builtin-sched.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/symbol.h"
  6. #include "util/thread.h"
  7. #include "util/header.h"
  8. #include "util/session.h"
  9. #include "util/parse-options.h"
  10. #include "util/trace-event.h"
  11. #include "util/debug.h"
  12. #include <sys/prctl.h>
  13. #include <semaphore.h>
  14. #include <pthread.h>
  15. #include <math.h>
  16. static char const *input_name = "perf.data";
  17. static u64 sample_type;
  18. static char default_sort_order[] = "avg, max, switch, runtime";
  19. static char *sort_order = default_sort_order;
  20. static int profile_cpu = -1;
  21. #define PR_SET_NAME 15 /* Set process name */
  22. #define MAX_CPUS 4096
  23. static u64 run_measurement_overhead;
  24. static u64 sleep_measurement_overhead;
  25. #define COMM_LEN 20
  26. #define SYM_LEN 129
  27. #define MAX_PID 65536
  28. static unsigned long nr_tasks;
  29. struct sched_atom;
  30. struct task_desc {
  31. unsigned long nr;
  32. unsigned long pid;
  33. char comm[COMM_LEN];
  34. unsigned long nr_events;
  35. unsigned long curr_event;
  36. struct sched_atom **atoms;
  37. pthread_t thread;
  38. sem_t sleep_sem;
  39. sem_t ready_for_work;
  40. sem_t work_done_sem;
  41. u64 cpu_usage;
  42. };
  43. enum sched_event_type {
  44. SCHED_EVENT_RUN,
  45. SCHED_EVENT_SLEEP,
  46. SCHED_EVENT_WAKEUP,
  47. SCHED_EVENT_MIGRATION,
  48. };
  49. struct sched_atom {
  50. enum sched_event_type type;
  51. u64 timestamp;
  52. u64 duration;
  53. unsigned long nr;
  54. int specific_wait;
  55. sem_t *wait_sem;
  56. struct task_desc *wakee;
  57. };
  58. static struct task_desc *pid_to_task[MAX_PID];
  59. static struct task_desc **tasks;
  60. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  61. static u64 start_time;
  62. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  63. static unsigned long nr_run_events;
  64. static unsigned long nr_sleep_events;
  65. static unsigned long nr_wakeup_events;
  66. static unsigned long nr_sleep_corrections;
  67. static unsigned long nr_run_events_optimized;
  68. static unsigned long targetless_wakeups;
  69. static unsigned long multitarget_wakeups;
  70. static u64 cpu_usage;
  71. static u64 runavg_cpu_usage;
  72. static u64 parent_cpu_usage;
  73. static u64 runavg_parent_cpu_usage;
  74. static unsigned long nr_runs;
  75. static u64 sum_runtime;
  76. static u64 sum_fluct;
  77. static u64 run_avg;
  78. static unsigned long replay_repeat = 10;
  79. static unsigned long nr_timestamps;
  80. static unsigned long nr_unordered_timestamps;
  81. static unsigned long nr_state_machine_bugs;
  82. static unsigned long nr_context_switch_bugs;
  83. static unsigned long nr_events;
  84. static unsigned long nr_lost_chunks;
  85. static unsigned long nr_lost_events;
  86. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  87. enum thread_state {
  88. THREAD_SLEEPING = 0,
  89. THREAD_WAIT_CPU,
  90. THREAD_SCHED_IN,
  91. THREAD_IGNORE
  92. };
  93. struct work_atom {
  94. struct list_head list;
  95. enum thread_state state;
  96. u64 sched_out_time;
  97. u64 wake_up_time;
  98. u64 sched_in_time;
  99. u64 runtime;
  100. };
  101. struct work_atoms {
  102. struct list_head work_list;
  103. struct thread *thread;
  104. struct rb_node node;
  105. u64 max_lat;
  106. u64 max_lat_at;
  107. u64 total_lat;
  108. u64 nb_atoms;
  109. u64 total_runtime;
  110. };
  111. typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  112. static struct rb_root atom_root, sorted_atom_root;
  113. static u64 all_runtime;
  114. static u64 all_count;
  115. static u64 get_nsecs(void)
  116. {
  117. struct timespec ts;
  118. clock_gettime(CLOCK_MONOTONIC, &ts);
  119. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  120. }
  121. static void burn_nsecs(u64 nsecs)
  122. {
  123. u64 T0 = get_nsecs(), T1;
  124. do {
  125. T1 = get_nsecs();
  126. } while (T1 + run_measurement_overhead < T0 + nsecs);
  127. }
  128. static void sleep_nsecs(u64 nsecs)
  129. {
  130. struct timespec ts;
  131. ts.tv_nsec = nsecs % 999999999;
  132. ts.tv_sec = nsecs / 999999999;
  133. nanosleep(&ts, NULL);
  134. }
  135. static void calibrate_run_measurement_overhead(void)
  136. {
  137. u64 T0, T1, delta, min_delta = 1000000000ULL;
  138. int i;
  139. for (i = 0; i < 10; i++) {
  140. T0 = get_nsecs();
  141. burn_nsecs(0);
  142. T1 = get_nsecs();
  143. delta = T1-T0;
  144. min_delta = min(min_delta, delta);
  145. }
  146. run_measurement_overhead = min_delta;
  147. printf("run measurement overhead: %Ld nsecs\n", min_delta);
  148. }
  149. static void calibrate_sleep_measurement_overhead(void)
  150. {
  151. u64 T0, T1, delta, min_delta = 1000000000ULL;
  152. int i;
  153. for (i = 0; i < 10; i++) {
  154. T0 = get_nsecs();
  155. sleep_nsecs(10000);
  156. T1 = get_nsecs();
  157. delta = T1-T0;
  158. min_delta = min(min_delta, delta);
  159. }
  160. min_delta -= 10000;
  161. sleep_measurement_overhead = min_delta;
  162. printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
  163. }
  164. static struct sched_atom *
  165. get_new_event(struct task_desc *task, u64 timestamp)
  166. {
  167. struct sched_atom *event = zalloc(sizeof(*event));
  168. unsigned long idx = task->nr_events;
  169. size_t size;
  170. event->timestamp = timestamp;
  171. event->nr = idx;
  172. task->nr_events++;
  173. size = sizeof(struct sched_atom *) * task->nr_events;
  174. task->atoms = realloc(task->atoms, size);
  175. BUG_ON(!task->atoms);
  176. task->atoms[idx] = event;
  177. return event;
  178. }
  179. static struct sched_atom *last_event(struct task_desc *task)
  180. {
  181. if (!task->nr_events)
  182. return NULL;
  183. return task->atoms[task->nr_events - 1];
  184. }
  185. static void
  186. add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
  187. {
  188. struct sched_atom *event, *curr_event = last_event(task);
  189. /*
  190. * optimize an existing RUN event by merging this one
  191. * to it:
  192. */
  193. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  194. nr_run_events_optimized++;
  195. curr_event->duration += duration;
  196. return;
  197. }
  198. event = get_new_event(task, timestamp);
  199. event->type = SCHED_EVENT_RUN;
  200. event->duration = duration;
