disk-io.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include "compat.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "tree-log.h"
  39. #include "free-space-cache.h"
  40. static struct extent_io_ops btree_extent_io_ops;
  41. static void end_workqueue_fn(struct btrfs_work *work);
  42. static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
  43. /*
  44. * end_io_wq structs are used to do processing in task context when an IO is
  45. * complete. This is used during reads to verify checksums, and it is used
  46. * by writes to insert metadata for new file extents after IO is complete.
  47. */
  48. struct end_io_wq {
  49. struct bio *bio;
  50. bio_end_io_t *end_io;
  51. void *private;
  52. struct btrfs_fs_info *info;
  53. int error;
  54. int metadata;
  55. struct list_head list;
  56. struct btrfs_work work;
  57. };
  58. /*
  59. * async submit bios are used to offload expensive checksumming
  60. * onto the worker threads. They checksum file and metadata bios
  61. * just before they are sent down the IO stack.
  62. */
  63. struct async_submit_bio {
  64. struct inode *inode;
  65. struct bio *bio;
  66. struct list_head list;
  67. extent_submit_bio_hook_t *submit_bio_start;
  68. extent_submit_bio_hook_t *submit_bio_done;
  69. int rw;
  70. int mirror_num;
  71. unsigned long bio_flags;
  72. struct btrfs_work work;
  73. };
  74. /* These are used to set the lockdep class on the extent buffer locks.
  75. * The class is set by the readpage_end_io_hook after the buffer has
  76. * passed csum validation but before the pages are unlocked.
  77. *
  78. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  79. * allocated blocks.
  80. *
  81. * The class is based on the level in the tree block, which allows lockdep
  82. * to know that lower nodes nest inside the locks of higher nodes.
  83. *
  84. * We also add a check to make sure the highest level of the tree is
  85. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  86. * code needs update as well.
  87. */
  88. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  89. # if BTRFS_MAX_LEVEL != 8
  90. # error
  91. # endif
  92. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  93. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  94. /* leaf */
  95. "btrfs-extent-00",
  96. "btrfs-extent-01",
  97. "btrfs-extent-02",
  98. "btrfs-extent-03",
  99. "btrfs-extent-04",
  100. "btrfs-extent-05",
  101. "btrfs-extent-06",
  102. "btrfs-extent-07",
  103. /* highest possible level */
  104. "btrfs-extent-08",
  105. };
  106. #endif
  107. /*
  108. * extents on the btree inode are pretty simple, there's one extent
  109. * that covers the entire device
  110. */
  111. static struct extent_map *btree_get_extent(struct inode *inode,
  112. struct page *page, size_t page_offset, u64 start, u64 len,
  113. int create)
  114. {
  115. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  116. struct extent_map *em;
  117. int ret;
  118. read_lock(&em_tree->lock);
  119. em = lookup_extent_mapping(em_tree, start, len);
  120. if (em) {
  121. em->bdev =
  122. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  123. read_unlock(&em_tree->lock);
  124. goto out;
  125. }
  126. read_unlock(&em_tree->lock);
  127. em = alloc_extent_map(GFP_NOFS);
  128. if (!em) {
  129. em = ERR_PTR(-ENOMEM);
  130. goto out;
  131. }
  132. em->start = 0;
  133. em->len = (u64)-1;
  134. em->block_len = (u64)-1;
  135. em->block_start = 0;
  136. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  137. write_lock(&em_tree->lock);
  138. ret = add_extent_mapping(em_tree, em);
  139. if (ret == -EEXIST) {
  140. u64 failed_start = em->start;
  141. u64 failed_len = em->len;
  142. free_extent_map(em);
  143. em = lookup_extent_mapping(em_tree, start, len);
  144. if (em) {
  145. ret = 0;
  146. } else {
  147. em = lookup_extent_mapping(em_tree, failed_start,
  148. failed_len);
  149. ret = -EIO;
  150. }
  151. } else if (ret) {
  152. free_extent_map(em);
  153. em = NULL;
  154. }
  155. write_unlock(&em_tree->lock);
  156. if (ret)
  157. em = ERR_PTR(ret);
  158. out:
  159. return em;
  160. }
  161. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  162. {
  163. return crc32c(seed, data, len);
  164. }
  165. void btrfs_csum_final(u32 crc, char *result)
  166. {
  167. *(__le32 *)result = ~cpu_to_le32(crc);
  168. }
  169. /*
  170. * compute the csum for a btree block, and either verify it or write it
  171. * into the csum field of the block.
  172. */
  173. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  174. int verify)
  175. {
  176. u16 csum_size =
  177. btrfs_super_csum_size(&root->fs_info->super_copy);
  178. char *result = NULL;
  179. unsigned long len;
  180. unsigned long cur_len;
  181. unsigned long offset = BTRFS_CSUM_SIZE;
  182. char *map_token = NULL;
  183. char *kaddr;
  184. unsigned long map_start;
  185. unsigned long map_len;
  186. int err;
  187. u32 crc = ~(u32)0;
  188. unsigned long inline_result;
  189. len = buf->len - offset;
  190. while (len > 0) {
  191. err = map_private_extent_buffer(buf, offset, 32,
  192. &map_token, &kaddr,
  193. &map_start, &map_len, KM_USER0);
  194. if (err)
  195. return 1;
  196. cur_len = min(len, map_len - (offset - map_start));
  197. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  198. crc, cur_len);
  199. len -= cur_len;
  200. offset += cur_len;
  201. unmap_extent_buffer(buf, map_token, KM_USER0);
  202. }
  203. if (csum_size > sizeof(inline_result)) {
  204. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  205. if (!result)
  206. return 1;
  207. } else {
  208. result = (char *)&inline_result;
  209. }
  210. btrfs_csum_final(crc, result);
  211. if (verify) {
  212. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  213. u32 val;
  214. u32 found = 0;
  215. memcpy(&found, result, csum_size);
  216. read_extent_buffer(buf, &val, 0, csum_size);
  217. if (printk_ratelimit()) {
  218. printk(KERN_INFO "btrfs: %s checksum verify "
  219. "failed on %llu wanted %X found %X "
  220. "level %d\n",
  221. root->fs_info->sb->s_id,
  222. (unsigned long long)buf->start, val, found,
  223. btrfs_header_level(buf));
  224. }
  225. if (result != (char *)&inline_result)
  226. kfree(result);
  227. return 1;
  228. }
  229. } else {
  230. write_extent_buffer(buf, result, 0, csum_size);
  231. }
  232. if (result != (char *)&inline_result)
  233. kfree(result);
  234. return 0;
  235. }
  236. /*
  237. * we can't consider a given block up to date unless the transid of the
  238. * block matches the transid in the parent node's pointer. This is how we
  239. * detect blocks that either didn't get written at all or got written
  240. * in the wrong place.
