spi_bfin5xx.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /*
  2. * File: drivers/spi/bfin5xx_spi.c
  3. * Maintainer:
  4. * Bryan Wu <bryan.wu@analog.com>
  5. * Original Author:
  6. * Luke Yang (Analog Devices Inc.)
  7. *
  8. * Created: March. 10th 2006
  9. * Description: SPI controller driver for Blackfin BF5xx
  10. * Bugs: Enter bugs at http://blackfin.uclinux.org/
  11. *
  12. * Modified:
  13. * March 10, 2006 bfin5xx_spi.c Created. (Luke Yang)
  14. * August 7, 2006 added full duplex mode (Axel Weiss & Luke Yang)
  15. * July 17, 2007 add support for BF54x SPI0 controller (Bryan Wu)
  16. * July 30, 2007 add platfrom_resource interface to support multi-port
  17. * SPI controller (Bryan Wu)
  18. *
  19. * Copyright 2004-2007 Analog Devices Inc.
  20. *
  21. * This program is free software ; you can redistribute it and/or modify
  22. * it under the terms of the GNU General Public License as published by
  23. * the Free Software Foundation ; either version 2, or (at your option)
  24. * any later version.
  25. *
  26. * This program is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY ; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  29. * GNU General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU General Public License
  32. * along with this program ; see the file COPYING.
  33. * If not, write to the Free Software Foundation,
  34. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  35. */
  36. #include <linux/init.h>
  37. #include <linux/module.h>
  38. #include <linux/delay.h>
  39. #include <linux/device.h>
  40. #include <linux/io.h>
  41. #include <linux/ioport.h>
  42. #include <linux/irq.h>
  43. #include <linux/errno.h>
  44. #include <linux/interrupt.h>
  45. #include <linux/platform_device.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/spi/spi.h>
  48. #include <linux/workqueue.h>
  49. #include <asm/dma.h>
  50. #include <asm/portmux.h>
  51. #include <asm/bfin5xx_spi.h>
  52. #define DRV_NAME "bfin-spi"
  53. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  54. #define DRV_DESC "Blackfin BF5xx on-chip SPI Controller Driver"
  55. #define DRV_VERSION "1.0"
  56. MODULE_AUTHOR(DRV_AUTHOR);
  57. MODULE_DESCRIPTION(DRV_DESC);
  58. MODULE_LICENSE("GPL");
  59. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07) == 0)
  60. #define START_STATE ((void *)0)
  61. #define RUNNING_STATE ((void *)1)
  62. #define DONE_STATE ((void *)2)
  63. #define ERROR_STATE ((void *)-1)
  64. #define QUEUE_RUNNING 0
  65. #define QUEUE_STOPPED 1
  66. struct driver_data {
  67. /* Driver model hookup */
  68. struct platform_device *pdev;
  69. /* SPI framework hookup */
  70. struct spi_master *master;
  71. /* Regs base of SPI controller */
  72. void __iomem *regs_base;
  73. /* Pin request list */
  74. u16 *pin_req;
  75. /* BFIN hookup */
  76. struct bfin5xx_spi_master *master_info;
  77. /* Driver message queue */
  78. struct workqueue_struct *workqueue;
  79. struct work_struct pump_messages;
  80. spinlock_t lock;
  81. struct list_head queue;
  82. int busy;
  83. int run;
  84. /* Message Transfer pump */
  85. struct tasklet_struct pump_transfers;
  86. /* Current message transfer state info */
  87. struct spi_message *cur_msg;
  88. struct spi_transfer *cur_transfer;
  89. struct chip_data *cur_chip;
  90. size_t len_in_bytes;
  91. size_t len;
  92. void *tx;
  93. void *tx_end;
  94. void *rx;
  95. void *rx_end;
  96. /* DMA stuffs */
  97. int dma_channel;
  98. int dma_mapped;
  99. int dma_requested;
  100. dma_addr_t rx_dma;
  101. dma_addr_t tx_dma;
  102. size_t rx_map_len;
  103. size_t tx_map_len;
  104. u8 n_bytes;
  105. int cs_change;
  106. void (*write) (struct driver_data *);
  107. void (*read) (struct driver_data *);
  108. void (*duplex) (struct driver_data *);
  109. };
  110. struct chip_data {
  111. u16 ctl_reg;
  112. u16 baud;
  113. u16 flag;
  114. u8 chip_select_num;
  115. u8 n_bytes;
  116. u8 width; /* 0 or 1 */
  117. u8 enable_dma;
  118. u8 bits_per_word; /* 8 or 16 */
  119. u8 cs_change_per_word;
  120. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  121. void (*write) (struct driver_data *);
  122. void (*read) (struct driver_data *);
  123. void (*duplex) (struct driver_data *);
  124. };
  125. #define DEFINE_SPI_REG(reg, off) \
  126. static inline u16 read_##reg(struct driver_data *drv_data) \
  127. { return bfin_read16(drv_data->regs_base + off); } \
  128. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  129. { bfin_write16(drv_data->regs_base + off, v); }
  130. DEFINE_SPI_REG(CTRL, 0x00)
  131. DEFINE_SPI_REG(FLAG, 0x04)
  132. DEFINE_SPI_REG(STAT, 0x08)
  133. DEFINE_SPI_REG(TDBR, 0x0C)
  134. DEFINE_SPI_REG(RDBR, 0x10)
  135. DEFINE_SPI_REG(BAUD, 0x14)
  136. DEFINE_SPI_REG(SHAW, 0x18)
  137. static void bfin_spi_enable(struct driver_data *drv_data)
  138. {
  139. u16 cr;
  140. cr = read_CTRL(drv_data);
  141. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  142. }
  143. static void bfin_spi_disable(struct driver_data *drv_data)
  144. {
  145. u16 cr;
  146. cr = read_CTRL(drv_data);
  147. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  148. }
  149. /* Caculate the SPI_BAUD register value based on input HZ */
  150. static u16 hz_to_spi_baud(u32 speed_hz)
  151. {
  152. u_long sclk = get_sclk();