  201. nr_run_events++;
  202. }
  203. static void
  204. add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
  205. struct task_desc *wakee)
  206. {
  207. struct sched_atom *event, *wakee_event;
  208. event = get_new_event(task, timestamp);
  209. event->type = SCHED_EVENT_WAKEUP;
  210. event->wakee = wakee;
  211. wakee_event = last_event(wakee);
  212. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  213. targetless_wakeups++;
  214. return;
  215. }
  216. if (wakee_event->wait_sem) {
  217. multitarget_wakeups++;
  218. return;
  219. }
  220. wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
  221. sem_init(wakee_event->wait_sem, 0, 0);
  222. wakee_event->specific_wait = 1;
  223. event->wait_sem = wakee_event->wait_sem;
  224. nr_wakeup_events++;
  225. }
  226. static void
  227. add_sched_event_sleep(struct task_desc *task, u64 timestamp,
  228. u64 task_state __used)
  229. {
  230. struct sched_atom *event = get_new_event(task, timestamp);
  231. event->type = SCHED_EVENT_SLEEP;
  232. nr_sleep_events++;
  233. }
  234. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  235. {
  236. struct task_desc *task;
  237. BUG_ON(pid >= MAX_PID);
  238. task = pid_to_task[pid];
  239. if (task)
  240. return task;
  241. task = zalloc(sizeof(*task));
  242. task->pid = pid;
  243. task->nr = nr_tasks;
  244. strcpy(task->comm, comm);
  245. /*
  246. * every task starts in sleeping state - this gets ignored
  247. * if there's no wakeup pointing to this sleep state:
  248. */
  249. add_sched_event_sleep(task, 0, 0);
  250. pid_to_task[pid] = task;
  251. nr_tasks++;
  252. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  253. BUG_ON(!tasks);
  254. tasks[task->nr] = task;
  255. if (verbose)
  256. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  257. return task;
  258. }
  259. static void print_task_traces(void)
  260. {
  261. struct task_desc *task;
  262. unsigned long i;
  263. for (i = 0; i < nr_tasks; i++) {
  264. task = tasks[i];
  265. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  266. task->nr, task->comm, task->pid, task->nr_events);
  267. }
  268. }
  269. static void add_cross_task_wakeups(void)
  270. {
  271. struct task_desc *task1, *task2;
  272. unsigned long i, j;
  273. for (i = 0; i < nr_tasks; i++) {
  274. task1 = tasks[i];
  275. j = i + 1;
  276. if (j == nr_tasks)
  277. j = 0;
  278. task2 = tasks[j];
  279. add_sched_event_wakeup(task1, 0, task2);
  280. }
  281. }
  282. static void
  283. process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
  284. {
  285. int ret = 0;
  286. u64 now;
  287. long long delta;
  288. now = get_nsecs();
  289. delta = start_time + atom->timestamp - now;
  290. switch (atom->type) {
  291. case SCHED_EVENT_RUN:
  292. burn_nsecs(atom->duration);
  293. break;
  294. case SCHED_EVENT_SLEEP:
  295. if (atom->wait_sem)
  296. ret = sem_wait(atom->wait_sem);
  297. BUG_ON(ret);
  298. break;
  299. case SCHED_EVENT_WAKEUP:
  300. if (atom->wait_sem)
  301. ret = sem_post(atom->wait_sem);
  302. BUG_ON(ret);
  303. break;
  304. case SCHED_EVENT_MIGRATION:
  305. break;
  306. default:
  307. BUG_ON(1);
  308. }
  309. }
  310. static u64 get_cpu_usage_nsec_parent(void)
  311. {
  312. struct rusage ru;
  313. u64 sum;
  314. int err;
  315. err = getrusage(RUSAGE_SELF, &ru);
  316. BUG_ON(err);
  317. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  318. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  319. return sum;
  320. }
  321. static int self_open_counters(void)
  322. {
  323. struct perf_event_attr attr;
  324. int fd;
  325. memset(&attr, 0, sizeof(attr));
  326. attr.type = PERF_TYPE_SOFTWARE;
  327. attr.config = PERF_COUNT_SW_TASK_CLOCK;
  328. fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
  329. if (fd < 0)
  330. die("Error: sys_perf_event_open() syscall returned"
  331. "with %d (%s)\n", fd, strerror(errno));
  332. return fd;
  333. }
  334. static u64 get_cpu_usage_nsec_self(int fd)
  335. {
  336. u64 runtime;
  337. int ret;
  338. ret = read(fd, &runtime, sizeof(runtime));
  339. BUG_ON(ret != sizeof(runtime));
  340. return runtime;
  341. }
  342. static void *thread_func(void *ctx)
  343. {
  344. struct task_desc *this_task = ctx;
  345. u64 cpu_usage_0, cpu_usage_1;
  346. unsigned long i, ret;
  347. char comm2[22];
  348. int fd;
  349. sprintf(comm2, ":%s", this_task->comm);
  350. prctl(PR_SET_NAME, comm2);
  351. fd = self_open_counters();
  352. again:
  353. ret = sem_post(&this_task->ready_for_work);
  354. BUG_ON(ret);
  355. ret = pthread_mutex_lock(&start_work_mutex);
  356. BUG_ON(ret);
  357. ret = pthread_mutex_unlock(&start_work_mutex);
  358. BUG_ON(ret);
  359. cpu_usage_0 = get_cpu_usage_nsec_self(fd);
  360. for (i = 0; i < this_task->nr_events; i++) {
  361. this_task->curr_event = i;
  362. process_sched_event(this_task, this_task->atoms[i]);
  363. }
  364. cpu_usage_1 = get_cpu_usage_nsec_self(fd);
  365. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  366. ret = sem_post(&this_task->work_done_sem);
  367. BUG_ON(ret);
  368. ret = pthread_mutex_lock(&work_done_wait_mutex);
  369. BUG_ON(ret);
  370. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  371. BUG_ON(ret);
  372. goto again;
  373. }
  374. static void create_tasks(void)
  375. {
  376. struct task_desc *task;
  377. pthread_attr_t attr;
  378. unsigned long i;
  379. int err;
  380. err = pthread_attr_init(&attr);
  381. BUG_ON(err);
  382. err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
  383. BUG_ON(err);
  384. err = pthread_mutex_lock(&start_work_mutex);
  385. BUG_ON(err);
  386. err = pthread_mutex_lock(&work_done_wait_mutex);
  387. BUG_ON(err);
  388. for (i = 0; i < nr_tasks; i++) {
  389. task = tasks[i];
  390. sem_init(&task->sleep_sem, 0, 0);
  391. sem_init(&task->ready_for_work, 0, 0);
  392. sem_init(&task->work_done_sem, 0, 0);
  393. task->curr_event = 0;
  394. err = pthread_create(&task->thread, &attr, thread_func, task);
  395. BUG_ON(err);
  396. }
  397. }
  398. static void wait_for_tasks(void)
  399. {
  400. u64 cpu_usage_0, cpu_usage_1;
  401. struct task_desc *task;
  402. unsigned long i, ret;
  403. start_time = get_nsecs();
  404. cpu_usage = 0;
  405. pthread_mutex_unlock(&work_done_wait_mutex);
