huge_memory.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <asm/tlb.h>
  18. #include <asm/pgalloc.h>
  19. #include "internal.h"
  20. /*
  21. * By default transparent hugepage support is enabled for all mappings
  22. * and khugepaged scans all mappings. Defrag is only invoked by
  23. * khugepaged hugepage allocations and by page faults inside
  24. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  25. * allocations.
  26. */
  27. unsigned long transparent_hugepage_flags __read_mostly =
  28. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  29. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  30. #endif
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  32. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  33. #endif
  34. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  35. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  36. /* default scan 8*512 pte (or vmas) every 30 second */
  37. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  38. static unsigned int khugepaged_pages_collapsed;
  39. static unsigned int khugepaged_full_scans;
  40. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  41. /* during fragmentation poll the hugepage allocator once every minute */
  42. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  43. static struct task_struct *khugepaged_thread __read_mostly;
  44. static DEFINE_MUTEX(khugepaged_mutex);
  45. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  46. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  47. /*
  48. * default collapse hugepages if there is at least one pte mapped like
  49. * it would have happened if the vma was large enough during page
  50. * fault.
  51. */
  52. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  53. static int khugepaged(void *none);
  54. static int mm_slots_hash_init(void);
  55. static int khugepaged_slab_init(void);
  56. static void khugepaged_slab_free(void);
  57. #define MM_SLOTS_HASH_HEADS 1024
  58. static struct hlist_head *mm_slots_hash __read_mostly;
  59. static struct kmem_cache *mm_slot_cache __read_mostly;
  60. /**
  61. * struct mm_slot - hash lookup from mm to mm_slot
  62. * @hash: hash collision list
  63. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  64. * @mm: the mm that this information is valid for
  65. */
  66. struct mm_slot {
  67. struct hlist_node hash;
  68. struct list_head mm_node;
  69. struct mm_struct *mm;
  70. };
  71. /**
  72. * struct khugepaged_scan - cursor for scanning
  73. * @mm_head: the head of the mm list to scan
  74. * @mm_slot: the current mm_slot we are scanning
  75. * @address: the next address inside that to be scanned
  76. *
  77. * There is only the one khugepaged_scan instance of this cursor structure.
  78. */
  79. struct khugepaged_scan {
  80. struct list_head mm_head;
  81. struct mm_slot *mm_slot;
  82. unsigned long address;
  83. } khugepaged_scan = {
  84. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  85. };
  86. static int set_recommended_min_free_kbytes(void)
  87. {
  88. struct zone *zone;
  89. int nr_zones = 0;
  90. unsigned long recommended_min;
  91. extern int min_free_kbytes;
  92. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  93. &transparent_hugepage_flags) &&
  94. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  95. &transparent_hugepage_flags))
  96. return 0;
  97. for_each_populated_zone(zone)
  98. nr_zones++;
  99. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  100. recommended_min = pageblock_nr_pages * nr_zones * 2;
  101. /*
  102. * Make sure that on average at least two pageblocks are almost free
  103. * of another type, one for a migratetype to fall back to and a
  104. * second to avoid subsequent fallbacks of other types There are 3
  105. * MIGRATE_TYPES we care about.
  106. */
  107. recommended_min += pageblock_nr_pages * nr_zones *
  108. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  109. /* don't ever allow to reserve more than 5% of the lowmem */
  110. recommended_min = min(recommended_min,
  111. (unsigned long) nr_free_buffer_pages() / 20);
  112. recommended_min <<= (PAGE_SHIFT-10);
  113. if (recommended_min > min_free_kbytes)
  114. min_free_kbytes = recommended_min;
  115. setup_per_zone_wmarks();
  116. return 0;
  117. }
  118. late_initcall(set_recommended_min_free_kbytes);
  119. static int start_khugepaged(void)
  120. {
  121. int err = 0;
  122. if (khugepaged_enabled()) {
  123. int wakeup;
  124. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  125. err = -ENOMEM;
  126. goto out;
  127. }
  128. mutex_lock(&khugepaged_mutex);
  129. if (!khugepaged_thread)
  130. khugepaged_thread = kthread_run(khugepaged, NULL,
  131. "khugepaged");
  132. if (unlikely(IS_ERR(khugepaged_thread))) {
  133. printk(KERN_ERR
  134. "khugepaged: kthread_run(khugepaged) failed\n");
  135. err = PTR_ERR(khugepaged_thread);
  136. khugepaged_thread = NULL;
  137. }
  138. wakeup = !list_empty(&khugepaged_scan.mm_head);
  139. mutex_unlock(&khugepaged_mutex);
  140. if (wakeup)
  141. wake_up_interruptible(&khugepaged_wait);
  142. set_recommended_min_free_kbytes();
  143. } else
  144. /* wakeup to exit */
  145. wake_up_interruptible(&khugepaged_wait);
  146. out:
  147. return err;
  148. }
  149. #ifdef CONFIG_SYSFS
  150. static ssize_t double_flag_show(struct kobject *kobj,
  151. struct kobj_attribute *attr, char *buf,
  152. enum transparent_hugepage_flag enabled,
  153. enum transparent_hugepage_flag req_madv)
  154. {
  155. if (test_bit(enabled, &transparent_hugepage_flags)) {
  156. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  157. return sprintf(buf, "[always] madvise never\n");
  158. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  159. return sprintf(buf, "always [madvise] never\n");
  160. else
  161. return sprintf(buf, "always madvise [never]\n");
  162. }
  163. static ssize_t double_flag_store(struct kobject *kobj,
  164. struct kobj_attribute *attr,
  165. const char *buf, size_t count,
  166. enum transparent_hugepage_flag enabled,
  167. enum transparent_hugepage_flag req_madv)
  168. {
  169. if (!memcmp("always", buf,
  170. min(sizeof("always")-1, count))) {
  171. set_bit(enabled, &transparent_hugepage_flags);
  172. clear_bit(req_madv, &transparent_hugepage_flags);
  173. } else if (!memcmp("madvise", buf,
  174. min(sizeof("madvise")-1, count))) {
  175. clear_bit(enabled, &transparent_hugepage_flags);
  176. set_bit(req_madv, &transparent_hugepage_flags);
  177. } else if (!memcmp("never", buf,
  178. min(sizeof("never")-1, count))) {
  179. clear_bit(enabled, &transparent_hugepage_flags);
  180. clear_bit(req_madv, &transparent_hugepage_flags);
  181. } else
  182. return -EINVAL;
  183. return count;
  184. }
  185. static ssize_t enabled_show(struct kobject *kobj,
  186. struct kobj_attribute *attr, char *buf)
  187. {
  188. return double_flag_show(kobj, attr, buf,
  189. TRANSPARENT_HUGEPAGE_FLAG,
  190. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  191. }
  192. static ssize_t enabled_store(struct kobject *kobj,
  193. struct kobj_attribute *attr,
  194. const char *buf, size_t count)
  195. {
  196. ssize_t ret;
  197. ret = double_flag_store(kobj, attr, buf, count,
  198. TRANSPARENT_HUGEPAGE_FLAG,
  199. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  200. if (ret > 0) {
  201. int err = start_khugepaged();
  202. if (err)
  203. ret = err;
  204. }
  205. if (ret > 0 &&
  206. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  207. &transparent_hugepage_flags) ||
  208. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  209. &transparent_hugepage_flags)))
  210. set_recommended_min_free_kbytes();
  211. return ret;
  212. }
  213. static struct kobj_attribute enabled_attr =
  214. __ATTR(enabled, 0644, enabled_show, enabled_store);
  215. static ssize_t single_flag_show(struct kobject *kobj,
  216. struct kobj_attribute *attr, char *buf,
  217. enum transparent_hugepage_flag flag)
  218. {
  219. if (test_bit(flag, &transparent_hugepage_flags))
  220. return sprintf(buf, "[yes] no\n");
  221. else
  222. return sprintf(buf, "yes [no]\n");
  223. }
  224. static ssize_t single_flag_store(struct kobject *kobj,
  225. struct kobj_attribute *attr,
  226. const char *buf, size_t count,
  227. enum transparent_hugepage_flag flag)
  228. {
  229. if (!memcmp("yes", buf,
  230. min(sizeof("yes")-1, count))) {
  231. set_bit(flag, &transparent_hugepage_flags);
  232. } else if (!memcmp("no", buf,
  233. min(sizeof("no")-1, count))) {
  234. clear_bit(flag, &transparent_hugepage_flags);
  235. } else
  236. return -EINVAL;
  237. return count;
  238. }
  239. /*
  240. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  241. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  242. * memory just to allocate one more hugepage.