  153. u16 spi_baud = (sclk / (2 * speed_hz));
  154. if ((sclk % (2 * speed_hz)) > 0)
  155. spi_baud++;
  156. return spi_baud;
  157. }
  158. static int flush(struct driver_data *drv_data)
  159. {
  160. unsigned long limit = loops_per_jiffy << 1;
  161. /* wait for stop and clear stat */
  162. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && limit--)
  163. cpu_relax();
  164. write_STAT(drv_data, BIT_STAT_CLR);
  165. return limit;
  166. }
  167. /* Chip select operation functions for cs_change flag */
  168. static void cs_active(struct driver_data *drv_data, struct chip_data *chip)
  169. {
  170. u16 flag = read_FLAG(drv_data);
  171. flag |= chip->flag;
  172. flag &= ~(chip->flag << 8);
  173. write_FLAG(drv_data, flag);
  174. }
  175. static void cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  176. {
  177. u16 flag = read_FLAG(drv_data);
  178. flag |= (chip->flag << 8);
  179. write_FLAG(drv_data, flag);
  180. /* Move delay here for consistency */
  181. if (chip->cs_chg_udelay)
  182. udelay(chip->cs_chg_udelay);
  183. }
  184. #define MAX_SPI_SSEL 7
  185. /* stop controller and re-config current chip*/
  186. static void restore_state(struct driver_data *drv_data)
  187. {
  188. struct chip_data *chip = drv_data->cur_chip;
  189. /* Clear status and disable clock */
  190. write_STAT(drv_data, BIT_STAT_CLR);
  191. bfin_spi_disable(drv_data);
  192. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  193. /* Load the registers */
  194. write_CTRL(drv_data, chip->ctl_reg);
  195. write_BAUD(drv_data, chip->baud);
  196. bfin_spi_enable(drv_data);
  197. cs_active(drv_data, chip);
  198. }
  199. /* used to kick off transfer in rx mode */
  200. static unsigned short dummy_read(struct driver_data *drv_data)
  201. {
  202. unsigned short tmp;
  203. tmp = read_RDBR(drv_data);
  204. return tmp;
  205. }
  206. static void null_writer(struct driver_data *drv_data)
  207. {
  208. u8 n_bytes = drv_data->n_bytes;
  209. while (drv_data->tx < drv_data->tx_end) {
  210. write_TDBR(drv_data, 0);
  211. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  212. cpu_relax();
  213. drv_data->tx += n_bytes;
  214. }
  215. }
  216. static void null_reader(struct driver_data *drv_data)
  217. {
  218. u8 n_bytes = drv_data->n_bytes;
  219. dummy_read(drv_data);
  220. while (drv_data->rx < drv_data->rx_end) {
  221. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  222. cpu_relax();
  223. dummy_read(drv_data);
  224. drv_data->rx += n_bytes;
  225. }
  226. }
  227. static void u8_writer(struct driver_data *drv_data)
  228. {
  229. dev_dbg(&drv_data->pdev->dev,
  230. "cr8-s is 0x%x\n", read_STAT(drv_data));
  231. while (drv_data->tx < drv_data->tx_end) {
  232. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  233. while (read_STAT(drv_data) & BIT_STAT_TXS)
  234. cpu_relax();
  235. ++drv_data->tx;
  236. }
  237. /* poll for SPI completion before return */
  238. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  239. cpu_relax();
  240. }
  241. static void u8_cs_chg_writer(struct driver_data *drv_data)
  242. {
  243. struct chip_data *chip = drv_data->cur_chip;
  244. while (drv_data->tx < drv_data->tx_end) {
  245. cs_active(drv_data, chip);
  246. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  247. while (read_STAT(drv_data) & BIT_STAT_TXS)
  248. cpu_relax();
  249. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  250. cpu_relax();
  251. cs_deactive(drv_data, chip);
  252. ++drv_data->tx;
  253. }
  254. }
  255. static void u8_reader(struct driver_data *drv_data)
  256. {
  257. dev_dbg(&drv_data->pdev->dev,
  258. "cr-8 is 0x%x\n", read_STAT(drv_data));
  259. /* poll for SPI completion before start */
  260. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  261. cpu_relax();
  262. /* clear TDBR buffer before read(else it will be shifted out) */
  263. write_TDBR(drv_data, 0xFFFF);
  264. dummy_read(drv_data);
  265. while (drv_data->rx < drv_data->rx_end - 1) {
  266. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  267. cpu_relax();
  268. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  269. ++drv_data->rx;
  270. }
  271. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  272. cpu_relax();
  273. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  274. ++drv_data->rx;
  275. }
  276. static void u8_cs_chg_reader(struct driver_data *drv_data)
  277. {
  278. struct chip_data *chip = drv_data->cur_chip;
  279. while (drv_data->rx < drv_data->rx_end) {
  280. cs_active(drv_data, chip);
  281. read_RDBR(drv_data); /* kick off */
  282. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  283. cpu_relax();
  284. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  285. cpu_relax();
  286. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  287. cs_deactive(drv_data, chip);
  288. ++drv_data->rx;
  289. }
  290. }
  291. static void u8_duplex(struct driver_data *drv_data)
  292. {
  293. /* in duplex mode, clk is triggered by writing of TDBR */
  294. while (drv_data->rx < drv_data->rx_end) {
  295. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  296. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  297. cpu_relax();
  298. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  299. cpu_relax();
  300. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  301. ++drv_data->rx;