  241. */
  242. static int verify_parent_transid(struct extent_io_tree *io_tree,
  243. struct extent_buffer *eb, u64 parent_transid)
  244. {
  245. int ret;
  246. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  247. return 0;
  248. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  249. if (extent_buffer_uptodate(io_tree, eb) &&
  250. btrfs_header_generation(eb) == parent_transid) {
  251. ret = 0;
  252. goto out;
  253. }
  254. if (printk_ratelimit()) {
  255. printk("parent transid verify failed on %llu wanted %llu "
  256. "found %llu\n",
  257. (unsigned long long)eb->start,
  258. (unsigned long long)parent_transid,
  259. (unsigned long long)btrfs_header_generation(eb));
  260. }
  261. ret = 1;
  262. clear_extent_buffer_uptodate(io_tree, eb);
  263. out:
  264. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  265. GFP_NOFS);
  266. return ret;
  267. }
  268. /*
  269. * helper to read a given tree block, doing retries as required when
  270. * the checksums don't match and we have alternate mirrors to try.
  271. */
  272. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  273. struct extent_buffer *eb,
  274. u64 start, u64 parent_transid)
  275. {
  276. struct extent_io_tree *io_tree;
  277. int ret;
  278. int num_copies = 0;
  279. int mirror_num = 0;
  280. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  281. while (1) {
  282. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  283. btree_get_extent, mirror_num);
  284. if (!ret &&
  285. !verify_parent_transid(io_tree, eb, parent_transid))
  286. return ret;
  287. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  288. eb->start, eb->len);
  289. if (num_copies == 1)
  290. return ret;
  291. mirror_num++;
  292. if (mirror_num > num_copies)
  293. return ret;
  294. }
  295. return -EIO;
  296. }
  297. /*
  298. * checksum a dirty tree block before IO. This has extra checks to make sure
  299. * we only fill in the checksum field in the first page of a multi-page block
  300. */
  301. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  302. {
  303. struct extent_io_tree *tree;
  304. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  305. u64 found_start;
  306. int found_level;
  307. unsigned long len;
  308. struct extent_buffer *eb;
  309. int ret;
  310. tree = &BTRFS_I(page->mapping->host)->io_tree;
  311. if (page->private == EXTENT_PAGE_PRIVATE)
  312. goto out;
  313. if (!page->private)
  314. goto out;
  315. len = page->private >> 2;
  316. WARN_ON(len == 0);
  317. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  318. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  319. btrfs_header_generation(eb));
  320. BUG_ON(ret);
  321. found_start = btrfs_header_bytenr(eb);
  322. if (found_start != start) {
  323. WARN_ON(1);
  324. goto err;
  325. }
  326. if (eb->first_page != page) {
  327. WARN_ON(1);
  328. goto err;
  329. }
  330. if (!PageUptodate(page)) {
  331. WARN_ON(1);
  332. goto err;
  333. }
  334. found_level = btrfs_header_level(eb);
  335. csum_tree_block(root, eb, 0);
  336. err:
  337. free_extent_buffer(eb);
  338. out:
  339. return 0;
  340. }
  341. static int check_tree_block_fsid(struct btrfs_root *root,
  342. struct extent_buffer *eb)
  343. {
  344. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  345. u8 fsid[BTRFS_UUID_SIZE];
  346. int ret = 1;
  347. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  348. BTRFS_FSID_SIZE);
  349. while (fs_devices) {
  350. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  351. ret = 0;
  352. break;
  353. }
  354. fs_devices = fs_devices->seed;
  355. }
  356. return ret;
  357. }
  358. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  359. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  360. {
  361. lockdep_set_class_and_name(&eb->lock,
  362. &btrfs_eb_class[level],
  363. btrfs_eb_name[level]);
  364. }
  365. #endif
  366. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  367. struct extent_state *state)
  368. {
  369. struct extent_io_tree *tree;
  370. u64 found_start;
  371. int found_level;
  372. unsigned long len;
  373. struct extent_buffer *eb;
  374. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  375. int ret = 0;
  376. tree = &BTRFS_I(page->mapping->host)->io_tree;
  377. if (page->private == EXTENT_PAGE_PRIVATE)
  378. goto out;
  379. if (!page->private)
  380. goto out;
  381. len = page->private >> 2;
  382. WARN_ON(len == 0);
  383. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  384. found_start = btrfs_header_bytenr(eb);
  385. if (found_start != start) {
  386. if (printk_ratelimit()) {
  387. printk(KERN_INFO "btrfs bad tree block start "
  388. "%llu %llu\n",
  389. (unsigned long long)found_start,
  390. (unsigned long long)eb->start);
  391. }
  392. ret = -EIO;
  393. goto err;
  394. }
  395. if (eb->first_page != page) {
  396. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  397. eb->first_page->index, page->index);
  398. WARN_ON(1);
  399. ret = -EIO;
  400. goto err;
  401. }
  402. if (check_tree_block_fsid(root, eb)) {
  403. if (printk_ratelimit()) {
  404. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  405. (unsigned long long)eb->start);
  406. }
  407. ret = -EIO;
  408. goto err;
  409. }
  410. found_level = btrfs_header_level(eb);
  411. btrfs_set_buffer_lockdep_class(eb, found_level);
  412. ret = csum_tree_block(root, eb, 1);
  413. if (ret)
  414. ret = -EIO;
  415. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  416. end = eb->start + end - 1;
  417. err:
  418. free_extent_buffer(eb);
  419. out:
  420. return ret;
  421. }
  422. static void end_workqueue_bio(struct bio *bio, int err)
  423. {
  424. struct end_io_wq *end_io_wq = bio->bi_private;
  425. struct btrfs_fs_info *fs_info;
  426. fs_info = end_io_wq->info;
  427. end_io_wq->error = err;
  428. end_io_wq->work.func = end_workqueue_fn;
  429. end_io_wq->work.flags = 0;
  430. if (bio->bi_rw & (1 << BIO_RW)) {
  431. if (end_io_wq->metadata)
  432. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  433. &end_io_wq->work);
  434. else
  435. btrfs_queue_worker(&fs_info->endio_write_workers,
  436. &end_io_wq->work);
  437. } else {
  438. if (end_io_wq->metadata)
  439. btrfs_queue_worker(&fs_info->endio_meta_workers,
  440. &end_io_wq->work);
  441. else
  442. btrfs_queue_worker(&fs_info->endio_workers,