  406. for (i = 0; i < nr_tasks; i++) {
  407. task = tasks[i];
  408. ret = sem_wait(&task->ready_for_work);
  409. BUG_ON(ret);
  410. sem_init(&task->ready_for_work, 0, 0);
  411. }
  412. ret = pthread_mutex_lock(&work_done_wait_mutex);
  413. BUG_ON(ret);
  414. cpu_usage_0 = get_cpu_usage_nsec_parent();
  415. pthread_mutex_unlock(&start_work_mutex);
  416. for (i = 0; i < nr_tasks; i++) {
  417. task = tasks[i];
  418. ret = sem_wait(&task->work_done_sem);
  419. BUG_ON(ret);
  420. sem_init(&task->work_done_sem, 0, 0);
  421. cpu_usage += task->cpu_usage;
  422. task->cpu_usage = 0;
  423. }
  424. cpu_usage_1 = get_cpu_usage_nsec_parent();
  425. if (!runavg_cpu_usage)
  426. runavg_cpu_usage = cpu_usage;
  427. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  428. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  429. if (!runavg_parent_cpu_usage)
  430. runavg_parent_cpu_usage = parent_cpu_usage;
  431. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  432. parent_cpu_usage)/10;
  433. ret = pthread_mutex_lock(&start_work_mutex);
  434. BUG_ON(ret);
  435. for (i = 0; i < nr_tasks; i++) {
  436. task = tasks[i];
  437. sem_init(&task->sleep_sem, 0, 0);
  438. task->curr_event = 0;
  439. }
  440. }
  441. static void run_one_test(void)
  442. {
  443. u64 T0, T1, delta, avg_delta, fluct, std_dev;
  444. T0 = get_nsecs();
  445. wait_for_tasks();
  446. T1 = get_nsecs();
  447. delta = T1 - T0;
  448. sum_runtime += delta;
  449. nr_runs++;
  450. avg_delta = sum_runtime / nr_runs;
  451. if (delta < avg_delta)
  452. fluct = avg_delta - delta;
  453. else
  454. fluct = delta - avg_delta;
  455. sum_fluct += fluct;
  456. std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
  457. if (!run_avg)
  458. run_avg = delta;
  459. run_avg = (run_avg*9 + delta)/10;
  460. printf("#%-3ld: %0.3f, ",
  461. nr_runs, (double)delta/1000000.0);
  462. printf("ravg: %0.2f, ",
  463. (double)run_avg/1e6);
  464. printf("cpu: %0.2f / %0.2f",
  465. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  466. #if 0
  467. /*
  468. * rusage statistics done by the parent, these are less
  469. * accurate than the sum_exec_runtime based statistics:
  470. */
  471. printf(" [%0.2f / %0.2f]",
  472. (double)parent_cpu_usage/1e6,
  473. (double)runavg_parent_cpu_usage/1e6);
  474. #endif
  475. printf("\n");
  476. if (nr_sleep_corrections)
  477. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  478. nr_sleep_corrections = 0;
  479. }
  480. static void test_calibrations(void)
  481. {
  482. u64 T0, T1;
  483. T0 = get_nsecs();
  484. burn_nsecs(1e6);
  485. T1 = get_nsecs();
  486. printf("the run test took %Ld nsecs\n", T1-T0);
  487. T0 = get_nsecs();
  488. sleep_nsecs(1e6);
  489. T1 = get_nsecs();
  490. printf("the sleep test took %Ld nsecs\n", T1-T0);
  491. }
  492. #define FILL_FIELD(ptr, field, event, data) \
  493. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  494. #define FILL_ARRAY(ptr, array, event, data) \
  495. do { \
  496. void *__array = raw_field_ptr(event, #array, data); \
  497. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  498. } while(0)
  499. #define FILL_COMMON_FIELDS(ptr, event, data) \
  500. do { \
  501. FILL_FIELD(ptr, common_type, event, data); \
  502. FILL_FIELD(ptr, common_flags, event, data); \
  503. FILL_FIELD(ptr, common_preempt_count, event, data); \
  504. FILL_FIELD(ptr, common_pid, event, data); \
  505. FILL_FIELD(ptr, common_tgid, event, data); \
  506. } while (0)
  507. struct trace_switch_event {
  508. u32 size;
  509. u16 common_type;
  510. u8 common_flags;
  511. u8 common_preempt_count;
  512. u32 common_pid;
  513. u32 common_tgid;
  514. char prev_comm[16];
  515. u32 prev_pid;
  516. u32 prev_prio;
  517. u64 prev_state;
  518. char next_comm[16];
  519. u32 next_pid;
  520. u32 next_prio;
  521. };
  522. struct trace_runtime_event {
  523. u32 size;
  524. u16 common_type;
  525. u8 common_flags;
  526. u8 common_preempt_count;
  527. u32 common_pid;
  528. u32 common_tgid;
  529. char comm[16];
  530. u32 pid;
  531. u64 runtime;
  532. u64 vruntime;
  533. };
  534. struct trace_wakeup_event {
  535. u32 size;
  536. u16 common_type;
  537. u8 common_flags;
  538. u8 common_preempt_count;
  539. u32 common_pid;
  540. u32 common_tgid;
  541. char comm[16];
  542. u32 pid;
  543. u32 prio;
  544. u32 success;
  545. u32 cpu;
  546. };
  547. struct trace_fork_event {
  548. u32 size;
  549. u16 common_type;
  550. u8 common_flags;
  551. u8 common_preempt_count;
  552. u32 common_pid;
  553. u32 common_tgid;
  554. char parent_comm[16];
  555. u32 parent_pid;
  556. char child_comm[16];
  557. u32 child_pid;
  558. };
  559. struct trace_migrate_task_event {
  560. u32 size;
  561. u16 common_type;
  562. u8 common_flags;
  563. u8 common_preempt_count;
  564. u32 common_pid;
  565. u32 common_tgid;
  566. char comm[16];
  567. u32 pid;
  568. u32 prio;
  569. u32 cpu;
  570. };
  571. struct trace_sched_handler {
  572. void (*switch_event)(struct trace_switch_event *,
  573. struct event *,
  574. int cpu,
  575. u64 timestamp,
  576. struct thread *thread);
  577. void (*runtime_event)(struct trace_runtime_event *,
  578. struct event *,
  579. int cpu,
  580. u64 timestamp,
  581. struct thread *thread);
  582. void (*wakeup_event)(struct trace_wakeup_event *,
  583. struct event *,
  584. int cpu,
  585. u64 timestamp,
  586. struct thread *thread);
  587. void (*fork_event)(struct trace_fork_event *,
  588. struct event *,
  589. int cpu,
  590. u64 timestamp,
  591. struct thread *thread);
  592. void (*migrate_task_event)(struct trace_migrate_task_event *,
  593. struct event *,
  594. int cpu,
  595. u64 timestamp,
  596. struct thread *thread);
  597. };
  598. static void
  599. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  600. struct event *event,
  601. int cpu __used,
  602. u64 timestamp __used,
  603. struct thread *thread __used)
  604. {
  605. struct task_desc *waker, *wakee;
  606. if (verbose) {
  607. printf("sched_wakeup event %p\n", event);
  608. printf(" ... pid %d woke up %s/%d\n",
  609. wakeup_event->common_pid,
  610. wakeup_event->comm,
  611. wakeup_event->pid);
  612. }