  302. ++drv_data->tx;
  303. }
  304. }
  305. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  306. {
  307. struct chip_data *chip = drv_data->cur_chip;
  308. while (drv_data->rx < drv_data->rx_end) {
  309. cs_active(drv_data, chip);
  310. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  311. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  312. cpu_relax();
  313. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  314. cpu_relax();
  315. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  316. cs_deactive(drv_data, chip);
  317. ++drv_data->rx;
  318. ++drv_data->tx;
  319. }
  320. }
  321. static void u16_writer(struct driver_data *drv_data)
  322. {
  323. dev_dbg(&drv_data->pdev->dev,
  324. "cr16 is 0x%x\n", read_STAT(drv_data));
  325. while (drv_data->tx < drv_data->tx_end) {
  326. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  327. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  328. cpu_relax();
  329. drv_data->tx += 2;
  330. }
  331. /* poll for SPI completion before return */
  332. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  333. cpu_relax();
  334. }
  335. static void u16_cs_chg_writer(struct driver_data *drv_data)
  336. {
  337. struct chip_data *chip = drv_data->cur_chip;
  338. while (drv_data->tx < drv_data->tx_end) {
  339. cs_active(drv_data, chip);
  340. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  341. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  342. cpu_relax();
  343. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  344. cpu_relax();
  345. cs_deactive(drv_data, chip);
  346. drv_data->tx += 2;
  347. }
  348. }
  349. static void u16_reader(struct driver_data *drv_data)
  350. {
  351. dev_dbg(&drv_data->pdev->dev,
  352. "cr-16 is 0x%x\n", read_STAT(drv_data));
  353. /* poll for SPI completion before start */
  354. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  355. cpu_relax();
  356. /* clear TDBR buffer before read(else it will be shifted out) */
  357. write_TDBR(drv_data, 0xFFFF);
  358. dummy_read(drv_data);
  359. while (drv_data->rx < (drv_data->rx_end - 2)) {
  360. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  361. cpu_relax();
  362. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  363. drv_data->rx += 2;
  364. }
  365. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  366. cpu_relax();
  367. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  368. drv_data->rx += 2;
  369. }
  370. static void u16_cs_chg_reader(struct driver_data *drv_data)
  371. {
  372. struct chip_data *chip = drv_data->cur_chip;
  373. /* poll for SPI completion before start */
  374. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  375. cpu_relax();
  376. /* clear TDBR buffer before read(else it will be shifted out) */
  377. write_TDBR(drv_data, 0xFFFF);
  378. cs_active(drv_data, chip);
  379. dummy_read(drv_data);
  380. while (drv_data->rx < drv_data->rx_end - 2) {
  381. cs_deactive(drv_data, chip);
  382. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  383. cpu_relax();
  384. cs_active(drv_data, chip);
  385. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  386. drv_data->rx += 2;
  387. }
  388. cs_deactive(drv_data, chip);
  389. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  390. cpu_relax();
  391. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  392. drv_data->rx += 2;
  393. }
  394. static void u16_duplex(struct driver_data *drv_data)
  395. {
  396. /* in duplex mode, clk is triggered by writing of TDBR */
  397. while (drv_data->tx < drv_data->tx_end) {
  398. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  399. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  400. cpu_relax();
  401. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  402. cpu_relax();
  403. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  404. drv_data->rx += 2;
  405. drv_data->tx += 2;
  406. }
  407. }
  408. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  409. {
  410. struct chip_data *chip = drv_data->cur_chip;
  411. while (drv_data->tx < drv_data->tx_end) {
  412. cs_active(drv_data, chip);
  413. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  414. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  415. cpu_relax();
  416. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  417. cpu_relax();
  418. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  419. cs_deactive(drv_data, chip);
  420. drv_data->rx += 2;
  421. drv_data->tx += 2;
  422. }
  423. }
  424. /* test if ther is more transfer to be done */
  425. static void *next_transfer(struct driver_data *drv_data)
  426. {
  427. struct spi_message *msg = drv_data->cur_msg;
  428. struct spi_transfer *trans = drv_data->cur_transfer;
  429. /* Move to next transfer */
  430. if (trans->transfer_list.next != &msg->transfers) {
  431. drv_data->cur_transfer =
  432. list_entry(trans->transfer_list.next,
  433. struct spi_transfer, transfer_list);
  434. return RUNNING_STATE;
  435. } else
  436. return DONE_STATE;
  437. }
  438. /*
  439. * caller already set message->status;
  440. * dma and pio irqs are blocked give finished message back
  441. */
  442. static void giveback(struct driver_data *drv_data)
  443. {
  444. struct chip_data *chip = drv_data->cur_chip;