  443. &end_io_wq->work);
  444. }
  445. }
  446. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  447. int metadata)
  448. {
  449. struct end_io_wq *end_io_wq;
  450. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  451. if (!end_io_wq)
  452. return -ENOMEM;
  453. end_io_wq->private = bio->bi_private;
  454. end_io_wq->end_io = bio->bi_end_io;
  455. end_io_wq->info = info;
  456. end_io_wq->error = 0;
  457. end_io_wq->bio = bio;
  458. end_io_wq->metadata = metadata;
  459. bio->bi_private = end_io_wq;
  460. bio->bi_end_io = end_workqueue_bio;
  461. return 0;
  462. }
  463. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  464. {
  465. unsigned long limit = min_t(unsigned long,
  466. info->workers.max_workers,
  467. info->fs_devices->open_devices);
  468. return 256 * limit;
  469. }
  470. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  471. {
  472. return atomic_read(&info->nr_async_bios) >
  473. btrfs_async_submit_limit(info);
  474. }
  475. static void run_one_async_start(struct btrfs_work *work)
  476. {
  477. struct btrfs_fs_info *fs_info;
  478. struct async_submit_bio *async;
  479. async = container_of(work, struct async_submit_bio, work);
  480. fs_info = BTRFS_I(async->inode)->root->fs_info;
  481. async->submit_bio_start(async->inode, async->rw, async->bio,
  482. async->mirror_num, async->bio_flags);
  483. }
  484. static void run_one_async_done(struct btrfs_work *work)
  485. {
  486. struct btrfs_fs_info *fs_info;
  487. struct async_submit_bio *async;
  488. int limit;
  489. async = container_of(work, struct async_submit_bio, work);
  490. fs_info = BTRFS_I(async->inode)->root->fs_info;
  491. limit = btrfs_async_submit_limit(fs_info);
  492. limit = limit * 2 / 3;
  493. atomic_dec(&fs_info->nr_async_submits);
  494. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  495. waitqueue_active(&fs_info->async_submit_wait))
  496. wake_up(&fs_info->async_submit_wait);
  497. async->submit_bio_done(async->inode, async->rw, async->bio,
  498. async->mirror_num, async->bio_flags);
  499. }
  500. static void run_one_async_free(struct btrfs_work *work)
  501. {
  502. struct async_submit_bio *async;
  503. async = container_of(work, struct async_submit_bio, work);
  504. kfree(async);
  505. }
  506. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  507. int rw, struct bio *bio, int mirror_num,
  508. unsigned long bio_flags,
  509. extent_submit_bio_hook_t *submit_bio_start,
  510. extent_submit_bio_hook_t *submit_bio_done)
  511. {
  512. struct async_submit_bio *async;
  513. async = kmalloc(sizeof(*async), GFP_NOFS);
  514. if (!async)
  515. return -ENOMEM;
  516. async->inode = inode;
  517. async->rw = rw;
  518. async->bio = bio;
  519. async->mirror_num = mirror_num;
  520. async->submit_bio_start = submit_bio_start;
  521. async->submit_bio_done = submit_bio_done;
  522. async->work.func = run_one_async_start;
  523. async->work.ordered_func = run_one_async_done;
  524. async->work.ordered_free = run_one_async_free;
  525. async->work.flags = 0;
  526. async->bio_flags = bio_flags;
  527. atomic_inc(&fs_info->nr_async_submits);
  528. if (rw & (1 << BIO_RW_SYNCIO))
  529. btrfs_set_work_high_prio(&async->work);
  530. btrfs_queue_worker(&fs_info->workers, &async->work);
  531. while (atomic_read(&fs_info->async_submit_draining) &&
  532. atomic_read(&fs_info->nr_async_submits)) {
  533. wait_event(fs_info->async_submit_wait,
  534. (atomic_read(&fs_info->nr_async_submits) == 0));
  535. }
  536. return 0;
  537. }
  538. static int btree_csum_one_bio(struct bio *bio)
  539. {
  540. struct bio_vec *bvec = bio->bi_io_vec;
  541. int bio_index = 0;
  542. struct btrfs_root *root;
  543. WARN_ON(bio->bi_vcnt <= 0);
  544. while (bio_index < bio->bi_vcnt) {
  545. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  546. csum_dirty_buffer(root, bvec->bv_page);
  547. bio_index++;
  548. bvec++;
  549. }
  550. return 0;
  551. }
  552. static int __btree_submit_bio_start(struct inode *inode, int rw,
  553. struct bio *bio, int mirror_num,
  554. unsigned long bio_flags)
  555. {
  556. /*
  557. * when we're called for a write, we're already in the async
  558. * submission context. Just jump into btrfs_map_bio
  559. */
  560. btree_csum_one_bio(bio);
  561. return 0;
  562. }
  563. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  564. int mirror_num, unsigned long bio_flags)
  565. {
  566. /*
  567. * when we're called for a write, we're already in the async
  568. * submission context. Just jump into btrfs_map_bio
  569. */
  570. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  571. }
  572. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  573. int mirror_num, unsigned long bio_flags)
  574. {
  575. int ret;
  576. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  577. bio, 1);
  578. BUG_ON(ret);
  579. if (!(rw & (1 << BIO_RW))) {
  580. /*
  581. * called for a read, do the setup so that checksum validation
  582. * can happen in the async kernel threads
  583. */
  584. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  585. mirror_num, 0);
  586. }
  587. /*
  588. * kthread helpers are used to submit writes so that checksumming
  589. * can happen in parallel across all CPUs
  590. */
  591. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  592. inode, rw, bio, mirror_num, 0,
  593. __btree_submit_bio_start,
  594. __btree_submit_bio_done);
  595. }
  596. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  597. {
  598. struct extent_io_tree *tree;
  599. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  600. struct extent_buffer *eb;
  601. int was_dirty;
  602. tree = &BTRFS_I(page->mapping->host)->io_tree;
  603. if (!(current->flags & PF_MEMALLOC)) {
  604. return extent_write_full_page(tree, page,
  605. btree_get_extent, wbc);
  606. }
  607. redirty_page_for_writepage(wbc, page);
  608. eb = btrfs_find_tree_block(root, page_offset(page),
  609. PAGE_CACHE_SIZE);
  610. WARN_ON(!eb);
  611. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  612. if (!was_dirty) {
  613. spin_lock(&root->fs_info->delalloc_lock);
  614. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  615. spin_unlock(&root->fs_info->delalloc_lock);
  616. }
  617. free_extent_buffer(eb);
  618. unlock_page(page);
  619. return 0;
  620. }
