paging_tmpl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. unsigned max_level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  66. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  67. pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  68. unsigned pt_access;
  69. unsigned pte_access;
  70. gfn_t gfn;
  71. struct x86_exception fault;
  72. };
  73. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  74. {
  75. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  76. }
  77. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  78. pt_element_t __user *ptep_user, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. int npages;
  82. pt_element_t ret;
  83. pt_element_t *table;
  84. struct page *page;
  85. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  86. /* Check if the user is doing something meaningless. */
  87. if (unlikely(npages != 1))
  88. return -EFAULT;
  89. table = kmap_atomic(page);
  90. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  91. kunmap_atomic(table);
  92. kvm_release_page_dirty(page);
  93. return (ret != orig_pte);
  94. }
  95. static bool FNAME(is_last_gpte)(struct guest_walker *walker,
  96. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  97. pt_element_t gpte)
  98. {
  99. if (walker->level == PT_PAGE_TABLE_LEVEL)
  100. return true;
  101. if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
  102. (PTTYPE == 64 || is_pse(vcpu)))
  103. return true;
  104. if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
  105. (mmu->root_level == PT64_ROOT_LEVEL))
  106. return true;
  107. return false;
  108. }
  109. static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
  110. struct kvm_mmu *mmu,
  111. struct guest_walker *walker,
  112. int write_fault)
  113. {
  114. unsigned level, index;
  115. pt_element_t pte, orig_pte;
  116. pt_element_t __user *ptep_user;
  117. gfn_t table_gfn;
  118. int ret;
  119. for (level = walker->max_level; level >= walker->level; --level) {
  120. pte = orig_pte = walker->ptes[level - 1];
  121. table_gfn = walker->table_gfn[level - 1];
  122. ptep_user = walker->ptep_user[level - 1];
  123. index = offset_in_page(ptep_user) / sizeof(pt_element_t);
  124. if (!(pte & PT_ACCESSED_MASK)) {
  125. trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
  126. pte |= PT_ACCESSED_MASK;
  127. }
  128. if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
  129. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  130. pte |= PT_DIRTY_MASK;
  131. }
  132. if (pte == orig_pte)
  133. continue;
  134. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
  135. if (ret)
  136. return ret;
  137. mark_page_dirty(vcpu->kvm, table_gfn);
  138. walker->ptes[level] = pte;
  139. }
  140. return 0;
  141. }
  142. /*
  143. * Fetch a guest pte for a guest virtual address
  144. */
  145. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  146. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  147. gva_t addr, u32 access)
  148. {
  149. int ret;
  150. pt_element_t pte;
  151. pt_element_t __user *uninitialized_var(ptep_user);
  152. gfn_t table_gfn;
  153. unsigned index, pt_access, pte_access;
  154. gpa_t pte_gpa;
  155. bool eperm;
  156. int offset;
  157. const int write_fault = access & PFERR_WRITE_MASK;
  158. const int user_fault = access & PFERR_USER_MASK;
  159. const int fetch_fault = access & PFERR_FETCH_MASK;
  160. u16 errcode = 0;
  161. gpa_t real_gpa;
  162. gfn_t gfn;
  163. u32 ac;
  164. trace_kvm_mmu_pagetable_walk(addr, access);
  165. retry_walk:
  166. eperm = false;
  167. walker->level = mmu->root_level;
  168. pte = mmu->get_cr3(vcpu);
  169. #if PTTYPE == 64
  170. if (walker->level == PT32E_ROOT_LEVEL) {
  171. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  172. trace_kvm_mmu_paging_element(pte, walker->level);
  173. if (!is_present_gpte(pte))
  174. goto error;
  175. --walker->level;
  176. }
  177. #endif
  178. walker->max_level = walker->level;
  179. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  180. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  181. pt_access = pte_access = ACC_ALL;
  182. ++walker->level;
  183. do {