  445. struct spi_transfer *last_transfer;
  446. unsigned long flags;
  447. struct spi_message *msg;
  448. spin_lock_irqsave(&drv_data->lock, flags);
  449. msg = drv_data->cur_msg;
  450. drv_data->cur_msg = NULL;
  451. drv_data->cur_transfer = NULL;
  452. drv_data->cur_chip = NULL;
  453. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  454. spin_unlock_irqrestore(&drv_data->lock, flags);
  455. last_transfer = list_entry(msg->transfers.prev,
  456. struct spi_transfer, transfer_list);
  457. msg->state = NULL;
  458. /* disable chip select signal. And not stop spi in autobuffer mode */
  459. if (drv_data->tx_dma != 0xFFFF) {
  460. cs_deactive(drv_data, chip);
  461. bfin_spi_disable(drv_data);
  462. }
  463. if (!drv_data->cs_change)
  464. cs_deactive(drv_data, chip);
  465. if (msg->complete)
  466. msg->complete(msg->context);
  467. }
  468. static irqreturn_t dma_irq_handler(int irq, void *dev_id)
  469. {
  470. struct driver_data *drv_data = dev_id;
  471. struct chip_data *chip = drv_data->cur_chip;
  472. struct spi_message *msg = drv_data->cur_msg;
  473. dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n");
  474. clear_dma_irqstat(drv_data->dma_channel);
  475. /* Wait for DMA to complete */
  476. while (get_dma_curr_irqstat(drv_data->dma_channel) & DMA_RUN)
  477. cpu_relax();
  478. /*
  479. * wait for the last transaction shifted out. HRM states:
  480. * at this point there may still be data in the SPI DMA FIFO waiting
  481. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  482. * register until it goes low for 2 successive reads
  483. */
  484. if (drv_data->tx != NULL) {
  485. while ((read_STAT(drv_data) & TXS) ||
  486. (read_STAT(drv_data) & TXS))
  487. cpu_relax();
  488. }
  489. while (!(read_STAT(drv_data) & SPIF))
  490. cpu_relax();
  491. msg->actual_length += drv_data->len_in_bytes;
  492. if (drv_data->cs_change)
  493. cs_deactive(drv_data, chip);
  494. /* Move to next transfer */
  495. msg->state = next_transfer(drv_data);
  496. /* Schedule transfer tasklet */
  497. tasklet_schedule(&drv_data->pump_transfers);
  498. /* free the irq handler before next transfer */
  499. dev_dbg(&drv_data->pdev->dev,
  500. "disable dma channel irq%d\n",
  501. drv_data->dma_channel);
  502. dma_disable_irq(drv_data->dma_channel);
  503. return IRQ_HANDLED;
  504. }
  505. static void pump_transfers(unsigned long data)
  506. {
  507. struct driver_data *drv_data = (struct driver_data *)data;
  508. struct spi_message *message = NULL;
  509. struct spi_transfer *transfer = NULL;
  510. struct spi_transfer *previous = NULL;
  511. struct chip_data *chip = NULL;
  512. u8 width;
  513. u16 cr, dma_width, dma_config;
  514. u32 tranf_success = 1;
  515. /* Get current state information */
  516. message = drv_data->cur_msg;
  517. transfer = drv_data->cur_transfer;
  518. chip = drv_data->cur_chip;
  519. /*
  520. * if msg is error or done, report it back using complete() callback
  521. */
  522. /* Handle for abort */
  523. if (message->state == ERROR_STATE) {
  524. message->status = -EIO;
  525. giveback(drv_data);
  526. return;
  527. }
  528. /* Handle end of message */
  529. if (message->state == DONE_STATE) {
  530. message->status = 0;
  531. giveback(drv_data);
  532. return;
  533. }
  534. /* Delay if requested at end of transfer */
  535. if (message->state == RUNNING_STATE) {
  536. previous = list_entry(transfer->transfer_list.prev,
  537. struct spi_transfer, transfer_list);
  538. if (previous->delay_usecs)
  539. udelay(previous->delay_usecs);
  540. }
  541. /* Setup the transfer state based on the type of transfer */
  542. if (flush(drv_data) == 0) {
  543. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  544. message->status = -EIO;
  545. giveback(drv_data);
  546. return;
  547. }
  548. if (transfer->tx_buf != NULL) {
  549. drv_data->tx = (void *)transfer->tx_buf;
  550. drv_data->tx_end = drv_data->tx + transfer->len;
  551. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  552. transfer->tx_buf, drv_data->tx_end);
  553. } else {
  554. drv_data->tx = NULL;
  555. }
  556. if (transfer->rx_buf != NULL) {
  557. drv_data->rx = transfer->rx_buf;
  558. drv_data->rx_end = drv_data->rx + transfer->len;
  559. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  560. transfer->rx_buf, drv_data->rx_end);
  561. } else {
  562. drv_data->rx = NULL;
  563. }
  564. drv_data->rx_dma = transfer->rx_dma;
  565. drv_data->tx_dma = transfer->tx_dma;
  566. drv_data->len_in_bytes = transfer->len;
  567. drv_data->cs_change = transfer->cs_change;
  568. /* Bits per word setup */
  569. switch (transfer->bits_per_word) {
  570. case 8:
  571. drv_data->n_bytes = 1;
  572. width = CFG_SPI_WORDSIZE8;
  573. drv_data->read = chip->cs_change_per_word ?
  574. u8_cs_chg_reader : u8_reader;
  575. drv_data->write = chip->cs_change_per_word ?
  576. u8_cs_chg_writer : u8_writer;
  577. drv_data->duplex = chip->cs_change_per_word ?
  578. u8_cs_chg_duplex : u8_duplex;
  579. break;
  580. case 16:
  581. drv_data->n_bytes = 2;
  582. width = CFG_SPI_WORDSIZE16;
  583. drv_data->read = chip->cs_change_per_word ?
  584. u16_cs_chg_reader : u16_reader;
  585. drv_data->write = chip->cs_change_per_word ?
  586. u16_cs_chg_writer : u16_writer;
  587. drv_data->duplex = chip->cs_change_per_word ?