  621. static int btree_writepages(struct address_space *mapping,
  622. struct writeback_control *wbc)
  623. {
  624. struct extent_io_tree *tree;
  625. tree = &BTRFS_I(mapping->host)->io_tree;
  626. if (wbc->sync_mode == WB_SYNC_NONE) {
  627. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  628. u64 num_dirty;
  629. unsigned long thresh = 32 * 1024 * 1024;
  630. if (wbc->for_kupdate)
  631. return 0;
  632. /* this is a bit racy, but that's ok */
  633. num_dirty = root->fs_info->dirty_metadata_bytes;
  634. if (num_dirty < thresh)
  635. return 0;
  636. }
  637. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  638. }
  639. static int btree_readpage(struct file *file, struct page *page)
  640. {
  641. struct extent_io_tree *tree;
  642. tree = &BTRFS_I(page->mapping->host)->io_tree;
  643. return extent_read_full_page(tree, page, btree_get_extent);
  644. }
  645. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  646. {
  647. struct extent_io_tree *tree;
  648. struct extent_map_tree *map;
  649. int ret;
  650. if (PageWriteback(page) || PageDirty(page))
  651. return 0;
  652. tree = &BTRFS_I(page->mapping->host)->io_tree;
  653. map = &BTRFS_I(page->mapping->host)->extent_tree;
  654. ret = try_release_extent_state(map, tree, page, gfp_flags);
  655. if (!ret)
  656. return 0;
  657. ret = try_release_extent_buffer(tree, page);
  658. if (ret == 1) {
  659. ClearPagePrivate(page);
  660. set_page_private(page, 0);
  661. page_cache_release(page);
  662. }
  663. return ret;
  664. }
  665. static void btree_invalidatepage(struct page *page, unsigned long offset)
  666. {
  667. struct extent_io_tree *tree;
  668. tree = &BTRFS_I(page->mapping->host)->io_tree;
  669. extent_invalidatepage(tree, page, offset);
  670. btree_releasepage(page, GFP_NOFS);
  671. if (PagePrivate(page)) {
  672. printk(KERN_WARNING "btrfs warning page private not zero "
  673. "on page %llu\n", (unsigned long long)page_offset(page));
  674. ClearPagePrivate(page);
  675. set_page_private(page, 0);
  676. page_cache_release(page);
  677. }
  678. }
  679. static struct address_space_operations btree_aops = {
  680. .readpage = btree_readpage,
  681. .writepage = btree_writepage,
  682. .writepages = btree_writepages,
  683. .releasepage = btree_releasepage,
  684. .invalidatepage = btree_invalidatepage,
  685. .sync_page = block_sync_page,
  686. };
  687. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  688. u64 parent_transid)
  689. {
  690. struct extent_buffer *buf = NULL;
  691. struct inode *btree_inode = root->fs_info->btree_inode;
  692. int ret = 0;
  693. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  694. if (!buf)
  695. return 0;
  696. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  697. buf, 0, 0, btree_get_extent, 0);
  698. free_extent_buffer(buf);
  699. return ret;
  700. }
  701. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  702. u64 bytenr, u32 blocksize)
  703. {
  704. struct inode *btree_inode = root->fs_info->btree_inode;
  705. struct extent_buffer *eb;
  706. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  707. bytenr, blocksize, GFP_NOFS);
  708. return eb;
  709. }
  710. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  711. u64 bytenr, u32 blocksize)
  712. {
  713. struct inode *btree_inode = root->fs_info->btree_inode;
  714. struct extent_buffer *eb;
  715. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  716. bytenr, blocksize, NULL, GFP_NOFS);
  717. return eb;
  718. }
  719. int btrfs_write_tree_block(struct extent_buffer *buf)
  720. {
  721. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  722. buf->start + buf->len - 1, WB_SYNC_ALL);
  723. }
  724. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  725. {
  726. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  727. buf->start, buf->start + buf->len - 1);
  728. }
  729. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  730. u32 blocksize, u64 parent_transid)
  731. {
  732. struct extent_buffer *buf = NULL;
  733. struct inode *btree_inode = root->fs_info->btree_inode;
  734. struct extent_io_tree *io_tree;
  735. int ret;
  736. io_tree = &BTRFS_I(btree_inode)->io_tree;
  737. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  738. if (!buf)
  739. return NULL;
  740. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  741. if (ret == 0)
  742. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  743. return buf;
  744. }
  745. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  746. struct extent_buffer *buf)
  747. {
  748. struct inode *btree_inode = root->fs_info->btree_inode;
  749. if (btrfs_header_generation(buf) ==
  750. root->fs_info->running_transaction->transid) {
  751. btrfs_assert_tree_locked(buf);
  752. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  753. spin_lock(&root->fs_info->delalloc_lock);
  754. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  755. root->fs_info->dirty_metadata_bytes -= buf->len;
  756. else
  757. WARN_ON(1);
  758. spin_unlock(&root->fs_info->delalloc_lock);
  759. }
  760. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  761. btrfs_set_lock_blocking(buf);
  762. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  763. buf);
  764. }
  765. return 0;
  766. }
  767. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  768. u32 stripesize, struct btrfs_root *root,
  769. struct btrfs_fs_info *fs_info,
  770. u64 objectid)
  771. {
  772. root->node = NULL;
  773. root->commit_root = NULL;
  774. root->sectorsize = sectorsize;
  775. root->nodesize = nodesize;
  776. root->leafsize = leafsize;
  777. root->stripesize = stripesize;
  778. root->ref_cows = 0;
  779. root->track_dirty = 0;
  780. root->fs_info = fs_info;
  781. root->objectid = objectid;
  782. root->last_trans = 0;
  783. root->highest_objectid = 0;
  784. root->name = NULL;
  785. root->in_sysfs = 0;
  786. root->inode_tree.rb_node = NULL;
  787. INIT_LIST_HEAD(&root->dirty_list);
  788. INIT_LIST_HEAD(&root->orphan_list);
  789. INIT_LIST_HEAD(&root->root_list);
  790. spin_lock_init(&root->node_lock);
  791. spin_lock_init(&root->list_lock);
  792. spin_lock_init(&root->inode_lock);
  793. mutex_init(&root->objectid_mutex);
  794. mutex_init(&root->log_mutex);
  795. init_waitqueue_head(&root->log_writer_wait);
  796. init_waitqueue_head(&root->log_commit_wait[0]);
  797. init_waitqueue_head(&root->log_commit_wait[1]);