  243. */
  244. static ssize_t defrag_show(struct kobject *kobj,
  245. struct kobj_attribute *attr, char *buf)
  246. {
  247. return double_flag_show(kobj, attr, buf,
  248. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  249. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  250. }
  251. static ssize_t defrag_store(struct kobject *kobj,
  252. struct kobj_attribute *attr,
  253. const char *buf, size_t count)
  254. {
  255. return double_flag_store(kobj, attr, buf, count,
  256. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  257. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  258. }
  259. static struct kobj_attribute defrag_attr =
  260. __ATTR(defrag, 0644, defrag_show, defrag_store);
  261. #ifdef CONFIG_DEBUG_VM
  262. static ssize_t debug_cow_show(struct kobject *kobj,
  263. struct kobj_attribute *attr, char *buf)
  264. {
  265. return single_flag_show(kobj, attr, buf,
  266. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  267. }
  268. static ssize_t debug_cow_store(struct kobject *kobj,
  269. struct kobj_attribute *attr,
  270. const char *buf, size_t count)
  271. {
  272. return single_flag_store(kobj, attr, buf, count,
  273. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  274. }
  275. static struct kobj_attribute debug_cow_attr =
  276. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  277. #endif /* CONFIG_DEBUG_VM */
  278. static struct attribute *hugepage_attr[] = {
  279. &enabled_attr.attr,
  280. &defrag_attr.attr,
  281. #ifdef CONFIG_DEBUG_VM
  282. &debug_cow_attr.attr,
  283. #endif
  284. NULL,
  285. };
  286. static struct attribute_group hugepage_attr_group = {
  287. .attrs = hugepage_attr,
  288. };
  289. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  290. struct kobj_attribute *attr,
  291. char *buf)
  292. {
  293. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  294. }
  295. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  296. struct kobj_attribute *attr,
  297. const char *buf, size_t count)
  298. {
  299. unsigned long msecs;
  300. int err;
  301. err = strict_strtoul(buf, 10, &msecs);
  302. if (err || msecs > UINT_MAX)
  303. return -EINVAL;
  304. khugepaged_scan_sleep_millisecs = msecs;
  305. wake_up_interruptible(&khugepaged_wait);
  306. return count;
  307. }
  308. static struct kobj_attribute scan_sleep_millisecs_attr =
  309. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  310. scan_sleep_millisecs_store);
  311. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  312. struct kobj_attribute *attr,
  313. char *buf)
  314. {
  315. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  316. }
  317. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  318. struct kobj_attribute *attr,
  319. const char *buf, size_t count)
  320. {
  321. unsigned long msecs;
  322. int err;
  323. err = strict_strtoul(buf, 10, &msecs);
  324. if (err || msecs > UINT_MAX)
  325. return -EINVAL;
  326. khugepaged_alloc_sleep_millisecs = msecs;
  327. wake_up_interruptible(&khugepaged_wait);
  328. return count;
  329. }
  330. static struct kobj_attribute alloc_sleep_millisecs_attr =
  331. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  332. alloc_sleep_millisecs_store);
  333. static ssize_t pages_to_scan_show(struct kobject *kobj,
  334. struct kobj_attribute *attr,
  335. char *buf)
  336. {
  337. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  338. }
  339. static ssize_t pages_to_scan_store(struct kobject *kobj,
  340. struct kobj_attribute *attr,
  341. const char *buf, size_t count)
  342. {
  343. int err;
  344. unsigned long pages;
  345. err = strict_strtoul(buf, 10, &pages);
  346. if (err || !pages || pages > UINT_MAX)
  347. return -EINVAL;
  348. khugepaged_pages_to_scan = pages;
  349. return count;
  350. }
  351. static struct kobj_attribute pages_to_scan_attr =
  352. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  353. pages_to_scan_store);
  354. static ssize_t pages_collapsed_show(struct kobject *kobj,
  355. struct kobj_attribute *attr,
  356. char *buf)
  357. {
  358. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  359. }
  360. static struct kobj_attribute pages_collapsed_attr =
  361. __ATTR_RO(pages_collapsed);
  362. static ssize_t full_scans_show(struct kobject *kobj,
  363. struct kobj_attribute *attr,
  364. char *buf)
  365. {
  366. return sprintf(buf, "%u\n", khugepaged_full_scans);
  367. }
  368. static struct kobj_attribute full_scans_attr =
  369. __ATTR_RO(full_scans);
  370. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  371. struct kobj_attribute *attr, char *buf)
  372. {
  373. return single_flag_show(kobj, attr, buf,
  374. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  375. }
  376. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  377. struct kobj_attribute *attr,
  378. const char *buf, size_t count)
  379. {
  380. return single_flag_store(kobj, attr, buf, count,
  381. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  382. }
  383. static struct kobj_attribute khugepaged_defrag_attr =
  384. __ATTR(defrag, 0644, khugepaged_defrag_show,
  385. khugepaged_defrag_store);
  386. /*
  387. * max_ptes_none controls if khugepaged should collapse hugepages over
  388. * any unmapped ptes in turn potentially increasing the memory
  389. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  390. * reduce the available free memory in the system as it
  391. * runs. Increasing max_ptes_none will instead potentially reduce the
  392. * free memory in the system during the khugepaged scan.
  393. */
  394. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  395. struct kobj_attribute *attr,
  396. char *buf)
  397. {
  398. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  399. }
  400. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  401. struct kobj_attribute *attr,
  402. const char *buf, size_t count)
  403. {
  404. int err;
  405. unsigned long max_ptes_none;
  406. err = strict_strtoul(buf, 10, &max_ptes_none);
  407. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  408. return -EINVAL;
  409. khugepaged_max_ptes_none = max_ptes_none;
  410. return count;
  411. }
  412. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  413. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  414. khugepaged_max_ptes_none_store);
  415. static struct attribute *khugepaged_attr[] = {
  416. &khugepaged_defrag_attr.attr,
  417. &khugepaged_max_ptes_none_attr.attr,
  418. &pages_to_scan_attr.attr,
  419. &pages_collapsed_attr.attr,
  420. &full_scans_attr.attr,
  421. &scan_sleep_millisecs_attr.attr,
  422. &alloc_sleep_millisecs_attr.attr,
  423. NULL,
  424. };
  425. static struct attribute_group khugepaged_attr_group = {
  426. .attrs = khugepaged_attr,
  427. .name = "khugepaged",
  428. };
  429. #endif /* CONFIG_SYSFS */
  430. static int __init hugepage_init(void)
  431. {
  432. int err;
  433. #ifdef CONFIG_SYSFS
  434. static struct kobject *hugepage_kobj;
  435. err = -ENOMEM;
  436. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  437. if (unlikely(!hugepage_kobj)) {
  438. printk(KERN_ERR "hugepage: failed kobject create\n");
  439. goto out;
  440. }
  441. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  442. if (err) {
  443. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  444. goto out;
  445. }
  446. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  447. if (err) {
  448. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  449. goto out;
  450. }
  451. #endif
  452. err = khugepaged_slab_init();
  453. if (err)
  454. goto out;
  455. err = mm_slots_hash_init();
  456. if (err) {
  457. khugepaged_slab_free();
  458. goto out;
  459. }
  460. start_khugepaged();
  461. set_recommended_min_free_kbytes();
  462. out:
  463. return err;
  464. }
  465. module_init(hugepage_init)
  466. static int __init setup_transparent_hugepage(char *str)
  467. {
  468. int ret = 0;
  469. if (!str)
  470. goto out;
  471. if (!strcmp(str, "always")) {
  472. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  473. &transparent_hugepage_flags);
  474. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  475. &transparent_hugepage_flags);
  476. ret = 1;
  477. } else if (!strcmp(str, "madvise")) {
  478. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  479. &transparent_hugepage_flags);
  480. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  481. &transparent_hugepage_flags);
  482. ret = 1;
  483. } else if (!strcmp(str, "never")) {
  484. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  485. &transparent_hugepage_flags);
  486. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  487. &transparent_hugepage_flags);
  488. ret = 1;
  489. }
  490. out:
  491. if (!ret)
  492. printk(KERN_WARNING
  493. "transparent_hugepage= cannot parse, ignored\n");
  494. return ret;
  495. }
  496. __setup("transparent_hugepage=", setup_transparent_hugepage);
  497. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  498. struct mm_struct *mm)
  499. {
  500. assert_spin_locked(&mm->page_table_lock);
  501. /* FIFO */
  502. if (!mm->pmd_huge_pte)
  503. INIT_LIST_HEAD(&pgtable->lru);
  504. else
  505. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  506. mm->pmd_huge_pte = pgtable;
  507. }
  508. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  509. {
  510. if (likely(vma->vm_flags & VM_WRITE))
  511. pmd = pmd_mkwrite(pmd);
  512. return pmd;
  513. }
  514. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  515. struct vm_area_struct *vma,
  516. unsigned long haddr, pmd_t *pmd,
  517. struct page *page)
  518. {
  519. int ret = 0;
  520. pgtable_t pgtable;
  521. VM_BUG_ON(!PageCompound(page));
  522. pgtable = pte_alloc_one(mm, haddr);
  523. if (unlikely(!pgtable)) {
  524. mem_cgroup_uncharge_page(page);
  525. put_page(page);
  526. return VM_FAULT_OOM;
  527. }
  528. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  529. __SetPageUptodate(page);
  530. spin_lock(&mm->page_table_lock);
  531. if (unlikely(!pmd_none(*pmd))) {
  532. spin_unlock(&mm->page_table_lock);
  533. mem_cgroup_uncharge_page(page);
  534. put_page(page);
  535. pte_free(mm, pgtable);
  536. } else {
  537. pmd_t entry;
  538. entry = mk_pmd(page, vma->vm_page_prot);
  539. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  540. entry = pmd_mkhuge(entry);
  541. /*
  542. * The spinlocking to take the lru_lock inside
  543. * page_add_new_anon_rmap() acts as a full memory
  544. * barrier to be sure clear_huge_page writes become
  545. * visible after the set_pmd_at() write.
