remain > 0) {
  538. /* Operation in this page
  539. *
  540. * page_base = page offset within aperture
  541. * page_offset = offset within page
  542. * page_length = bytes to copy for this page
  543. */
  544. page_base = offset & PAGE_MASK;
  545. page_offset = offset_in_page(offset);
  546. page_length = remain;
  547. if ((page_offset + remain) > PAGE_SIZE)
  548. page_length = PAGE_SIZE - page_offset;
  549. /* If we get a fault while copying data, then (presumably) our
  550. * source page isn't available. Return the error and we'll
  551. * retry in the slow path.
  552. */
  553. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  554. page_offset, user_data, page_length))
  555. return -EFAULT;
  556. remain -= page_length;
  557. user_data += page_length;
  558. offset += page_length;
  559. }
  560. return 0;
  561. }
  562. /**
  563. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  564. * the memory and maps it using kmap_atomic for copying.
  565. *
  566. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  567. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  568. */
  569. static int
  570. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  571. struct drm_i915_gem_object *obj,
  572. struct drm_i915_gem_pwrite *args,
  573. struct drm_file *file)
  574. {
  575. drm_i915_private_t *dev_priv = dev->dev_private;
  576. ssize_t remain;
  577. loff_t gtt_page_base, offset;
  578. loff_t first_data_page, last_data_page, num_pages;
  579. loff_t pinned_pages, i;
  580. struct page **user_pages;
  581. struct mm_struct *mm = current->mm;
  582. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  583. int ret;
  584. uint64_t data_ptr = args->data_ptr;
  585. remain = args->size;
  586. /* Pin the user pages containing the data. We can't fault while
  587. * holding the struct mutex, and all of the pwrite implementations
  588. * want to hold it while dereferencing the user data.
  589. */
  590. first_data_page = data_ptr / PAGE_SIZE;
  591. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  592. num_pages = last_data_page - first_data_page + 1;
  593. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  594. if (user_pages == NULL)
  595. return -ENOMEM;
  596. mutex_unlock(&dev->struct_mutex);
  597. down_read(&mm->mmap_sem);
  598. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  599. num_pages, 0, 0, user_pages, NULL);
  600. up_read(&mm->mmap_sem);
  601. mutex_lock(&dev->struct_mutex);
  602. if (pinned_pages < num_pages) {
  603. ret = -EFAULT;
  604. goto out_unpin_pages;
  605. }
  606. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  607. if (ret)
  608. goto out_unpin_pages;
  609. ret = i915_gem_object_put_fence(obj);
  610. if (ret)
  611. goto out_unpin_pages;
  612. offset = obj->gtt_offset + args->offset;
  613. while (remain > 0) {
  614. /* Operation in this page
  615. *
  616. * gtt_page_base = page offset within aperture
  617. * gtt_page_offset = offset within page in aperture
  618. * data_page_index = page number in get_user_pages return
  619. * data_page_offset = offset with data_page_index page.
  620. * page_length = bytes to copy for this page
  621. */
  622. gtt_page_base = offset & PAGE_MASK;
  623. gtt_page_offset = offset_in_page(offset);
  624. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  625. data_page_offset = offset_in_page(data_ptr);
  626. page_length = remain;
  627. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  628. page_length = PAGE_SIZE - gtt_page_offset;
  629. if ((data_page_offset + page_length) > PAGE_SIZE)
  630. page_length = PAGE_SIZE - data_page_offset;
  631. slow_kernel_write(dev_priv->mm.gtt_mapping,
  632. gtt_page_base, gtt_page_offset,
  633. user_pages[data_page_index],
  634. data_page_offset,
  635. page_length);
  636. remain -= page_length;
  637. offset += page_length;
  638. data_ptr += page_length;
  639. }
  640. out_unpin_pages:
  641. for (i = 0; i < pinned_pages; i++)
  642. page_cache_release(user_pages[i]);
  643. drm_free_large(user_pages);
  644. return ret;
  645. }
  646. /**
  647. * This is the fast shmem pwrite path, which attempts to directly
  648. * copy_from_user into the kmapped pages backing the object.
  649. */
  650. static int
  651. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  652. struct drm_i915_gem_object *obj,
  653. struct drm_i915_gem_pwrite *args,
  654. struct drm_file *file)
  655. {
  656. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  657. ssize_t remain;
  658. loff_t offset;
  659. char __user *user_data;
  660. int page_offset, page_length;
  661. user_data = (char __user *) (uintptr_t) args->data_ptr;
  662. remain = args->size;
  663. offset = args->offset;
  664. obj->dirty = 1;
  665. while (remain > 0) {
  666. struct page *page;
  667. char *vaddr;
  668. int ret;
  669. /* Operation in this page
  670. *
  671. * page_offset = offset within page
  672. * page_length = bytes to copy for this page
  673. */
  674. page_offset = offset_in_page(offset);
  675. page_length = remain;
  676. if ((page_offset + remain) > PAGE_SIZE)
  677. page_length = PAGE_SIZE - page_offset;
  678. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  679. if (IS_ERR(page))
  680. return PTR_ERR(page);
  681. vaddr = kmap_atomic(page, KM_USER0);
  682. ret = __copy_from_user_inatomic(vaddr + page_offset,
  683. user_data,
  684. page_length);
  685. kunmap_atomic(vaddr, KM_USER0);
  686. set_page_dirty(page);
  687. mark_page_accessed(page);
  688. page_cache_release(page);
  689. /* If we get a fault while copying data, then (presumably) our
  690. * source page isn't available. Return the error and we'll
  691. * retry in the slow path.
  692. */
  693. if (ret)
  694. return -EFAULT;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. return 0;
  700. }
  701. /**
  702. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  703. * the memory and maps it using kmap_atomic for copying.
  704. *
  705. * This avoids taking mmap_sem for faulting on the user's address while the
  706. * struct_mutex is held.
  707. */
  708. static int
  709. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  710. struct drm_i915_gem_object *obj,
  711. struct drm_i915_gem_pwrite *args,
  712. struct drm_file *file)
  713. {
  714. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  715. struct mm_struct *mm = current->mm;
  716. struct page **user_pages;
  717. ssize_t remain;
  718. loff_t offset, pinned_pages, i;
  719. loff_t first_data_page, last_data_page, num_pages;
  720. int shmem_page_offset;
  721. int data_page_index, data_page_offset;
  722. int page_length;
  723. int ret;
  724. uint64_t data_ptr = args->data_ptr;
  725. int do_bit17_swizzling;
  726. remain = args->size;
  727. /* Pin the user pages containing the data. We can't fault while
  728. * holding the struct mutex, and all of the pwrite implementations
  729. * want to hold it while dereferencing the user data.
  730. */
  731. first_data_page = data_ptr / PAGE_SIZE;
  732. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  733. num_pages = last_data_page - first_data_page + 1;
  734. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  735. if (user_pages == NULL)
  736. return -ENOMEM;
  737. mutex_unlock(&dev->struct_mutex);
  738. down_read(&mm->mmap_sem);
  739. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  740. num_pages, 0, 0, user_pages, NULL);
  741. up_read(&mm->mmap_sem);
  742. mutex_lock(&dev->struct_mutex);
  743. if (pinned_pages < num_pages) {
  744. ret = -EFAULT;
  745. goto out;
  746. }
  747. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  748. if (ret)
  749. goto out;
  750. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  751. offset = args->offset;
  752. obj->dirty = 1;
  753. while (remain > 0) {
  754. struct page *page;
  755. /* Operation in this page
  756. *
  757. * shmem_page_offset = offset within page in shmem file
  758. * data_page_index = page number in get_user_pages return
  759. * data_page_offset = offset with data_page_index page.
  760. * page_length = bytes to copy for this page
  761. */
  762. shmem_page_offset = offset_in_page(offset);
  763. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  764. data_page_offset = offset_in_page(data_ptr);
  765. page_length = remain;
  766. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  767. page_length = PAGE_SIZE - shmem_page_offset;
  768. if ((data_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - data_page_offset;
  770. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  771. if (IS_ERR(page)) {
  772. ret = PTR_ERR(page);
  773. goto out;
  774. }
  775. if (do_bit17_swizzling) {
  776. slow_shmem_bit17_copy(page,
  777. shmem_page_offset,
  778. user_pages[data_page_index],
  779. data_page_offset,
  780. page_length,
  781. 0);
  782. } else {
  783. slow_shmem_copy(page,
  784. shmem_page_offset,
  785. user_pages[data_page_index],
  786. data_page_offset,
  787. page_length);
  788. }
  789. set_page_dirty(page);
  790. mark_page_accessed(page);
  791. page_cache_release(page);
  792. remain -= page_length;
  793. data_ptr += page_length;
  794. offset += page_length;
  795. }
  796. out:
  797. for (i = 0; i < pinned_pages; i++)
  798. page_cache_release(user_pages[i]);
  799. drm_free_large(user_pages);
  800. return ret;
  801. }
  802. /**
  803. * Writes data to the object referenced by handle.
  804. *
  805. * On error, the contents of the buffer that were to be modified are undefined.
  806. */
  807. int
  808. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  809. struct drm_file *file)
  810. {
  811. struct drm_i915_gem_pwrite *args = data;
  812. struct drm_i915_gem_object *obj;
  813. int ret;
  814. if (args->size == 0)
  815. return 0;
  816. if (!access_ok(VERIFY_READ,
  817. (char __user *)(uintptr_t)args->data_ptr,
  818. args->size))
  819. return -EFAULT;
  820. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  821. args->size);
  822. if (ret)
  823. return -EFAULT;
  824. ret = i915_mutex_lock_interruptible(dev);
  825. if (ret)
  826. return ret;
  827. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  828. if (&obj->base == NULL) {
  829. ret = -ENOENT;
  830. goto unlock;
  831. }
  832. /* Bounds check destination. */
  833. if (args->offset > obj->base.size ||
  834. args->size > obj->base.size - args->offset) {
  835. ret = -EINVAL;
  836. goto out;
  837. }
  838. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  839. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  840. * it would end up going through the fenced access, and we'll get
  841. * different detiling behavior between reading and writing.
  842. * pread/pwrite currently are reading and writing from the CPU
  843. * perspective, requiring manual detiling by the client.
  844. */
  845. if (obj->phys_obj)
  846. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  847. else if (obj->gtt_space &&
  848. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  849. ret = i915_gem_object_pin(obj, 0, true);
  850. if (ret)
  851. goto out;
  852. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  853. if (ret)
  854. goto out_unpin;
  855. ret = i915_gem_object_put_fence(obj);
  856. if (ret)
  857. goto out_unpin;
  858. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  859. if (ret == -EFAULT)
  860. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  861. out_unpin:
  862. i915_gem_object_unpin(obj);
  863. } else {
  864. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  865. if (ret)
  866. goto out;
  867. ret = -EFAULT;
  868. if (!i915_gem_object_needs_bit17_swizzle(obj))
  869. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  870. if (ret == -EFAULT)
  871. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  872. }
  873. out:
  874. drm_gem_object_unreference(&obj->base);
  875. unlock:
  876. mutex_unlock(&dev->struct_mutex);
  877. return ret;
  878. }
  879. /**
  880. * Called when user space prepares to use an object with the CPU, either
  881. * through the mmap ioctl's mapping or a GTT mapping.
  882. */
  883. int
  884. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  885. struct drm_file *file)
  886. {
  887. struct drm_i915_gem_set_domain *args = data;
  888. struct drm_i915_gem_object *obj;
  889. uint32_t read_domains = args->read_domains;
  890. uint32_t write_domain = args->write_domain;
  891. int ret;
  892. if (!(dev->driver->driver_features & DRIVER_GEM))
  893. return -ENODEV;
  894. /* Only handle setting domains to types used by the CPU. */
  895. if (write_domain & I915_GEM_GPU_DOMAINS)
  896. return -EINVAL;
  897. if (read_domains & I915_GEM_GPU_DOMAINS)
  898. return -EINVAL;
  899. /* Having something in the write domain implies it's in the read
  900. * domain, and only that read domain. Enforce that in the request.
  901. */
  902. if (write_domain != 0 && read_domains != write_domain)
  903. return -EINVAL;
  904. ret = i915_mutex_lock_interruptible(dev);
  905. if (ret)
  906. return ret;
  907. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  908. if (&obj->base == NULL) {
  909. ret = -ENOENT;
  910. goto unlock;
  911. }
  912. if (read_domains & I915_GEM_DOMAIN_GTT) {
  913. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  914. /* Silently promote "you're not bound, there was nothing to do"
  915. * to success, since the client was just asking us to
  916. * make sure everything was done.