  613. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  614. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  615. add_sched_event_wakeup(waker, timestamp, wakee);
  616. }
  617. static u64 cpu_last_switched[MAX_CPUS];
  618. static void
  619. replay_switch_event(struct trace_switch_event *switch_event,
  620. struct event *event,
  621. int cpu,
  622. u64 timestamp,
  623. struct thread *thread __used)
  624. {
  625. struct task_desc *prev, *next;
  626. u64 timestamp0;
  627. s64 delta;
  628. if (verbose)
  629. printf("sched_switch event %p\n", event);
  630. if (cpu >= MAX_CPUS || cpu < 0)
  631. return;
  632. timestamp0 = cpu_last_switched[cpu];
  633. if (timestamp0)
  634. delta = timestamp - timestamp0;
  635. else
  636. delta = 0;
  637. if (delta < 0)
  638. die("hm, delta: %Ld < 0 ?\n", delta);
  639. if (verbose) {
  640. printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
  641. switch_event->prev_comm, switch_event->prev_pid,
  642. switch_event->next_comm, switch_event->next_pid,
  643. delta);
  644. }
  645. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  646. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  647. cpu_last_switched[cpu] = timestamp;
  648. add_sched_event_run(prev, timestamp, delta);
  649. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  650. }
  651. static void
  652. replay_fork_event(struct trace_fork_event *fork_event,
  653. struct event *event,
  654. int cpu __used,
  655. u64 timestamp __used,
  656. struct thread *thread __used)
  657. {
  658. if (verbose) {
  659. printf("sched_fork event %p\n", event);
  660. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  661. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  662. }
  663. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  664. register_pid(fork_event->child_pid, fork_event->child_comm);
  665. }
  666. static struct trace_sched_handler replay_ops = {
  667. .wakeup_event = replay_wakeup_event,
  668. .switch_event = replay_switch_event,
  669. .fork_event = replay_fork_event,
  670. };
  671. struct sort_dimension {
  672. const char *name;
  673. sort_fn_t cmp;
  674. struct list_head list;
  675. };
  676. static LIST_HEAD(cmp_pid);
  677. static int
  678. thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
  679. {
  680. struct sort_dimension *sort;
  681. int ret = 0;
  682. BUG_ON(list_empty(list));
  683. list_for_each_entry(sort, list, list) {
  684. ret = sort->cmp(l, r);
  685. if (ret)
  686. return ret;
  687. }
  688. return ret;
  689. }
  690. static struct work_atoms *
  691. thread_atoms_search(struct rb_root *root, struct thread *thread,
  692. struct list_head *sort_list)
  693. {
  694. struct rb_node *node = root->rb_node;
  695. struct work_atoms key = { .thread = thread };
  696. while (node) {
  697. struct work_atoms *atoms;
  698. int cmp;
  699. atoms = container_of(node, struct work_atoms, node);
  700. cmp = thread_lat_cmp(sort_list, &key, atoms);
  701. if (cmp > 0)
  702. node = node->rb_left;
  703. else if (cmp < 0)
  704. node = node->rb_right;
  705. else {
  706. BUG_ON(thread != atoms->thread);
  707. return atoms;
  708. }
  709. }
  710. return NULL;
  711. }
  712. static void
  713. __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
  714. struct list_head *sort_list)
  715. {
  716. struct rb_node **new = &(root->rb_node), *parent = NULL;
  717. while (*new) {
  718. struct work_atoms *this;
  719. int cmp;
  720. this = container_of(*new, struct work_atoms, node);
  721. parent = *new;
  722. cmp = thread_lat_cmp(sort_list, data, this);
  723. if (cmp > 0)
  724. new = &((*new)->rb_left);
  725. else
  726. new = &((*new)->rb_right);
  727. }
  728. rb_link_node(&data->node, parent, new);
  729. rb_insert_color(&data->node, root);
  730. }
  731. static void thread_atoms_insert(struct thread *thread)
  732. {
  733. struct work_atoms *atoms = zalloc(sizeof(*atoms));
  734. if (!atoms)
  735. die("No memory");
  736. atoms->thread = thread;
  737. INIT_LIST_HEAD(&atoms->work_list);
  738. __thread_latency_insert(&atom_root, atoms, &cmp_pid);
  739. }
  740. static void
  741. latency_fork_event(struct trace_fork_event *fork_event __used,
  742. struct event *event __used,
  743. int cpu __used,
  744. u64 timestamp __used,
  745. struct thread *thread __used)
  746. {
  747. /* should insert the newcomer */
  748. }
  749. __used
  750. static char sched_out_state(struct trace_switch_event *switch_event)
  751. {
  752. const char *str = TASK_STATE_TO_CHAR_STR;
  753. return str[switch_event->prev_state];
  754. }
  755. static void
  756. add_sched_out_event(struct work_atoms *atoms,
  757. char run_state,
  758. u64 timestamp)
  759. {
  760. struct work_atom *atom = zalloc(sizeof(*atom));
  761. if (!atom)
  762. die("Non memory");
  763. atom->sched_out_time = timestamp;
  764. if (run_state == 'R') {
  765. atom->state = THREAD_WAIT_CPU;
  766. atom->wake_up_time = atom->sched_out_time;
  767. }
  768. list_add_tail(&atom->list, &atoms->work_list);
  769. }
  770. static void
  771. add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
  772. {
  773. struct work_atom *atom;
  774. BUG_ON(list_empty(&atoms->work_list));
  775. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  776. atom->runtime += delta;
  777. atoms->total_runtime += delta;
  778. }
  779. static void
  780. add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
  781. {
  782. struct work_atom *atom;
  783. u64 delta;
  784. if (list_empty(&atoms->work_list))
  785. return;
  786. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  787. if (atom->state != THREAD_WAIT_CPU)
  788. return;
  789. if (timestamp < atom->wake_up_time) {
  790. atom->state = THREAD_IGNORE;
  791. return;
  792. }
  793. atom->state = THREAD_SCHED_IN;
  794. atom->sched_in_time = timestamp;
  795. delta = atom->sched_in_time - atom->wake_up_time;
  796. atoms->total_lat += delta;
  797. if (delta > atoms->max_lat) {
  798. atoms->max_lat = delta;
  799. atoms->max_lat_at = timestamp;
  800. }
  801. atoms->nb_atoms++;
  802. }
  803. static void
  804. latency_switch_event(struct trace_switch_event *switch_event,
  805. struct event *event __used,
  806. int cpu,
  807. u64 timestamp,
  808. struct thread *thread __used)
  809. {
  810. struct work_atoms *out_events, *in_events;