  546. */
  547. page_add_new_anon_rmap(page, vma, haddr);
  548. set_pmd_at(mm, haddr, pmd, entry);
  549. prepare_pmd_huge_pte(pgtable, mm);
  550. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  551. spin_unlock(&mm->page_table_lock);
  552. }
  553. return ret;
  554. }
  555. static inline gfp_t alloc_hugepage_gfpmask(int defrag)
  556. {
  557. return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
  558. }
  559. static inline struct page *alloc_hugepage_vma(int defrag,
  560. struct vm_area_struct *vma,
  561. unsigned long haddr)
  562. {
  563. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
  564. HPAGE_PMD_ORDER, vma, haddr);
  565. }
  566. #ifndef CONFIG_NUMA
  567. static inline struct page *alloc_hugepage(int defrag)
  568. {
  569. return alloc_pages(alloc_hugepage_gfpmask(defrag),
  570. HPAGE_PMD_ORDER);
  571. }
  572. #endif
  573. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  574. unsigned long address, pmd_t *pmd,
  575. unsigned int flags)
  576. {
  577. struct page *page;
  578. unsigned long haddr = address & HPAGE_PMD_MASK;
  579. pte_t *pte;
  580. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  581. if (unlikely(anon_vma_prepare(vma)))
  582. return VM_FAULT_OOM;
  583. if (unlikely(khugepaged_enter(vma)))
  584. return VM_FAULT_OOM;
  585. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  586. vma, haddr);
  587. if (unlikely(!page))
  588. goto out;
  589. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  590. put_page(page);
  591. goto out;
  592. }
  593. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  594. }
  595. out:
  596. /*
  597. * Use __pte_alloc instead of pte_alloc_map, because we can't
  598. * run pte_offset_map on the pmd, if an huge pmd could
  599. * materialize from under us from a different thread.
  600. */
  601. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  602. return VM_FAULT_OOM;
  603. /* if an huge pmd materialized from under us just retry later */
  604. if (unlikely(pmd_trans_huge(*pmd)))
  605. return 0;
  606. /*
  607. * A regular pmd is established and it can't morph into a huge pmd
  608. * from under us anymore at this point because we hold the mmap_sem
  609. * read mode and khugepaged takes it in write mode. So now it's
  610. * safe to run pte_offset_map().
  611. */
  612. pte = pte_offset_map(pmd, address);
  613. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  614. }
  615. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  616. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  617. struct vm_area_struct *vma)
  618. {
  619. struct page *src_page;
  620. pmd_t pmd;
  621. pgtable_t pgtable;
  622. int ret;
  623. ret = -ENOMEM;
  624. pgtable = pte_alloc_one(dst_mm, addr);
  625. if (unlikely(!pgtable))
  626. goto out;
  627. spin_lock(&dst_mm->page_table_lock);
  628. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  629. ret = -EAGAIN;
  630. pmd = *src_pmd;
  631. if (unlikely(!pmd_trans_huge(pmd))) {
  632. pte_free(dst_mm, pgtable);
  633. goto out_unlock;
  634. }
  635. if (unlikely(pmd_trans_splitting(pmd))) {
  636. /* split huge page running from under us */
  637. spin_unlock(&src_mm->page_table_lock);
  638. spin_unlock(&dst_mm->page_table_lock);
  639. pte_free(dst_mm, pgtable);
  640. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  641. goto out;
  642. }
  643. src_page = pmd_page(pmd);
  644. VM_BUG_ON(!PageHead(src_page));
  645. get_page(src_page);
  646. page_dup_rmap(src_page);
  647. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  648. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  649. pmd = pmd_mkold(pmd_wrprotect(pmd));
  650. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  651. prepare_pmd_huge_pte(pgtable, dst_mm);
  652. ret = 0;
  653. out_unlock:
  654. spin_unlock(&src_mm->page_table_lock);
  655. spin_unlock(&dst_mm->page_table_lock);
  656. out:
  657. return ret;
  658. }
  659. /* no "address" argument so destroys page coloring of some arch */
  660. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  661. {
  662. pgtable_t pgtable;
  663. assert_spin_locked(&mm->page_table_lock);
  664. /* FIFO */
  665. pgtable = mm->pmd_huge_pte;
  666. if (list_empty(&pgtable->lru))
  667. mm->pmd_huge_pte = NULL;
  668. else {
  669. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  670. struct page, lru);
  671. list_del(&pgtable->lru);
  672. }
  673. return pgtable;
  674. }
  675. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  676. struct vm_area_struct *vma,
  677. unsigned long address,
  678. pmd_t *pmd, pmd_t orig_pmd,
  679. struct page *page,
  680. unsigned long haddr)
  681. {
  682. pgtable_t pgtable;
  683. pmd_t _pmd;
  684. int ret = 0, i;
  685. struct page **pages;
  686. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  687. GFP_KERNEL);
  688. if (unlikely(!pages)) {
  689. ret |= VM_FAULT_OOM;
  690. goto out;
  691. }
  692. for (i = 0; i < HPAGE_PMD_NR; i++) {
  693. pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  694. vma, address);
  695. if (unlikely(!pages[i] ||
  696. mem_cgroup_newpage_charge(pages[i], mm,
  697. GFP_KERNEL))) {
  698. if (pages[i])
  699. put_page(pages[i]);
  700. mem_cgroup_uncharge_start();
  701. while (--i >= 0) {
  702. mem_cgroup_uncharge_page(pages[i]);
  703. put_page(pages[i]);
  704. }
  705. mem_cgroup_uncharge_end();
  706. kfree(pages);
  707. ret |= VM_FAULT_OOM;
  708. goto out;
  709. }
  710. }
  711. for (i = 0; i < HPAGE_PMD_NR; i++) {
  712. copy_user_highpage(pages[i], page + i,
  713. haddr + PAGE_SHIFT*i, vma);
  714. __SetPageUptodate(pages[i]);
  715. cond_resched();
  716. }
  717. spin_lock(&mm->page_table_lock);
  718. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  719. goto out_free_pages;
  720. VM_BUG_ON(!PageHead(page));
  721. pmdp_clear_flush_notify(vma, haddr, pmd);
  722. /* leave pmd empty until pte is filled */
  723. pgtable = get_pmd_huge_pte(mm);
  724. pmd_populate(mm, &_pmd, pgtable);
  725. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  726. pte_t *pte, entry;
  727. entry = mk_pte(pages[i], vma->vm_page_prot);
  728. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  729. page_add_new_anon_rmap(pages[i], vma, haddr);
  730. pte = pte_offset_map(&_pmd, haddr);
  731. VM_BUG_ON(!pte_none(*pte));
  732. set_pte_at(mm, haddr, pte, entry);
  733. pte_unmap(pte);
  734. }
  735. kfree(pages);
  736. mm->nr_ptes++;
  737. smp_wmb(); /* make pte visible before pmd */
  738. pmd_populate(mm, pmd, pgtable);
  739. page_remove_rmap(page);
  740. spin_unlock(&mm->page_table_lock);
  741. ret |= VM_FAULT_WRITE;
  742. put_page(page);
  743. out:
  744. return ret;
  745. out_free_pages:
  746. spin_unlock(&mm->page_table_lock);
  747. mem_cgroup_uncharge_start();
  748. for (i = 0; i < HPAGE_PMD_NR; i++) {
  749. mem_cgroup_uncharge_page(pages[i]);
  750. put_page(pages[i]);
  751. }
  752. mem_cgroup_uncharge_end();
  753. kfree(pages);
  754. goto out;
  755. }
  756. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  757. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  758. {
  759. int ret = 0;
  760. struct page *page, *new_page;
  761. unsigned long haddr;
