swap.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883
  1. /*
  2. * linux/mm/swap.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * This file contains the default values for the operation of the
  8. * Linux VM subsystem. Fine-tuning documentation can be found in
  9. * Documentation/sysctl/vm.txt.
  10. * Started 18.12.91
  11. * Swap aging added 23.2.95, Stephen Tweedie.
  12. * Buffermem limits added 12.3.98, Rik van Riel.
  13. */
  14. #include <linux/mm.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/pagevec.h>
  21. #include <linux/init.h>
  22. #include <linux/export.h>
  23. #include <linux/mm_inline.h>
  24. #include <linux/percpu_counter.h>
  25. #include <linux/percpu.h>
  26. #include <linux/cpu.h>
  27. #include <linux/notifier.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/memcontrol.h>
  30. #include <linux/gfp.h>
  31. #include <linux/uio.h>
  32. #include "internal.h"
  33. #define CREATE_TRACE_POINTS
  34. #include <trace/events/pagemap.h>
  35. /* How many pages do we try to swap or page in/out together? */
  36. int page_cluster;
  37. static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
  38. static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  39. static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
  40. /*
  41. * This path almost never happens for VM activity - pages are normally
  42. * freed via pagevecs. But it gets used by networking.
  43. */
  44. static void __page_cache_release(struct page *page)
  45. {
  46. if (PageLRU(page)) {
  47. struct zone *zone = page_zone(page);
  48. struct lruvec *lruvec;
  49. unsigned long flags;
  50. spin_lock_irqsave(&zone->lru_lock, flags);
  51. lruvec = mem_cgroup_page_lruvec(page, zone);
  52. VM_BUG_ON(!PageLRU(page));
  53. __ClearPageLRU(page);
  54. del_page_from_lru_list(page, lruvec, page_off_lru(page));
  55. spin_unlock_irqrestore(&zone->lru_lock, flags);
  56. }
  57. }
  58. static void __put_single_page(struct page *page)
  59. {
  60. __page_cache_release(page);
  61. free_hot_cold_page(page, 0);
  62. }
  63. static void __put_compound_page(struct page *page)
  64. {
  65. compound_page_dtor *dtor;
  66. __page_cache_release(page);
  67. dtor = get_compound_page_dtor(page);
  68. (*dtor)(page);
  69. }
  70. static void put_compound_page(struct page *page)
  71. {
  72. if (unlikely(PageTail(page))) {
  73. /* __split_huge_page_refcount can run under us */
  74. struct page *page_head = compound_trans_head(page);
  75. if (likely(page != page_head &&
  76. get_page_unless_zero(page_head))) {
  77. unsigned long flags;
  78. /*
  79. * THP can not break up slab pages so avoid taking
  80. * compound_lock(). Slab performs non-atomic bit ops
  81. * on page->flags for better performance. In particular
  82. * slab_unlock() in slub used to be a hot path. It is
  83. * still hot on arches that do not support
  84. * this_cpu_cmpxchg_double().
  85. */
  86. if (PageSlab(page_head)) {
  87. if (PageTail(page)) {
  88. if (put_page_testzero(page_head))
  89. VM_BUG_ON(1);
  90. atomic_dec(&page->_mapcount);
  91. goto skip_lock_tail;
  92. } else
  93. goto skip_lock;
  94. }
  95. /*
  96. * page_head wasn't a dangling pointer but it
  97. * may not be a head page anymore by the time
  98. * we obtain the lock. That is ok as long as it
  99. * can't be freed from under us.
  100. */
  101. flags = compound_lock_irqsave(page_head);
  102. if (unlikely(!PageTail(page))) {
  103. /* __split_huge_page_refcount run before us */
  104. compound_unlock_irqrestore(page_head, flags);
  105. skip_lock:
  106. if (put_page_testzero(page_head))
  107. __put_single_page(page_head);
  108. out_put_single:
  109. if (put_page_testzero(page))
  110. __put_single_page(page);
  111. return;
  112. }
  113. VM_BUG_ON(page_head != page->first_page);
  114. /*
  115. * We can release the refcount taken by
  116. * get_page_unless_zero() now that
  117. * __split_huge_page_refcount() is blocked on
  118. * the compound_lock.