  588. u16_cs_chg_duplex : u16_duplex;
  589. break;
  590. default:
  591. /* No change, the same as default setting */
  592. drv_data->n_bytes = chip->n_bytes;
  593. width = chip->width;
  594. drv_data->write = drv_data->tx ? chip->write : null_writer;
  595. drv_data->read = drv_data->rx ? chip->read : null_reader;
  596. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  597. break;
  598. }
  599. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  600. cr |= (width << 8);
  601. write_CTRL(drv_data, cr);
  602. if (width == CFG_SPI_WORDSIZE16) {
  603. drv_data->len = (transfer->len) >> 1;
  604. } else {
  605. drv_data->len = transfer->len;
  606. }
  607. dev_dbg(&drv_data->pdev->dev, "transfer: ",
  608. "drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  609. drv_data->write, chip->write, null_writer);
  610. /* speed and width has been set on per message */
  611. message->state = RUNNING_STATE;
  612. dma_config = 0;
  613. /* Speed setup (surely valid because already checked) */
  614. if (transfer->speed_hz)
  615. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  616. else
  617. write_BAUD(drv_data, chip->baud);
  618. write_STAT(drv_data, BIT_STAT_CLR);
  619. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  620. cs_active(drv_data, chip);
  621. dev_dbg(&drv_data->pdev->dev,
  622. "now pumping a transfer: width is %d, len is %d\n",
  623. width, transfer->len);
  624. /*
  625. * Try to map dma buffer and do a dma transfer if
  626. * successful use different way to r/w according to
  627. * drv_data->cur_chip->enable_dma
  628. */
  629. if (drv_data->cur_chip->enable_dma && drv_data->len > 6) {
  630. disable_dma(drv_data->dma_channel);
  631. clear_dma_irqstat(drv_data->dma_channel);
  632. bfin_spi_disable(drv_data);
  633. /* config dma channel */
  634. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  635. if (width == CFG_SPI_WORDSIZE16) {
  636. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  637. set_dma_x_modify(drv_data->dma_channel, 2);
  638. dma_width = WDSIZE_16;
  639. } else {
  640. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  641. set_dma_x_modify(drv_data->dma_channel, 1);
  642. dma_width = WDSIZE_8;
  643. }
  644. /* poll for SPI completion before start */
  645. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  646. cpu_relax();
  647. /* dirty hack for autobuffer DMA mode */
  648. if (drv_data->tx_dma == 0xFFFF) {
  649. dev_dbg(&drv_data->pdev->dev,
  650. "doing autobuffer DMA out.\n");
  651. /* no irq in autobuffer mode */
  652. dma_config =
  653. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  654. set_dma_config(drv_data->dma_channel, dma_config);
  655. set_dma_start_addr(drv_data->dma_channel,
  656. (unsigned long)drv_data->tx);
  657. enable_dma(drv_data->dma_channel);
  658. /* start SPI transfer */
  659. write_CTRL(drv_data,
  660. (cr | CFG_SPI_DMAWRITE | BIT_CTL_ENABLE));
  661. /* just return here, there can only be one transfer
  662. * in this mode
  663. */
  664. message->status = 0;
  665. giveback(drv_data);
  666. return;
  667. }
  668. /* In dma mode, rx or tx must be NULL in one transfer */
  669. if (drv_data->rx != NULL) {
  670. /* set transfer mode, and enable SPI */
  671. dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n");
  672. /* clear tx reg soformer data is not shifted out */
  673. write_TDBR(drv_data, 0xFFFF);
  674. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  675. /* start dma */
  676. dma_enable_irq(drv_data->dma_channel);
  677. dma_config = (WNR | RESTART | dma_width | DI_EN);
  678. set_dma_config(drv_data->dma_channel, dma_config);
  679. set_dma_start_addr(drv_data->dma_channel,
  680. (unsigned long)drv_data->rx);
  681. enable_dma(drv_data->dma_channel);
  682. /* start SPI transfer */
  683. write_CTRL(drv_data,
  684. (cr | CFG_SPI_DMAREAD | BIT_CTL_ENABLE));
  685. } else if (drv_data->tx != NULL) {
  686. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  687. /* start dma */
  688. dma_enable_irq(drv_data->dma_channel);
  689. dma_config = (RESTART | dma_width | DI_EN);
  690. set_dma_config(drv_data->dma_channel, dma_config);
  691. set_dma_start_addr(drv_data->dma_channel,
  692. (unsigned long)drv_data->tx);
  693. enable_dma(drv_data->dma_channel);
  694. /* start SPI transfer */
  695. write_CTRL(drv_data,
  696. (cr | CFG_SPI_DMAWRITE | BIT_CTL_ENABLE));
  697. }
  698. } else {
  699. /* IO mode write then read */
  700. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  701. if (drv_data->tx != NULL && drv_data->rx != NULL) {
  702. /* full duplex mode */
  703. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  704. (drv_data->rx_end - drv_data->rx));
  705. dev_dbg(&drv_data->pdev->dev,
  706. "IO duplex: cr is 0x%x\n", cr);
  707. /* set SPI transfer mode */
  708. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  709. drv_data->duplex(drv_data);
  710. if (drv_data->tx != drv_data->tx_end)
  711. tranf_success = 0;
  712. } else if (drv_data->tx != NULL) {
  713. /* write only half duplex */
  714. dev_dbg(&drv_data->pdev->dev,
  715. "IO write: cr is 0x%x\n", cr);
  716. /* set SPI transfer mode */
  717. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  718. drv_data->write(drv_data);
  719. if (drv_data->tx != drv_data->tx_end)