  917. */
  918. if (ret == -EINVAL)
  919. ret = 0;
  920. } else {
  921. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  922. }
  923. drm_gem_object_unreference(&obj->base);
  924. unlock:
  925. mutex_unlock(&dev->struct_mutex);
  926. return ret;
  927. }
  928. /**
  929. * Called when user space has done writes to this buffer
  930. */
  931. int
  932. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  933. struct drm_file *file)
  934. {
  935. struct drm_i915_gem_sw_finish *args = data;
  936. struct drm_i915_gem_object *obj;
  937. int ret = 0;
  938. if (!(dev->driver->driver_features & DRIVER_GEM))
  939. return -ENODEV;
  940. ret = i915_mutex_lock_interruptible(dev);
  941. if (ret)
  942. return ret;
  943. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  944. if (&obj->base == NULL) {
  945. ret = -ENOENT;
  946. goto unlock;
  947. }
  948. /* Pinned buffers may be scanout, so flush the cache */
  949. if (obj->pin_count)
  950. i915_gem_object_flush_cpu_write_domain(obj);
  951. drm_gem_object_unreference(&obj->base);
  952. unlock:
  953. mutex_unlock(&dev->struct_mutex);
  954. return ret;
  955. }
  956. /**
  957. * Maps the contents of an object, returning the address it is mapped
  958. * into.
  959. *
  960. * While the mapping holds a reference on the contents of the object, it doesn't
  961. * imply a ref on the object itself.
  962. */
  963. int
  964. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  965. struct drm_file *file)
  966. {
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. struct drm_i915_gem_mmap *args = data;
  969. struct drm_gem_object *obj;
  970. unsigned long addr;
  971. if (!(dev->driver->driver_features & DRIVER_GEM))
  972. return -ENODEV;
  973. obj = drm_gem_object_lookup(dev, file, args->handle);
  974. if (obj == NULL)
  975. return -ENOENT;
  976. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  977. drm_gem_object_unreference_unlocked(obj);
  978. return -E2BIG;
  979. }
  980. down_write(&current->mm->mmap_sem);
  981. addr = do_mmap(obj->filp, 0, args->size,
  982. PROT_READ | PROT_WRITE, MAP_SHARED,
  983. args->offset);
  984. up_write(&current->mm->mmap_sem);
  985. drm_gem_object_unreference_unlocked(obj);
  986. if (IS_ERR((void *)addr))
  987. return addr;
  988. args->addr_ptr = (uint64_t) addr;
  989. return 0;
  990. }
  991. /**
  992. * i915_gem_fault - fault a page into the GTT
  993. * vma: VMA in question
  994. * vmf: fault info
  995. *
  996. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  997. * from userspace. The fault handler takes care of binding the object to
  998. * the GTT (if needed), allocating and programming a fence register (again,
  999. * only if needed based on whether the old reg is still valid or the object
  1000. * is tiled) and inserting a new PTE into the faulting process.
  1001. *
  1002. * Note that the faulting process may involve evicting existing objects
  1003. * from the GTT and/or fence registers to make room. So performance may
  1004. * suffer if the GTT working set is large or there are few fence registers
  1005. * left.
  1006. */
  1007. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1008. {
  1009. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1010. struct drm_device *dev = obj->base.dev;
  1011. drm_i915_private_t *dev_priv = dev->dev_private;
  1012. pgoff_t page_offset;
  1013. unsigned long pfn;
  1014. int ret = 0;
  1015. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1016. /* We don't use vmf->pgoff since that has the fake offset */
  1017. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1018. PAGE_SHIFT;
  1019. ret = i915_mutex_lock_interruptible(dev);
  1020. if (ret)
  1021. goto out;
  1022. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1023. /* Now bind it into the GTT if needed */
  1024. if (!obj->map_and_fenceable) {
  1025. ret = i915_gem_object_unbind(obj);
  1026. if (ret)
  1027. goto unlock;
  1028. }
  1029. if (!obj->gtt_space) {
  1030. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1031. if (ret)
  1032. goto unlock;
  1033. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1034. if (ret)
  1035. goto unlock;
  1036. }
  1037. if (obj->tiling_mode == I915_TILING_NONE)
  1038. ret = i915_gem_object_put_fence(obj);
  1039. else
  1040. ret = i915_gem_object_get_fence(obj, NULL);
  1041. if (ret)
  1042. goto unlock;
  1043. if (i915_gem_object_is_inactive(obj))
  1044. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1045. obj->fault_mappable = true;
  1046. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1047. page_offset;
  1048. /* Finally, remap it using the new GTT offset */
  1049. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1050. unlock:
  1051. mutex_unlock(&dev->struct_mutex);
  1052. out:
  1053. switch (ret) {
  1054. case -EIO:
  1055. case -EAGAIN:
  1056. /* Give the error handler a chance to run and move the
  1057. * objects off the GPU active list. Next time we service the
  1058. * fault, we should be able to transition the page into the
  1059. * GTT without touching the GPU (and so avoid further
  1060. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1061. * with coherency, just lost writes.
  1062. */
  1063. set_need_resched();
  1064. case 0:
  1065. case -ERESTARTSYS:
  1066. case -EINTR:
  1067. return VM_FAULT_NOPAGE;
  1068. case -ENOMEM:
  1069. return VM_FAULT_OOM;
  1070. default:
  1071. return VM_FAULT_SIGBUS;
  1072. }
  1073. }
  1074. /**
  1075. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1076. * @obj: obj in question
  1077. *
  1078. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1079. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1080. * up the object based on the offset and sets up the various memory mapping
  1081. * structures.
  1082. *
  1083. * This routine allocates and attaches a fake offset for @obj.
  1084. */
  1085. static int
  1086. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1087. {
  1088. struct drm_device *dev = obj->base.dev;
  1089. struct drm_gem_mm *mm = dev->mm_private;
  1090. struct drm_map_list *list;
  1091. struct drm_local_map *map;
  1092. int ret = 0;
  1093. /* Set the object up for mmap'ing */
  1094. list = &obj->base.map_list;
  1095. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1096. if (!list->map)
  1097. return -ENOMEM;
  1098. map = list->map;
  1099. map->type = _DRM_GEM;
  1100. map->size = obj->base.size;
  1101. map->handle = obj;
  1102. /* Get a DRM GEM mmap offset allocated... */
  1103. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1104. obj->base.size / PAGE_SIZE,
  1105. 0, 0);
  1106. if (!list->file_offset_node) {
  1107. DRM_ERROR("failed to allocate offset for bo %d\n",
  1108. obj->base.name);
  1109. ret = -ENOSPC;
  1110. goto out_free_list;
  1111. }
  1112. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1113. obj->base.size / PAGE_SIZE,
  1114. 0);
  1115. if (!list->file_offset_node) {
  1116. ret = -ENOMEM;
  1117. goto out_free_list;
  1118. }
  1119. list->hash.key = list->file_offset_node->start;
  1120. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1121. if (ret) {
  1122. DRM_ERROR("failed to add to map hash\n");
  1123. goto out_free_mm;
  1124. }
  1125. return 0;
  1126. out_free_mm:
  1127. drm_mm_put_block(list->file_offset_node);
  1128. out_free_list:
  1129. kfree(list->map);
  1130. list->map = NULL;
  1131. return ret;
  1132. }
  1133. /**
  1134. * i915_gem_release_mmap - remove physical page mappings
  1135. * @obj: obj in question
  1136. *
  1137. * Preserve the reservation of the mmapping with the DRM core code, but
  1138. * relinquish ownership of the pages back to the system.
  1139. *
  1140. * It is vital that we remove the page mapping if we have mapped a tiled
  1141. * object through the GTT and then lose the fence register due to
  1142. * resource pressure. Similarly if the object has been moved out of the
  1143. * aperture, than pages mapped into userspace must be revoked. Removing the
  1144. * mapping will then trigger a page fault on the next user access, allowing
  1145. * fixup by i915_gem_fault().
  1146. */
  1147. void
  1148. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1149. {
  1150. if (!obj->fault_mappable)
  1151. return;
  1152. if (obj->base.dev->dev_mapping)
  1153. unmap_mapping_range(obj->base.dev->dev_mapping,
  1154. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1155. obj->base.size, 1);
  1156. obj->fault_mappable = false;
  1157. }
  1158. static void
  1159. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1160. {
  1161. struct drm_device *dev = obj->base.dev;
  1162. struct drm_gem_mm *mm = dev->mm_private;
  1163. struct drm_map_list *list = &obj->base.map_list;
  1164. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1165. drm_mm_put_block(list->file_offset_node);
  1166. kfree(list->map);
  1167. list->map = NULL;
  1168. }
  1169. static uint32_t
  1170. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1171. {
  1172. uint32_t gtt_size;
  1173. if (INTEL_INFO(dev)->gen >= 4 ||
  1174. tiling_mode == I915_TILING_NONE)
  1175. return size;
  1176. /* Previous chips need a power-of-two fence region when tiling */
  1177. if (INTEL_INFO(dev)->gen == 3)
  1178. gtt_size = 1024*1024;
  1179. else
  1180. gtt_size = 512*1024;
  1181. while (gtt_size < size)
  1182. gtt_size <<= 1;
  1183. return gtt_size;
  1184. }
  1185. /**
  1186. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1187. * @obj: object to check
  1188. *
  1189. * Return the required GTT alignment for an object, taking into account
  1190. * potential fence register mapping.
  1191. */
  1192. static uint32_t
  1193. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1194. uint32_t size,
  1195. int tiling_mode)
  1196. {
  1197. /*
  1198. * Minimum alignment is 4k (GTT page size), but might be greater
  1199. * if a fence register is needed for the object.
  1200. */
  1201. if (INTEL_INFO(dev)->gen >= 4 ||
  1202. tiling_mode == I915_TILING_NONE)
  1203. return 4096;
  1204. /*
  1205. * Previous chips need to be aligned to the size of the smallest
  1206. * fence register that can contain the object.
  1207. */
  1208. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1209. }
  1210. /**
  1211. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1212. * unfenced object
  1213. * @dev: the device
  1214. * @size: size of the object
  1215. * @tiling_mode: tiling mode of the object
  1216. *
  1217. * Return the required GTT alignment for an object, only taking into account
  1218. * unfenced tiled surface requirements.
  1219. */
  1220. uint32_t
  1221. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1222. uint32_t size,
  1223. int tiling_mode)
  1224. {
  1225. /*
  1226. * Minimum alignment is 4k (GTT page size) for sane hw.
  1227. */
  1228. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1229. tiling_mode == I915_TILING_NONE)
  1230. return 4096;
  1231. /* Previous hardware however needs to be aligned to a power-of-two
  1232. * tile height. The simplest method for determining this is to reuse
  1233. * the power-of-tile object size.
  1234. */
  1235. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1236. }
  1237. int
  1238. i915_gem_mmap_gtt(struct drm_file *file,
  1239. struct drm_device *dev,
  1240. uint32_t handle,
  1241. uint64_t *offset)
  1242. {
  1243. struct drm_i915_private *dev_priv = dev->dev_private;
  1244. struct drm_i915_gem_object *obj;
  1245. int ret;
  1246. if (!(dev->driver->driver_features & DRIVER_GEM))
  1247. return -ENODEV;
  1248. ret = i915_mutex_lock_interruptible(dev);
  1249. if (ret)
  1250. return ret;
  1251. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1252. if (&obj->base == NULL) {
  1253. ret = -ENOENT;
  1254. goto unlock;
  1255. }
  1256. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1257. ret = -E2BIG;
  1258. goto unlock;
  1259. }
  1260. if (obj->madv != I915_MADV_WILLNEED) {
  1261. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1262. ret = -EINVAL;
  1263. goto out;
  1264. }
  1265. if (!obj->base.map_list.map) {
  1266. ret = i915_gem_create_mmap_offset(obj);
  1267. if (ret)
  1268. goto out;
  1269. }
  1270. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1271. out:
  1272. drm_gem_object_unreference(&obj->base);
  1273. unlock:
  1274. mutex_unlock(&dev->struct_mutex);
  1275. return ret;
  1276. }
  1277. /**
  1278. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1279. * @dev: DRM device
  1280. * @data: GTT mapping ioctl data
  1281. * @file: GEM object info
  1282. *
  1283. * Simply returns the fake offset to userspace so it can mmap it.
  1284. * The mmap call will end up in drm_gem_mmap(), which will set things
  1285. * up so we can get faults in the handler above.
  1286. *
  1287. * The fault handler will take care of binding the object into the GTT
  1288. * (since it may have been evicted to make room for something), allocating
  1289. * a fence register, and mapping the appropriate aperture address into
  1290. * userspace.