  119. */
  120. if (put_page_testzero(page_head))
  121. VM_BUG_ON(1);
  122. /* __split_huge_page_refcount will wait now */
  123. VM_BUG_ON(page_mapcount(page) <= 0);
  124. atomic_dec(&page->_mapcount);
  125. VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
  126. VM_BUG_ON(atomic_read(&page->_count) != 0);
  127. compound_unlock_irqrestore(page_head, flags);
  128. skip_lock_tail:
  129. if (put_page_testzero(page_head)) {
  130. if (PageHead(page_head))
  131. __put_compound_page(page_head);
  132. else
  133. __put_single_page(page_head);
  134. }
  135. } else {
  136. /* page_head is a dangling pointer */
  137. VM_BUG_ON(PageTail(page));
  138. goto out_put_single;
  139. }
  140. } else if (put_page_testzero(page)) {
  141. if (PageHead(page))
  142. __put_compound_page(page);
  143. else
  144. __put_single_page(page);
  145. }
  146. }
  147. void put_page(struct page *page)
  148. {
  149. if (unlikely(PageCompound(page)))
  150. put_compound_page(page);
  151. else if (put_page_testzero(page))
  152. __put_single_page(page);
  153. }
  154. EXPORT_SYMBOL(put_page);
  155. /*
  156. * This function is exported but must not be called by anything other
  157. * than get_page(). It implements the slow path of get_page().
  158. */
  159. bool __get_page_tail(struct page *page)
  160. {
  161. /*
  162. * This takes care of get_page() if run on a tail page
  163. * returned by one of the get_user_pages/follow_page variants.
  164. * get_user_pages/follow_page itself doesn't need the compound
  165. * lock because it runs __get_page_tail_foll() under the
  166. * proper PT lock that already serializes against
  167. * split_huge_page().
  168. */
  169. unsigned long flags;
  170. bool got = false;
  171. struct page *page_head = compound_trans_head(page);
  172. if (likely(page != page_head && get_page_unless_zero(page_head))) {
  173. /* Ref to put_compound_page() comment. */
  174. if (PageSlab(page_head)) {
  175. if (likely(PageTail(page))) {
  176. __get_page_tail_foll(page, false);
  177. return true;
  178. } else {
  179. put_page(page_head);
  180. return false;
  181. }
  182. }
  183. /*
  184. * page_head wasn't a dangling pointer but it
  185. * may not be a head page anymore by the time
  186. * we obtain the lock. That is ok as long as it
  187. * can't be freed from under us.
  188. */
  189. flags = compound_lock_irqsave(page_head);
  190. /* here __split_huge_page_refcount won't run anymore */
  191. if (likely(PageTail(page))) {
  192. __get_page_tail_foll(page, false);
  193. got = true;
  194. }
  195. compound_unlock_irqrestore(page_head, flags);
  196. if (unlikely(!got))
  197. put_page(page_head);
  198. }
  199. return got;
  200. }
  201. EXPORT_SYMBOL(__get_page_tail);
  202. /**
  203. * put_pages_list() - release a list of pages
  204. * @pages: list of pages threaded on page->lru
  205. *
  206. * Release a list of pages which are strung together on page.lru. Currently
  207. * used by read_cache_pages() and related error recovery code.
  208. */
  209. void put_pages_list(struct list_head *pages)
  210. {
  211. while (!list_empty(pages)) {
  212. struct page *victim;
  213. victim = list_entry(pages->prev, struct page, lru);
  214. list_del(&victim->lru);
  215. page_cache_release(victim);
  216. }
  217. }
  218. EXPORT_SYMBOL(put_pages_list);
  219. /*
  220. * get_kernel_pages() - pin kernel pages in memory
  221. * @kiov: An array of struct kvec structures
  222. * @nr_segs: number of segments to pin
  223. * @write: pinning for read/write, currently ignored
  224. * @pages: array that receives pointers to the pages pinned.
  225. * Should be at least nr_segs long.
  226. *
  227. * Returns number of pages pinned. This may be fewer than the number
  228. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  229. * were pinned, returns -errno. Each page returned must be released
  230. * with a put_page() call when it is finished with.