  811. struct thread *sched_out, *sched_in;
  812. u64 timestamp0;
  813. s64 delta;
  814. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  815. timestamp0 = cpu_last_switched[cpu];
  816. cpu_last_switched[cpu] = timestamp;
  817. if (timestamp0)
  818. delta = timestamp - timestamp0;
  819. else
  820. delta = 0;
  821. if (delta < 0)
  822. die("hm, delta: %Ld < 0 ?\n", delta);
  823. sched_out = threads__findnew(switch_event->prev_pid);
  824. sched_in = threads__findnew(switch_event->next_pid);
  825. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  826. if (!out_events) {
  827. thread_atoms_insert(sched_out);
  828. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  829. if (!out_events)
  830. die("out-event: Internal tree error");
  831. }
  832. add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
  833. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  834. if (!in_events) {
  835. thread_atoms_insert(sched_in);
  836. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  837. if (!in_events)
  838. die("in-event: Internal tree error");
  839. /*
  840. * Take came in we have not heard about yet,
  841. * add in an initial atom in runnable state:
  842. */
  843. add_sched_out_event(in_events, 'R', timestamp);
  844. }
  845. add_sched_in_event(in_events, timestamp);
  846. }
  847. static void
  848. latency_runtime_event(struct trace_runtime_event *runtime_event,
  849. struct event *event __used,
  850. int cpu,
  851. u64 timestamp,
  852. struct thread *this_thread __used)
  853. {
  854. struct thread *thread = threads__findnew(runtime_event->pid);
  855. struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  856. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  857. if (!atoms) {
  858. thread_atoms_insert(thread);
  859. atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  860. if (!atoms)
  861. die("in-event: Internal tree error");
  862. add_sched_out_event(atoms, 'R', timestamp);
  863. }
  864. add_runtime_event(atoms, runtime_event->runtime, timestamp);
  865. }
  866. static void
  867. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  868. struct event *__event __used,
  869. int cpu __used,
  870. u64 timestamp,
  871. struct thread *thread __used)
  872. {
  873. struct work_atoms *atoms;
  874. struct work_atom *atom;
  875. struct thread *wakee;
  876. /* Note for later, it may be interesting to observe the failing cases */
  877. if (!wakeup_event->success)
  878. return;
  879. wakee = threads__findnew(wakeup_event->pid);
  880. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  881. if (!atoms) {
  882. thread_atoms_insert(wakee);
  883. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  884. if (!atoms)
  885. die("wakeup-event: Internal tree error");
  886. add_sched_out_event(atoms, 'S', timestamp);
  887. }
  888. BUG_ON(list_empty(&atoms->work_list));
  889. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  890. /*
  891. * You WILL be missing events if you've recorded only
  892. * one CPU, or are only looking at only one, so don't
  893. * make useless noise.
  894. */
  895. if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
  896. nr_state_machine_bugs++;
  897. nr_timestamps++;
  898. if (atom->sched_out_time > timestamp) {
  899. nr_unordered_timestamps++;
  900. return;
  901. }
  902. atom->state = THREAD_WAIT_CPU;
  903. atom->wake_up_time = timestamp;
  904. }
  905. static void
  906. latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
  907. struct event *__event __used,
  908. int cpu __used,
  909. u64 timestamp,
  910. struct thread *thread __used)
  911. {
  912. struct work_atoms *atoms;
  913. struct work_atom *atom;
  914. struct thread *migrant;
  915. /*
  916. * Only need to worry about migration when profiling one CPU.
  917. */
  918. if (profile_cpu == -1)
  919. return;
  920. migrant = threads__findnew(migrate_task_event->pid);
  921. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  922. if (!atoms) {
  923. thread_atoms_insert(migrant);
  924. register_pid(migrant->pid, migrant->comm);
  925. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  926. if (!atoms)
  927. die("migration-event: Internal tree error");
  928. add_sched_out_event(atoms, 'R', timestamp);
  929. }
  930. BUG_ON(list_empty(&atoms->work_list));
  931. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  932. atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
  933. nr_timestamps++;
  934. if (atom->sched_out_time > timestamp)
  935. nr_unordered_timestamps++;
  936. }
  937. static struct trace_sched_handler lat_ops = {
  938. .wakeup_event = latency_wakeup_event,
  939. .switch_event = latency_switch_event,
  940. .runtime_event = latency_runtime_event,
  941. .fork_event = latency_fork_event,
  942. .migrate_task_event = latency_migrate_task_event,
  943. };
  944. static void output_lat_thread(struct work_atoms *work_list)
  945. {
  946. int i;
  947. int ret;
  948. u64 avg;
  949. if (!work_list->nb_atoms)
  950. return;
  951. /*
  952. * Ignore idle threads:
  953. */
  954. if (!strcmp(work_list->thread->comm, "swapper"))
  955. return;
  956. all_runtime += work_list->total_runtime;
  957. all_count += work_list->nb_atoms;
  958. ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
  959. for (i = 0; i < 24 - ret; i++)
  960. printf(" ");
  961. avg = work_list->total_lat / work_list->nb_atoms;
  962. printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
  963. (double)work_list->total_runtime / 1e6,
  964. work_list->nb_atoms, (double)avg / 1e6,
  965. (double)work_list->max_lat / 1e6,
  966. (double)work_list->max_lat_at / 1e9);
  967. }
  968. static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
  969. {
  970. if (l->thread->pid < r->thread->pid)
  971. return -1;
  972. if (l->thread->pid > r->thread->pid)
  973. return 1;
  974. return 0;
  975. }
  976. static struct sort_dimension pid_sort_dimension = {
  977. .name = "pid",
  978. .cmp = pid_cmp,
  979. };
  980. static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
  981. {
  982. u64 avgl, avgr;
  983. if (!l->nb_atoms)
  984. return -1;
  985. if (!r->nb_atoms)
  986. return 1;
  987. avgl = l->total_lat / l->nb_atoms;
  988. avgr = r->total_lat / r->nb_atoms;