  762. VM_BUG_ON(!vma->anon_vma);
  763. spin_lock(&mm->page_table_lock);
  764. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  765. goto out_unlock;
  766. page = pmd_page(orig_pmd);
  767. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  768. haddr = address & HPAGE_PMD_MASK;
  769. if (page_mapcount(page) == 1) {
  770. pmd_t entry;
  771. entry = pmd_mkyoung(orig_pmd);
  772. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  773. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  774. update_mmu_cache(vma, address, entry);
  775. ret |= VM_FAULT_WRITE;
  776. goto out_unlock;
  777. }
  778. get_page(page);
  779. spin_unlock(&mm->page_table_lock);
  780. if (transparent_hugepage_enabled(vma) &&
  781. !transparent_hugepage_debug_cow())
  782. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  783. vma, haddr);
  784. else
  785. new_page = NULL;
  786. if (unlikely(!new_page)) {
  787. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  788. pmd, orig_pmd, page, haddr);
  789. put_page(page);
  790. goto out;
  791. }
  792. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  793. put_page(new_page);
  794. put_page(page);
  795. ret |= VM_FAULT_OOM;
  796. goto out;
  797. }
  798. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  799. __SetPageUptodate(new_page);
  800. spin_lock(&mm->page_table_lock);
  801. put_page(page);
  802. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  803. mem_cgroup_uncharge_page(new_page);
  804. put_page(new_page);
  805. } else {
  806. pmd_t entry;
  807. VM_BUG_ON(!PageHead(page));
  808. entry = mk_pmd(new_page, vma->vm_page_prot);
  809. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  810. entry = pmd_mkhuge(entry);
  811. pmdp_clear_flush_notify(vma, haddr, pmd);
  812. page_add_new_anon_rmap(new_page, vma, haddr);
  813. set_pmd_at(mm, haddr, pmd, entry);
  814. update_mmu_cache(vma, address, entry);
  815. page_remove_rmap(page);
  816. put_page(page);
  817. ret |= VM_FAULT_WRITE;
  818. }
  819. out_unlock:
  820. spin_unlock(&mm->page_table_lock);
  821. out:
  822. return ret;
  823. }
  824. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  825. unsigned long addr,
  826. pmd_t *pmd,
  827. unsigned int flags)
  828. {
  829. struct page *page = NULL;
  830. assert_spin_locked(&mm->page_table_lock);
  831. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  832. goto out;
  833. page = pmd_page(*pmd);
  834. VM_BUG_ON(!PageHead(page));
  835. if (flags & FOLL_TOUCH) {
  836. pmd_t _pmd;
  837. /*
  838. * We should set the dirty bit only for FOLL_WRITE but
  839. * for now the dirty bit in the pmd is meaningless.
  840. * And if the dirty bit will become meaningful and
  841. * we'll only set it with FOLL_WRITE, an atomic
  842. * set_bit will be required on the pmd to set the
  843. * young bit, instead of the current set_pmd_at.
  844. */
  845. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  846. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  847. }
  848. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  849. VM_BUG_ON(!PageCompound(page));
  850. if (flags & FOLL_GET)
  851. get_page(page);
  852. out:
  853. return page;
  854. }
  855. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  856. pmd_t *pmd)
  857. {
  858. int ret = 0;
  859. spin_lock(&tlb->mm->page_table_lock);
  860. if (likely(pmd_trans_huge(*pmd))) {
  861. if (unlikely(pmd_trans_splitting(*pmd))) {
  862. spin_unlock(&tlb->mm->page_table_lock);
  863. wait_split_huge_page(vma->anon_vma,
  864. pmd);
  865. } else {
  866. struct page *page;
  867. pgtable_t pgtable;
  868. pgtable = get_pmd_huge_pte(tlb->mm);
  869. page = pmd_page(*pmd);
  870. pmd_clear(pmd);
  871. page_remove_rmap(page);
  872. VM_BUG_ON(page_mapcount(page) < 0);
  873. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  874. VM_BUG_ON(!PageHead(page));
  875. spin_unlock(&tlb->mm->page_table_lock);
  876. tlb_remove_page(tlb, page);
  877. pte_free(tlb->mm, pgtable);
  878. ret = 1;
  879. }
  880. } else
  881. spin_unlock(&tlb->mm->page_table_lock);
  882. return ret;
  883. }
  884. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  885. unsigned long addr, unsigned long end,
  886. unsigned char *vec)
  887. {
  888. int ret = 0;
  889. spin_lock(&vma->vm_mm->page_table_lock);
  890. if (likely(pmd_trans_huge(*pmd))) {
  891. ret = !pmd_trans_splitting(*pmd);
  892. spin_unlock(&vma->vm_mm->page_table_lock);
  893. if (unlikely(!ret))
  894. wait_split_huge_page(vma->anon_vma, pmd);
  895. else {
  896. /*
  897. * All logical pages in the range are present
  898. * if backed by a huge page.
  899. */
  900. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  901. }
  902. } else
  903. spin_unlock(&vma->vm_mm->page_table_lock);
  904. return ret;
  905. }
  906. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  907. unsigned long addr, pgprot_t newprot)
  908. {
  909. struct mm_struct *mm = vma->vm_mm;
  910. int ret = 0;
  911. spin_lock(&mm->page_table_lock);
  912. if (likely(pmd_trans_huge(*pmd))) {
  913. if (unlikely(pmd_trans_splitting(*pmd))) {
  914. spin_unlock(&mm->page_table_lock);
  915. wait_split_huge_page(vma->anon_vma, pmd);
  916. } else {
  917. pmd_t entry;
  918. entry = pmdp_get_and_clear(mm, addr, pmd);
  919. entry = pmd_modify(entry, newprot);
  920. set_pmd_at(mm, addr, pmd, entry);
  921. spin_unlock(&vma->vm_mm->page_table_lock);
  922. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  923. ret = 1;
  924. }
  925. } else
  926. spin_unlock(&vma->vm_mm->page_table_lock);
  927. return ret;
  928. }
  929. pmd_t *page_check_address_pmd(struct page *page,
  930. struct mm_struct *mm,
  931. unsigned long address,
  932. enum page_check_address_pmd_flag flag)
  933. {
  934. pgd_t *pgd;
  935. pud_t *pud;
  936. pmd_t *pmd, *ret = NULL;
  937. if (address & ~HPAGE_PMD_MASK)
  938. goto out;
  939. pgd = pgd_offset(mm, address);
  940. if (!pgd_present(*pgd))
  941. goto out;
  942. pud = pud_offset(pgd, address);
  943. if (!pud_present(*pud))
  944. goto out;
  945. pmd = pmd_offset(pud, address);
  946. if (pmd_none(*pmd))
  947. goto out;
  948. if (pmd_page(*pmd) != page)
  949. goto out;
  950. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  951. pmd_trans_splitting(*pmd));
  952. if (pmd_trans_huge(*pmd)) {
  953. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  954. !pmd_trans_splitting(*pmd));
  955. ret = pmd;
  956. }
  957. out:
  958. return ret;
  959. }
  960. static int __split_huge_page_splitting(struct page *page,
  961. struct vm_area_struct *vma,
  962. unsigned long address)
  963. {
  964. struct mm_struct *mm = vma->vm_mm;
  965. pmd_t *pmd;
  966. int ret = 0;
  967. spin_lock(&mm->page_table_lock);
  968. pmd = page_check_address_pmd(page, mm, address,
  969. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  970. if (pmd) {
  971. /*
  972. * We can't temporarily set the pmd to null in order
  973. * to split it, the pmd must remain marked huge at all
  974. * times or the VM won't take the pmd_trans_huge paths
  975. * and it won't wait on the anon_vma->root->lock to
  976. * serialize against split_huge_page*.