  231. */
  232. int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
  233. struct page **pages)
  234. {
  235. int seg;
  236. for (seg = 0; seg < nr_segs; seg++) {
  237. if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
  238. return seg;
  239. pages[seg] = kmap_to_page(kiov[seg].iov_base);
  240. page_cache_get(pages[seg]);
  241. }
  242. return seg;
  243. }
  244. EXPORT_SYMBOL_GPL(get_kernel_pages);
  245. /*
  246. * get_kernel_page() - pin a kernel page in memory
  247. * @start: starting kernel address
  248. * @write: pinning for read/write, currently ignored
  249. * @pages: array that receives pointer to the page pinned.
  250. * Must be at least nr_segs long.
  251. *
  252. * Returns 1 if page is pinned. If the page was not pinned, returns
  253. * -errno. The page returned must be released with a put_page() call
  254. * when it is finished with.
  255. */
  256. int get_kernel_page(unsigned long start, int write, struct page **pages)
  257. {
  258. const struct kvec kiov = {
  259. .iov_base = (void *)start,
  260. .iov_len = PAGE_SIZE
  261. };
  262. return get_kernel_pages(&kiov, 1, write, pages);
  263. }
  264. EXPORT_SYMBOL_GPL(get_kernel_page);
  265. static void pagevec_lru_move_fn(struct pagevec *pvec,
  266. void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
  267. void *arg)
  268. {
  269. int i;
  270. struct zone *zone = NULL;
  271. struct lruvec *lruvec;
  272. unsigned long flags = 0;
  273. for (i = 0; i < pagevec_count(pvec); i++) {
  274. struct page *page = pvec->pages[i];
  275. struct zone *pagezone = page_zone(page);
  276. if (pagezone != zone) {
  277. if (zone)
  278. spin_unlock_irqrestore(&zone->lru_lock, flags);
  279. zone = pagezone;
  280. spin_lock_irqsave(&zone->lru_lock, flags);
  281. }
  282. lruvec = mem_cgroup_page_lruvec(page, zone);
  283. (*move_fn)(page, lruvec, arg);
  284. }
  285. if (zone)
  286. spin_unlock_irqrestore(&zone->lru_lock, flags);
  287. release_pages(pvec->pages, pvec->nr, pvec->cold);
  288. pagevec_reinit(pvec);
  289. }
  290. static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
  291. void *arg)
  292. {
  293. int *pgmoved = arg;
  294. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  295. enum lru_list lru = page_lru_base_type(page);
  296. list_move_tail(&page->lru, &lruvec->lists[lru]);
  297. (*pgmoved)++;
  298. }
  299. }
  300. /*
  301. * pagevec_move_tail() must be called with IRQ disabled.
  302. * Otherwise this may cause nasty races.
  303. */
  304. static void pagevec_move_tail(struct pagevec *pvec)
  305. {
  306. int pgmoved = 0;
  307. pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
  308. __count_vm_events(PGROTATED, pgmoved);
  309. }
  310. /*
  311. * Writeback is about to end against a page which has been marked for immediate
  312. * reclaim. If it still appears to be reclaimable, move it to the tail of the
  313. * inactive list.