  720. tranf_success = 0;
  721. } else if (drv_data->rx != NULL) {
  722. /* read only half duplex */
  723. dev_dbg(&drv_data->pdev->dev,
  724. "IO read: cr is 0x%x\n", cr);
  725. /* set SPI transfer mode */
  726. write_CTRL(drv_data, (cr | CFG_SPI_READ));
  727. drv_data->read(drv_data);
  728. if (drv_data->rx != drv_data->rx_end)
  729. tranf_success = 0;
  730. }
  731. if (!tranf_success) {
  732. dev_dbg(&drv_data->pdev->dev,
  733. "IO write error!\n");
  734. message->state = ERROR_STATE;
  735. } else {
  736. /* Update total byte transfered */
  737. message->actual_length += drv_data->len;
  738. /* Move to next transfer of this msg */
  739. message->state = next_transfer(drv_data);
  740. }
  741. /* Schedule next transfer tasklet */
  742. tasklet_schedule(&drv_data->pump_transfers);
  743. }
  744. }
  745. /* pop a msg from queue and kick off real transfer */
  746. static void pump_messages(struct work_struct *work)
  747. {
  748. struct driver_data *drv_data;
  749. unsigned long flags;
  750. drv_data = container_of(work, struct driver_data, pump_messages);
  751. /* Lock queue and check for queue work */
  752. spin_lock_irqsave(&drv_data->lock, flags);
  753. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  754. /* pumper kicked off but no work to do */
  755. drv_data->busy = 0;
  756. spin_unlock_irqrestore(&drv_data->lock, flags);
  757. return;
  758. }
  759. /* Make sure we are not already running a message */
  760. if (drv_data->cur_msg) {
  761. spin_unlock_irqrestore(&drv_data->lock, flags);
  762. return;
  763. }
  764. /* Extract head of queue */
  765. drv_data->cur_msg = list_entry(drv_data->queue.next,
  766. struct spi_message, queue);
  767. /* Setup the SSP using the per chip configuration */
  768. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  769. restore_state(drv_data);
  770. list_del_init(&drv_data->cur_msg->queue);
  771. /* Initial message state */
  772. drv_data->cur_msg->state = START_STATE;
  773. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  774. struct spi_transfer, transfer_list);
  775. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  776. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  777. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  778. drv_data->cur_chip->ctl_reg);
  779. dev_dbg(&drv_data->pdev->dev,
  780. "the first transfer len is %d\n",
  781. drv_data->cur_transfer->len);
  782. /* Mark as busy and launch transfers */
  783. tasklet_schedule(&drv_data->pump_transfers);
  784. drv_data->busy = 1;
  785. spin_unlock_irqrestore(&drv_data->lock, flags);
  786. }
  787. /*
  788. * got a msg to transfer, queue it in drv_data->queue.
  789. * And kick off message pumper
  790. */
  791. static int transfer(struct spi_device *spi, struct spi_message *msg)
  792. {
  793. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  794. unsigned long flags;
  795. spin_lock_irqsave(&drv_data->lock, flags);
  796. if (drv_data->run == QUEUE_STOPPED) {
  797. spin_unlock_irqrestore(&drv_data->lock, flags);
  798. return -ESHUTDOWN;
  799. }
  800. msg->actual_length = 0;
  801. msg->status = -EINPROGRESS;
  802. msg->state = START_STATE;
  803. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  804. list_add_tail(&msg->queue, &drv_data->queue);
  805. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  806. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  807. spin_unlock_irqrestore(&drv_data->lock, flags);
  808. return 0;
  809. }
  810. #define MAX_SPI_SSEL 7
  811. static u16 ssel[3][MAX_SPI_SSEL] = {
  812. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  813. P_SPI0_SSEL4, P_SPI0_SSEL5,
  814. P_SPI0_SSEL6, P_SPI0_SSEL7},
  815. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  816. P_SPI1_SSEL4, P_SPI1_SSEL5,
  817. P_SPI1_SSEL6, P_SPI1_SSEL7},
  818. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  819. P_SPI2_SSEL4, P_SPI2_SSEL5,
  820. P_SPI2_SSEL6, P_SPI2_SSEL7},
  821. };
  822. /* first setup for new devices */
  823. static int setup(struct spi_device *spi)
  824. {
  825. struct bfin5xx_spi_chip *chip_info = NULL;
  826. struct chip_data *chip;
  827. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  828. u8 spi_flg;
  829. /* Abort device setup if requested features are not supported */
  830. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  831. dev_err(&spi->dev, "requested mode not fully supported\n");
  832. return -EINVAL;
  833. }
  834. /* Zero (the default) here means 8 bits */
  835. if (!spi->bits_per_word)
  836. spi->bits_per_word = 8;
  837. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  838. return -EINVAL;
  839. /* Only alloc (or use chip_info) on first setup */
  840. chip = spi_get_ctldata(spi);
  841. if (chip == NULL) {
  842. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  843. if (!chip)
  844. return -ENOMEM;
  845. chip->enable_dma = 0;
  846. chip_info = spi->controller_data;
  847. }
  848. /* chip_info isn't always needed */
  849. if (chip_info) {
  850. /* Make sure people stop trying to set fields via ctl_reg
  851. * when they should actually be using common SPI framework.
  852. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  853. * Not sure if a user actually needs/uses any of these,
  854. * but let's assume (for now) they do.