  184. gfn_t real_gfn;
  185. unsigned long host_addr;
  186. pt_access &= pte_access;
  187. --walker->level;
  188. index = PT_INDEX(addr, walker->level);
  189. table_gfn = gpte_to_gfn(pte);
  190. offset = index * sizeof(pt_element_t);
  191. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  192. walker->table_gfn[walker->level - 1] = table_gfn;
  193. walker->pte_gpa[walker->level - 1] = pte_gpa;
  194. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  195. PFERR_USER_MASK|PFERR_WRITE_MASK);
  196. if (unlikely(real_gfn == UNMAPPED_GVA))
  197. goto error;
  198. real_gfn = gpa_to_gfn(real_gfn);
  199. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  200. if (unlikely(kvm_is_error_hva(host_addr)))
  201. goto error;
  202. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  203. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  204. goto error;
  205. walker->ptep_user[walker->level - 1] = ptep_user;
  206. trace_kvm_mmu_paging_element(pte, walker->level);
  207. if (unlikely(!is_present_gpte(pte)))
  208. goto error;
  209. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  210. walker->level))) {
  211. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  212. goto error;
  213. }
  214. pte_access = pt_access & gpte_access(vcpu, pte);
  215. walker->ptes[walker->level - 1] = pte;
  216. } while (!FNAME(is_last_gpte)(walker, vcpu, mmu, pte));
  217. eperm |= permission_fault(mmu, pte_access, access);
  218. if (unlikely(eperm)) {
  219. errcode |= PFERR_PRESENT_MASK;
  220. goto error;
  221. }
  222. gfn = gpte_to_gfn_lvl(pte, walker->level);
  223. gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
  224. if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
  225. gfn += pse36_gfn_delta(pte);
  226. ac = write_fault | fetch_fault | user_fault;
  227. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), ac);
  228. if (real_gpa == UNMAPPED_GVA)
  229. return 0;
  230. walker->gfn = real_gpa >> PAGE_SHIFT;
  231. if (!write_fault)
  232. protect_clean_gpte(&pte_access, pte);
  233. ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
  234. if (unlikely(ret < 0))
  235. goto error;
  236. else if (ret)
  237. goto retry_walk;
  238. walker->pt_access = pt_access;
  239. walker->pte_access = pte_access;
  240. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  241. __func__, (u64)pte, pte_access, pt_access);
  242. return 1;
  243. error:
  244. errcode |= write_fault | user_fault;
  245. if (fetch_fault && (mmu->nx ||
  246. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  247. errcode |= PFERR_FETCH_MASK;
  248. walker->fault.vector = PF_VECTOR;
  249. walker->fault.error_code_valid = true;
  250. walker->fault.error_code = errcode;
  251. walker->fault.address = addr;
  252. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  253. trace_kvm_mmu_walker_error(walker->fault.error_code);
  254. return 0;
  255. }
  256. static int FNAME(walk_addr)(struct guest_walker *walker,
  257. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  258. {
  259. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  260. access);
  261. }
  262. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  263. struct kvm_vcpu *vcpu, gva_t addr,
  264. u32 access)
  265. {
  266. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  267. addr, access);
  268. }
  269. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  270. struct kvm_mmu_page *sp, u64 *spte,
  271. pt_element_t gpte)
  272. {
  273. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  274. goto no_present;
  275. if (!is_present_gpte(gpte))
  276. goto no_present;
  277. if (!(gpte & PT_ACCESSED_MASK))
  278. goto no_present;
  279. return false;
  280. no_present:
  281. drop_spte(vcpu->kvm, spte);
  282. return true;
  283. }
  284. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  285. u64 *spte, const void *pte)
  286. {
  287. pt_element_t gpte;
  288. unsigned pte_access;
  289. pfn_t pfn;
  290. gpte = *(const pt_element_t *)pte;
  291. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  292. return;
  293. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  294. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  295. protect_clean_gpte(&pte_access, gpte);