  977. */
  978. pmdp_splitting_flush_notify(vma, address, pmd);
  979. ret = 1;
  980. }
  981. spin_unlock(&mm->page_table_lock);
  982. return ret;
  983. }
  984. static void __split_huge_page_refcount(struct page *page)
  985. {
  986. int i;
  987. unsigned long head_index = page->index;
  988. struct zone *zone = page_zone(page);
  989. /* prevent PageLRU to go away from under us, and freeze lru stats */
  990. spin_lock_irq(&zone->lru_lock);
  991. compound_lock(page);
  992. for (i = 1; i < HPAGE_PMD_NR; i++) {
  993. struct page *page_tail = page + i;
  994. /* tail_page->_count cannot change */
  995. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  996. BUG_ON(page_count(page) <= 0);
  997. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  998. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  999. /* after clearing PageTail the gup refcount can be released */
  1000. smp_mb();
  1001. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1002. page_tail->flags |= (page->flags &
  1003. ((1L << PG_referenced) |
  1004. (1L << PG_swapbacked) |
  1005. (1L << PG_mlocked) |
  1006. (1L << PG_uptodate)));
  1007. page_tail->flags |= (1L << PG_dirty);
  1008. /*
  1009. * 1) clear PageTail before overwriting first_page
  1010. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  1011. */
  1012. smp_wmb();
  1013. /*
  1014. * __split_huge_page_splitting() already set the
  1015. * splitting bit in all pmd that could map this
  1016. * hugepage, that will ensure no CPU can alter the
  1017. * mapcount on the head page. The mapcount is only
  1018. * accounted in the head page and it has to be
  1019. * transferred to all tail pages in the below code. So
  1020. * for this code to be safe, the split the mapcount
  1021. * can't change. But that doesn't mean userland can't
  1022. * keep changing and reading the page contents while
  1023. * we transfer the mapcount, so the pmd splitting
  1024. * status is achieved setting a reserved bit in the
  1025. * pmd, not by clearing the present bit.
  1026. */
  1027. BUG_ON(page_mapcount(page_tail));
  1028. page_tail->_mapcount = page->_mapcount;
  1029. BUG_ON(page_tail->mapping);
  1030. page_tail->mapping = page->mapping;
  1031. page_tail->index = ++head_index;
  1032. BUG_ON(!PageAnon(page_tail));
  1033. BUG_ON(!PageUptodate(page_tail));
  1034. BUG_ON(!PageDirty(page_tail));
  1035. BUG_ON(!PageSwapBacked(page_tail));
  1036. lru_add_page_tail(zone, page, page_tail);
  1037. }
  1038. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1039. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1040. ClearPageCompound(page);
  1041. compound_unlock(page);
  1042. spin_unlock_irq(&zone->lru_lock);
  1043. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1044. struct page *page_tail = page + i;
  1045. BUG_ON(page_count(page_tail) <= 0);
  1046. /*
  1047. * Tail pages may be freed if there wasn't any mapping
  1048. * like if add_to_swap() is running on a lru page that
  1049. * had its mapping zapped. And freeing these pages
  1050. * requires taking the lru_lock so we do the put_page
  1051. * of the tail pages after the split is complete.
  1052. */
  1053. put_page(page_tail);
  1054. }
  1055. /*
  1056. * Only the head page (now become a regular page) is required
  1057. * to be pinned by the caller.
  1058. */
  1059. BUG_ON(page_count(page) <= 0);
  1060. }
  1061. static int __split_huge_page_map(struct page *page,
  1062. struct vm_area_struct *vma,
  1063. unsigned long address)
  1064. {
  1065. struct mm_struct *mm = vma->vm_mm;
  1066. pmd_t *pmd, _pmd;
  1067. int ret = 0, i;
  1068. pgtable_t pgtable;
  1069. unsigned long haddr;
  1070. spin_lock(&mm->page_table_lock);
  1071. pmd = page_check_address_pmd(page, mm, address,
  1072. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1073. if (pmd) {
  1074. pgtable = get_pmd_huge_pte(mm);
  1075. pmd_populate(mm, &_pmd, pgtable);
  1076. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1077. i++, haddr += PAGE_SIZE) {
  1078. pte_t *pte, entry;
  1079. BUG_ON(PageCompound(page+i));
  1080. entry = mk_pte(page + i, vma->vm_page_prot);
  1081. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1082. if (!pmd_write(*pmd))
  1083. entry = pte_wrprotect(entry);
  1084. else
  1085. BUG_ON(page_mapcount(page) != 1);
  1086. if (!pmd_young(*pmd))
  1087. entry = pte_mkold(entry);
  1088. pte = pte_offset_map(&_pmd, haddr);
  1089. BUG_ON(!pte_none(*pte));
  1090. set_pte_at(mm, haddr, pte, entry);
  1091. pte_unmap(pte);
  1092. }
  1093. mm->nr_ptes++;
  1094. smp_wmb(); /* make pte visible before pmd */
  1095. /*
  1096. * Up to this point the pmd is present and huge and
  1097. * userland has the whole access to the hugepage
  1098. * during the split (which happens in place). If we
  1099. * overwrite the pmd with the not-huge version
  1100. * pointing to the pte here (which of course we could
  1101. * if all CPUs were bug free), userland could trigger
  1102. * a small page size TLB miss on the small sized TLB
  1103. * while the hugepage TLB entry is still established
  1104. * in the huge TLB. Some CPU doesn't like that. See
  1105. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1106. * Erratum 383 on page 93. Intel should be safe but is
  1107. * also warns that it's only safe if the permission
  1108. * and cache attributes of the two entries loaded in
  1109. * the two TLB is identical (which should be the case
  1110. * here). But it is generally safer to never allow
  1111. * small and huge TLB entries for the same virtual
  1112. * address to be loaded simultaneously. So instead of
  1113. * doing "pmd_populate(); flush_tlb_range();" we first
  1114. * mark the current pmd notpresent (atomically because
  1115. * here the pmd_trans_huge and pmd_trans_splitting
  1116. * must remain set at all times on the pmd until the
  1117. * split is complete for this pmd), then we flush the
  1118. * SMP TLB and finally we write the non-huge version
  1119. * of the pmd entry with pmd_populate.
  1120. */
  1121. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1122. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1123. pmd_populate(mm, pmd, pgtable);
  1124. ret = 1;
  1125. }
  1126. spin_unlock(&mm->page_table_lock);
  1127. return ret;
  1128. }
  1129. /* must be called with anon_vma->root->lock hold */
  1130. static void __split_huge_page(struct page *page,
  1131. struct anon_vma *anon_vma)
  1132. {
  1133. int mapcount, mapcount2;
  1134. struct anon_vma_chain *avc;
  1135. BUG_ON(!PageHead(page));
  1136. BUG_ON(PageTail(page));
  1137. mapcount = 0;
  1138. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1139. struct vm_area_struct *vma = avc->vma;
  1140. unsigned long addr = vma_address(page, vma);
  1141. BUG_ON(is_vma_temporary_stack(vma));
  1142. if (addr == -EFAULT)
  1143. continue;
  1144. mapcount += __split_huge_page_splitting(page, vma, addr);
  1145. }
  1146. /*
  1147. * It is critical that new vmas are added to the tail of the
  1148. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1149. * and establishes a child pmd before
  1150. * __split_huge_page_splitting() freezes the parent pmd (so if
  1151. * we fail to prevent copy_huge_pmd() from running until the
  1152. * whole __split_huge_page() is complete), we will still see
  1153. * the newly established pmd of the child later during the
  1154. * walk, to be able to set it as pmd_trans_splitting too.
  1155. */
  1156. if (mapcount != page_mapcount(page))
  1157. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1158. mapcount, page_mapcount(page));
  1159. BUG_ON(mapcount != page_mapcount(page));
  1160. __split_huge_page_refcount(page);
  1161. mapcount2 = 0;
  1162. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1163. struct vm_area_struct *vma = avc->vma;
  1164. unsigned long addr = vma_address(page, vma);
  1165. BUG_ON(is_vma_temporary_stack(vma));
  1166. if (addr == -EFAULT)
  1167. continue;
  1168. mapcount2 += __split_huge_page_map(page, vma, addr);
  1169. }
  1170. if (mapcount != mapcount2)
  1171. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1172. mapcount, mapcount2, page_mapcount(page));
  1173. BUG_ON(mapcount != mapcount2);
  1174. }
  1175. int split_huge_page(struct page *page)
  1176. {
  1177. struct anon_vma *anon_vma;
  1178. int ret = 1;
  1179. BUG_ON(!PageAnon(page));
  1180. anon_vma = page_lock_anon_vma(page);
  1181. if (!anon_vma)
  1182. goto out;
  1183. ret = 0;
  1184. if (!PageCompound(page))
  1185. goto out_unlock;
  1186. BUG_ON(!PageSwapBacked(page));
  1187. __split_huge_page(page, anon_vma);
  1188. BUG_ON(PageCompound(page));
  1189. out_unlock:
  1190. page_unlock_anon_vma(anon_vma);
  1191. out:
  1192. return ret;
  1193. }
  1194. int hugepage_madvise(unsigned long *vm_flags)
  1195. {
  1196. /*
  1197. * Be somewhat over-protective like KSM for now!