  1291. */
  1292. int
  1293. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1294. struct drm_file *file)
  1295. {
  1296. struct drm_i915_gem_mmap_gtt *args = data;
  1297. if (!(dev->driver->driver_features & DRIVER_GEM))
  1298. return -ENODEV;
  1299. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1300. }
  1301. static int
  1302. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1303. gfp_t gfpmask)
  1304. {
  1305. int page_count, i;
  1306. struct address_space *mapping;
  1307. struct inode *inode;
  1308. struct page *page;
  1309. /* Get the list of pages out of our struct file. They'll be pinned
  1310. * at this point until we release them.
  1311. */
  1312. page_count = obj->base.size / PAGE_SIZE;
  1313. BUG_ON(obj->pages != NULL);
  1314. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1315. if (obj->pages == NULL)
  1316. return -ENOMEM;
  1317. inode = obj->base.filp->f_path.dentry->d_inode;
  1318. mapping = inode->i_mapping;
  1319. gfpmask |= mapping_gfp_mask(mapping);
  1320. for (i = 0; i < page_count; i++) {
  1321. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1322. if (IS_ERR(page))
  1323. goto err_pages;
  1324. obj->pages[i] = page;
  1325. }
  1326. if (obj->tiling_mode != I915_TILING_NONE)
  1327. i915_gem_object_do_bit_17_swizzle(obj);
  1328. return 0;
  1329. err_pages:
  1330. while (i--)
  1331. page_cache_release(obj->pages[i]);
  1332. drm_free_large(obj->pages);
  1333. obj->pages = NULL;
  1334. return PTR_ERR(page);
  1335. }
  1336. static void
  1337. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1338. {
  1339. int page_count = obj->base.size / PAGE_SIZE;
  1340. int i;
  1341. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1342. if (obj->tiling_mode != I915_TILING_NONE)
  1343. i915_gem_object_save_bit_17_swizzle(obj);
  1344. if (obj->madv == I915_MADV_DONTNEED)
  1345. obj->dirty = 0;
  1346. for (i = 0; i < page_count; i++) {
  1347. if (obj->dirty)
  1348. set_page_dirty(obj->pages[i]);
  1349. if (obj->madv == I915_MADV_WILLNEED)
  1350. mark_page_accessed(obj->pages[i]);
  1351. page_cache_release(obj->pages[i]);
  1352. }
  1353. obj->dirty = 0;
  1354. drm_free_large(obj->pages);
  1355. obj->pages = NULL;
  1356. }
  1357. void
  1358. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1359. struct intel_ring_buffer *ring,
  1360. u32 seqno)
  1361. {
  1362. struct drm_device *dev = obj->base.dev;
  1363. struct drm_i915_private *dev_priv = dev->dev_private;
  1364. BUG_ON(ring == NULL);
  1365. obj->ring = ring;
  1366. /* Add a reference if we're newly entering the active list. */
  1367. if (!obj->active) {
  1368. drm_gem_object_reference(&obj->base);
  1369. obj->active = 1;
  1370. }
  1371. /* Move from whatever list we were on to the tail of execution. */
  1372. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1373. list_move_tail(&obj->ring_list, &ring->active_list);
  1374. obj->last_rendering_seqno = seqno;
  1375. if (obj->fenced_gpu_access) {
  1376. struct drm_i915_fence_reg *reg;
  1377. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1378. obj->last_fenced_seqno = seqno;
  1379. obj->last_fenced_ring = ring;
  1380. reg = &dev_priv->fence_regs[obj->fence_reg];
  1381. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1382. }
  1383. }
  1384. static void
  1385. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1386. {
  1387. list_del_init(&obj->ring_list);
  1388. obj->last_rendering_seqno = 0;
  1389. }
  1390. static void
  1391. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1392. {
  1393. struct drm_device *dev = obj->base.dev;
  1394. drm_i915_private_t *dev_priv = dev->dev_private;
  1395. BUG_ON(!obj->active);
  1396. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1397. i915_gem_object_move_off_active(obj);
  1398. }
  1399. static void
  1400. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1401. {
  1402. struct drm_device *dev = obj->base.dev;
  1403. struct drm_i915_private *dev_priv = dev->dev_private;
  1404. if (obj->pin_count != 0)
  1405. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1406. else
  1407. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1408. BUG_ON(!list_empty(&obj->gpu_write_list));
  1409. BUG_ON(!obj->active);
  1410. obj->ring = NULL;
  1411. i915_gem_object_move_off_active(obj);
  1412. obj->fenced_gpu_access = false;
  1413. obj->active = 0;
  1414. obj->pending_gpu_write = false;
  1415. drm_gem_object_unreference(&obj->base);
  1416. WARN_ON(i915_verify_lists(dev));
  1417. }
  1418. /* Immediately discard the backing storage */
  1419. static void
  1420. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1421. {
  1422. struct inode *inode;
  1423. /* Our goal here is to return as much of the memory as
  1424. * is possible back to the system as we are called from OOM.
  1425. * To do this we must instruct the shmfs to drop all of its
  1426. * backing pages, *now*.
  1427. */
  1428. inode = obj->base.filp->f_path.dentry->d_inode;
  1429. shmem_truncate_range(inode, 0, (loff_t)-1);
  1430. obj->madv = __I915_MADV_PURGED;
  1431. }
  1432. static inline int
  1433. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1434. {
  1435. return obj->madv == I915_MADV_DONTNEED;
  1436. }
  1437. static void
  1438. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1439. uint32_t flush_domains)
  1440. {
  1441. struct drm_i915_gem_object *obj, *next;
  1442. list_for_each_entry_safe(obj, next,
  1443. &ring->gpu_write_list,
  1444. gpu_write_list) {
  1445. if (obj->base.write_domain & flush_domains) {
  1446. uint32_t old_write_domain = obj->base.write_domain;
  1447. obj->base.write_domain = 0;
  1448. list_del_init(&obj->gpu_write_list);
  1449. i915_gem_object_move_to_active(obj, ring,
  1450. i915_gem_next_request_seqno(ring));
  1451. trace_i915_gem_object_change_domain(obj,
  1452. obj->base.read_domains,
  1453. old_write_domain);
  1454. }
  1455. }
  1456. }
  1457. int
  1458. i915_add_request(struct intel_ring_buffer *ring,
  1459. struct drm_file *file,
  1460. struct drm_i915_gem_request *request)
  1461. {
  1462. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1463. uint32_t seqno;
  1464. int was_empty;
  1465. int ret;
  1466. BUG_ON(request == NULL);
  1467. ret = ring->add_request(ring, &seqno);
  1468. if (ret)
  1469. return ret;
  1470. trace_i915_gem_request_add(ring, seqno);
  1471. request->seqno = seqno;
  1472. request->ring = ring;
  1473. request->emitted_jiffies = jiffies;
  1474. was_empty = list_empty(&ring->request_list);
  1475. list_add_tail(&request->list, &ring->request_list);
  1476. if (file) {
  1477. struct drm_i915_file_private *file_priv = file->driver_priv;
  1478. spin_lock(&file_priv->mm.lock);
  1479. request->file_priv = file_priv;
  1480. list_add_tail(&request->client_list,
  1481. &file_priv->mm.request_list);
  1482. spin_unlock(&file_priv->mm.lock);
  1483. }
  1484. ring->outstanding_lazy_request = false;
  1485. if (!dev_priv->mm.suspended) {
  1486. mod_timer(&dev_priv->hangcheck_timer,
  1487. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1488. if (was_empty)
  1489. queue_delayed_work(dev_priv->wq,
  1490. &dev_priv->mm.retire_work, HZ);
  1491. }
  1492. return 0;
  1493. }
  1494. static inline void
  1495. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1496. {
  1497. struct drm_i915_file_private *file_priv = request->file_priv;
  1498. if (!file_priv)
  1499. return;
  1500. spin_lock(&file_priv->mm.lock);
  1501. if (request->file_priv) {
  1502. list_del(&request->client_list);
  1503. request->file_priv = NULL;
  1504. }
  1505. spin_unlock(&file_priv->mm.lock);
  1506. }
  1507. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1508. struct intel_ring_buffer *ring)
  1509. {
  1510. while (!list_empty(&ring->request_list)) {
  1511. struct drm_i915_gem_request *request;
  1512. request = list_first_entry(&ring->request_list,
  1513. struct drm_i915_gem_request,
  1514. list);
  1515. list_del(&request->list);
  1516. i915_gem_request_remove_from_client(request);
  1517. kfree(request);
  1518. }
  1519. while (!list_empty(&ring->active_list)) {
  1520. struct drm_i915_gem_object *obj;
  1521. obj = list_first_entry(&ring->active_list,
  1522. struct drm_i915_gem_object,
  1523. ring_list);
  1524. obj->base.write_domain = 0;
  1525. list_del_init(&obj->gpu_write_list);
  1526. i915_gem_object_move_to_inactive(obj);
  1527. }
  1528. }
  1529. static void i915_gem_reset_fences(struct drm_device *dev)
  1530. {
  1531. struct drm_i915_private *dev_priv = dev->dev_private;
  1532. int i;
  1533. for (i = 0; i < 16; i++) {
  1534. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1535. struct drm_i915_gem_object *obj = reg->obj;
  1536. if (!obj)
  1537. continue;
  1538. if (obj->tiling_mode)
  1539. i915_gem_release_mmap(obj);
  1540. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1541. reg->obj->fenced_gpu_access = false;
  1542. reg->obj->last_fenced_seqno = 0;
  1543. reg->obj->last_fenced_ring = NULL;
  1544. i915_gem_clear_fence_reg(dev, reg);
  1545. }
  1546. }
  1547. void i915_gem_reset(struct drm_device *dev)
  1548. {
  1549. struct drm_i915_private *dev_priv = dev->dev_private;
  1550. struct drm_i915_gem_object *obj;
  1551. int i;
  1552. for (i = 0; i < I915_NUM_RINGS; i++)
  1553. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1554. /* Remove anything from the flushing lists. The GPU cache is likely
  1555. * to be lost on reset along with the data, so simply move the
  1556. * lost bo to the inactive list.
  1557. */
  1558. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1559. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1560. struct drm_i915_gem_object,
  1561. mm_list);
  1562. obj->base.write_domain = 0;
  1563. list_del_init(&obj->gpu_write_list);
  1564. i915_gem_object_move_to_inactive(obj);
  1565. }
  1566. /* Move everything out of the GPU domains to ensure we do any
  1567. * necessary invalidation upon reuse.
  1568. */
  1569. list_for_each_entry(obj,
  1570. &dev_priv->mm.inactive_list,
  1571. mm_list)
  1572. {
  1573. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1574. }
  1575. /* The fence registers are invalidated so clear them out */
  1576. i915_gem_reset_fences(dev);
  1577. }
  1578. /**
  1579. * This function clears the request list as sequence numbers are passed.
  1580. */
  1581. static void
  1582. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1583. {
  1584. uint32_t seqno;
  1585. int i;
  1586. if (list_empty(&ring->request_list))
  1587. return;
  1588. WARN_ON(i915_verify_lists(ring->dev));
  1589. seqno = ring->get_seqno(ring);
  1590. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1591. if (seqno >= ring->sync_seqno[i])
  1592. ring->sync_seqno[i] = 0;
  1593. while (!list_empty(&ring->request_list)) {
  1594. struct drm_i915_gem_request *request;
  1595. request = list_first_entry(&ring->request_list,
  1596. struct drm_i915_gem_request,
  1597. list);
  1598. if (!i915_seqno_passed(seqno, request->seqno))
  1599. break;
  1600. trace_i915_gem_request_retire(ring, request->seqno);
  1601. list_del(&request->list);
  1602. i915_gem_request_remove_from_client(request);
  1603. kfree(request);
  1604. }
  1605. /* Move any buffers on the active list that are no longer referenced
  1606. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1607. */
  1608. while (!list_empty(&ring->active_list)) {
  1609. struct drm_i915_gem_object *obj;
  1610. obj= list_first_entry(&ring->active_list,
  1611. struct drm_i915_gem_object,
  1612. ring_list);
  1613. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1614. break;
  1615. if (obj->base.write_domain != 0)
  1616. i915_gem_object_move_to_flushing(obj);
  1617. else
  1618. i915_gem_object_move_to_inactive(obj);
  1619. }
  1620. if (unlikely(ring->trace_irq_seqno &&
  1621. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1622. ring->irq_put(ring);
  1623. ring->trace_irq_seqno = 0;
  1624. }
  1625. WARN_ON(i915_verify_lists(ring->dev));
  1626. }
  1627. void
  1628. i915_gem_retire_requests(struct drm_device *dev)
  1629. {
  1630. drm_i915_private_t *dev_priv = dev->dev_private;
  1631. int i;
  1632. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1633. struct drm_i915_gem_object *obj, *next;
  1634. /* We must be careful that during unbind() we do not
  1635. * accidentally infinitely recurse into retire requests.