  296. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  297. if (mmu_invalid_pfn(pfn))
  298. return;
  299. /*
  300. * we call mmu_set_spte() with host_writable = true because that
  301. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  302. */
  303. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  304. NULL, PT_PAGE_TABLE_LEVEL,
  305. gpte_to_gfn(gpte), pfn, true, true);
  306. }
  307. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  308. struct guest_walker *gw, int level)
  309. {
  310. pt_element_t curr_pte;
  311. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  312. u64 mask;
  313. int r, index;
  314. if (level == PT_PAGE_TABLE_LEVEL) {
  315. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  316. base_gpa = pte_gpa & ~mask;
  317. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  318. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  319. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  320. curr_pte = gw->prefetch_ptes[index];
  321. } else
  322. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  323. &curr_pte, sizeof(curr_pte));
  324. return r || curr_pte != gw->ptes[level - 1];
  325. }
  326. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  327. u64 *sptep)
  328. {
  329. struct kvm_mmu_page *sp;
  330. pt_element_t *gptep = gw->prefetch_ptes;
  331. u64 *spte;
  332. int i;
  333. sp = page_header(__pa(sptep));
  334. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  335. return;
  336. if (sp->role.direct)
  337. return __direct_pte_prefetch(vcpu, sp, sptep);
  338. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  339. spte = sp->spt + i;
  340. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  341. pt_element_t gpte;
  342. unsigned pte_access;
  343. gfn_t gfn;
  344. pfn_t pfn;
  345. if (spte == sptep)
  346. continue;
  347. if (is_shadow_present_pte(*spte))
  348. continue;
  349. gpte = gptep[i];
  350. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  351. continue;
  352. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  353. protect_clean_gpte(&pte_access, gpte);
  354. gfn = gpte_to_gfn(gpte);
  355. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  356. pte_access & ACC_WRITE_MASK);
  357. if (mmu_invalid_pfn(pfn))
  358. break;
  359. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  360. NULL, PT_PAGE_TABLE_LEVEL, gfn,
  361. pfn, true, true);
  362. }
  363. }
  364. /*
  365. * Fetch a shadow pte for a specific level in the paging hierarchy.
  366. */
  367. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  368. struct guest_walker *gw,
  369. int user_fault, int write_fault, int hlevel,
  370. int *emulate, pfn_t pfn, bool map_writable,
  371. bool prefault)
  372. {
  373. unsigned access = gw->pt_access;
  374. struct kvm_mmu_page *sp = NULL;
  375. int top_level;
  376. unsigned direct_access;
  377. struct kvm_shadow_walk_iterator it;
  378. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  379. return NULL;
  380. direct_access = gw->pte_access;
  381. top_level = vcpu->arch.mmu.root_level;
  382. if (top_level == PT32E_ROOT_LEVEL)
  383. top_level = PT32_ROOT_LEVEL;
  384. /*
  385. * Verify that the top-level gpte is still there. Since the page
  386. * is a root page, it is either write protected (and cannot be
  387. * changed from now on) or it is invalid (in which case, we don't
  388. * really care if it changes underneath us after this point).
  389. */
  390. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  391. goto out_gpte_changed;
  392. for (shadow_walk_init(&it, vcpu, addr);
  393. shadow_walk_okay(&it) && it.level > gw->level;
  394. shadow_walk_next(&it)) {
  395. gfn_t table_gfn;
  396. clear_sp_write_flooding_count(it.sptep);
  397. drop_large_spte(vcpu, it.sptep);
  398. sp = NULL;
  399. if (!is_shadow_present_pte(*it.sptep)) {
  400. table_gfn = gw->table_gfn[it.level - 2];
  401. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  402. false, access, it.sptep);
  403. }
  404. /*
  405. * Verify that the gpte in the page we've just write
  406. * protected is still there.