  1198. */
  1199. if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
  1200. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1201. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1202. VM_MIXEDMAP | VM_SAO))
  1203. return -EINVAL;
  1204. *vm_flags |= VM_HUGEPAGE;
  1205. return 0;
  1206. }
  1207. static int __init khugepaged_slab_init(void)
  1208. {
  1209. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1210. sizeof(struct mm_slot),
  1211. __alignof__(struct mm_slot), 0, NULL);
  1212. if (!mm_slot_cache)
  1213. return -ENOMEM;
  1214. return 0;
  1215. }
  1216. static void __init khugepaged_slab_free(void)
  1217. {
  1218. kmem_cache_destroy(mm_slot_cache);
  1219. mm_slot_cache = NULL;
  1220. }
  1221. static inline struct mm_slot *alloc_mm_slot(void)
  1222. {
  1223. if (!mm_slot_cache) /* initialization failed */
  1224. return NULL;
  1225. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1226. }
  1227. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1228. {
  1229. kmem_cache_free(mm_slot_cache, mm_slot);
  1230. }
  1231. static int __init mm_slots_hash_init(void)
  1232. {
  1233. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1234. GFP_KERNEL);
  1235. if (!mm_slots_hash)
  1236. return -ENOMEM;
  1237. return 0;
  1238. }
  1239. #if 0
  1240. static void __init mm_slots_hash_free(void)
  1241. {
  1242. kfree(mm_slots_hash);
  1243. mm_slots_hash = NULL;
  1244. }
  1245. #endif
  1246. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1247. {
  1248. struct mm_slot *mm_slot;
  1249. struct hlist_head *bucket;
  1250. struct hlist_node *node;
  1251. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1252. % MM_SLOTS_HASH_HEADS];
  1253. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1254. if (mm == mm_slot->mm)
  1255. return mm_slot;
  1256. }
  1257. return NULL;
  1258. }
  1259. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1260. struct mm_slot *mm_slot)
  1261. {
  1262. struct hlist_head *bucket;
  1263. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1264. % MM_SLOTS_HASH_HEADS];
  1265. mm_slot->mm = mm;
  1266. hlist_add_head(&mm_slot->hash, bucket);
  1267. }
  1268. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1269. {
  1270. return atomic_read(&mm->mm_users) == 0;
  1271. }
  1272. int __khugepaged_enter(struct mm_struct *mm)
  1273. {
  1274. struct mm_slot *mm_slot;
  1275. int wakeup;
  1276. mm_slot = alloc_mm_slot();
  1277. if (!mm_slot)
  1278. return -ENOMEM;
  1279. /* __khugepaged_exit() must not run from under us */
  1280. VM_BUG_ON(khugepaged_test_exit(mm));
  1281. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1282. free_mm_slot(mm_slot);
  1283. return 0;
  1284. }
  1285. spin_lock(&khugepaged_mm_lock);
  1286. insert_to_mm_slots_hash(mm, mm_slot);
  1287. /*
  1288. * Insert just behind the scanning cursor, to let the area settle
  1289. * down a little.
  1290. */
  1291. wakeup = list_empty(&khugepaged_scan.mm_head);
  1292. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1293. spin_unlock(&khugepaged_mm_lock);
  1294. atomic_inc(&mm->mm_count);
  1295. if (wakeup)
  1296. wake_up_interruptible(&khugepaged_wait);
  1297. return 0;
  1298. }
  1299. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1300. {
  1301. unsigned long hstart, hend;
  1302. if (!vma->anon_vma)
  1303. /*
  1304. * Not yet faulted in so we will register later in the
  1305. * page fault if needed.
  1306. */
  1307. return 0;
  1308. if (vma->vm_file || vma->vm_ops)
  1309. /* khugepaged not yet working on file or special mappings */
  1310. return 0;
  1311. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1312. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1313. hend = vma->vm_end & HPAGE_PMD_MASK;
  1314. if (hstart < hend)
  1315. return khugepaged_enter(vma);
  1316. return 0;
  1317. }
  1318. void __khugepaged_exit(struct mm_struct *mm)
  1319. {
  1320. struct mm_slot *mm_slot;
  1321. int free = 0;
  1322. spin_lock(&khugepaged_mm_lock);
  1323. mm_slot = get_mm_slot(mm);
  1324. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1325. hlist_del(&mm_slot->hash);
  1326. list_del(&mm_slot->mm_node);
  1327. free = 1;
  1328. }
  1329. if (free) {
  1330. spin_unlock(&khugepaged_mm_lock);
  1331. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1332. free_mm_slot(mm_slot);
  1333. mmdrop(mm);
  1334. } else if (mm_slot) {
  1335. spin_unlock(&khugepaged_mm_lock);
  1336. /*
  1337. * This is required to serialize against
  1338. * khugepaged_test_exit() (which is guaranteed to run
  1339. * under mmap sem read mode). Stop here (after we
  1340. * return all pagetables will be destroyed) until
  1341. * khugepaged has finished working on the pagetables
  1342. * under the mmap_sem.
  1343. */
  1344. down_write(&mm->mmap_sem);
  1345. up_write(&mm->mmap_sem);
  1346. } else
  1347. spin_unlock(&khugepaged_mm_lock);
  1348. }
  1349. static void release_pte_page(struct page *page)
  1350. {
  1351. /* 0 stands for page_is_file_cache(page) == false */
  1352. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1353. unlock_page(page);
  1354. putback_lru_page(page);
  1355. }
  1356. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1357. {
  1358. while (--_pte >= pte) {
  1359. pte_t pteval = *_pte;
  1360. if (!pte_none(pteval))
  1361. release_pte_page(pte_page(pteval));
  1362. }
  1363. }
  1364. static void release_all_pte_pages(pte_t *pte)
  1365. {
  1366. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1367. }
  1368. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1369. unsigned long address,
  1370. pte_t *pte)
  1371. {
  1372. struct page *page;
  1373. pte_t *_pte;
  1374. int referenced = 0, isolated = 0, none = 0;
  1375. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1376. _pte++, address += PAGE_SIZE) {
  1377. pte_t pteval = *_pte;
  1378. if (pte_none(pteval)) {
  1379. if (++none <= khugepaged_max_ptes_none)
  1380. continue;
  1381. else {
  1382. release_pte_pages(pte, _pte);
  1383. goto out;
  1384. }
  1385. }
  1386. if (!pte_present(pteval) || !pte_write(pteval)) {
  1387. release_pte_pages(pte, _pte);
  1388. goto out;
  1389. }
  1390. page = vm_normal_page(vma, address, pteval);
  1391. if (unlikely(!page)) {
  1392. release_pte_pages(pte, _pte);
  1393. goto out;
  1394. }
  1395. VM_BUG_ON(PageCompound(page));
  1396. BUG_ON(!PageAnon(page));
  1397. VM_BUG_ON(!PageSwapBacked(page));
  1398. /* cannot use mapcount: can't collapse if there's a gup pin */
  1399. if (page_count(page) != 1) {
  1400. release_pte_pages(pte, _pte);
  1401. goto out;
  1402. }
  1403. /*
  1404. * We can do it before isolate_lru_page because the
  1405. * page can't be freed from under us. NOTE: PG_lock
  1406. * is needed to serialize against split_huge_page
  1407. * when invoked from the VM.
  1408. */
  1409. if (!trylock_page(page)) {
  1410. release_pte_pages(pte, _pte);
  1411. goto out;
  1412. }
  1413. /*
  1414. * Isolate the page to avoid collapsing an hugepage
  1415. * currently in use by the VM.
  1416. */
  1417. if (isolate_lru_page(page)) {
  1418. unlock_page(page);
  1419. release_pte_pages(pte, _pte);
  1420. goto out;
  1421. }
  1422. /* 0 stands for page_is_file_cache(page) == false */
  1423. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1424. VM_BUG_ON(!PageLocked(page));
  1425. VM_BUG_ON(PageLRU(page));
  1426. /* If there is no mapped pte young don't collapse the page */
  1427. if (pte_young(pteval))
  1428. referenced = 1;
  1429. }
  1430. if (unlikely(!referenced))
  1431. release_all_pte_pages(pte);
  1432. else
  1433. isolated = 1;
  1434. out:
  1435. return isolated;
  1436. }
  1437. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1438. struct vm_area_struct *vma,
  1439. unsigned long address,
  1440. spinlock_t *ptl)
  1441. {
  1442. pte_t *_pte;
  1443. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1444. pte_t pteval = *_pte;
  1445. struct page *src_page;
  1446. if (pte_none(pteval)) {
  1447. clear_user_highpage(page, address);
  1448. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1449. } else {
  1450. src_page = pte_page(pteval);
  1451. copy_user_highpage(page, src_page, address, vma);
  1452. VM_BUG_ON(page_mapcount(src_page) != 1);
  1453. VM_BUG_ON(page_count(src_page) != 2);
  1454. release_pte_page(src_page);
  1455. /*
  1456. * ptl mostly unnecessary, but preempt has to
  1457. * be disabled to update the per-cpu stats
  1458. * inside page_remove_rmap().
  1459. */
  1460. spin_lock(ptl);
  1461. /*
  1462. * paravirt calls inside pte_clear here are
  1463. * superfluous.