  314. */
  315. void rotate_reclaimable_page(struct page *page)
  316. {
  317. if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
  318. !PageUnevictable(page) && PageLRU(page)) {
  319. struct pagevec *pvec;
  320. unsigned long flags;
  321. page_cache_get(page);
  322. local_irq_save(flags);
  323. pvec = &__get_cpu_var(lru_rotate_pvecs);
  324. if (!pagevec_add(pvec, page))
  325. pagevec_move_tail(pvec);
  326. local_irq_restore(flags);
  327. }
  328. }
  329. static void update_page_reclaim_stat(struct lruvec *lruvec,
  330. int file, int rotated)
  331. {
  332. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  333. reclaim_stat->recent_scanned[file]++;
  334. if (rotated)
  335. reclaim_stat->recent_rotated[file]++;
  336. }
  337. static void __activate_page(struct page *page, struct lruvec *lruvec,
  338. void *arg)
  339. {
  340. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  341. int file = page_is_file_cache(page);
  342. int lru = page_lru_base_type(page);
  343. del_page_from_lru_list(page, lruvec, lru);
  344. SetPageActive(page);
  345. lru += LRU_ACTIVE;
  346. add_page_to_lru_list(page, lruvec, lru);
  347. trace_mm_lru_activate(page, page_to_pfn(page));
  348. __count_vm_event(PGACTIVATE);
  349. update_page_reclaim_stat(lruvec, file, 1);
  350. }
  351. }
  352. #ifdef CONFIG_SMP
  353. static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
  354. static void activate_page_drain(int cpu)
  355. {
  356. struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
  357. if (pagevec_count(pvec))
  358. pagevec_lru_move_fn(pvec, __activate_page, NULL);
  359. }
  360. void activate_page(struct page *page)
  361. {
  362. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  363. struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
  364. page_cache_get(page);
  365. if (!pagevec_add(pvec, page))
  366. pagevec_lru_move_fn(pvec, __activate_page, NULL);
  367. put_cpu_var(activate_page_pvecs);
  368. }
  369. }
  370. #else
  371. static inline void activate_page_drain(int cpu)
  372. {
  373. }
  374. void activate_page(struct page *page)
  375. {
  376. struct zone *zone = page_zone(page);
  377. spin_lock_irq(&zone->lru_lock);
  378. __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
  379. spin_unlock_irq(&zone->lru_lock);
  380. }
  381. #endif
  382. /*
  383. * Mark a page as having seen activity.
  384. *
  385. * inactive,unreferenced -> inactive,referenced
  386. * inactive,referenced -> active,unreferenced
  387. * active,unreferenced -> active,referenced
  388. */
  389. void mark_page_accessed(struct page *page)
  390. {
  391. if (!PageActive(page) && !PageUnevictable(page) &&
  392. PageReferenced(page) && PageLRU(page)) {
  393. activate_page(page);
  394. ClearPageReferenced(page);
  395. } else if (!PageReferenced(page)) {
  396. SetPageReferenced(page);
  397. }
  398. }
  399. EXPORT_SYMBOL(mark_page_accessed);
  400. /*
  401. * Queue the page for addition to the LRU via pagevec. The decision on whether
  402. * to add the page to the [in]active [file|anon] list is deferred until the
  403. * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
  404. * have the page added to the active list using mark_page_accessed().
  405. */
  406. void __lru_cache_add(struct page *page, enum lru_list lru)
  407. {
  408. struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
  409. if (is_active_lru(lru))
  410. SetPageActive(page);
  411. else
  412. ClearPageActive(page);
  413. page_cache_get(page);
  414. if (!pagevec_space(pvec))
  415. __pagevec_lru_add(pvec, lru);
  416. pagevec_add(pvec, page);
  417. put_cpu_var(lru_add_pvec);
  418. }
  419. EXPORT_SYMBOL(__lru_cache_add);
  420. /**
  421. * lru_cache_add_lru - add a page to a page list
  422. * @page: the page to be added to the LRU.
  423. * @lru: the LRU list to which the page is added.
  424. */
  425. void lru_cache_add_lru(struct page *page, enum lru_list lru)
  426. {
  427. if (PageActive(page)) {
  428. VM_BUG_ON(PageUnevictable(page));
  429. } else if (PageUnevictable(page)) {
  430. VM_BUG_ON(PageActive(page));
  431. }
  432. VM_BUG_ON(PageLRU(page));
  433. __lru_cache_add(page, lru);
  434. }
  435. /**
  436. * add_page_to_unevictable_list - add a page to the unevictable list
  437. * @page: the page to be added to the unevictable list
  438. *
  439. * Add page directly to its zone's unevictable list. To avoid races with
  440. * tasks that might be making the page evictable, through eg. munlock,
  441. * munmap or exit, while it's not on the lru, we want to add the page
  442. * while it's locked or otherwise "invisible" to other tasks. This is
  443. * difficult to do when using the pagevec cache, so bypass that.