  1636. * Currently:
  1637. * retire -> free -> unbind -> wait -> retire_ring
  1638. */
  1639. list_for_each_entry_safe(obj, next,
  1640. &dev_priv->mm.deferred_free_list,
  1641. mm_list)
  1642. i915_gem_free_object_tail(obj);
  1643. }
  1644. for (i = 0; i < I915_NUM_RINGS; i++)
  1645. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1646. }
  1647. static void
  1648. i915_gem_retire_work_handler(struct work_struct *work)
  1649. {
  1650. drm_i915_private_t *dev_priv;
  1651. struct drm_device *dev;
  1652. bool idle;
  1653. int i;
  1654. dev_priv = container_of(work, drm_i915_private_t,
  1655. mm.retire_work.work);
  1656. dev = dev_priv->dev;
  1657. /* Come back later if the device is busy... */
  1658. if (!mutex_trylock(&dev->struct_mutex)) {
  1659. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1660. return;
  1661. }
  1662. i915_gem_retire_requests(dev);
  1663. /* Send a periodic flush down the ring so we don't hold onto GEM
  1664. * objects indefinitely.
  1665. */
  1666. idle = true;
  1667. for (i = 0; i < I915_NUM_RINGS; i++) {
  1668. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1669. if (!list_empty(&ring->gpu_write_list)) {
  1670. struct drm_i915_gem_request *request;
  1671. int ret;
  1672. ret = i915_gem_flush_ring(ring,
  1673. 0, I915_GEM_GPU_DOMAINS);
  1674. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1675. if (ret || request == NULL ||
  1676. i915_add_request(ring, NULL, request))
  1677. kfree(request);
  1678. }
  1679. idle &= list_empty(&ring->request_list);
  1680. }
  1681. if (!dev_priv->mm.suspended && !idle)
  1682. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1683. mutex_unlock(&dev->struct_mutex);
  1684. }
  1685. /**
  1686. * Waits for a sequence number to be signaled, and cleans up the
  1687. * request and object lists appropriately for that event.
  1688. */
  1689. int
  1690. i915_wait_request(struct intel_ring_buffer *ring,
  1691. uint32_t seqno)
  1692. {
  1693. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1694. u32 ier;
  1695. int ret = 0;
  1696. BUG_ON(seqno == 0);
  1697. if (atomic_read(&dev_priv->mm.wedged)) {
  1698. struct completion *x = &dev_priv->error_completion;
  1699. bool recovery_complete;
  1700. unsigned long flags;
  1701. /* Give the error handler a chance to run. */
  1702. spin_lock_irqsave(&x->wait.lock, flags);
  1703. recovery_complete = x->done > 0;
  1704. spin_unlock_irqrestore(&x->wait.lock, flags);
  1705. return recovery_complete ? -EIO : -EAGAIN;
  1706. }
  1707. if (seqno == ring->outstanding_lazy_request) {
  1708. struct drm_i915_gem_request *request;
  1709. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1710. if (request == NULL)
  1711. return -ENOMEM;
  1712. ret = i915_add_request(ring, NULL, request);
  1713. if (ret) {
  1714. kfree(request);
  1715. return ret;
  1716. }
  1717. seqno = request->seqno;
  1718. }
  1719. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1720. if (HAS_PCH_SPLIT(ring->dev))
  1721. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1722. else
  1723. ier = I915_READ(IER);
  1724. if (!ier) {
  1725. DRM_ERROR("something (likely vbetool) disabled "
  1726. "interrupts, re-enabling\n");
  1727. ring->dev->driver->irq_preinstall(ring->dev);
  1728. ring->dev->driver->irq_postinstall(ring->dev);
  1729. }
  1730. trace_i915_gem_request_wait_begin(ring, seqno);
  1731. ring->waiting_seqno = seqno;
  1732. if (ring->irq_get(ring)) {
  1733. if (dev_priv->mm.interruptible)
  1734. ret = wait_event_interruptible(ring->irq_queue,
  1735. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1736. || atomic_read(&dev_priv->mm.wedged));
  1737. else
  1738. wait_event(ring->irq_queue,
  1739. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1740. || atomic_read(&dev_priv->mm.wedged));
  1741. ring->irq_put(ring);
  1742. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1743. seqno) ||
  1744. atomic_read(&dev_priv->mm.wedged), 3000))
  1745. ret = -EBUSY;
  1746. ring->waiting_seqno = 0;
  1747. trace_i915_gem_request_wait_end(ring, seqno);
  1748. }
  1749. if (atomic_read(&dev_priv->mm.wedged))
  1750. ret = -EAGAIN;
  1751. if (ret && ret != -ERESTARTSYS)
  1752. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1753. __func__, ret, seqno, ring->get_seqno(ring),
  1754. dev_priv->next_seqno);
  1755. /* Directly dispatch request retiring. While we have the work queue
  1756. * to handle this, the waiter on a request often wants an associated
  1757. * buffer to have made it to the inactive list, and we would need
  1758. * a separate wait queue to handle that.
  1759. */
  1760. if (ret == 0)
  1761. i915_gem_retire_requests_ring(ring);
  1762. return ret;
  1763. }
  1764. /**
  1765. * Ensures that all rendering to the object has completed and the object is
  1766. * safe to unbind from the GTT or access from the CPU.
  1767. */
  1768. int
  1769. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1770. {
  1771. int ret;
  1772. /* This function only exists to support waiting for existing rendering,
  1773. * not for emitting required flushes.
  1774. */
  1775. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1776. /* If there is rendering queued on the buffer being evicted, wait for
  1777. * it.
  1778. */
  1779. if (obj->active) {
  1780. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1781. if (ret)
  1782. return ret;
  1783. }
  1784. return 0;
  1785. }
  1786. /**
  1787. * Unbinds an object from the GTT aperture.
  1788. */
  1789. int
  1790. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1791. {
  1792. int ret = 0;
  1793. if (obj->gtt_space == NULL)
  1794. return 0;
  1795. if (obj->pin_count != 0) {
  1796. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1797. return -EINVAL;
  1798. }
  1799. /* blow away mappings if mapped through GTT */
  1800. i915_gem_release_mmap(obj);
  1801. /* Move the object to the CPU domain to ensure that
  1802. * any possible CPU writes while it's not in the GTT
  1803. * are flushed when we go to remap it. This will
  1804. * also ensure that all pending GPU writes are finished
  1805. * before we unbind.
  1806. */
  1807. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1808. if (ret == -ERESTARTSYS)
  1809. return ret;
  1810. /* Continue on if we fail due to EIO, the GPU is hung so we
  1811. * should be safe and we need to cleanup or else we might
  1812. * cause memory corruption through use-after-free.
  1813. */
  1814. if (ret) {
  1815. i915_gem_clflush_object(obj);
  1816. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1817. }
  1818. /* release the fence reg _after_ flushing */
  1819. ret = i915_gem_object_put_fence(obj);
  1820. if (ret == -ERESTARTSYS)
  1821. return ret;
  1822. trace_i915_gem_object_unbind(obj);
  1823. i915_gem_gtt_unbind_object(obj);
  1824. i915_gem_object_put_pages_gtt(obj);
  1825. list_del_init(&obj->gtt_list);
  1826. list_del_init(&obj->mm_list);
  1827. /* Avoid an unnecessary call to unbind on rebind. */
  1828. obj->map_and_fenceable = true;
  1829. drm_mm_put_block(obj->gtt_space);
  1830. obj->gtt_space = NULL;
  1831. obj->gtt_offset = 0;
  1832. if (i915_gem_object_is_purgeable(obj))
  1833. i915_gem_object_truncate(obj);
  1834. return ret;
  1835. }
  1836. int
  1837. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1838. uint32_t invalidate_domains,
  1839. uint32_t flush_domains)
  1840. {
  1841. int ret;
  1842. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1843. return 0;
  1844. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1845. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1846. if (ret)
  1847. return ret;
  1848. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1849. i915_gem_process_flushing_list(ring, flush_domains);
  1850. return 0;
  1851. }
  1852. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1853. {
  1854. int ret;
  1855. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1856. return 0;
  1857. if (!list_empty(&ring->gpu_write_list)) {
  1858. ret = i915_gem_flush_ring(ring,
  1859. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1860. if (ret)
  1861. return ret;
  1862. }
  1863. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1864. }
  1865. int
  1866. i915_gpu_idle(struct drm_device *dev)
  1867. {
  1868. drm_i915_private_t *dev_priv = dev->dev_private;
  1869. bool lists_empty;
  1870. int ret, i;
  1871. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1872. list_empty(&dev_priv->mm.active_list));
  1873. if (lists_empty)
  1874. return 0;
  1875. /* Flush everything onto the inactive list. */
  1876. for (i = 0; i < I915_NUM_RINGS; i++) {
  1877. ret = i915_ring_idle(&dev_priv->ring[i]);
  1878. if (ret)
  1879. return ret;
  1880. }
  1881. return 0;
  1882. }
  1883. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1884. struct intel_ring_buffer *pipelined)
  1885. {
  1886. struct drm_device *dev = obj->base.dev;
  1887. drm_i915_private_t *dev_priv = dev->dev_private;
  1888. u32 size = obj->gtt_space->size;
  1889. int regnum = obj->fence_reg;
  1890. uint64_t val;
  1891. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1892. 0xfffff000) << 32;
  1893. val |= obj->gtt_offset & 0xfffff000;
  1894. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1895. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1896. if (obj->tiling_mode == I915_TILING_Y)
  1897. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1898. val |= I965_FENCE_REG_VALID;
  1899. if (pipelined) {
  1900. int ret = intel_ring_begin(pipelined, 6);
  1901. if (ret)
  1902. return ret;
  1903. intel_ring_emit(pipelined, MI_NOOP);
  1904. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1905. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1906. intel_ring_emit(pipelined, (u32)val);
  1907. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1908. intel_ring_emit(pipelined, (u32)(val >> 32));
  1909. intel_ring_advance(pipelined);
  1910. } else
  1911. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1912. return 0;
  1913. }
  1914. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1915. struct intel_ring_buffer *pipelined)
  1916. {
  1917. struct drm_device *dev = obj->base.dev;
  1918. drm_i915_private_t *dev_priv = dev->dev_private;
  1919. u32 size = obj->gtt_space->size;
  1920. int regnum = obj->fence_reg;
  1921. uint64_t val;
  1922. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1923. 0xfffff000) << 32;
  1924. val |= obj->gtt_offset & 0xfffff000;
  1925. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1926. if (obj->tiling_mode == I915_TILING_Y)
  1927. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1928. val |= I965_FENCE_REG_VALID;
  1929. if (pipelined) {
  1930. int ret = intel_ring_begin(pipelined, 6);
  1931. if (ret)
  1932. return ret;
  1933. intel_ring_emit(pipelined, MI_NOOP);
  1934. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1935. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1936. intel_ring_emit(pipelined, (u32)val);
  1937. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1938. intel_ring_emit(pipelined, (u32)(val >> 32));
  1939. intel_ring_advance(pipelined);
  1940. } else
  1941. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1942. return 0;
  1943. }
  1944. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1945. struct intel_ring_buffer *pipelined)
  1946. {
  1947. struct drm_device *dev = obj->base.dev;
  1948. drm_i915_private_t *dev_priv = dev->dev_private;
  1949. u32 size = obj->gtt_space->size;
  1950. u32 fence_reg, val, pitch_val;
  1951. int tile_width;
  1952. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1953. (size & -size) != size ||
  1954. (obj->gtt_offset & (size - 1)),
  1955. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1956. obj->gtt_offset, obj->map_and_fenceable, size))
  1957. return -EINVAL;
  1958. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1959. tile_width = 128;
  1960. else
  1961. tile_width = 512;
  1962. /* Note: pitch better be a power of two tile widths */
  1963. pitch_val = obj->stride / tile_width;
  1964. pitch_val = ffs(pitch_val) - 1;
  1965. val = obj->gtt_offset;
  1966. if (obj->tiling_mode == I915_TILING_Y)
  1967. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1968. val |= I915_FENCE_SIZE_BITS(size);
  1969. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1970. val |= I830_FENCE_REG_VALID;
  1971. fence_reg = obj->fence_reg;
  1972. if (fence_reg < 8)
  1973. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1974. else
  1975. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1976. if (pipelined) {
  1977. int ret = intel_ring_begin(pipelined, 4);
  1978. if (ret)
  1979. return ret;
  1980. intel_ring_emit(pipelined, MI_NOOP);
  1981. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1982. intel_ring_emit(pipelined, fence_reg);
  1983. intel_ring_emit(pipelined, val);
  1984. intel_ring_advance(pipelined);
  1985. } else
  1986. I915_WRITE(fence_reg, val);
  1987. return 0;
  1988. }
  1989. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1990. struct intel_ring_buffer *pipelined)
  1991. {
  1992. struct drm_device *dev = obj->base.dev;
  1993. drm_i915_private_t *dev_priv = dev->dev_private;
  1994. u32 size = obj->gtt_space->size;
  1995. int regnum = obj->fence_reg;
  1996. uint32_t val;
  1997. uint32_t pitch_val;
  1998. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1999. (size & -size) != size ||
  2000. (obj->gtt_offset & (size - 1)),
  2001. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2002. obj->gtt_offset, size))
  2003. return -EINVAL;
  2004. pitch_val = obj->stride / 128;
  2005. pitch_val = ffs(pitch_val) - 1;
  2006. val = obj->gtt_offset;
  2007. if (obj->tiling_mode == I915_TILING_Y)
  2008. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2009. val |= I830_FENCE_SIZE_BITS(size);
  2010. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2011. val |= I830_FENCE_REG_VALID;
  2012. if (pipelined) {
  2013. int ret = intel_ring_begin(pipelined, 4);
  2014. if (ret)
  2015. return ret;
  2016. intel_ring_emit(pipelined, MI_NOOP);
  2017. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2018. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2019. intel_ring_emit(pipelined, val);
  2020. intel_ring_advance(pipelined);
  2021. } else
  2022. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2023. return 0;
  2024. }
  2025. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2026. {
  2027. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2028. }
  2029. static int
  2030. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2031. struct intel_ring_buffer *pipelined)
  2032. {
  2033. int ret;
  2034. if (obj->fenced_gpu_access) {
  2035. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2036. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2037. 0, obj->base.write_domain);
  2038. if (ret)
  2039. return ret;
  2040. }
  2041. obj->fenced_gpu_access = false;
  2042. }
  2043. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2044. if (!ring_passed_seqno(obj->last_fenced_ring,
  2045. obj->last_fenced_seqno)) {
  2046. ret = i915_wait_request(obj->last_fenced_ring,
  2047. obj->last_fenced_seqno);
  2048. if (ret)
  2049. return ret;
  2050. }
  2051. obj->last_fenced_seqno = 0;
  2052. obj->last_fenced_ring = NULL;
  2053. }
  2054. /* Ensure that all CPU reads are completed before installing a fence
  2055. * and all writes before removing the fence.