  798. atomic_set(&root->log_commit[0], 0);
  799. atomic_set(&root->log_commit[1], 0);
  800. atomic_set(&root->log_writers, 0);
  801. root->log_batch = 0;
  802. root->log_transid = 0;
  803. extent_io_tree_init(&root->dirty_log_pages,
  804. fs_info->btree_inode->i_mapping, GFP_NOFS);
  805. memset(&root->root_key, 0, sizeof(root->root_key));
  806. memset(&root->root_item, 0, sizeof(root->root_item));
  807. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  808. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  809. root->defrag_trans_start = fs_info->generation;
  810. init_completion(&root->kobj_unregister);
  811. root->defrag_running = 0;
  812. root->defrag_level = 0;
  813. root->root_key.objectid = objectid;
  814. root->anon_super.s_root = NULL;
  815. root->anon_super.s_dev = 0;
  816. INIT_LIST_HEAD(&root->anon_super.s_list);
  817. INIT_LIST_HEAD(&root->anon_super.s_instances);
  818. init_rwsem(&root->anon_super.s_umount);
  819. return 0;
  820. }
  821. static int find_and_setup_root(struct btrfs_root *tree_root,
  822. struct btrfs_fs_info *fs_info,
  823. u64 objectid,
  824. struct btrfs_root *root)
  825. {
  826. int ret;
  827. u32 blocksize;
  828. u64 generation;
  829. __setup_root(tree_root->nodesize, tree_root->leafsize,
  830. tree_root->sectorsize, tree_root->stripesize,
  831. root, fs_info, objectid);
  832. ret = btrfs_find_last_root(tree_root, objectid,
  833. &root->root_item, &root->root_key);
  834. BUG_ON(ret);
  835. generation = btrfs_root_generation(&root->root_item);
  836. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  837. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  838. blocksize, generation);
  839. root->commit_root = btrfs_root_node(root);
  840. BUG_ON(!root->node);
  841. return 0;
  842. }
  843. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  844. struct btrfs_fs_info *fs_info)
  845. {
  846. struct extent_buffer *eb;
  847. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  848. u64 start = 0;
  849. u64 end = 0;
  850. int ret;
  851. if (!log_root_tree)
  852. return 0;
  853. while (1) {
  854. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  855. 0, &start, &end, EXTENT_DIRTY);
  856. if (ret)
  857. break;
  858. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  859. start, end, GFP_NOFS);
  860. }
  861. eb = fs_info->log_root_tree->node;
  862. WARN_ON(btrfs_header_level(eb) != 0);
  863. WARN_ON(btrfs_header_nritems(eb) != 0);
  864. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  865. eb->start, eb->len);
  866. BUG_ON(ret);
  867. free_extent_buffer(eb);
  868. kfree(fs_info->log_root_tree);
  869. fs_info->log_root_tree = NULL;
  870. return 0;
  871. }
  872. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  873. struct btrfs_fs_info *fs_info)
  874. {
  875. struct btrfs_root *root;
  876. struct btrfs_root *tree_root = fs_info->tree_root;
  877. struct extent_buffer *leaf;
  878. root = kzalloc(sizeof(*root), GFP_NOFS);
  879. if (!root)
  880. return ERR_PTR(-ENOMEM);
  881. __setup_root(tree_root->nodesize, tree_root->leafsize,
  882. tree_root->sectorsize, tree_root->stripesize,
  883. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  884. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  885. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  886. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  887. /*
  888. * log trees do not get reference counted because they go away
  889. * before a real commit is actually done. They do store pointers
  890. * to file data extents, and those reference counts still get
  891. * updated (along with back refs to the log tree).
  892. */
  893. root->ref_cows = 0;
  894. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  895. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  896. if (IS_ERR(leaf)) {
  897. kfree(root);
  898. return ERR_CAST(leaf);
  899. }
  900. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  901. btrfs_set_header_bytenr(leaf, leaf->start);
  902. btrfs_set_header_generation(leaf, trans->transid);
  903. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  904. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  905. root->node = leaf;
  906. write_extent_buffer(root->node, root->fs_info->fsid,
  907. (unsigned long)btrfs_header_fsid(root->node),
  908. BTRFS_FSID_SIZE);
  909. btrfs_mark_buffer_dirty(root->node);
  910. btrfs_tree_unlock(root->node);
  911. return root;
  912. }
  913. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  914. struct btrfs_fs_info *fs_info)
  915. {
  916. struct btrfs_root *log_root;
  917. log_root = alloc_log_tree(trans, fs_info);
  918. if (IS_ERR(log_root))
  919. return PTR_ERR(log_root);
  920. WARN_ON(fs_info->log_root_tree);
  921. fs_info->log_root_tree = log_root;
  922. return 0;
  923. }
  924. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  925. struct btrfs_root *root)
  926. {
  927. struct btrfs_root *log_root;
  928. struct btrfs_inode_item *inode_item;
  929. log_root = alloc_log_tree(trans, root->fs_info);
  930. if (IS_ERR(log_root))
  931. return PTR_ERR(log_root);
  932. log_root->last_trans = trans->transid;
  933. log_root->root_key.offset = root->root_key.objectid;
  934. inode_item = &log_root->root_item.inode;
  935. inode_item->generation = cpu_to_le64(1);
  936. inode_item->size = cpu_to_le64(3);
  937. inode_item->nlink = cpu_to_le32(1);
  938. inode_item->nbytes = cpu_to_le64(root->leafsize);
  939. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  940. btrfs_set_root_node(&log_root->root_item, log_root->node);
  941. WARN_ON(root->log_root);
  942. root->log_root = log_root;
  943. root->log_transid = 0;
  944. return 0;
  945. }
  946. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  947. struct btrfs_key *location)
  948. {
  949. struct btrfs_root *root;
  950. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  951. struct btrfs_path *path;
  952. struct extent_buffer *l;
  953. u64 generation;
  954. u32 blocksize;
  955. int ret = 0;
  956. root = kzalloc(sizeof(*root), GFP_NOFS);
  957. if (!root)
  958. return ERR_PTR(-ENOMEM);
  959. if (location->offset == (u64)-1) {
  960. ret = find_and_setup_root(tree_root, fs_info,
  961. location->objectid, root);
  962. if (ret) {
  963. kfree(root);
  964. return ERR_PTR(ret);
  965. }
  966. goto out;