  444. */
  445. void add_page_to_unevictable_list(struct page *page)
  446. {
  447. struct zone *zone = page_zone(page);
  448. struct lruvec *lruvec;
  449. spin_lock_irq(&zone->lru_lock);
  450. lruvec = mem_cgroup_page_lruvec(page, zone);
  451. SetPageUnevictable(page);
  452. SetPageLRU(page);
  453. add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
  454. spin_unlock_irq(&zone->lru_lock);
  455. }
  456. /*
  457. * If the page can not be invalidated, it is moved to the
  458. * inactive list to speed up its reclaim. It is moved to the
  459. * head of the list, rather than the tail, to give the flusher
  460. * threads some time to write it out, as this is much more
  461. * effective than the single-page writeout from reclaim.
  462. *
  463. * If the page isn't page_mapped and dirty/writeback, the page
  464. * could reclaim asap using PG_reclaim.
  465. *
  466. * 1. active, mapped page -> none
  467. * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
  468. * 3. inactive, mapped page -> none
  469. * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
  470. * 5. inactive, clean -> inactive, tail
  471. * 6. Others -> none
  472. *
  473. * In 4, why it moves inactive's head, the VM expects the page would
  474. * be write it out by flusher threads as this is much more effective
  475. * than the single-page writeout from reclaim.
  476. */
  477. static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
  478. void *arg)
  479. {
  480. int lru, file;
  481. bool active;
  482. if (!PageLRU(page))
  483. return;
  484. if (PageUnevictable(page))
  485. return;
  486. /* Some processes are using the page */
  487. if (page_mapped(page))
  488. return;
  489. active = PageActive(page);
  490. file = page_is_file_cache(page);
  491. lru = page_lru_base_type(page);
  492. del_page_from_lru_list(page, lruvec, lru + active);
  493. ClearPageActive(page);
  494. ClearPageReferenced(page);
  495. add_page_to_lru_list(page, lruvec, lru);
  496. if (PageWriteback(page) || PageDirty(page)) {
  497. /*
  498. * PG_reclaim could be raced with end_page_writeback
  499. * It can make readahead confusing. But race window
  500. * is _really_ small and it's non-critical problem.
  501. */
  502. SetPageReclaim(page);
  503. } else {
  504. /*
  505. * The page's writeback ends up during pagevec
  506. * We moves tha page into tail of inactive.
  507. */
  508. list_move_tail(&page->lru, &lruvec->lists[lru]);
  509. __count_vm_event(PGROTATED);
  510. }
  511. if (active)
  512. __count_vm_event(PGDEACTIVATE);
  513. update_page_reclaim_stat(lruvec, file, 0);
  514. }
  515. /*
  516. * Drain pages out of the cpu's pagevecs.
  517. * Either "cpu" is the current CPU, and preemption has already been
  518. * disabled; or "cpu" is being hot-unplugged, and is already dead.
  519. */
  520. void lru_add_drain_cpu(int cpu)
  521. {
  522. struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
  523. if (pagevec_count(pvec))
  524. __pagevec_lru_add(pvec, NR_LRU_LISTS);
  525. pvec = &per_cpu(lru_rotate_pvecs, cpu);
  526. if (pagevec_count(pvec)) {
  527. unsigned long flags;
  528. /* No harm done if a racing interrupt already did this */
  529. local_irq_save(flags);
  530. pagevec_move_tail(pvec);
  531. local_irq_restore(flags);
  532. }
  533. pvec = &per_cpu(lru_deactivate_pvecs, cpu);
  534. if (pagevec_count(pvec))
  535. pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
  536. activate_page_drain(cpu);
  537. }
  538. /**
  539. * deactivate_page - forcefully deactivate a page
  540. * @page: page to deactivate
  541. *
  542. * This function hints the VM that @page is a good reclaim candidate,
  543. * for example if its invalidation fails due to the page being dirty
  544. * or under writeback.
  545. */
  546. void deactivate_page(struct page *page)
  547. {
  548. /*
  549. * In a workload with many unevictable page such as mprotect, unevictable
  550. * page deactivation for accelerating reclaim is pointless.