  2056. */
  2057. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2058. mb();
  2059. return 0;
  2060. }
  2061. int
  2062. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2063. {
  2064. int ret;
  2065. if (obj->tiling_mode)
  2066. i915_gem_release_mmap(obj);
  2067. ret = i915_gem_object_flush_fence(obj, NULL);
  2068. if (ret)
  2069. return ret;
  2070. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2071. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2072. i915_gem_clear_fence_reg(obj->base.dev,
  2073. &dev_priv->fence_regs[obj->fence_reg]);
  2074. obj->fence_reg = I915_FENCE_REG_NONE;
  2075. }
  2076. return 0;
  2077. }
  2078. static struct drm_i915_fence_reg *
  2079. i915_find_fence_reg(struct drm_device *dev,
  2080. struct intel_ring_buffer *pipelined)
  2081. {
  2082. struct drm_i915_private *dev_priv = dev->dev_private;
  2083. struct drm_i915_fence_reg *reg, *first, *avail;
  2084. int i;
  2085. /* First try to find a free reg */
  2086. avail = NULL;
  2087. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2088. reg = &dev_priv->fence_regs[i];
  2089. if (!reg->obj)
  2090. return reg;
  2091. if (!reg->obj->pin_count)
  2092. avail = reg;
  2093. }
  2094. if (avail == NULL)
  2095. return NULL;
  2096. /* None available, try to steal one or wait for a user to finish */
  2097. avail = first = NULL;
  2098. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2099. if (reg->obj->pin_count)
  2100. continue;
  2101. if (first == NULL)
  2102. first = reg;
  2103. if (!pipelined ||
  2104. !reg->obj->last_fenced_ring ||
  2105. reg->obj->last_fenced_ring == pipelined) {
  2106. avail = reg;
  2107. break;
  2108. }
  2109. }
  2110. if (avail == NULL)
  2111. avail = first;
  2112. return avail;
  2113. }
  2114. /**
  2115. * i915_gem_object_get_fence - set up a fence reg for an object
  2116. * @obj: object to map through a fence reg
  2117. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2118. * @interruptible: must we wait uninterruptibly for the register to retire?
  2119. *
  2120. * When mapping objects through the GTT, userspace wants to be able to write
  2121. * to them without having to worry about swizzling if the object is tiled.
  2122. *
  2123. * This function walks the fence regs looking for a free one for @obj,
  2124. * stealing one if it can't find any.
  2125. *
  2126. * It then sets up the reg based on the object's properties: address, pitch
  2127. * and tiling format.
  2128. */
  2129. int
  2130. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2131. struct intel_ring_buffer *pipelined)
  2132. {
  2133. struct drm_device *dev = obj->base.dev;
  2134. struct drm_i915_private *dev_priv = dev->dev_private;
  2135. struct drm_i915_fence_reg *reg;
  2136. int ret;
  2137. /* XXX disable pipelining. There are bugs. Shocking. */
  2138. pipelined = NULL;
  2139. /* Just update our place in the LRU if our fence is getting reused. */
  2140. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2141. reg = &dev_priv->fence_regs[obj->fence_reg];
  2142. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2143. if (obj->tiling_changed) {
  2144. ret = i915_gem_object_flush_fence(obj, pipelined);
  2145. if (ret)
  2146. return ret;
  2147. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2148. pipelined = NULL;
  2149. if (pipelined) {
  2150. reg->setup_seqno =
  2151. i915_gem_next_request_seqno(pipelined);
  2152. obj->last_fenced_seqno = reg->setup_seqno;
  2153. obj->last_fenced_ring = pipelined;
  2154. }
  2155. goto update;
  2156. }
  2157. if (!pipelined) {
  2158. if (reg->setup_seqno) {
  2159. if (!ring_passed_seqno(obj->last_fenced_ring,
  2160. reg->setup_seqno)) {
  2161. ret = i915_wait_request(obj->last_fenced_ring,
  2162. reg->setup_seqno);
  2163. if (ret)
  2164. return ret;
  2165. }
  2166. reg->setup_seqno = 0;
  2167. }
  2168. } else if (obj->last_fenced_ring &&
  2169. obj->last_fenced_ring != pipelined) {
  2170. ret = i915_gem_object_flush_fence(obj, pipelined);
  2171. if (ret)
  2172. return ret;
  2173. }
  2174. return 0;
  2175. }
  2176. reg = i915_find_fence_reg(dev, pipelined);
  2177. if (reg == NULL)
  2178. return -ENOSPC;
  2179. ret = i915_gem_object_flush_fence(obj, pipelined);
  2180. if (ret)
  2181. return ret;
  2182. if (reg->obj) {
  2183. struct drm_i915_gem_object *old = reg->obj;
  2184. drm_gem_object_reference(&old->base);
  2185. if (old->tiling_mode)
  2186. i915_gem_release_mmap(old);
  2187. ret = i915_gem_object_flush_fence(old, pipelined);
  2188. if (ret) {
  2189. drm_gem_object_unreference(&old->base);
  2190. return ret;
  2191. }
  2192. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2193. pipelined = NULL;
  2194. old->fence_reg = I915_FENCE_REG_NONE;
  2195. old->last_fenced_ring = pipelined;
  2196. old->last_fenced_seqno =
  2197. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2198. drm_gem_object_unreference(&old->base);
  2199. } else if (obj->last_fenced_seqno == 0)
  2200. pipelined = NULL;
  2201. reg->obj = obj;
  2202. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2203. obj->fence_reg = reg - dev_priv->fence_regs;
  2204. obj->last_fenced_ring = pipelined;
  2205. reg->setup_seqno =
  2206. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2207. obj->last_fenced_seqno = reg->setup_seqno;
  2208. update:
  2209. obj->tiling_changed = false;
  2210. switch (INTEL_INFO(dev)->gen) {
  2211. case 7:
  2212. case 6:
  2213. ret = sandybridge_write_fence_reg(obj, pipelined);
  2214. break;
  2215. case 5:
  2216. case 4:
  2217. ret = i965_write_fence_reg(obj, pipelined);
  2218. break;
  2219. case 3:
  2220. ret = i915_write_fence_reg(obj, pipelined);
  2221. break;
  2222. case 2:
  2223. ret = i830_write_fence_reg(obj, pipelined);
  2224. break;
  2225. }
  2226. return ret;
  2227. }
  2228. /**
  2229. * i915_gem_clear_fence_reg - clear out fence register info
  2230. * @obj: object to clear
  2231. *
  2232. * Zeroes out the fence register itself and clears out the associated
  2233. * data structures in dev_priv and obj.
  2234. */
  2235. static void
  2236. i915_gem_clear_fence_reg(struct drm_device *dev,
  2237. struct drm_i915_fence_reg *reg)
  2238. {
  2239. drm_i915_private_t *dev_priv = dev->dev_private;
  2240. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2241. switch (INTEL_INFO(dev)->gen) {
  2242. case 7:
  2243. case 6:
  2244. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2245. break;
  2246. case 5:
  2247. case 4:
  2248. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2249. break;
  2250. case 3:
  2251. if (fence_reg >= 8)
  2252. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2253. else
  2254. case 2:
  2255. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2256. I915_WRITE(fence_reg, 0);
  2257. break;
  2258. }
  2259. list_del_init(&reg->lru_list);
  2260. reg->obj = NULL;
  2261. reg->setup_seqno = 0;
  2262. }
  2263. /**
  2264. * Finds free space in the GTT aperture and binds the object there.
  2265. */
  2266. static int
  2267. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2268. unsigned alignment,
  2269. bool map_and_fenceable)
  2270. {
  2271. struct drm_device *dev = obj->base.dev;
  2272. drm_i915_private_t *dev_priv = dev->dev_private;
  2273. struct drm_mm_node *free_space;
  2274. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2275. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2276. bool mappable, fenceable;
  2277. int ret;
  2278. if (obj->madv != I915_MADV_WILLNEED) {
  2279. DRM_ERROR("Attempting to bind a purgeable object\n");
  2280. return -EINVAL;
  2281. }
  2282. fence_size = i915_gem_get_gtt_size(dev,
  2283. obj->base.size,
  2284. obj->tiling_mode);
  2285. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2286. obj->base.size,
  2287. obj->tiling_mode);
  2288. unfenced_alignment =
  2289. i915_gem_get_unfenced_gtt_alignment(dev,
  2290. obj->base.size,
  2291. obj->tiling_mode);
  2292. if (alignment == 0)
  2293. alignment = map_and_fenceable ? fence_alignment :
  2294. unfenced_alignment;
  2295. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2296. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2297. return -EINVAL;
  2298. }
  2299. size = map_and_fenceable ? fence_size : obj->base.size;
  2300. /* If the object is bigger than the entire aperture, reject it early
  2301. * before evicting everything in a vain attempt to find space.
  2302. */
  2303. if (obj->base.size >
  2304. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2305. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2306. return -E2BIG;
  2307. }
  2308. search_free:
  2309. if (map_and_fenceable)
  2310. free_space =
  2311. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2312. size, alignment, 0,
  2313. dev_priv->mm.gtt_mappable_end,
  2314. 0);
  2315. else
  2316. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2317. size, alignment, 0);
  2318. if (free_space != NULL) {
  2319. if (map_and_fenceable)
  2320. obj->gtt_space =
  2321. drm_mm_get_block_range_generic(free_space,
  2322. size, alignment, 0,
  2323. dev_priv->mm.gtt_mappable_end,
  2324. 0);
  2325. else
  2326. obj->gtt_space =
  2327. drm_mm_get_block(free_space, size, alignment);
  2328. }
  2329. if (obj->gtt_space == NULL) {
  2330. /* If the gtt is empty and we're still having trouble
  2331. * fitting our object in, we're out of memory.