  407. */
  408. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  409. goto out_gpte_changed;
  410. if (sp)
  411. link_shadow_page(it.sptep, sp);
  412. }
  413. for (;
  414. shadow_walk_okay(&it) && it.level > hlevel;
  415. shadow_walk_next(&it)) {
  416. gfn_t direct_gfn;
  417. clear_sp_write_flooding_count(it.sptep);
  418. validate_direct_spte(vcpu, it.sptep, direct_access);
  419. drop_large_spte(vcpu, it.sptep);
  420. if (is_shadow_present_pte(*it.sptep))
  421. continue;
  422. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  423. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  424. true, direct_access, it.sptep);
  425. link_shadow_page(it.sptep, sp);
  426. }
  427. clear_sp_write_flooding_count(it.sptep);
  428. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
  429. user_fault, write_fault, emulate, it.level,
  430. gw->gfn, pfn, prefault, map_writable);
  431. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  432. return it.sptep;
  433. out_gpte_changed:
  434. if (sp)
  435. kvm_mmu_put_page(sp, it.sptep);
  436. kvm_release_pfn_clean(pfn);
  437. return NULL;
  438. }
  439. /*
  440. * Page fault handler. There are several causes for a page fault:
  441. * - there is no shadow pte for the guest pte
  442. * - write access through a shadow pte marked read only so that we can set
  443. * the dirty bit
  444. * - write access to a shadow pte marked read only so we can update the page
  445. * dirty bitmap, when userspace requests it
  446. * - mmio access; in this case we will never install a present shadow pte
  447. * - normal guest page fault due to the guest pte marked not present, not
  448. * writable, or not executable
  449. *
  450. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  451. * a negative value on error.
  452. */
  453. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  454. bool prefault)
  455. {
  456. int write_fault = error_code & PFERR_WRITE_MASK;
  457. int user_fault = error_code & PFERR_USER_MASK;
  458. struct guest_walker walker;
  459. u64 *sptep;
  460. int emulate = 0;
  461. int r;
  462. pfn_t pfn;
  463. int level = PT_PAGE_TABLE_LEVEL;
  464. int force_pt_level;
  465. unsigned long mmu_seq;
  466. bool map_writable;
  467. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  468. if (unlikely(error_code & PFERR_RSVD_MASK))
  469. return handle_mmio_page_fault(vcpu, addr, error_code,
  470. mmu_is_nested(vcpu));
  471. r = mmu_topup_memory_caches(vcpu);
  472. if (r)
  473. return r;
  474. /*
  475. * Look up the guest pte for the faulting address.
  476. */
  477. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  478. /*
  479. * The page is not mapped by the guest. Let the guest handle it.
  480. */
  481. if (!r) {
  482. pgprintk("%s: guest page fault\n", __func__);
  483. if (!prefault)
  484. inject_page_fault(vcpu, &walker.fault);
  485. return 0;
  486. }
  487. if (walker.level >= PT_DIRECTORY_LEVEL)
  488. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  489. else
  490. force_pt_level = 1;
  491. if (!force_pt_level) {
  492. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  493. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  494. }
  495. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  496. smp_rmb();
  497. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  498. &map_writable))
  499. return 0;
  500. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  501. walker.gfn, pfn, walker.pte_access, &r))
  502. return r;
  503. spin_lock(&vcpu->kvm->mmu_lock);
  504. if (mmu_notifier_retry(vcpu, mmu_seq))
  505. goto out_unlock;
  506. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  507. kvm_mmu_free_some_pages(vcpu);
  508. if (!force_pt_level)
  509. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  510. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  511. level, &emulate, pfn, map_writable, prefault);
  512. (void)sptep;
  513. pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
  514. sptep, *sptep, emulate);
  515. ++vcpu->stat.pf_fixed;
  516. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  517. spin_unlock(&vcpu->kvm->mmu_lock);
  518. return emulate;
  519. out_unlock:
  520. spin_unlock(&vcpu->kvm->mmu_lock);
  521. kvm_release_pfn_clean(pfn);
  522. return 0;
  523. }
  524. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  525. {
  526. int offset = 0;
  527. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  528. if (PTTYPE == 32)
  529. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  530. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  531. }
  532. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  533. {
  534. struct kvm_shadow_walk_iterator iterator;
  535. struct kvm_mmu_page *sp;
  536. int level;
  537. u64 *sptep;
  538. vcpu_clear_mmio_info(vcpu, gva);
  539. /*
  540. * No need to check return value here, rmap_can_add() can
  541. * help us to skip pte prefetch later.