  967. }
  968. __setup_root(tree_root->nodesize, tree_root->leafsize,
  969. tree_root->sectorsize, tree_root->stripesize,
  970. root, fs_info, location->objectid);
  971. path = btrfs_alloc_path();
  972. BUG_ON(!path);
  973. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  974. if (ret == 0) {
  975. l = path->nodes[0];
  976. read_extent_buffer(l, &root->root_item,
  977. btrfs_item_ptr_offset(l, path->slots[0]),
  978. sizeof(root->root_item));
  979. memcpy(&root->root_key, location, sizeof(*location));
  980. }
  981. btrfs_free_path(path);
  982. if (ret) {
  983. if (ret > 0)
  984. ret = -ENOENT;
  985. return ERR_PTR(ret);
  986. }
  987. generation = btrfs_root_generation(&root->root_item);
  988. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  989. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  990. blocksize, generation);
  991. root->commit_root = btrfs_root_node(root);
  992. BUG_ON(!root->node);
  993. out:
  994. if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
  995. root->ref_cows = 1;
  996. return root;
  997. }
  998. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  999. u64 root_objectid)
  1000. {
  1001. struct btrfs_root *root;
  1002. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1003. return fs_info->tree_root;
  1004. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1005. return fs_info->extent_root;
  1006. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1007. (unsigned long)root_objectid);
  1008. return root;
  1009. }
  1010. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1011. struct btrfs_key *location)
  1012. {
  1013. struct btrfs_root *root;
  1014. int ret;
  1015. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1016. return fs_info->tree_root;
  1017. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1018. return fs_info->extent_root;
  1019. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1020. return fs_info->chunk_root;
  1021. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1022. return fs_info->dev_root;
  1023. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1024. return fs_info->csum_root;
  1025. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1026. (unsigned long)location->objectid);
  1027. if (root)
  1028. return root;
  1029. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1030. if (IS_ERR(root))
  1031. return root;
  1032. set_anon_super(&root->anon_super, NULL);
  1033. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1034. (unsigned long)root->root_key.objectid,
  1035. root);
  1036. if (ret) {
  1037. free_extent_buffer(root->node);
  1038. kfree(root);
  1039. return ERR_PTR(ret);
  1040. }
  1041. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1042. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1043. root->root_key.objectid);
  1044. BUG_ON(ret);
  1045. btrfs_orphan_cleanup(root);
  1046. }
  1047. return root;
  1048. }
  1049. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1050. struct btrfs_key *location,
  1051. const char *name, int namelen)
  1052. {
  1053. struct btrfs_root *root;
  1054. int ret;
  1055. root = btrfs_read_fs_root_no_name(fs_info, location);
  1056. if (!root)
  1057. return NULL;
  1058. if (root->in_sysfs)
  1059. return root;
  1060. ret = btrfs_set_root_name(root, name, namelen);
  1061. if (ret) {
  1062. free_extent_buffer(root->node);
  1063. kfree(root);
  1064. return ERR_PTR(ret);
  1065. }
  1066. #if 0
  1067. ret = btrfs_sysfs_add_root(root);
  1068. if (ret) {
  1069. free_extent_buffer(root->node);
  1070. kfree(root->name);
  1071. kfree(root);
  1072. return ERR_PTR(ret);
  1073. }
  1074. #endif
  1075. root->in_sysfs = 1;
  1076. return root;
  1077. }
  1078. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1079. {
  1080. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1081. int ret = 0;
  1082. struct btrfs_device *device;
  1083. struct backing_dev_info *bdi;
  1084. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1085. if (!device->bdev)
  1086. continue;
  1087. bdi = blk_get_backing_dev_info(device->bdev);
  1088. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1089. ret = 1;
  1090. break;
  1091. }
  1092. }
  1093. return ret;
  1094. }
  1095. /*
  1096. * this unplugs every device on the box, and it is only used when page
  1097. * is null
  1098. */
  1099. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1100. {
  1101. struct btrfs_device *device;
  1102. struct btrfs_fs_info *info;
  1103. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1104. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1105. if (!device->bdev)
  1106. continue;
  1107. bdi = blk_get_backing_dev_info(device->bdev);
  1108. if (bdi->unplug_io_fn)
  1109. bdi->unplug_io_fn(bdi, page);
  1110. }
  1111. }
  1112. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1113. {
  1114. struct inode *inode;
  1115. struct extent_map_tree *em_tree;
  1116. struct extent_map *em;
  1117. struct address_space *mapping;
  1118. u64 offset;
  1119. /* the generic O_DIRECT read code does this */
  1120. if (1 || !page) {
  1121. __unplug_io_fn(bdi, page);
  1122. return;
  1123. }
  1124. /*
  1125. * page->mapping may change at any time. Get a consistent copy
  1126. * and use that for everything below
  1127. */
  1128. smp_mb();
  1129. mapping = page->mapping;
  1130. if (!mapping)
  1131. return;
  1132. inode = mapping->host;
  1133. /*
  1134. * don't do the expensive searching for a small number of
  1135. * devices
  1136. */
  1137. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1138. __unplug_io_fn(bdi, page);
  1139. return;
  1140. }
  1141. offset = page_offset(page);
  1142. em_tree = &BTRFS_I(inode)->extent_tree;
  1143. read_lock(&em_tree->lock);
  1144. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1145. read_unlock(&em_tree->lock);
  1146. if (!em) {
  1147. __unplug_io_fn(bdi, page);
  1148. return;
  1149. }
  1150. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1151. free_extent_map(em);
  1152. __unplug_io_fn(bdi, page);
  1153. return;
  1154. }
  1155. offset = offset - em->start;
  1156. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1157. em->block_start + offset, page);
  1158. free_extent_map(em);
  1159. }
  1160. /*
  1161. * If this fails, caller must call bdi_destroy() to get rid of the
  1162. * bdi again.