  2332. */
  2333. ret = i915_gem_evict_something(dev, size, alignment,
  2334. map_and_fenceable);
  2335. if (ret)
  2336. return ret;
  2337. goto search_free;
  2338. }
  2339. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2340. if (ret) {
  2341. drm_mm_put_block(obj->gtt_space);
  2342. obj->gtt_space = NULL;
  2343. if (ret == -ENOMEM) {
  2344. /* first try to reclaim some memory by clearing the GTT */
  2345. ret = i915_gem_evict_everything(dev, false);
  2346. if (ret) {
  2347. /* now try to shrink everyone else */
  2348. if (gfpmask) {
  2349. gfpmask = 0;
  2350. goto search_free;
  2351. }
  2352. return -ENOMEM;
  2353. }
  2354. goto search_free;
  2355. }
  2356. return ret;
  2357. }
  2358. ret = i915_gem_gtt_bind_object(obj);
  2359. if (ret) {
  2360. i915_gem_object_put_pages_gtt(obj);
  2361. drm_mm_put_block(obj->gtt_space);
  2362. obj->gtt_space = NULL;
  2363. if (i915_gem_evict_everything(dev, false))
  2364. return ret;
  2365. goto search_free;
  2366. }
  2367. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2368. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2369. /* Assert that the object is not currently in any GPU domain. As it
  2370. * wasn't in the GTT, there shouldn't be any way it could have been in
  2371. * a GPU cache
  2372. */
  2373. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2374. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2375. obj->gtt_offset = obj->gtt_space->start;
  2376. fenceable =
  2377. obj->gtt_space->size == fence_size &&
  2378. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2379. mappable =
  2380. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2381. obj->map_and_fenceable = mappable && fenceable;
  2382. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2383. return 0;
  2384. }
  2385. void
  2386. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2387. {
  2388. /* If we don't have a page list set up, then we're not pinned
  2389. * to GPU, and we can ignore the cache flush because it'll happen
  2390. * again at bind time.
  2391. */
  2392. if (obj->pages == NULL)
  2393. return;
  2394. /* If the GPU is snooping the contents of the CPU cache,
  2395. * we do not need to manually clear the CPU cache lines. However,
  2396. * the caches are only snooped when the render cache is
  2397. * flushed/invalidated. As we always have to emit invalidations
  2398. * and flushes when moving into and out of the RENDER domain, correct
  2399. * snooping behaviour occurs naturally as the result of our domain
  2400. * tracking.
  2401. */
  2402. if (obj->cache_level != I915_CACHE_NONE)
  2403. return;
  2404. trace_i915_gem_object_clflush(obj);
  2405. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2406. }
  2407. /** Flushes any GPU write domain for the object if it's dirty. */
  2408. static int
  2409. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2410. {
  2411. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2412. return 0;
  2413. /* Queue the GPU write cache flushing we need. */
  2414. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2415. }
  2416. /** Flushes the GTT write domain for the object if it's dirty. */
  2417. static void
  2418. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2419. {
  2420. uint32_t old_write_domain;
  2421. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2422. return;
  2423. /* No actual flushing is required for the GTT write domain. Writes
  2424. * to it immediately go to main memory as far as we know, so there's
  2425. * no chipset flush. It also doesn't land in render cache.
  2426. *
  2427. * However, we do have to enforce the order so that all writes through
  2428. * the GTT land before any writes to the device, such as updates to
  2429. * the GATT itself.
  2430. */
  2431. wmb();
  2432. old_write_domain = obj->base.write_domain;
  2433. obj->base.write_domain = 0;
  2434. trace_i915_gem_object_change_domain(obj,
  2435. obj->base.read_domains,
  2436. old_write_domain);
  2437. }
  2438. /** Flushes the CPU write domain for the object if it's dirty. */
  2439. static void
  2440. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2441. {
  2442. uint32_t old_write_domain;
  2443. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2444. return;
  2445. i915_gem_clflush_object(obj);
  2446. intel_gtt_chipset_flush();
  2447. old_write_domain = obj->base.write_domain;
  2448. obj->base.write_domain = 0;
  2449. trace_i915_gem_object_change_domain(obj,
  2450. obj->base.read_domains,
  2451. old_write_domain);
  2452. }
  2453. /**
  2454. * Moves a single object to the GTT read, and possibly write domain.
  2455. *
  2456. * This function returns when the move is complete, including waiting on
  2457. * flushes to occur.
  2458. */
  2459. int
  2460. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2461. {
  2462. uint32_t old_write_domain, old_read_domains;
  2463. int ret;
  2464. /* Not valid to be called on unbound objects. */
  2465. if (obj->gtt_space == NULL)
  2466. return -EINVAL;
  2467. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2468. return 0;
  2469. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2470. if (ret)
  2471. return ret;
  2472. if (obj->pending_gpu_write || write) {
  2473. ret = i915_gem_object_wait_rendering(obj);
  2474. if (ret)
  2475. return ret;
  2476. }
  2477. i915_gem_object_flush_cpu_write_domain(obj);
  2478. old_write_domain = obj->base.write_domain;
  2479. old_read_domains = obj->base.read_domains;
  2480. /* It should now be out of any other write domains, and we can update
  2481. * the domain values for our changes.
  2482. */
  2483. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2484. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2485. if (write) {
  2486. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2487. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2488. obj->dirty = 1;
  2489. }
  2490. trace_i915_gem_object_change_domain(obj,
  2491. old_read_domains,
  2492. old_write_domain);
  2493. return 0;
  2494. }
  2495. /*
  2496. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2497. * wait, as in modesetting process we're not supposed to be interrupted.
  2498. */
  2499. int
  2500. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2501. struct intel_ring_buffer *pipelined)
  2502. {
  2503. uint32_t old_read_domains;
  2504. int ret;
  2505. /* Not valid to be called on unbound objects. */
  2506. if (obj->gtt_space == NULL)
  2507. return -EINVAL;
  2508. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2509. if (ret)
  2510. return ret;
  2511. /* Currently, we are always called from an non-interruptible context. */
  2512. if (pipelined != obj->ring) {
  2513. ret = i915_gem_object_wait_rendering(obj);
  2514. if (ret)
  2515. return ret;
  2516. }
  2517. i915_gem_object_flush_cpu_write_domain(obj);
  2518. old_read_domains = obj->base.read_domains;
  2519. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2520. trace_i915_gem_object_change_domain(obj,
  2521. old_read_domains,
  2522. obj->base.write_domain);
  2523. return 0;
  2524. }
  2525. int
  2526. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
  2527. {
  2528. int ret;
  2529. if (!obj->active)
  2530. return 0;
  2531. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2532. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2533. if (ret)
  2534. return ret;
  2535. }
  2536. return i915_gem_object_wait_rendering(obj);
  2537. }
  2538. /**
  2539. * Moves a single object to the CPU read, and possibly write domain.
  2540. *
  2541. * This function returns when the move is complete, including waiting on
  2542. * flushes to occur.
  2543. */
  2544. static int
  2545. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2546. {
  2547. uint32_t old_write_domain, old_read_domains;
  2548. int ret;
  2549. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2550. return 0;
  2551. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2552. if (ret)
  2553. return ret;
  2554. ret = i915_gem_object_wait_rendering(obj);
  2555. if (ret)
  2556. return ret;
  2557. i915_gem_object_flush_gtt_write_domain(obj);
  2558. /* If we have a partially-valid cache of the object in the CPU,
  2559. * finish invalidating it and free the per-page flags.
  2560. */
  2561. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2562. old_write_domain = obj->base.write_domain;
  2563. old_read_domains = obj->base.read_domains;
  2564. /* Flush the CPU cache if it's still invalid. */
  2565. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2566. i915_gem_clflush_object(obj);
  2567. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2568. }
  2569. /* It should now be out of any other write domains, and we can update
  2570. * the domain values for our changes.
  2571. */
  2572. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2573. /* If we're writing through the CPU, then the GPU read domains will
  2574. * need to be invalidated at next use.
  2575. */
  2576. if (write) {
  2577. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2578. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2579. }
  2580. trace_i915_gem_object_change_domain(obj,
  2581. old_read_domains,
  2582. old_write_domain);
  2583. return 0;
  2584. }
  2585. /**
  2586. * Moves the object from a partially CPU read to a full one.
  2587. *
  2588. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2589. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2590. */
  2591. static void
  2592. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2593. {
  2594. if (!obj->page_cpu_valid)
  2595. return;
  2596. /* If we're partially in the CPU read domain, finish moving it in.
  2597. */
  2598. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2599. int i;
  2600. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2601. if (obj->page_cpu_valid[i])
  2602. continue;
  2603. drm_clflush_pages(obj->pages + i, 1);
  2604. }
  2605. }
  2606. /* Free the page_cpu_valid mappings which are now stale, whether
  2607. * or not we've got I915_GEM_DOMAIN_CPU.
  2608. */
  2609. kfree(obj->page_cpu_valid);
  2610. obj->page_cpu_valid = NULL;
  2611. }
  2612. /**
  2613. * Set the CPU read domain on a range of the object.
  2614. *
  2615. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2616. * not entirely valid. The page_cpu_valid member of the object flags which
  2617. * pages have been flushed, and will be respected by
  2618. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2619. * of the whole object.
  2620. *
  2621. * This function returns when the move is complete, including waiting on
  2622. * flushes to occur.
  2623. */
  2624. static int
  2625. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2626. uint64_t offset, uint64_t size)
  2627. {
  2628. uint32_t old_read_domains;
  2629. int i, ret;
  2630. if (offset == 0 && size == obj->base.size)
  2631. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2632. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2633. if (ret)
  2634. return ret;
  2635. ret = i915_gem_object_wait_rendering(obj);
  2636. if (ret)
  2637. return ret;
  2638. i915_gem_object_flush_gtt_write_domain(obj);
  2639. /* If we're already fully in the CPU read domain, we're done. */
  2640. if (obj->page_cpu_valid == NULL &&
  2641. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2642. return 0;
  2643. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2644. * newly adding I915_GEM_DOMAIN_CPU
  2645. */
  2646. if (obj->page_cpu_valid == NULL) {
  2647. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2648. GFP_KERNEL);
  2649. if (obj->page_cpu_valid == NULL)
  2650. return -ENOMEM;
  2651. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2652. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2653. /* Flush the cache on any pages that are still invalid from the CPU's
  2654. * perspective.
  2655. */
  2656. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2657. i++) {
  2658. if (obj->page_cpu_valid[i])
  2659. continue;
  2660. drm_clflush_pages(obj->pages + i, 1);
  2661. obj->page_cpu_valid[i] = 1;
  2662. }
  2663. /* It should now be out of any other write domains, and we can update
  2664. * the domain values for our changes.
  2665. */
  2666. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2667. old_read_domains = obj->base.read_domains;
  2668. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2669. trace_i915_gem_object_change_domain(obj,
  2670. old_read_domains,
  2671. obj->base.write_domain);
  2672. return 0;
  2673. }
  2674. /* Throttle our rendering by waiting until the ring has completed our requests
  2675. * emitted over 20 msec ago.
  2676. *
  2677. * Note that if we were to use the current jiffies each time around the loop,
  2678. * we wouldn't escape the function with any frames outstanding if the time to
  2679. * render a frame was over 20ms.
  2680. *
  2681. * This should get us reasonable parallelism between CPU and GPU but also
  2682. * relatively low latency when blocking on a particular request to finish.
  2683. */
  2684. static int
  2685. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2686. {
  2687. struct drm_i915_private *dev_priv = dev->dev_private;
  2688. struct drm_i915_file_private *file_priv = file->driver_priv;
  2689. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2690. struct drm_i915_gem_request *request;
  2691. struct intel_ring_buffer *ring = NULL;
  2692. u32 seqno = 0;
  2693. int ret;
  2694. if (atomic_read(&dev_priv->mm.wedged))
  2695. return -EIO;
  2696. spin_lock(&file_priv->mm.lock);
  2697. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2698. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2699. break;
  2700. ring = request->ring;
  2701. seqno = request->seqno;
  2702. }
  2703. spin_unlock(&file_priv->mm.lock);
  2704. if (seqno == 0)
  2705. return 0;
  2706. ret = 0;
  2707. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2708. /* And wait for the seqno passing without holding any locks and
  2709. * causing extra latency for others. This is safe as the irq
  2710. * generation is designed to be run atomically and so is
  2711. * lockless.