  542. */
  543. mmu_topup_memory_caches(vcpu);
  544. spin_lock(&vcpu->kvm->mmu_lock);
  545. for_each_shadow_entry(vcpu, gva, iterator) {
  546. level = iterator.level;
  547. sptep = iterator.sptep;
  548. sp = page_header(__pa(sptep));
  549. if (is_last_spte(*sptep, level)) {
  550. pt_element_t gpte;
  551. gpa_t pte_gpa;
  552. if (!sp->unsync)
  553. break;
  554. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  555. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  556. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  557. kvm_flush_remote_tlbs(vcpu->kvm);
  558. if (!rmap_can_add(vcpu))
  559. break;
  560. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  561. sizeof(pt_element_t)))
  562. break;
  563. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  564. }
  565. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  566. break;
  567. }
  568. spin_unlock(&vcpu->kvm->mmu_lock);
  569. }
  570. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  571. struct x86_exception *exception)
  572. {
  573. struct guest_walker walker;
  574. gpa_t gpa = UNMAPPED_GVA;
  575. int r;
  576. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  577. if (r) {
  578. gpa = gfn_to_gpa(walker.gfn);
  579. gpa |= vaddr & ~PAGE_MASK;
  580. } else if (exception)
  581. *exception = walker.fault;
  582. return gpa;
  583. }
  584. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  585. u32 access,
  586. struct x86_exception *exception)
  587. {
  588. struct guest_walker walker;
  589. gpa_t gpa = UNMAPPED_GVA;
  590. int r;
  591. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  592. if (r) {
  593. gpa = gfn_to_gpa(walker.gfn);
  594. gpa |= vaddr & ~PAGE_MASK;
  595. } else if (exception)
  596. *exception = walker.fault;
  597. return gpa;
  598. }
  599. /*
  600. * Using the cached information from sp->gfns is safe because:
  601. * - The spte has a reference to the struct page, so the pfn for a given gfn
  602. * can't change unless all sptes pointing to it are nuked first.
  603. *
  604. * Note:
  605. * We should flush all tlbs if spte is dropped even though guest is
  606. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  607. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  608. * used by guest then tlbs are not flushed, so guest is allowed to access the
  609. * freed pages.
  610. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  611. */
  612. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  613. {
  614. int i, nr_present = 0;
  615. bool host_writable;
  616. gpa_t first_pte_gpa;
  617. /* direct kvm_mmu_page can not be unsync. */
  618. BUG_ON(sp->role.direct);
  619. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  620. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  621. unsigned pte_access;
  622. pt_element_t gpte;
  623. gpa_t pte_gpa;
  624. gfn_t gfn;
  625. if (!sp->spt[i])
  626. continue;
  627. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  628. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  629. sizeof(pt_element_t)))
  630. return -EINVAL;
  631. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  632. vcpu->kvm->tlbs_dirty++;
  633. continue;
  634. }
  635. gfn = gpte_to_gfn(gpte);
  636. pte_access = sp->role.access;
  637. pte_access &= gpte_access(vcpu, gpte);
  638. protect_clean_gpte(&pte_access, gpte);
  639. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  640. continue;
  641. if (gfn != sp->gfns[i]) {
  642. drop_spte(vcpu->kvm, &sp->spt[i]);
  643. vcpu->kvm->tlbs_dirty++;
  644. continue;
  645. }
  646. nr_present++;
  647. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  648. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  649. PT_PAGE_TABLE_LEVEL, gfn,
  650. spte_to_pfn(sp->spt[i]), true, false,
  651. host_writable);
  652. }
  653. return !nr_present;
  654. }
  655. #undef pt_element_t
  656. #undef guest_walker
  657. #undef FNAME
  658. #undef PT_BASE_ADDR_MASK
  659. #undef PT_INDEX
  660. #undef PT_LVL_ADDR_MASK
  661. #undef PT_LVL_OFFSET_MASK
  662. #undef PT_LEVEL_BITS
  663. #undef PT_MAX_FULL_LEVELS
  664. #undef gpte_to_gfn
  665. #undef gpte_to_gfn_lvl
  666. #undef CMPXCHG