  989. if (avgl < avgr)
  990. return -1;
  991. if (avgl > avgr)
  992. return 1;
  993. return 0;
  994. }
  995. static struct sort_dimension avg_sort_dimension = {
  996. .name = "avg",
  997. .cmp = avg_cmp,
  998. };
  999. static int max_cmp(struct work_atoms *l, struct work_atoms *r)
  1000. {
  1001. if (l->max_lat < r->max_lat)
  1002. return -1;
  1003. if (l->max_lat > r->max_lat)
  1004. return 1;
  1005. return 0;
  1006. }
  1007. static struct sort_dimension max_sort_dimension = {
  1008. .name = "max",
  1009. .cmp = max_cmp,
  1010. };
  1011. static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
  1012. {
  1013. if (l->nb_atoms < r->nb_atoms)
  1014. return -1;
  1015. if (l->nb_atoms > r->nb_atoms)
  1016. return 1;
  1017. return 0;
  1018. }
  1019. static struct sort_dimension switch_sort_dimension = {
  1020. .name = "switch",
  1021. .cmp = switch_cmp,
  1022. };
  1023. static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
  1024. {
  1025. if (l->total_runtime < r->total_runtime)
  1026. return -1;
  1027. if (l->total_runtime > r->total_runtime)
  1028. return 1;
  1029. return 0;
  1030. }
  1031. static struct sort_dimension runtime_sort_dimension = {
  1032. .name = "runtime",
  1033. .cmp = runtime_cmp,
  1034. };
  1035. static struct sort_dimension *available_sorts[] = {
  1036. &pid_sort_dimension,
  1037. &avg_sort_dimension,
  1038. &max_sort_dimension,
  1039. &switch_sort_dimension,
  1040. &runtime_sort_dimension,
  1041. };
  1042. #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
  1043. static LIST_HEAD(sort_list);
  1044. static int sort_dimension__add(const char *tok, struct list_head *list)
  1045. {
  1046. int i;
  1047. for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
  1048. if (!strcmp(available_sorts[i]->name, tok)) {
  1049. list_add_tail(&available_sorts[i]->list, list);
  1050. return 0;
  1051. }
  1052. }
  1053. return -1;
  1054. }
  1055. static void setup_sorting(void);
  1056. static void sort_lat(void)
  1057. {
  1058. struct rb_node *node;
  1059. for (;;) {
  1060. struct work_atoms *data;
  1061. node = rb_first(&atom_root);
  1062. if (!node)
  1063. break;
  1064. rb_erase(node, &atom_root);
  1065. data = rb_entry(node, struct work_atoms, node);
  1066. __thread_latency_insert(&sorted_atom_root, data, &sort_list);
  1067. }
  1068. }
  1069. static struct trace_sched_handler *trace_handler;
  1070. static void
  1071. process_sched_wakeup_event(void *data,
  1072. struct event *event,
  1073. int cpu __used,
  1074. u64 timestamp __used,
  1075. struct thread *thread __used)
  1076. {
  1077. struct trace_wakeup_event wakeup_event;
  1078. FILL_COMMON_FIELDS(wakeup_event, event, data);
  1079. FILL_ARRAY(wakeup_event, comm, event, data);
  1080. FILL_FIELD(wakeup_event, pid, event, data);
  1081. FILL_FIELD(wakeup_event, prio, event, data);
  1082. FILL_FIELD(wakeup_event, success, event, data);
  1083. FILL_FIELD(wakeup_event, cpu, event, data);
  1084. if (trace_handler->wakeup_event)
  1085. trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
  1086. }
  1087. /*
  1088. * Track the current task - that way we can know whether there's any
  1089. * weird events, such as a task being switched away that is not current.
  1090. */
  1091. static int max_cpu;
  1092. static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
  1093. static struct thread *curr_thread[MAX_CPUS];
  1094. static char next_shortname1 = 'A';
  1095. static char next_shortname2 = '0';
  1096. static void
  1097. map_switch_event(struct trace_switch_event *switch_event,
  1098. struct event *event __used,
  1099. int this_cpu,
  1100. u64 timestamp,
  1101. struct thread *thread __used)
  1102. {
  1103. struct thread *sched_out, *sched_in;
  1104. int new_shortname;
  1105. u64 timestamp0;
  1106. s64 delta;
  1107. int cpu;
  1108. BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
  1109. if (this_cpu > max_cpu)
  1110. max_cpu = this_cpu;
  1111. timestamp0 = cpu_last_switched[this_cpu];
  1112. cpu_last_switched[this_cpu] = timestamp;
  1113. if (timestamp0)
  1114. delta = timestamp - timestamp0;
  1115. else
  1116. delta = 0;
  1117. if (delta < 0)
  1118. die("hm, delta: %Ld < 0 ?\n", delta);
  1119. sched_out = threads__findnew(switch_event->prev_pid);
  1120. sched_in = threads__findnew(switch_event->next_pid);
  1121. curr_thread[this_cpu] = sched_in;
  1122. printf(" ");
  1123. new_shortname = 0;
  1124. if (!sched_in->shortname[0]) {
  1125. sched_in->shortname[0] = next_shortname1;
  1126. sched_in->shortname[1] = next_shortname2;
  1127. if (next_shortname1 < 'Z') {
  1128. next_shortname1++;
  1129. } else {
  1130. next_shortname1='A';
  1131. if (next_shortname2 < '9') {
  1132. next_shortname2++;
  1133. } else {
  1134. next_shortname2='0';
  1135. }
  1136. }
  1137. new_shortname = 1;
  1138. }
  1139. for (cpu = 0; cpu <= max_cpu; cpu++) {
  1140. if (cpu != this_cpu)
  1141. printf(" ");
  1142. else
  1143. printf("*");
  1144. if (curr_thread[cpu]) {
  1145. if (curr_thread[cpu]->pid)
  1146. printf("%2s ", curr_thread[cpu]->shortname);
  1147. else
  1148. printf(". ");
  1149. } else
  1150. printf(" ");
  1151. }
  1152. printf(" %12.6f secs ", (double)timestamp/1e9);
  1153. if (new_shortname) {
  1154. printf("%s => %s:%d\n",
  1155. sched_in->shortname, sched_in->comm, sched_in->pid);
  1156. } else {
  1157. printf("\n");
  1158. }
  1159. }
  1160. static void
  1161. process_sched_switch_event(void *data,
  1162. struct event *event,
  1163. int this_cpu,
  1164. u64 timestamp __used,
  1165. struct thread *thread __used)
  1166. {
  1167. struct trace_switch_event switch_event;
  1168. FILL_COMMON_FIELDS(switch_event, event, data);
  1169. FILL_ARRAY(switch_event, prev_comm, event, data);
  1170. FILL_FIELD(switch_event, prev_pid, event, data);
  1171. FILL_FIELD(switch_event, prev_prio, event, data);
  1172. FILL_FIELD(switch_event, prev_state, event, data);
  1173. FILL_ARRAY(switch_event, next_comm, event, data);
  1174. FILL_FIELD(switch_event, next_pid, event, data);
  1175. FILL_FIELD(switch_event, next_prio, event, data);
  1176. if (curr_pid[this_cpu] != (u32)-1) {
  1177. /*
  1178. * Are we trying to switch away a PID that is
  1179. * not current?