  551. */
  552. if (PageUnevictable(page))
  553. return;
  554. if (likely(get_page_unless_zero(page))) {
  555. struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
  556. if (!pagevec_add(pvec, page))
  557. pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
  558. put_cpu_var(lru_deactivate_pvecs);
  559. }
  560. }
  561. void lru_add_drain(void)
  562. {
  563. lru_add_drain_cpu(get_cpu());
  564. put_cpu();
  565. }
  566. static void lru_add_drain_per_cpu(struct work_struct *dummy)
  567. {
  568. lru_add_drain();
  569. }
  570. /*
  571. * Returns 0 for success
  572. */
  573. int lru_add_drain_all(void)
  574. {
  575. return schedule_on_each_cpu(lru_add_drain_per_cpu);
  576. }
  577. /*
  578. * Batched page_cache_release(). Decrement the reference count on all the
  579. * passed pages. If it fell to zero then remove the page from the LRU and
  580. * free it.
  581. *
  582. * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
  583. * for the remainder of the operation.
  584. *
  585. * The locking in this function is against shrink_inactive_list(): we recheck
  586. * the page count inside the lock to see whether shrink_inactive_list()
  587. * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
  588. * will free it.
  589. */
  590. void release_pages(struct page **pages, int nr, int cold)
  591. {
  592. int i;
  593. LIST_HEAD(pages_to_free);
  594. struct zone *zone = NULL;
  595. struct lruvec *lruvec;
  596. unsigned long uninitialized_var(flags);
  597. for (i = 0; i < nr; i++) {
  598. struct page *page = pages[i];
  599. if (unlikely(PageCompound(page))) {
  600. if (zone) {
  601. spin_unlock_irqrestore(&zone->lru_lock, flags);
  602. zone = NULL;
  603. }
  604. put_compound_page(page);
  605. continue;
  606. }
  607. if (!put_page_testzero(page))
  608. continue;
  609. if (PageLRU(page)) {
  610. struct zone *pagezone = page_zone(page);
  611. if (pagezone != zone) {
  612. if (zone)
  613. spin_unlock_irqrestore(&zone->lru_lock,
  614. flags);
  615. zone = pagezone;
  616. spin_lock_irqsave(&zone->lru_lock, flags);
  617. }
  618. lruvec = mem_cgroup_page_lruvec(page, zone);
  619. VM_BUG_ON(!PageLRU(page));
  620. __ClearPageLRU(page);
  621. del_page_from_lru_list(page, lruvec, page_off_lru(page));
  622. }
  623. list_add(&page->lru, &pages_to_free);
  624. }
  625. if (zone)
  626. spin_unlock_irqrestore(&zone->lru_lock, flags);
  627. free_hot_cold_page_list(&pages_to_free, cold);
  628. }
  629. EXPORT_SYMBOL(release_pages);
  630. /*
  631. * The pages which we're about to release may be in the deferred lru-addition
  632. * queues. That would prevent them from really being freed right now. That's
  633. * OK from a correctness point of view but is inefficient - those pages may be
  634. * cache-warm and we want to give them back to the page allocator ASAP.
  635. *
  636. * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
  637. * and __pagevec_lru_add_active() call release_pages() directly to avoid
  638. * mutual recursion.
  639. */
  640. void __pagevec_release(struct pagevec *pvec)
  641. {
  642. lru_add_drain();
  643. release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
  644. pagevec_reinit(pvec);
  645. }
  646. EXPORT_SYMBOL(__pagevec_release);
  647. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  648. /* used by __split_huge_page_refcount() */
  649. void lru_add_page_tail(struct page *page, struct page *page_tail,
  650. struct lruvec *lruvec, struct list_head *list)
  651. {
  652. int uninitialized_var(active);
  653. enum lru_list lru;
  654. const int file = 0;
  655. VM_BUG_ON(!PageHead(page));
  656. VM_BUG_ON(PageCompound(page_tail));
  657. VM_BUG_ON(PageLRU(page_tail));
  658. VM_BUG_ON(NR_CPUS != 1 &&
  659. !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
  660. if (!list)
  661. SetPageLRU(page_tail);
  662. if (page_evictable(page_tail)) {
  663. if (PageActive(page)) {
  664. SetPageActive(page_tail);
  665. active = 1;
  666. lru = LRU_ACTIVE_ANON;
  667. } else {
  668. active = 0;
  669. lru = LRU_INACTIVE_ANON;
  670. }
  671. } else {
  672. SetPageUnevictable(page_tail);
  673. lru = LRU_UNEVICTABLE;
  674. }
  675. if (likely(PageLRU(page)))
  676. list_add_tail(&page_tail->lru, &page->lru);
  677. else if (list) {
  678. /* page reclaim is reclaiming a huge page */
  679. get_page(page_tail);
  680. list_add_tail(&page_tail->lru, list);
  681. } else {
  682. struct list_head *list_head;
  683. /*
  684. * Head page has not yet been counted, as an hpage,
  685. * so we must account for each subpage individually.