  2712. */
  2713. if (ring->irq_get(ring)) {
  2714. ret = wait_event_interruptible(ring->irq_queue,
  2715. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2716. || atomic_read(&dev_priv->mm.wedged));
  2717. ring->irq_put(ring);
  2718. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2719. ret = -EIO;
  2720. }
  2721. }
  2722. if (ret == 0)
  2723. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2724. return ret;
  2725. }
  2726. int
  2727. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2728. uint32_t alignment,
  2729. bool map_and_fenceable)
  2730. {
  2731. struct drm_device *dev = obj->base.dev;
  2732. struct drm_i915_private *dev_priv = dev->dev_private;
  2733. int ret;
  2734. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2735. WARN_ON(i915_verify_lists(dev));
  2736. if (obj->gtt_space != NULL) {
  2737. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2738. (map_and_fenceable && !obj->map_and_fenceable)) {
  2739. WARN(obj->pin_count,
  2740. "bo is already pinned with incorrect alignment:"
  2741. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2742. " obj->map_and_fenceable=%d\n",
  2743. obj->gtt_offset, alignment,
  2744. map_and_fenceable,
  2745. obj->map_and_fenceable);
  2746. ret = i915_gem_object_unbind(obj);
  2747. if (ret)
  2748. return ret;
  2749. }
  2750. }
  2751. if (obj->gtt_space == NULL) {
  2752. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2753. map_and_fenceable);
  2754. if (ret)
  2755. return ret;
  2756. }
  2757. if (obj->pin_count++ == 0) {
  2758. if (!obj->active)
  2759. list_move_tail(&obj->mm_list,
  2760. &dev_priv->mm.pinned_list);
  2761. }
  2762. obj->pin_mappable |= map_and_fenceable;
  2763. WARN_ON(i915_verify_lists(dev));
  2764. return 0;
  2765. }
  2766. void
  2767. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2768. {
  2769. struct drm_device *dev = obj->base.dev;
  2770. drm_i915_private_t *dev_priv = dev->dev_private;
  2771. WARN_ON(i915_verify_lists(dev));
  2772. BUG_ON(obj->pin_count == 0);
  2773. BUG_ON(obj->gtt_space == NULL);
  2774. if (--obj->pin_count == 0) {
  2775. if (!obj->active)
  2776. list_move_tail(&obj->mm_list,
  2777. &dev_priv->mm.inactive_list);
  2778. obj->pin_mappable = false;
  2779. }
  2780. WARN_ON(i915_verify_lists(dev));
  2781. }
  2782. int
  2783. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2784. struct drm_file *file)
  2785. {
  2786. struct drm_i915_gem_pin *args = data;
  2787. struct drm_i915_gem_object *obj;
  2788. int ret;
  2789. ret = i915_mutex_lock_interruptible(dev);
  2790. if (ret)
  2791. return ret;
  2792. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2793. if (&obj->base == NULL) {
  2794. ret = -ENOENT;
  2795. goto unlock;
  2796. }
  2797. if (obj->madv != I915_MADV_WILLNEED) {
  2798. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2799. ret = -EINVAL;
  2800. goto out;
  2801. }
  2802. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2803. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2804. args->handle);
  2805. ret = -EINVAL;
  2806. goto out;
  2807. }
  2808. obj->user_pin_count++;
  2809. obj->pin_filp = file;
  2810. if (obj->user_pin_count == 1) {
  2811. ret = i915_gem_object_pin(obj, args->alignment, true);
  2812. if (ret)
  2813. goto out;
  2814. }
  2815. /* XXX - flush the CPU caches for pinned objects
  2816. * as the X server doesn't manage domains yet
  2817. */
  2818. i915_gem_object_flush_cpu_write_domain(obj);
  2819. args->offset = obj->gtt_offset;
  2820. out:
  2821. drm_gem_object_unreference(&obj->base);
  2822. unlock:
  2823. mutex_unlock(&dev->struct_mutex);
  2824. return ret;
  2825. }
  2826. int
  2827. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2828. struct drm_file *file)
  2829. {
  2830. struct drm_i915_gem_pin *args = data;
  2831. struct drm_i915_gem_object *obj;
  2832. int ret;
  2833. ret = i915_mutex_lock_interruptible(dev);
  2834. if (ret)
  2835. return ret;
  2836. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2837. if (&obj->base == NULL) {
  2838. ret = -ENOENT;
  2839. goto unlock;
  2840. }
  2841. if (obj->pin_filp != file) {
  2842. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2843. args->handle);
  2844. ret = -EINVAL;
  2845. goto out;
  2846. }
  2847. obj->user_pin_count--;
  2848. if (obj->user_pin_count == 0) {
  2849. obj->pin_filp = NULL;
  2850. i915_gem_object_unpin(obj);
  2851. }
  2852. out:
  2853. drm_gem_object_unreference(&obj->base);
  2854. unlock:
  2855. mutex_unlock(&dev->struct_mutex);
  2856. return ret;
  2857. }
  2858. int
  2859. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2860. struct drm_file *file)
  2861. {
  2862. struct drm_i915_gem_busy *args = data;
  2863. struct drm_i915_gem_object *obj;
  2864. int ret;
  2865. ret = i915_mutex_lock_interruptible(dev);
  2866. if (ret)
  2867. return ret;
  2868. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2869. if (&obj->base == NULL) {
  2870. ret = -ENOENT;
  2871. goto unlock;
  2872. }
  2873. /* Count all active objects as busy, even if they are currently not used
  2874. * by the gpu. Users of this interface expect objects to eventually
  2875. * become non-busy without any further actions, therefore emit any
  2876. * necessary flushes here.
  2877. */
  2878. args->busy = obj->active;
  2879. if (args->busy) {
  2880. /* Unconditionally flush objects, even when the gpu still uses this
  2881. * object. Userspace calling this function indicates that it wants to
  2882. * use this buffer rather sooner than later, so issuing the required
  2883. * flush earlier is beneficial.
  2884. */
  2885. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2886. ret = i915_gem_flush_ring(obj->ring,
  2887. 0, obj->base.write_domain);
  2888. } else if (obj->ring->outstanding_lazy_request ==
  2889. obj->last_rendering_seqno) {
  2890. struct drm_i915_gem_request *request;
  2891. /* This ring is not being cleared by active usage,
  2892. * so emit a request to do so.
  2893. */
  2894. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2895. if (request)
  2896. ret = i915_add_request(obj->ring, NULL,request);
  2897. else
  2898. ret = -ENOMEM;
  2899. }
  2900. /* Update the active list for the hardware's current position.
  2901. * Otherwise this only updates on a delayed timer or when irqs
  2902. * are actually unmasked, and our working set ends up being
  2903. * larger than required.
  2904. */
  2905. i915_gem_retire_requests_ring(obj->ring);
  2906. args->busy = obj->active;
  2907. }
  2908. drm_gem_object_unreference(&obj->base);
  2909. unlock:
  2910. mutex_unlock(&dev->struct_mutex);
  2911. return ret;
  2912. }
  2913. int
  2914. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2915. struct drm_file *file_priv)
  2916. {
  2917. return i915_gem_ring_throttle(dev, file_priv);
  2918. }
  2919. int
  2920. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2921. struct drm_file *file_priv)
  2922. {
  2923. struct drm_i915_gem_madvise *args = data;
  2924. struct drm_i915_gem_object *obj;
  2925. int ret;
  2926. switch (args->madv) {
  2927. case I915_MADV_DONTNEED:
  2928. case I915_MADV_WILLNEED:
  2929. break;
  2930. default:
  2931. return -EINVAL;
  2932. }
  2933. ret = i915_mutex_lock_interruptible(dev);
  2934. if (ret)
  2935. return ret;
  2936. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2937. if (&obj->base == NULL) {
  2938. ret = -ENOENT;
  2939. goto unlock;
  2940. }
  2941. if (obj->pin_count) {
  2942. ret = -EINVAL;
  2943. goto out;
  2944. }
  2945. if (obj->madv != __I915_MADV_PURGED)
  2946. obj->madv = args->madv;
  2947. /* if the object is no longer bound, discard its backing storage */
  2948. if (i915_gem_object_is_purgeable(obj) &&
  2949. obj->gtt_space == NULL)
  2950. i915_gem_object_truncate(obj);
  2951. args->retained = obj->madv != __I915_MADV_PURGED;
  2952. out:
  2953. drm_gem_object_unreference(&obj->base);
  2954. unlock:
  2955. mutex_unlock(&dev->struct_mutex);
  2956. return ret;
  2957. }
  2958. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2959. size_t size)
  2960. {
  2961. struct drm_i915_private *dev_priv = dev->dev_private;
  2962. struct drm_i915_gem_object *obj;
  2963. struct address_space *mapping;
  2964. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2965. if (obj == NULL)
  2966. return NULL;
  2967. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2968. kfree(obj);
  2969. return NULL;
  2970. }
  2971. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2972. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2973. i915_gem_info_add_obj(dev_priv, size);
  2974. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2975. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2976. obj->cache_level = I915_CACHE_NONE;
  2977. obj->base.driver_private = NULL;
  2978. obj->fence_reg = I915_FENCE_REG_NONE;
  2979. INIT_LIST_HEAD(&obj->mm_list);
  2980. INIT_LIST_HEAD(&obj->gtt_list);
  2981. INIT_LIST_HEAD(&obj->ring_list);
  2982. INIT_LIST_HEAD(&obj->exec_list);
  2983. INIT_LIST_HEAD(&obj->gpu_write_list);
  2984. obj->madv = I915_MADV_WILLNEED;
  2985. /* Avoid an unnecessary call to unbind on the first bind. */
  2986. obj->map_and_fenceable = true;
  2987. return obj;
  2988. }
  2989. int i915_gem_init_object(struct drm_gem_object *obj)
  2990. {
  2991. BUG();
  2992. return 0;
  2993. }
  2994. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2995. {
  2996. struct drm_device *dev = obj->base.dev;
  2997. drm_i915_private_t *dev_priv = dev->dev_private;
  2998. int ret;
  2999. ret = i915_gem_object_unbind(obj);
  3000. if (ret == -ERESTARTSYS) {
  3001. list_move(&obj->mm_list,
  3002. &dev_priv->mm.deferred_free_list);
  3003. return;
  3004. }
  3005. trace_i915_gem_object_destroy(obj);
  3006. if (obj->base.map_list.map)
  3007. i915_gem_free_mmap_offset(obj);
  3008. drm_gem_object_release(&obj->base);
  3009. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3010. kfree(obj->page_cpu_valid);
  3011. kfree(obj->bit_17);
  3012. kfree(obj);
  3013. }
  3014. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3015. {
  3016. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3017. struct drm_device *dev = obj->base.dev;
  3018. while (obj->pin_count > 0)
  3019. i915_gem_object_unpin(obj);
  3020. if (obj->phys_obj)
  3021. i915_gem_detach_phys_object(dev, obj);
  3022. i915_gem_free_object_tail(obj);
  3023. }
  3024. int
  3025. i915_gem_idle(struct drm_device *dev)
  3026. {
  3027. drm_i915_private_t *dev_priv = dev->dev_private;
  3028. int ret;
  3029. mutex_lock(&dev->struct_mutex);
  3030. if (dev_priv->mm.suspended) {
  3031. mutex_unlock(&dev->struct_mutex);
  3032. return 0;
  3033. }
  3034. ret = i915_gpu_idle(dev);
  3035. if (ret) {
  3036. mutex_unlock(&dev->struct_mutex);
  3037. return ret;
  3038. }
  3039. /* Under UMS, be paranoid and evict. */
  3040. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3041. ret = i915_gem_evict_inactive(dev, false);
  3042. if (ret) {
  3043. mutex_unlock(&dev->struct_mutex);
  3044. return ret;
  3045. }
  3046. }
  3047. i915_gem_reset_fences(dev);
  3048. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3049. * We need to replace this with a semaphore, or something.
  3050. * And not confound mm.suspended!