  1180. */
  1181. if (curr_pid[this_cpu] != switch_event.prev_pid)
  1182. nr_context_switch_bugs++;
  1183. }
  1184. if (trace_handler->switch_event)
  1185. trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
  1186. curr_pid[this_cpu] = switch_event.next_pid;
  1187. }
  1188. static void
  1189. process_sched_runtime_event(void *data,
  1190. struct event *event,
  1191. int cpu __used,
  1192. u64 timestamp __used,
  1193. struct thread *thread __used)
  1194. {
  1195. struct trace_runtime_event runtime_event;
  1196. FILL_ARRAY(runtime_event, comm, event, data);
  1197. FILL_FIELD(runtime_event, pid, event, data);
  1198. FILL_FIELD(runtime_event, runtime, event, data);
  1199. FILL_FIELD(runtime_event, vruntime, event, data);
  1200. if (trace_handler->runtime_event)
  1201. trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
  1202. }
  1203. static void
  1204. process_sched_fork_event(void *data,
  1205. struct event *event,
  1206. int cpu __used,
  1207. u64 timestamp __used,
  1208. struct thread *thread __used)
  1209. {
  1210. struct trace_fork_event fork_event;
  1211. FILL_COMMON_FIELDS(fork_event, event, data);
  1212. FILL_ARRAY(fork_event, parent_comm, event, data);
  1213. FILL_FIELD(fork_event, parent_pid, event, data);
  1214. FILL_ARRAY(fork_event, child_comm, event, data);
  1215. FILL_FIELD(fork_event, child_pid, event, data);
  1216. if (trace_handler->fork_event)
  1217. trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
  1218. }
  1219. static void
  1220. process_sched_exit_event(struct event *event,
  1221. int cpu __used,
  1222. u64 timestamp __used,
  1223. struct thread *thread __used)
  1224. {
  1225. if (verbose)
  1226. printf("sched_exit event %p\n", event);
  1227. }
  1228. static void
  1229. process_sched_migrate_task_event(void *data,
  1230. struct event *event,
  1231. int cpu __used,
  1232. u64 timestamp __used,
  1233. struct thread *thread __used)
  1234. {
  1235. struct trace_migrate_task_event migrate_task_event;
  1236. FILL_COMMON_FIELDS(migrate_task_event, event, data);
  1237. FILL_ARRAY(migrate_task_event, comm, event, data);
  1238. FILL_FIELD(migrate_task_event, pid, event, data);
  1239. FILL_FIELD(migrate_task_event, prio, event, data);
  1240. FILL_FIELD(migrate_task_event, cpu, event, data);
  1241. if (trace_handler->migrate_task_event)
  1242. trace_handler->migrate_task_event(&migrate_task_event, event, cpu, timestamp, thread);
  1243. }
  1244. static void
  1245. process_raw_event(event_t *raw_event __used, void *data,
  1246. int cpu, u64 timestamp, struct thread *thread)
  1247. {
  1248. struct event *event;
  1249. int type;
  1250. type = trace_parse_common_type(data);
  1251. event = trace_find_event(type);
  1252. if (!strcmp(event->name, "sched_switch"))
  1253. process_sched_switch_event(data, event, cpu, timestamp, thread);
  1254. if (!strcmp(event->name, "sched_stat_runtime"))
  1255. process_sched_runtime_event(data, event, cpu, timestamp, thread);
  1256. if (!strcmp(event->name, "sched_wakeup"))
  1257. process_sched_wakeup_event(data, event, cpu, timestamp, thread);
  1258. if (!strcmp(event->name, "sched_wakeup_new"))
  1259. process_sched_wakeup_event(data, event, cpu, timestamp, thread);
  1260. if (!strcmp(event->name, "sched_process_fork"))
  1261. process_sched_fork_event(data, event, cpu, timestamp, thread);
  1262. if (!strcmp(event->name, "sched_process_exit"))
  1263. process_sched_exit_event(event, cpu, timestamp, thread);
  1264. if (!strcmp(event->name, "sched_migrate_task"))
  1265. process_sched_migrate_task_event(data, event, cpu, timestamp, thread);
  1266. }
  1267. static int process_sample_event(event_t *event,
  1268. struct perf_session *session __used)
  1269. {
  1270. struct sample_data data;
  1271. struct thread *thread;
  1272. if (!(sample_type & PERF_SAMPLE_RAW))
  1273. return 0;
  1274. memset(&data, 0, sizeof(data));
  1275. data.time = -1;
  1276. data.cpu = -1;
  1277. data.period = -1;
  1278. event__parse_sample(event, sample_type, &data);
  1279. dump_printf("(IP, %d): %d/%d: %p period: %Ld\n",
  1280. event->header.misc,
  1281. data.pid, data.tid,
  1282. (void *)(long)data.ip,
  1283. (long long)data.period);
  1284. thread = threads__findnew(data.pid);
  1285. if (thread == NULL) {
  1286. pr_debug("problem processing %d event, skipping it.\n",
  1287. event->header.type);
  1288. return -1;
  1289. }
  1290. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1291. if (profile_cpu != -1 && profile_cpu != (int)data.cpu)
  1292. return 0;
  1293. process_raw_event(event, data.raw_data, data.cpu, data.time, thread);
  1294. return 0;
  1295. }
  1296. static int process_lost_event(event_t *event __used,
  1297. struct perf_session *session __used)
  1298. {
  1299. nr_lost_chunks++;
  1300. nr_lost_events += event->lost.lost;
  1301. return 0;
  1302. }
  1303. static int sample_type_check(u64 type)
  1304. {
  1305. sample_type = type;
  1306. if (!(sample_type & PERF_SAMPLE_RAW)) {
  1307. fprintf(stderr,
  1308. "No trace sample to read. Did you call perf record "
  1309. "without -R?");
  1310. return -1;
  1311. }
  1312. return 0;
  1313. }
  1314. static struct perf_event_ops event_ops = {
  1315. .process_sample_event = process_sample_event,
  1316. .process_comm_event = event__process_comm,
  1317. .process_lost_event = process_lost_event,
  1318. .sample_type_check = sample_type_check,
  1319. };
  1320. static int read_events(void)
  1321. {
  1322. int err;
  1323. struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0);
  1324. if (session == NULL)
  1325. return -ENOMEM;
  1326. err = perf_session__process_events(session, &event_ops, 0,
  1327. &event__cwdlen, &event__cwd);
  1328. perf_session__delete(session);
  1329. return err;
  1330. }
  1331. static void print_bad_events(void)
  1332. {
  1333. if (nr_unordered_timestamps && nr_timestamps) {
  1334. printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
  1335. (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
  1336. nr_unordered_timestamps, nr_timestamps);
  1337. }
  1338. if (nr_lost_events && nr_events) {
  1339. printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
  1340. (double)nr_lost_events/(double)nr_events*100.0,
  1341. nr_lost_events, nr_events, nr_lost_chunks);
  1342. }
  1343. if (nr_state_machine_bugs && nr_timestamps) {
  1344. printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
  1345. (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
  1346. nr_state_machine_bugs, nr_timestamps);
  1347. if (nr_lost_events)
  1348. printf(" (due to lost events?)");
  1349. printf("\n");
  1350. }
  1351. if (nr_context_switch_bugs && nr_timestamps) {
  1352. printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
  1353. (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
  1354. nr_context_switch_bugs, nr_timestamps);
  1355. if (nr_lost_events)