  1464. */
  1465. pte_clear(vma->vm_mm, address, _pte);
  1466. page_remove_rmap(src_page);
  1467. spin_unlock(ptl);
  1468. free_page_and_swap_cache(src_page);
  1469. }
  1470. address += PAGE_SIZE;
  1471. page++;
  1472. }
  1473. }
  1474. static void collapse_huge_page(struct mm_struct *mm,
  1475. unsigned long address,
  1476. struct page **hpage,
  1477. struct vm_area_struct *vma)
  1478. {
  1479. pgd_t *pgd;
  1480. pud_t *pud;
  1481. pmd_t *pmd, _pmd;
  1482. pte_t *pte;
  1483. pgtable_t pgtable;
  1484. struct page *new_page;
  1485. spinlock_t *ptl;
  1486. int isolated;
  1487. unsigned long hstart, hend;
  1488. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1489. #ifndef CONFIG_NUMA
  1490. VM_BUG_ON(!*hpage);
  1491. new_page = *hpage;
  1492. #else
  1493. VM_BUG_ON(*hpage);
  1494. /*
  1495. * Allocate the page while the vma is still valid and under
  1496. * the mmap_sem read mode so there is no memory allocation
  1497. * later when we take the mmap_sem in write mode. This is more
  1498. * friendly behavior (OTOH it may actually hide bugs) to
  1499. * filesystems in userland with daemons allocating memory in
  1500. * the userland I/O paths. Allocating memory with the
  1501. * mmap_sem in read mode is good idea also to allow greater
  1502. * scalability.
  1503. */
  1504. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
  1505. if (unlikely(!new_page)) {
  1506. up_read(&mm->mmap_sem);
  1507. *hpage = ERR_PTR(-ENOMEM);
  1508. return;
  1509. }
  1510. #endif
  1511. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1512. up_read(&mm->mmap_sem);
  1513. put_page(new_page);
  1514. return;
  1515. }
  1516. /* after allocating the hugepage upgrade to mmap_sem write mode */
  1517. up_read(&mm->mmap_sem);
  1518. /*
  1519. * Prevent all access to pagetables with the exception of
  1520. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1521. * handled by the anon_vma lock + PG_lock.
  1522. */
  1523. down_write(&mm->mmap_sem);
  1524. if (unlikely(khugepaged_test_exit(mm)))
  1525. goto out;
  1526. vma = find_vma(mm, address);
  1527. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1528. hend = vma->vm_end & HPAGE_PMD_MASK;
  1529. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1530. goto out;
  1531. if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
  1532. goto out;
  1533. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1534. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1535. goto out;
  1536. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1537. pgd = pgd_offset(mm, address);
  1538. if (!pgd_present(*pgd))
  1539. goto out;
  1540. pud = pud_offset(pgd, address);
  1541. if (!pud_present(*pud))
  1542. goto out;
  1543. pmd = pmd_offset(pud, address);
  1544. /* pmd can't go away or become huge under us */
  1545. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1546. goto out;
  1547. anon_vma_lock(vma->anon_vma);
  1548. pte = pte_offset_map(pmd, address);
  1549. ptl = pte_lockptr(mm, pmd);
  1550. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1551. /*
  1552. * After this gup_fast can't run anymore. This also removes
  1553. * any huge TLB entry from the CPU so we won't allow
  1554. * huge and small TLB entries for the same virtual address
  1555. * to avoid the risk of CPU bugs in that area.
  1556. */
  1557. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1558. spin_unlock(&mm->page_table_lock);
  1559. spin_lock(ptl);
  1560. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1561. spin_unlock(ptl);
  1562. pte_unmap(pte);
  1563. if (unlikely(!isolated)) {
  1564. spin_lock(&mm->page_table_lock);
  1565. BUG_ON(!pmd_none(*pmd));
  1566. set_pmd_at(mm, address, pmd, _pmd);
  1567. spin_unlock(&mm->page_table_lock);
  1568. anon_vma_unlock(vma->anon_vma);
  1569. mem_cgroup_uncharge_page(new_page);
  1570. goto out;
  1571. }
  1572. /*
  1573. * All pages are isolated and locked so anon_vma rmap
  1574. * can't run anymore.
  1575. */
  1576. anon_vma_unlock(vma->anon_vma);
  1577. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1578. __SetPageUptodate(new_page);
  1579. pgtable = pmd_pgtable(_pmd);
  1580. VM_BUG_ON(page_count(pgtable) != 1);
  1581. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1582. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1583. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1584. _pmd = pmd_mkhuge(_pmd);
  1585. /*
  1586. * spin_lock() below is not the equivalent of smp_wmb(), so
  1587. * this is needed to avoid the copy_huge_page writes to become
  1588. * visible after the set_pmd_at() write.
  1589. */
  1590. smp_wmb();
  1591. spin_lock(&mm->page_table_lock);
  1592. BUG_ON(!pmd_none(*pmd));
  1593. page_add_new_anon_rmap(new_page, vma, address);
  1594. set_pmd_at(mm, address, pmd, _pmd);
  1595. update_mmu_cache(vma, address, entry);
  1596. prepare_pmd_huge_pte(pgtable, mm);
  1597. mm->nr_ptes--;
  1598. spin_unlock(&mm->page_table_lock);
  1599. #ifndef CONFIG_NUMA
  1600. *hpage = NULL;
  1601. #endif
  1602. khugepaged_pages_collapsed++;
  1603. out_up_write:
  1604. up_write(&mm->mmap_sem);
  1605. return;
  1606. out:
  1607. #ifdef CONFIG_NUMA
  1608. put_page(new_page);
  1609. #endif
  1610. goto out_up_write;
  1611. }
  1612. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1613. struct vm_area_struct *vma,
  1614. unsigned long address,
  1615. struct page **hpage)
  1616. {
  1617. pgd_t *pgd;
  1618. pud_t *pud;
  1619. pmd_t *pmd;
  1620. pte_t *pte, *_pte;
  1621. int ret = 0, referenced = 0, none = 0;
  1622. struct page *page;
  1623. unsigned long _address;
  1624. spinlock_t *ptl;
  1625. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1626. pgd = pgd_offset(mm, address);
  1627. if (!pgd_present(*pgd))
  1628. goto out;
  1629. pud = pud_offset(pgd, address);
  1630. if (!pud_present(*pud))
  1631. goto out;
  1632. pmd = pmd_offset(pud, address);
  1633. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1634. goto out;
  1635. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1636. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1637. _pte++, _address += PAGE_SIZE) {
  1638. pte_t pteval = *_pte;
  1639. if (pte_none(pteval)) {
  1640. if (++none <= khugepaged_max_ptes_none)
  1641. continue;
  1642. else
  1643. goto out_unmap;
  1644. }
  1645. if (!pte_present(pteval) || !pte_write(pteval))
  1646. goto out_unmap;
  1647. page = vm_normal_page(vma, _address, pteval);
  1648. if (unlikely(!page))
  1649. goto out_unmap;
  1650. VM_BUG_ON(PageCompound(page));
  1651. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1652. goto out_unmap;
  1653. /* cannot use mapcount: can't collapse if there's a gup pin */
  1654. if (page_count(page) != 1)
  1655. goto out_unmap;
  1656. if (pte_young(pteval))
  1657. referenced = 1;
  1658. }
  1659. if (referenced)
  1660. ret = 1;
  1661. out_unmap:
  1662. pte_unmap_unlock(pte, ptl);
  1663. if (ret)
  1664. /* collapse_huge_page will return with the mmap_sem released */
  1665. collapse_huge_page(mm, address, hpage, vma);
  1666. out:
  1667. return ret;
  1668. }
  1669. static void collect_mm_slot(struct mm_slot *mm_slot)
  1670. {
  1671. struct mm_struct *mm = mm_slot->mm;
  1672. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1673. if (khugepaged_test_exit(mm)) {
  1674. /* free mm_slot */
  1675. hlist_del(&mm_slot->hash);
  1676. list_del(&mm_slot->mm_node);
  1677. /*
  1678. * Not strictly needed because the mm exited already.