  855. */
  856. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  857. dev_err(&spi->dev, "do not set bits in ctl_reg "
  858. "that the SPI framework manages\n");
  859. return -EINVAL;
  860. }
  861. chip->enable_dma = chip_info->enable_dma != 0
  862. && drv_data->master_info->enable_dma;
  863. chip->ctl_reg = chip_info->ctl_reg;
  864. chip->bits_per_word = chip_info->bits_per_word;
  865. chip->cs_change_per_word = chip_info->cs_change_per_word;
  866. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  867. }
  868. /* translate common spi framework into our register */
  869. if (spi->mode & SPI_CPOL)
  870. chip->ctl_reg |= CPOL;
  871. if (spi->mode & SPI_CPHA)
  872. chip->ctl_reg |= CPHA;
  873. if (spi->mode & SPI_LSB_FIRST)
  874. chip->ctl_reg |= LSBF;
  875. /* we dont support running in slave mode (yet?) */
  876. chip->ctl_reg |= MSTR;
  877. /*
  878. * if any one SPI chip is registered and wants DMA, request the
  879. * DMA channel for it
  880. */
  881. if (chip->enable_dma && !drv_data->dma_requested) {
  882. /* register dma irq handler */
  883. if (request_dma(drv_data->dma_channel, "BF53x_SPI_DMA") < 0) {
  884. dev_dbg(&spi->dev,
  885. "Unable to request BlackFin SPI DMA channel\n");
  886. return -ENODEV;
  887. }
  888. if (set_dma_callback(drv_data->dma_channel,
  889. (void *)dma_irq_handler, drv_data) < 0) {
  890. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  891. return -EPERM;
  892. }
  893. dma_disable_irq(drv_data->dma_channel);
  894. drv_data->dma_requested = 1;
  895. }
  896. /*
  897. * Notice: for blackfin, the speed_hz is the value of register
  898. * SPI_BAUD, not the real baudrate
  899. */
  900. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  901. spi_flg = ~(1 << (spi->chip_select));
  902. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  903. chip->chip_select_num = spi->chip_select;
  904. switch (chip->bits_per_word) {
  905. case 8:
  906. chip->n_bytes = 1;
  907. chip->width = CFG_SPI_WORDSIZE8;
  908. chip->read = chip->cs_change_per_word ?
  909. u8_cs_chg_reader : u8_reader;
  910. chip->write = chip->cs_change_per_word ?
  911. u8_cs_chg_writer : u8_writer;
  912. chip->duplex = chip->cs_change_per_word ?
  913. u8_cs_chg_duplex : u8_duplex;
  914. break;
  915. case 16:
  916. chip->n_bytes = 2;
  917. chip->width = CFG_SPI_WORDSIZE16;
  918. chip->read = chip->cs_change_per_word ?
  919. u16_cs_chg_reader : u16_reader;
  920. chip->write = chip->cs_change_per_word ?
  921. u16_cs_chg_writer : u16_writer;
  922. chip->duplex = chip->cs_change_per_word ?
  923. u16_cs_chg_duplex : u16_duplex;
  924. break;
  925. default:
  926. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  927. chip->bits_per_word);
  928. kfree(chip);
  929. return -ENODEV;
  930. }
  931. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  932. spi->modalias, chip->width, chip->enable_dma);
  933. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  934. chip->ctl_reg, chip->flag);
  935. spi_set_ctldata(spi, chip);
  936. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  937. if ((chip->chip_select_num > 0)
  938. && (chip->chip_select_num <= spi->master->num_chipselect))
  939. peripheral_request(ssel[spi->master->bus_num]
  940. [chip->chip_select_num-1], spi->modalias);
  941. cs_deactive(drv_data, chip);
  942. return 0;
  943. }
  944. /*
  945. * callback for spi framework.
  946. * clean driver specific data
  947. */
  948. static void cleanup(struct spi_device *spi)
  949. {
  950. struct chip_data *chip = spi_get_ctldata(spi);
  951. if ((chip->chip_select_num > 0)
  952. && (chip->chip_select_num <= spi->master->num_chipselect))
  953. peripheral_free(ssel[spi->master->bus_num]
  954. [chip->chip_select_num-1]);
  955. kfree(chip);
  956. }
  957. static inline int init_queue(struct driver_data *drv_data)
  958. {
  959. INIT_LIST_HEAD(&drv_data->queue);
  960. spin_lock_init(&drv_data->lock);
  961. drv_data->run = QUEUE_STOPPED;
  962. drv_data->busy = 0;
  963. /* init transfer tasklet */
  964. tasklet_init(&drv_data->pump_transfers,
  965. pump_transfers, (unsigned long)drv_data);
  966. /* init messages workqueue */
  967. INIT_WORK(&drv_data->pump_messages, pump_messages);
  968. drv_data->workqueue =
  969. create_singlethread_workqueue(drv_data->master->dev.parent->bus_id);
  970. if (drv_data->workqueue == NULL)
  971. return -EBUSY;
  972. return 0;
  973. }
  974. static inline int start_queue(struct driver_data *drv_data)
  975. {
  976. unsigned long flags;
  977. spin_lock_irqsave(&drv_data->lock, flags);
  978. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  979. spin_unlock_irqrestore(&drv_data->lock, flags);
  980. return -EBUSY;
  981. }
  982. drv_data->run = QUEUE_RUNNING;
  983. drv_data->cur_msg = NULL;
  984. drv_data->cur_transfer = NULL;
  985. drv_data->cur_chip = NULL;
  986. spin_unlock_irqrestore(&drv_data->lock, flags);
  987. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  988. return 0;
  989. }
  990. static inline int stop_queue(struct driver_data *drv_data)
  991. {
  992. unsigned long flags;
  993. unsigned limit = 500;
  994. int status = 0;
  995. spin_lock_irqsave(&drv_data->lock, flags);
  996. /*
  997. * This is a bit lame, but is optimized for the common execution path.