  1163. */
  1164. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1165. {
  1166. int err;
  1167. bdi->capabilities = BDI_CAP_MAP_COPY;
  1168. err = bdi_init(bdi);
  1169. if (err)
  1170. return err;
  1171. err = bdi_register(bdi, NULL, "btrfs-%d",
  1172. atomic_inc_return(&btrfs_bdi_num));
  1173. if (err)
  1174. return err;
  1175. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1176. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1177. bdi->unplug_io_data = info;
  1178. bdi->congested_fn = btrfs_congested_fn;
  1179. bdi->congested_data = info;
  1180. return 0;
  1181. }
  1182. static int bio_ready_for_csum(struct bio *bio)
  1183. {
  1184. u64 length = 0;
  1185. u64 buf_len = 0;
  1186. u64 start = 0;
  1187. struct page *page;
  1188. struct extent_io_tree *io_tree = NULL;
  1189. struct btrfs_fs_info *info = NULL;
  1190. struct bio_vec *bvec;
  1191. int i;
  1192. int ret;
  1193. bio_for_each_segment(bvec, bio, i) {
  1194. page = bvec->bv_page;
  1195. if (page->private == EXTENT_PAGE_PRIVATE) {
  1196. length += bvec->bv_len;
  1197. continue;
  1198. }
  1199. if (!page->private) {
  1200. length += bvec->bv_len;
  1201. continue;
  1202. }
  1203. length = bvec->bv_len;
  1204. buf_len = page->private >> 2;
  1205. start = page_offset(page) + bvec->bv_offset;
  1206. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1207. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1208. }
  1209. /* are we fully contained in this bio? */
  1210. if (buf_len <= length)
  1211. return 1;
  1212. ret = extent_range_uptodate(io_tree, start + length,
  1213. start + buf_len - 1);
  1214. return ret;
  1215. }
  1216. /*
  1217. * called by the kthread helper functions to finally call the bio end_io
  1218. * functions. This is where read checksum verification actually happens
  1219. */
  1220. static void end_workqueue_fn(struct btrfs_work *work)
  1221. {
  1222. struct bio *bio;
  1223. struct end_io_wq *end_io_wq;
  1224. struct btrfs_fs_info *fs_info;
  1225. int error;
  1226. end_io_wq = container_of(work, struct end_io_wq, work);
  1227. bio = end_io_wq->bio;
  1228. fs_info = end_io_wq->info;
  1229. /* metadata bio reads are special because the whole tree block must
  1230. * be checksummed at once. This makes sure the entire block is in
  1231. * ram and up to date before trying to verify things. For
  1232. * blocksize <= pagesize, it is basically a noop
  1233. */
  1234. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1235. !bio_ready_for_csum(bio)) {
  1236. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1237. &end_io_wq->work);
  1238. return;
  1239. }
  1240. error = end_io_wq->error;
  1241. bio->bi_private = end_io_wq->private;
  1242. bio->bi_end_io = end_io_wq->end_io;
  1243. kfree(end_io_wq);
  1244. bio_endio(bio, error);
  1245. }
  1246. static int cleaner_kthread(void *arg)
  1247. {
  1248. struct btrfs_root *root = arg;
  1249. do {
  1250. smp_mb();
  1251. if (root->fs_info->closing)
  1252. break;
  1253. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1254. mutex_lock(&root->fs_info->cleaner_mutex);
  1255. btrfs_clean_old_snapshots(root);
  1256. mutex_unlock(&root->fs_info->cleaner_mutex);
  1257. if (freezing(current)) {
  1258. refrigerator();
  1259. } else {
  1260. smp_mb();
  1261. if (root->fs_info->closing)
  1262. break;
  1263. set_current_state(TASK_INTERRUPTIBLE);
  1264. schedule();
  1265. __set_current_state(TASK_RUNNING);
  1266. }
  1267. } while (!kthread_should_stop());
  1268. return 0;
  1269. }
  1270. static int transaction_kthread(void *arg)
  1271. {
  1272. struct btrfs_root *root = arg;
  1273. struct btrfs_trans_handle *trans;
  1274. struct btrfs_transaction *cur;
  1275. unsigned long now;
  1276. unsigned long delay;
  1277. int ret;
  1278. do {
  1279. smp_mb();
  1280. if (root->fs_info->closing)
  1281. break;
  1282. delay = HZ * 30;
  1283. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1284. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1285. mutex_lock(&root->fs_info->trans_mutex);
  1286. cur = root->fs_info->running_transaction;
  1287. if (!cur) {
  1288. mutex_unlock(&root->fs_info->trans_mutex);
  1289. goto sleep;
  1290. }
  1291. now = get_seconds();
  1292. if (now < cur->start_time || now - cur->start_time < 30) {
  1293. mutex_unlock(&root->fs_info->trans_mutex);
  1294. delay = HZ * 5;
  1295. goto sleep;
  1296. }
  1297. mutex_unlock(&root->fs_info->trans_mutex);
  1298. trans = btrfs_start_transaction(root, 1);
  1299. ret = btrfs_commit_transaction(trans, root);
  1300. sleep:
  1301. wake_up_process(root->fs_info->cleaner_kthread);
  1302. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1303. if (freezing(current)) {
  1304. refrigerator();
  1305. } else {
  1306. if (root->fs_info->closing)
  1307. break;
  1308. set_current_state(TASK_INTERRUPTIBLE);
  1309. schedule_timeout(delay);
  1310. __set_current_state(TASK_RUNNING);
  1311. }
  1312. } while (!kthread_should_stop());
  1313. return 0;
  1314. }
  1315. struct btrfs_root *open_ctree(struct super_block *sb,
  1316. struct btrfs_fs_devices *fs_devices,
  1317. char *options)
  1318. {
  1319. u32 sectorsize;
  1320. u32 nodesize;
  1321. u32 leafsize;
  1322. u32 blocksize;
  1323. u32 stripesize;
  1324. u64 generation;
  1325. u64 features;
  1326. struct btrfs_key location;
  1327. struct buffer_head *bh;
  1328. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1329. GFP_NOFS);
  1330. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1331. GFP_NOFS);
  1332. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1333. GFP_NOFS);
  1334. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1335. GFP_NOFS);
  1336. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1337. GFP_NOFS);
  1338. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1339. GFP_NOFS);
  1340. struct btrfs_root *log_tree_root;
  1341. int ret;
  1342. int err = -EINVAL;
  1343. struct btrfs_super_block *disk_super;
  1344. if (!extent_root || !tree_root || !fs_info ||
  1345. !chunk_root || !dev_root || !csum_root) {
  1346. err = -ENOMEM;
  1347. goto fail;
  1348. }