  686. *
  687. * Use the standard add function to put page_tail on the list,
  688. * but then correct its position so they all end up in order.
  689. */
  690. add_page_to_lru_list(page_tail, lruvec, lru);
  691. list_head = page_tail->lru.prev;
  692. list_move_tail(&page_tail->lru, list_head);
  693. }
  694. if (!PageUnevictable(page))
  695. update_page_reclaim_stat(lruvec, file, active);
  696. }
  697. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  698. static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
  699. void *arg)
  700. {
  701. enum lru_list requested_lru = (enum lru_list)arg;
  702. int file = page_is_file_cache(page);
  703. int active = PageActive(page);
  704. enum lru_list lru = page_lru(page);
  705. WARN_ON_ONCE(requested_lru < NR_LRU_LISTS && requested_lru != lru);
  706. VM_BUG_ON(PageUnevictable(page));
  707. VM_BUG_ON(PageLRU(page));
  708. SetPageLRU(page);
  709. add_page_to_lru_list(page, lruvec, lru);
  710. update_page_reclaim_stat(lruvec, file, active);
  711. trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
  712. }
  713. /*
  714. * Add the passed pages to the LRU, then drop the caller's refcount
  715. * on them. Reinitialises the caller's pagevec.
  716. */
  717. void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
  718. {
  719. VM_BUG_ON(is_unevictable_lru(lru));
  720. pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
  721. }
  722. EXPORT_SYMBOL(__pagevec_lru_add);
  723. /**
  724. * pagevec_lookup - gang pagecache lookup
  725. * @pvec: Where the resulting pages are placed
  726. * @mapping: The address_space to search
  727. * @start: The starting page index
  728. * @nr_pages: The maximum number of pages
  729. *
  730. * pagevec_lookup() will search for and return a group of up to @nr_pages pages
  731. * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
  732. * reference against the pages in @pvec.
  733. *
  734. * The search returns a group of mapping-contiguous pages with ascending
  735. * indexes. There may be holes in the indices due to not-present pages.
  736. *
  737. * pagevec_lookup() returns the number of pages which were found.
  738. */
  739. unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
  740. pgoff_t start, unsigned nr_pages)
  741. {
  742. pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
  743. return pagevec_count(pvec);
  744. }
  745. EXPORT_SYMBOL(pagevec_lookup);
  746. unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
  747. pgoff_t *index, int tag, unsigned nr_pages)
  748. {
  749. pvec->nr = find_get_pages_tag(mapping, index, tag,
  750. nr_pages, pvec->pages);
  751. return pagevec_count(pvec);
  752. }
  753. EXPORT_SYMBOL(pagevec_lookup_tag);
  754. /*
  755. * Perform any setup for the swap system
  756. */
  757. void __init swap_setup(void)
  758. {
  759. unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
  760. #ifdef CONFIG_SWAP
  761. int i;
  762. bdi_init(swapper_spaces[0].backing_dev_info);
  763. for (i = 0; i < MAX_SWAPFILES; i++) {
  764. spin_lock_init(&swapper_spaces[i].tree_lock);
  765. INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
  766. }
  767. #endif
  768. /* Use a smaller cluster for small-memory machines */
  769. if (megs < 16)
  770. page_cluster = 2;
  771. else
  772. page_cluster = 3;
  773. /*
  774. * Right now other parts of the system means that we
  775. * _really_ don't want to cluster much more
  776. */
  777. }