  998. * A wait_queue on the drv_data->busy could be used, but then the common
  999. * execution path (pump_messages) would be required to call wake_up or
  1000. * friends on every SPI message. Do this instead
  1001. */
  1002. drv_data->run = QUEUE_STOPPED;
  1003. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1004. spin_unlock_irqrestore(&drv_data->lock, flags);
  1005. msleep(10);
  1006. spin_lock_irqsave(&drv_data->lock, flags);
  1007. }
  1008. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1009. status = -EBUSY;
  1010. spin_unlock_irqrestore(&drv_data->lock, flags);
  1011. return status;
  1012. }
  1013. static inline int destroy_queue(struct driver_data *drv_data)
  1014. {
  1015. int status;
  1016. status = stop_queue(drv_data);
  1017. if (status != 0)
  1018. return status;
  1019. destroy_workqueue(drv_data->workqueue);
  1020. return 0;
  1021. }
  1022. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  1023. {
  1024. struct device *dev = &pdev->dev;
  1025. struct bfin5xx_spi_master *platform_info;
  1026. struct spi_master *master;
  1027. struct driver_data *drv_data = 0;
  1028. struct resource *res;
  1029. int status = 0;
  1030. platform_info = dev->platform_data;
  1031. /* Allocate master with space for drv_data */
  1032. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1033. if (!master) {
  1034. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1035. return -ENOMEM;
  1036. }
  1037. drv_data = spi_master_get_devdata(master);
  1038. drv_data->master = master;
  1039. drv_data->master_info = platform_info;
  1040. drv_data->pdev = pdev;
  1041. drv_data->pin_req = platform_info->pin_req;
  1042. master->bus_num = pdev->id;
  1043. master->num_chipselect = platform_info->num_chipselect;
  1044. master->cleanup = cleanup;
  1045. master->setup = setup;
  1046. master->transfer = transfer;
  1047. /* Find and map our resources */
  1048. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1049. if (res == NULL) {
  1050. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1051. status = -ENOENT;
  1052. goto out_error_get_res;
  1053. }
  1054. drv_data->regs_base = ioremap(res->start, (res->end - res->start + 1));
  1055. if (drv_data->regs_base == NULL) {
  1056. dev_err(dev, "Cannot map IO\n");
  1057. status = -ENXIO;
  1058. goto out_error_ioremap;
  1059. }
  1060. drv_data->dma_channel = platform_get_irq(pdev, 0);
  1061. if (drv_data->dma_channel < 0) {
  1062. dev_err(dev, "No DMA channel specified\n");
  1063. status = -ENOENT;
  1064. goto out_error_no_dma_ch;
  1065. }
  1066. /* Initial and start queue */
  1067. status = init_queue(drv_data);
  1068. if (status != 0) {
  1069. dev_err(dev, "problem initializing queue\n");
  1070. goto out_error_queue_alloc;
  1071. }
  1072. status = start_queue(drv_data);
  1073. if (status != 0) {
  1074. dev_err(dev, "problem starting queue\n");
  1075. goto out_error_queue_alloc;
  1076. }
  1077. /* Register with the SPI framework */
  1078. platform_set_drvdata(pdev, drv_data);
  1079. status = spi_register_master(master);
  1080. if (status != 0) {
  1081. dev_err(dev, "problem registering spi master\n");
  1082. goto out_error_queue_alloc;
  1083. }
  1084. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1085. if (status != 0) {
  1086. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1087. goto out_error;
  1088. }
  1089. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1090. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1091. drv_data->dma_channel);
  1092. return status;
  1093. out_error_queue_alloc:
  1094. destroy_queue(drv_data);
  1095. out_error_no_dma_ch:
  1096. iounmap((void *) drv_data->regs_base);
  1097. out_error_ioremap:
  1098. out_error_get_res:
  1099. out_error:
  1100. spi_master_put(master);
  1101. return status;
  1102. }
  1103. /* stop hardware and remove the driver */
  1104. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1105. {
  1106. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1107. int status = 0;
  1108. if (!drv_data)
  1109. return 0;
  1110. /* Remove the queue */
  1111. status = destroy_queue(drv_data);
  1112. if (status != 0)
  1113. return status;
  1114. /* Disable the SSP at the peripheral and SOC level */
  1115. bfin_spi_disable(drv_data);
  1116. /* Release DMA */
  1117. if (drv_data->master_info->enable_dma) {
  1118. if (dma_channel_active(drv_data->dma_channel))
  1119. free_dma(drv_data->dma_channel);
  1120. }
  1121. /* Disconnect from the SPI framework */
  1122. spi_unregister_master(drv_data->master);
  1123. peripheral_free_list(drv_data->pin_req);
  1124. /* Prevent double remove */
  1125. platform_set_drvdata(pdev, NULL);
  1126. return 0;
  1127. }
  1128. #ifdef CONFIG_PM
  1129. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1130. {
  1131. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1132. int status = 0;
  1133. status = stop_queue(drv_data);
  1134. if (status != 0)
  1135. return status;
  1136. /* stop hardware */
  1137. bfin_spi_disable(drv_data);
  1138. return 0;
  1139. }
  1140. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1141. {
  1142. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1143. int status = 0;
  1144. /* Enable the SPI interface */
  1145. bfin_spi_enable(drv_data);
  1146. /* Start the queue running */
  1147. status = start_queue(drv_data);
  1148. if (status != 0) {
  1149. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1150. return status;
  1151. }
  1152. return 0;
  1153. }
  1154. #else
  1155. #define bfin5xx_spi_suspend NULL
  1156. #define bfin5xx_spi_resume NULL
  1157. #endif /* CONFIG_PM */
  1158. MODULE_ALIAS("bfin-spi-master"); /* for platform bus hotplug */
  1159. static struct platform_driver bfin5xx_spi_driver = {
  1160. .driver = {
  1161. .name = DRV_NAME,
  1162. .owner = THIS_MODULE,
  1163. },
  1164. .suspend = bfin5xx_spi_suspend,
  1165. .resume = bfin5xx_spi_resume,
  1166. .remove = __devexit_p(bfin5xx_spi_remove),
  1167. };
  1168. static int __init bfin5xx_spi_init(void)
  1169. {
  1170. return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
  1171. }
  1172. module_init(bfin5xx_spi_init);
  1173. static void __exit bfin5xx_spi_exit(void)
  1174. {
  1175. platform_driver_unregister(&bfin5xx_spi_driver);
  1176. }
  1177. module_exit(bfin5xx_spi_exit);