  1679. *
  1680. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1681. */
  1682. /* khugepaged_mm_lock actually not necessary for the below */
  1683. free_mm_slot(mm_slot);
  1684. mmdrop(mm);
  1685. }
  1686. }
  1687. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1688. struct page **hpage)
  1689. {
  1690. struct mm_slot *mm_slot;
  1691. struct mm_struct *mm;
  1692. struct vm_area_struct *vma;
  1693. int progress = 0;
  1694. VM_BUG_ON(!pages);
  1695. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1696. if (khugepaged_scan.mm_slot)
  1697. mm_slot = khugepaged_scan.mm_slot;
  1698. else {
  1699. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1700. struct mm_slot, mm_node);
  1701. khugepaged_scan.address = 0;
  1702. khugepaged_scan.mm_slot = mm_slot;
  1703. }
  1704. spin_unlock(&khugepaged_mm_lock);
  1705. mm = mm_slot->mm;
  1706. down_read(&mm->mmap_sem);
  1707. if (unlikely(khugepaged_test_exit(mm)))
  1708. vma = NULL;
  1709. else
  1710. vma = find_vma(mm, khugepaged_scan.address);
  1711. progress++;
  1712. for (; vma; vma = vma->vm_next) {
  1713. unsigned long hstart, hend;
  1714. cond_resched();
  1715. if (unlikely(khugepaged_test_exit(mm))) {
  1716. progress++;
  1717. break;
  1718. }
  1719. if (!(vma->vm_flags & VM_HUGEPAGE) &&
  1720. !khugepaged_always()) {
  1721. progress++;
  1722. continue;
  1723. }
  1724. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1725. if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
  1726. khugepaged_scan.address = vma->vm_end;
  1727. progress++;
  1728. continue;
  1729. }
  1730. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1731. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1732. hend = vma->vm_end & HPAGE_PMD_MASK;
  1733. if (hstart >= hend) {
  1734. progress++;
  1735. continue;
  1736. }
  1737. if (khugepaged_scan.address < hstart)
  1738. khugepaged_scan.address = hstart;
  1739. if (khugepaged_scan.address > hend) {
  1740. khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
  1741. progress++;
  1742. continue;
  1743. }
  1744. BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1745. while (khugepaged_scan.address < hend) {
  1746. int ret;
  1747. cond_resched();
  1748. if (unlikely(khugepaged_test_exit(mm)))
  1749. goto breakouterloop;
  1750. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1751. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1752. hend);
  1753. ret = khugepaged_scan_pmd(mm, vma,
  1754. khugepaged_scan.address,
  1755. hpage);
  1756. /* move to next address */
  1757. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1758. progress += HPAGE_PMD_NR;
  1759. if (ret)
  1760. /* we released mmap_sem so break loop */
  1761. goto breakouterloop_mmap_sem;
  1762. if (progress >= pages)
  1763. goto breakouterloop;
  1764. }
  1765. }
  1766. breakouterloop:
  1767. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1768. breakouterloop_mmap_sem:
  1769. spin_lock(&khugepaged_mm_lock);
  1770. BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1771. /*
  1772. * Release the current mm_slot if this mm is about to die, or
  1773. * if we scanned all vmas of this mm.
  1774. */
  1775. if (khugepaged_test_exit(mm) || !vma) {
  1776. /*
  1777. * Make sure that if mm_users is reaching zero while
  1778. * khugepaged runs here, khugepaged_exit will find
  1779. * mm_slot not pointing to the exiting mm.
  1780. */
  1781. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1782. khugepaged_scan.mm_slot = list_entry(
  1783. mm_slot->mm_node.next,
  1784. struct mm_slot, mm_node);
  1785. khugepaged_scan.address = 0;
  1786. } else {
  1787. khugepaged_scan.mm_slot = NULL;
  1788. khugepaged_full_scans++;
  1789. }
  1790. collect_mm_slot(mm_slot);
  1791. }
  1792. return progress;
  1793. }
  1794. static int khugepaged_has_work(void)
  1795. {
  1796. return !list_empty(&khugepaged_scan.mm_head) &&
  1797. khugepaged_enabled();
  1798. }
  1799. static int khugepaged_wait_event(void)
  1800. {
  1801. return !list_empty(&khugepaged_scan.mm_head) ||
  1802. !khugepaged_enabled();
  1803. }
  1804. static void khugepaged_do_scan(struct page **hpage)
  1805. {
  1806. unsigned int progress = 0, pass_through_head = 0;
  1807. unsigned int pages = khugepaged_pages_to_scan;
  1808. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1809. while (progress < pages) {
  1810. cond_resched();
  1811. #ifndef CONFIG_NUMA
  1812. if (!*hpage) {
  1813. *hpage = alloc_hugepage(khugepaged_defrag());
  1814. if (unlikely(!*hpage))
  1815. break;
  1816. }
  1817. #else
  1818. if (IS_ERR(*hpage))
  1819. break;
  1820. #endif
  1821. spin_lock(&khugepaged_mm_lock);
  1822. if (!khugepaged_scan.mm_slot)
  1823. pass_through_head++;
  1824. if (khugepaged_has_work() &&
  1825. pass_through_head < 2)
  1826. progress += khugepaged_scan_mm_slot(pages - progress,
  1827. hpage);
  1828. else
  1829. progress = pages;
  1830. spin_unlock(&khugepaged_mm_lock);
  1831. }
  1832. }
  1833. static void khugepaged_alloc_sleep(void)
  1834. {
  1835. DEFINE_WAIT(wait);
  1836. add_wait_queue(&khugepaged_wait, &wait);
  1837. schedule_timeout_interruptible(
  1838. msecs_to_jiffies(
  1839. khugepaged_alloc_sleep_millisecs));
  1840. remove_wait_queue(&khugepaged_wait, &wait);
  1841. }
  1842. #ifndef CONFIG_NUMA
  1843. static struct page *khugepaged_alloc_hugepage(void)
  1844. {
  1845. struct page *hpage;
  1846. do {
  1847. hpage = alloc_hugepage(khugepaged_defrag());
  1848. if (!hpage)
  1849. khugepaged_alloc_sleep();
  1850. } while (unlikely(!hpage) &&
  1851. likely(khugepaged_enabled()));
  1852. return hpage;
  1853. }
  1854. #endif
  1855. static void khugepaged_loop(void)
  1856. {
  1857. struct page *hpage;
  1858. #ifdef CONFIG_NUMA
  1859. hpage = NULL;
  1860. #endif
  1861. while (likely(khugepaged_enabled())) {
  1862. #ifndef CONFIG_NUMA
  1863. hpage = khugepaged_alloc_hugepage();
  1864. if (unlikely(!hpage))
  1865. break;
  1866. #else
  1867. if (IS_ERR(hpage)) {
  1868. khugepaged_alloc_sleep();
  1869. hpage = NULL;
  1870. }
  1871. #endif
  1872. khugepaged_do_scan(&hpage);
  1873. #ifndef CONFIG_NUMA
  1874. if (hpage)
  1875. put_page(hpage);
  1876. #endif
  1877. if (khugepaged_has_work()) {
  1878. DEFINE_WAIT(wait);
  1879. if (!khugepaged_scan_sleep_millisecs)
  1880. continue;
  1881. add_wait_queue(&khugepaged_wait, &wait);
  1882. schedule_timeout_interruptible(
  1883. msecs_to_jiffies(
  1884. khugepaged_scan_sleep_millisecs));
  1885. remove_wait_queue(&khugepaged_wait, &wait);
  1886. } else if (khugepaged_enabled())
  1887. wait_event_interruptible(khugepaged_wait,
  1888. khugepaged_wait_event());
  1889. }
  1890. }
  1891. static int khugepaged(void *none)
  1892. {
  1893. struct mm_slot *mm_slot;
  1894. set_user_nice(current, 19);
  1895. /* serialize with start_khugepaged() */
  1896. mutex_lock(&khugepaged_mutex);
  1897. for (;;) {
  1898. mutex_unlock(&khugepaged_mutex);
  1899. BUG_ON(khugepaged_thread != current);
  1900. khugepaged_loop();
  1901. BUG_ON(khugepaged_thread != current);
  1902. mutex_lock(&khugepaged_mutex);
  1903. if (!khugepaged_enabled())
  1904. break;
  1905. }
  1906. spin_lock(&khugepaged_mm_lock);
  1907. mm_slot = khugepaged_scan.mm_slot;
  1908. khugepaged_scan.mm_slot = NULL;
  1909. if (mm_slot)
  1910. collect_mm_slot(mm_slot);
  1911. spin_unlock(&khugepaged_mm_lock);
  1912. khugepaged_thread = NULL;
  1913. mutex_unlock(&khugepaged_mutex);
  1914. return 0;
  1915. }
  1916. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  1917. {
  1918. struct page *page;
  1919. spin_lock(&mm->page_table_lock);
  1920. if (unlikely(!pmd_trans_huge(*pmd))) {
  1921. spin_unlock(&mm->page_table_lock);
  1922. return;
  1923. }
  1924. page = pmd_page(*pmd);
  1925. VM_BUG_ON(!page_count(page));
  1926. get_page(page);
  1927. spin_unlock(&mm->page_table_lock);
  1928. split_huge_page(page);
  1929. put_page(page);
  1930. BUG_ON(pmd_trans_huge(*pmd));
  1931. }