  1356. printf(" (due to lost events?)");
  1357. printf("\n");
  1358. }
  1359. }
  1360. static void __cmd_lat(void)
  1361. {
  1362. struct rb_node *next;
  1363. setup_pager();
  1364. read_events();
  1365. sort_lat();
  1366. printf("\n ---------------------------------------------------------------------------------------------------------------\n");
  1367. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
  1368. printf(" ---------------------------------------------------------------------------------------------------------------\n");
  1369. next = rb_first(&sorted_atom_root);
  1370. while (next) {
  1371. struct work_atoms *work_list;
  1372. work_list = rb_entry(next, struct work_atoms, node);
  1373. output_lat_thread(work_list);
  1374. next = rb_next(next);
  1375. }
  1376. printf(" -----------------------------------------------------------------------------------------\n");
  1377. printf(" TOTAL: |%11.3f ms |%9Ld |\n",
  1378. (double)all_runtime/1e6, all_count);
  1379. printf(" ---------------------------------------------------\n");
  1380. print_bad_events();
  1381. printf("\n");
  1382. }
  1383. static struct trace_sched_handler map_ops = {
  1384. .wakeup_event = NULL,
  1385. .switch_event = map_switch_event,
  1386. .runtime_event = NULL,
  1387. .fork_event = NULL,
  1388. };
  1389. static void __cmd_map(void)
  1390. {
  1391. max_cpu = sysconf(_SC_NPROCESSORS_CONF);
  1392. setup_pager();
  1393. read_events();
  1394. print_bad_events();
  1395. }
  1396. static void __cmd_replay(void)
  1397. {
  1398. unsigned long i;
  1399. calibrate_run_measurement_overhead();
  1400. calibrate_sleep_measurement_overhead();
  1401. test_calibrations();
  1402. read_events();
  1403. printf("nr_run_events: %ld\n", nr_run_events);
  1404. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  1405. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  1406. if (targetless_wakeups)
  1407. printf("target-less wakeups: %ld\n", targetless_wakeups);
  1408. if (multitarget_wakeups)
  1409. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  1410. if (nr_run_events_optimized)
  1411. printf("run atoms optimized: %ld\n",
  1412. nr_run_events_optimized);
  1413. print_task_traces();
  1414. add_cross_task_wakeups();
  1415. create_tasks();
  1416. printf("------------------------------------------------------------\n");
  1417. for (i = 0; i < replay_repeat; i++)
  1418. run_one_test();
  1419. }
  1420. static const char * const sched_usage[] = {
  1421. "perf sched [<options>] {record|latency|map|replay|trace}",
  1422. NULL
  1423. };
  1424. static const struct option sched_options[] = {
  1425. OPT_STRING('i', "input", &input_name, "file",
  1426. "input file name"),
  1427. OPT_BOOLEAN('v', "verbose", &verbose,
  1428. "be more verbose (show symbol address, etc)"),
  1429. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1430. "dump raw trace in ASCII"),
  1431. OPT_END()
  1432. };
  1433. static const char * const latency_usage[] = {
  1434. "perf sched latency [<options>]",
  1435. NULL
  1436. };
  1437. static const struct option latency_options[] = {
  1438. OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
  1439. "sort by key(s): runtime, switch, avg, max"),
  1440. OPT_BOOLEAN('v', "verbose", &verbose,
  1441. "be more verbose (show symbol address, etc)"),
  1442. OPT_INTEGER('C', "CPU", &profile_cpu,
  1443. "CPU to profile on"),
  1444. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1445. "dump raw trace in ASCII"),
  1446. OPT_END()
  1447. };
  1448. static const char * const replay_usage[] = {
  1449. "perf sched replay [<options>]",
  1450. NULL
  1451. };
  1452. static const struct option replay_options[] = {
  1453. OPT_INTEGER('r', "repeat", &replay_repeat,
  1454. "repeat the workload replay N times (-1: infinite)"),
  1455. OPT_BOOLEAN('v', "verbose", &verbose,
  1456. "be more verbose (show symbol address, etc)"),
  1457. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1458. "dump raw trace in ASCII"),
  1459. OPT_END()
  1460. };
  1461. static void setup_sorting(void)
  1462. {
  1463. char *tmp, *tok, *str = strdup(sort_order);
  1464. for (tok = strtok_r(str, ", ", &tmp);
  1465. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1466. if (sort_dimension__add(tok, &sort_list) < 0) {
  1467. error("Unknown --sort key: `%s'", tok);
  1468. usage_with_options(latency_usage, latency_options);
  1469. }
  1470. }
  1471. free(str);
  1472. sort_dimension__add("pid", &cmp_pid);
  1473. }
  1474. static const char *record_args[] = {
  1475. "record",
  1476. "-a",
  1477. "-R",
  1478. "-M",
  1479. "-f",
  1480. "-m", "1024",
  1481. "-c", "1",
  1482. "-e", "sched:sched_switch:r",
  1483. "-e", "sched:sched_stat_wait:r",
  1484. "-e", "sched:sched_stat_sleep:r",
  1485. "-e", "sched:sched_stat_iowait:r",
  1486. "-e", "sched:sched_stat_runtime:r",
  1487. "-e", "sched:sched_process_exit:r",
  1488. "-e", "sched:sched_process_fork:r",
  1489. "-e", "sched:sched_wakeup:r",
  1490. "-e", "sched:sched_migrate_task:r",
  1491. };
  1492. static int __cmd_record(int argc, const char **argv)
  1493. {
  1494. unsigned int rec_argc, i, j;
  1495. const char **rec_argv;
  1496. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1497. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1498. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1499. rec_argv[i] = strdup(record_args[i]);
  1500. for (j = 1; j < (unsigned int)argc; j++, i++)
  1501. rec_argv[i] = argv[j];
  1502. BUG_ON(i != rec_argc);
  1503. return cmd_record(i, rec_argv, NULL);
  1504. }
  1505. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1506. {
  1507. argc = parse_options(argc, argv, sched_options, sched_usage,
  1508. PARSE_OPT_STOP_AT_NON_OPTION);
  1509. if (!argc)
  1510. usage_with_options(sched_usage, sched_options);
  1511. /*
  1512. * Aliased to 'perf trace' for now:
  1513. */
  1514. if (!strcmp(argv[0], "trace"))
  1515. return cmd_trace(argc, argv, prefix);
  1516. symbol__init(0);
  1517. if (!strncmp(argv[0], "rec", 3)) {
  1518. return __cmd_record(argc, argv);
  1519. } else if (!strncmp(argv[0], "lat", 3)) {
  1520. trace_handler = &lat_ops;
  1521. if (argc > 1) {
  1522. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1523. if (argc)
  1524. usage_with_options(latency_usage, latency_options);
  1525. }
  1526. setup_sorting();
  1527. __cmd_lat();
  1528. } else if (!strcmp(argv[0], "map")) {
  1529. trace_handler = &map_ops;
  1530. setup_sorting();
  1531. __cmd_map();
  1532. } else if (!strncmp(argv[0], "rep", 3)) {
  1533. trace_handler = &replay_ops;
  1534. if (argc) {
  1535. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1536. if (argc)
  1537. usage_with_options(replay_usage, replay_options);
  1538. }
  1539. __cmd_replay();
  1540. } else {
  1541. usage_with_options(sched_usage, sched_options);
  1542. }
  1543. return 0;
  1544. }