  3051. */
  3052. dev_priv->mm.suspended = 1;
  3053. del_timer_sync(&dev_priv->hangcheck_timer);
  3054. i915_kernel_lost_context(dev);
  3055. i915_gem_cleanup_ringbuffer(dev);
  3056. mutex_unlock(&dev->struct_mutex);
  3057. /* Cancel the retire work handler, which should be idle now. */
  3058. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3059. return 0;
  3060. }
  3061. int
  3062. i915_gem_init_ringbuffer(struct drm_device *dev)
  3063. {
  3064. drm_i915_private_t *dev_priv = dev->dev_private;
  3065. int ret;
  3066. ret = intel_init_render_ring_buffer(dev);
  3067. if (ret)
  3068. return ret;
  3069. if (HAS_BSD(dev)) {
  3070. ret = intel_init_bsd_ring_buffer(dev);
  3071. if (ret)
  3072. goto cleanup_render_ring;
  3073. }
  3074. if (HAS_BLT(dev)) {
  3075. ret = intel_init_blt_ring_buffer(dev);
  3076. if (ret)
  3077. goto cleanup_bsd_ring;
  3078. }
  3079. dev_priv->next_seqno = 1;
  3080. return 0;
  3081. cleanup_bsd_ring:
  3082. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3083. cleanup_render_ring:
  3084. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3085. return ret;
  3086. }
  3087. void
  3088. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3089. {
  3090. drm_i915_private_t *dev_priv = dev->dev_private;
  3091. int i;
  3092. for (i = 0; i < I915_NUM_RINGS; i++)
  3093. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3094. }
  3095. int
  3096. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3097. struct drm_file *file_priv)
  3098. {
  3099. drm_i915_private_t *dev_priv = dev->dev_private;
  3100. int ret, i;
  3101. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3102. return 0;
  3103. if (atomic_read(&dev_priv->mm.wedged)) {
  3104. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3105. atomic_set(&dev_priv->mm.wedged, 0);
  3106. }
  3107. mutex_lock(&dev->struct_mutex);
  3108. dev_priv->mm.suspended = 0;
  3109. ret = i915_gem_init_ringbuffer(dev);
  3110. if (ret != 0) {
  3111. mutex_unlock(&dev->struct_mutex);
  3112. return ret;
  3113. }
  3114. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3115. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3116. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3117. for (i = 0; i < I915_NUM_RINGS; i++) {
  3118. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3119. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3120. }
  3121. mutex_unlock(&dev->struct_mutex);
  3122. ret = drm_irq_install(dev);
  3123. if (ret)
  3124. goto cleanup_ringbuffer;
  3125. return 0;
  3126. cleanup_ringbuffer:
  3127. mutex_lock(&dev->struct_mutex);
  3128. i915_gem_cleanup_ringbuffer(dev);
  3129. dev_priv->mm.suspended = 1;
  3130. mutex_unlock(&dev->struct_mutex);
  3131. return ret;
  3132. }
  3133. int
  3134. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3135. struct drm_file *file_priv)
  3136. {
  3137. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3138. return 0;
  3139. drm_irq_uninstall(dev);
  3140. return i915_gem_idle(dev);
  3141. }
  3142. void
  3143. i915_gem_lastclose(struct drm_device *dev)
  3144. {
  3145. int ret;
  3146. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3147. return;
  3148. ret = i915_gem_idle(dev);
  3149. if (ret)
  3150. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3151. }
  3152. static void
  3153. init_ring_lists(struct intel_ring_buffer *ring)
  3154. {
  3155. INIT_LIST_HEAD(&ring->active_list);
  3156. INIT_LIST_HEAD(&ring->request_list);
  3157. INIT_LIST_HEAD(&ring->gpu_write_list);
  3158. }
  3159. void
  3160. i915_gem_load(struct drm_device *dev)
  3161. {
  3162. int i;
  3163. drm_i915_private_t *dev_priv = dev->dev_private;
  3164. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3165. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3166. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3167. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3168. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3169. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3170. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3171. for (i = 0; i < I915_NUM_RINGS; i++)
  3172. init_ring_lists(&dev_priv->ring[i]);
  3173. for (i = 0; i < 16; i++)
  3174. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3175. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3176. i915_gem_retire_work_handler);
  3177. init_completion(&dev_priv->error_completion);
  3178. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3179. if (IS_GEN3(dev)) {
  3180. u32 tmp = I915_READ(MI_ARB_STATE);
  3181. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3182. /* arb state is a masked write, so set bit + bit in mask */
  3183. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3184. I915_WRITE(MI_ARB_STATE, tmp);
  3185. }
  3186. }
  3187. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3188. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3189. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3190. dev_priv->fence_reg_start = 3;
  3191. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3192. dev_priv->num_fence_regs = 16;
  3193. else
  3194. dev_priv->num_fence_regs = 8;
  3195. /* Initialize fence registers to zero */
  3196. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3197. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3198. }
  3199. i915_gem_detect_bit_6_swizzle(dev);
  3200. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3201. dev_priv->mm.interruptible = true;
  3202. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3203. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3204. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3205. }
  3206. /*
  3207. * Create a physically contiguous memory object for this object
  3208. * e.g. for cursor + overlay regs
  3209. */
  3210. static int i915_gem_init_phys_object(struct drm_device *dev,
  3211. int id, int size, int align)
  3212. {
  3213. drm_i915_private_t *dev_priv = dev->dev_private;
  3214. struct drm_i915_gem_phys_object *phys_obj;
  3215. int ret;
  3216. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3217. return 0;
  3218. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3219. if (!phys_obj)
  3220. return -ENOMEM;
  3221. phys_obj->id = id;
  3222. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3223. if (!phys_obj->handle) {
  3224. ret = -ENOMEM;
  3225. goto kfree_obj;
  3226. }
  3227. #ifdef CONFIG_X86
  3228. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3229. #endif
  3230. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3231. return 0;
  3232. kfree_obj:
  3233. kfree(phys_obj);
  3234. return ret;
  3235. }
  3236. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3237. {
  3238. drm_i915_private_t *dev_priv = dev->dev_private;
  3239. struct drm_i915_gem_phys_object *phys_obj;
  3240. if (!dev_priv->mm.phys_objs[id - 1])
  3241. return;
  3242. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3243. if (phys_obj->cur_obj) {
  3244. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3245. }
  3246. #ifdef CONFIG_X86
  3247. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3248. #endif
  3249. drm_pci_free(dev, phys_obj->handle);
  3250. kfree(phys_obj);
  3251. dev_priv->mm.phys_objs[id - 1] = NULL;
  3252. }
  3253. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3254. {
  3255. int i;
  3256. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3257. i915_gem_free_phys_object(dev, i);
  3258. }
  3259. void i915_gem_detach_phys_object(struct drm_device *dev,
  3260. struct drm_i915_gem_object *obj)
  3261. {
  3262. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3263. char *vaddr;
  3264. int i;
  3265. int page_count;
  3266. if (!obj->phys_obj)
  3267. return;
  3268. vaddr = obj->phys_obj->handle->vaddr;
  3269. page_count = obj->base.size / PAGE_SIZE;
  3270. for (i = 0; i < page_count; i++) {
  3271. struct page *page = shmem_read_mapping_page(mapping, i);
  3272. if (!IS_ERR(page)) {
  3273. char *dst = kmap_atomic(page);
  3274. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3275. kunmap_atomic(dst);
  3276. drm_clflush_pages(&page, 1);
  3277. set_page_dirty(page);
  3278. mark_page_accessed(page);
  3279. page_cache_release(page);
  3280. }
  3281. }
  3282. intel_gtt_chipset_flush();
  3283. obj->phys_obj->cur_obj = NULL;
  3284. obj->phys_obj = NULL;
  3285. }
  3286. int
  3287. i915_gem_attach_phys_object(struct drm_device *dev,
  3288. struct drm_i915_gem_object *obj,
  3289. int id,
  3290. int align)
  3291. {
  3292. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3293. drm_i915_private_t *dev_priv = dev->dev_private;
  3294. int ret = 0;
  3295. int page_count;
  3296. int i;
  3297. if (id > I915_MAX_PHYS_OBJECT)
  3298. return -EINVAL;
  3299. if (obj->phys_obj) {
  3300. if (obj->phys_obj->id == id)
  3301. return 0;
  3302. i915_gem_detach_phys_object(dev, obj);
  3303. }
  3304. /* create a new object */
  3305. if (!dev_priv->mm.phys_objs[id - 1]) {
  3306. ret = i915_gem_init_phys_object(dev, id,
  3307. obj->base.size, align);
  3308. if (ret) {
  3309. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3310. id, obj->base.size);
  3311. return ret;
  3312. }
  3313. }
  3314. /* bind to the object */
  3315. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3316. obj->phys_obj->cur_obj = obj;
  3317. page_count = obj->base.size / PAGE_SIZE;
  3318. for (i = 0; i < page_count; i++) {
  3319. struct page *page;
  3320. char *dst, *src;
  3321. page = shmem_read_mapping_page(mapping, i);
  3322. if (IS_ERR(page))
  3323. return PTR_ERR(page);
  3324. src = kmap_atomic(page);
  3325. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3326. memcpy(dst, src, PAGE_SIZE);
  3327. kunmap_atomic(src);
  3328. mark_page_accessed(page);
  3329. page_cache_release(page);
  3330. }
  3331. return 0;
  3332. }
  3333. static int
  3334. i915_gem_phys_pwrite(struct drm_device *dev,
  3335. struct drm_i915_gem_object *obj,
  3336. struct drm_i915_gem_pwrite *args,
  3337. struct drm_file *file_priv)
  3338. {
  3339. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3340. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3341. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3342. unsigned long unwritten;
  3343. /* The physical object once assigned is fixed for the lifetime
  3344. * of the obj, so we can safely drop the lock and continue
  3345. * to access vaddr.
  3346. */
  3347. mutex_unlock(&dev->struct_mutex);
  3348. unwritten = copy_from_user(vaddr, user_data, args->size);
  3349. mutex_lock(&dev->struct_mutex);
  3350. if (unwritten)
  3351. return -EFAULT;
  3352. }
  3353. intel_gtt_chipset_flush();
  3354. return 0;
  3355. }
  3356. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3357. {
  3358. struct drm_i915_file_private *file_priv = file->driver_priv;
  3359. /* Clean up our request list when the client is going away, so that
  3360. * later retire_requests won't dereference our soon-to-be-gone
  3361. * file_priv.
  3362. */
  3363. spin_lock(&file_priv->mm.lock);
  3364. while (!list_empty(&file_priv->mm.request_list)) {
  3365. struct drm_i915_gem_request *request;
  3366. request = list_first_entry(&file_priv->mm.request_list,
  3367. struct drm_i915_gem_request,
  3368. client_list);
  3369. list_del(&request->client_list);
  3370. request->file_priv = NULL;
  3371. }
  3372. spin_unlock(&file_priv->mm.lock);
  3373. }
  3374. static int
  3375. i915_gpu_is_active(struct drm_device *dev)
  3376. {
  3377. drm_i915_private_t *dev_priv = dev->dev_private;
  3378. int lists_empty;
  3379. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3380. list_empty(&dev_priv->mm.active_list);
  3381. return !lists_empty;
  3382. }
  3383. static int
  3384. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3385. {
  3386. struct drm_i915_private *dev_priv =
  3387. container_of(shrinker,
  3388. struct drm_i915_private,
  3389. mm.inactive_shrinker);
  3390. struct drm_device *dev = dev_priv->dev;
  3391. struct drm_i915_gem_object *obj, *next;
  3392. int nr_to_scan = sc->nr_to_scan;
  3393. int cnt;
  3394. if (!mutex_trylock(&dev->struct_mutex))
  3395. return 0;
  3396. /* "fast-path" to count number of available objects */
  3397. if (nr_to_scan == 0) {
  3398. cnt = 0;
  3399. list_for_each_entry(obj,
  3400. &dev_priv->mm.inactive_list,
  3401. mm_list)
  3402. cnt++;
  3403. mutex_unlock(&dev->struct_mutex);
  3404. return cnt / 100 * sysctl_vfs_cache_pressure;
  3405. }
  3406. rescan:
  3407. /* first scan for clean buffers */
  3408. i915_gem_retire_requests(dev);
  3409. list_for_each_entry_safe(obj, next,
  3410. &dev_priv->mm.inactive_list,
  3411. mm_list) {
  3412. if (i915_gem_object_is_purgeable(obj)) {
  3413. if (i915_gem_object_unbind(obj) == 0 &&
  3414. --nr_to_scan == 0)
  3415. break;
  3416. }
  3417. }
  3418. /* second pass, evict/count anything still on the inactive list */
  3419. cnt = 0;
  3420. list_for_each_entry_safe(obj, next,
  3421. &dev_priv->mm.inactive_list,
  3422. mm_list) {
  3423. if (nr_to_scan &&
  3424. i915_gem_object_unbind(obj) == 0)
  3425. nr_to_scan--;
  3426. else
  3427. cnt++;
  3428. }
  3429. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3430. /*
  3431. * We are desperate for pages, so as a last resort, wait
  3432. * for the GPU to finish and discard whatever we can.
  3433. * This has a dramatic impact to reduce the number of
  3434. * OOM-killer events whilst running the GPU aggressively.
  3435. */
  3436. if (i915_gpu_idle(dev) == 0)
  3437. goto rescan;
  3438. }
  3439. mutex_unlock(&dev->struct_mutex);
  3440. return cnt / 100 * sysctl_vfs_cache_pressure;
  3441. }