  1349. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1350. INIT_LIST_HEAD(&fs_info->trans_list);
  1351. INIT_LIST_HEAD(&fs_info->dead_roots);
  1352. INIT_LIST_HEAD(&fs_info->hashers);
  1353. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1354. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1355. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1356. spin_lock_init(&fs_info->delalloc_lock);
  1357. spin_lock_init(&fs_info->new_trans_lock);
  1358. spin_lock_init(&fs_info->ref_cache_lock);
  1359. init_completion(&fs_info->kobj_unregister);
  1360. fs_info->tree_root = tree_root;
  1361. fs_info->extent_root = extent_root;
  1362. fs_info->csum_root = csum_root;
  1363. fs_info->chunk_root = chunk_root;
  1364. fs_info->dev_root = dev_root;
  1365. fs_info->fs_devices = fs_devices;
  1366. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1367. INIT_LIST_HEAD(&fs_info->space_info);
  1368. btrfs_mapping_init(&fs_info->mapping_tree);
  1369. atomic_set(&fs_info->nr_async_submits, 0);
  1370. atomic_set(&fs_info->async_delalloc_pages, 0);
  1371. atomic_set(&fs_info->async_submit_draining, 0);
  1372. atomic_set(&fs_info->nr_async_bios, 0);
  1373. fs_info->sb = sb;
  1374. fs_info->max_extent = (u64)-1;
  1375. fs_info->max_inline = 8192 * 1024;
  1376. if (setup_bdi(fs_info, &fs_info->bdi))
  1377. goto fail_bdi;
  1378. fs_info->btree_inode = new_inode(sb);
  1379. fs_info->btree_inode->i_ino = 1;
  1380. fs_info->btree_inode->i_nlink = 1;
  1381. fs_info->metadata_ratio = 8;
  1382. fs_info->thread_pool_size = min_t(unsigned long,
  1383. num_online_cpus() + 2, 8);
  1384. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1385. spin_lock_init(&fs_info->ordered_extent_lock);
  1386. sb->s_blocksize = 4096;
  1387. sb->s_blocksize_bits = blksize_bits(4096);
  1388. /*
  1389. * we set the i_size on the btree inode to the max possible int.
  1390. * the real end of the address space is determined by all of
  1391. * the devices in the system
  1392. */
  1393. fs_info->btree_inode->i_size = OFFSET_MAX;
  1394. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1395. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1396. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1397. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1398. fs_info->btree_inode->i_mapping,
  1399. GFP_NOFS);
  1400. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1401. GFP_NOFS);
  1402. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1403. spin_lock_init(&fs_info->block_group_cache_lock);
  1404. fs_info->block_group_cache_tree.rb_node = NULL;
  1405. extent_io_tree_init(&fs_info->freed_extents[0],
  1406. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1407. extent_io_tree_init(&fs_info->freed_extents[1],
  1408. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1409. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1410. fs_info->do_barriers = 1;
  1411. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1412. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1413. sizeof(struct btrfs_key));
  1414. insert_inode_hash(fs_info->btree_inode);
  1415. mutex_init(&fs_info->trans_mutex);
  1416. mutex_init(&fs_info->ordered_operations_mutex);
  1417. mutex_init(&fs_info->tree_log_mutex);
  1418. mutex_init(&fs_info->drop_mutex);
  1419. mutex_init(&fs_info->chunk_mutex);
  1420. mutex_init(&fs_info->transaction_kthread_mutex);
  1421. mutex_init(&fs_info->cleaner_mutex);
  1422. mutex_init(&fs_info->volume_mutex);
  1423. mutex_init(&fs_info->tree_reloc_mutex);
  1424. init_rwsem(&fs_info->extent_commit_sem);
  1425. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1426. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1427. init_waitqueue_head(&fs_info->transaction_throttle);
  1428. init_waitqueue_head(&fs_info->transaction_wait);
  1429. init_waitqueue_head(&fs_info->async_submit_wait);
  1430. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1431. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1432. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1433. if (!bh)
  1434. goto fail_iput;
  1435. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1436. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1437. sizeof(fs_info->super_for_commit));
  1438. brelse(bh);
  1439. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1440. disk_super = &fs_info->super_copy;
  1441. if (!btrfs_super_root(disk_super))
  1442. goto fail_iput;
  1443. ret = btrfs_parse_options(tree_root, options);
  1444. if (ret) {
  1445. err = ret;
  1446. goto fail_iput;
  1447. }
  1448. features = btrfs_super_incompat_flags(disk_super) &
  1449. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1450. if (features) {
  1451. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1452. "unsupported optional features (%Lx).\n",
  1453. (unsigned long long)features);
  1454. err = -EINVAL;
  1455. goto fail_iput;
  1456. }
  1457. features = btrfs_super_incompat_flags(disk_super);
  1458. if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
  1459. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1460. btrfs_set_super_incompat_flags(disk_super, features);
  1461. }
  1462. features = btrfs_super_compat_ro_flags(disk_super) &
  1463. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1464. if (!(sb->s_flags & MS_RDONLY) && features) {
  1465. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1466. "unsupported option features (%Lx).\n",
  1467. (unsigned long long)features);
  1468. err = -EINVAL;
  1469. goto fail_iput;
  1470. }
  1471. printk("thread pool is %d\n", fs_info->thread_pool_size);
  1472. /*
  1473. * we need to start all the end_io workers up front because the
  1474. * queue work function gets called at interrupt time, and so it
  1475. * cannot dynamically grow.
  1476. */
  1477. btrfs_init_workers(&fs_info->workers, "worker",
  1478. fs_info->thread_pool_size);
  1479. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1480. fs_info->thread_pool_size);
  1481. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1482. min_t(u64, fs_devices->num_devices,
  1483. fs_info->thread_pool_size));
  1484. /* a higher idle thresh on the submit workers makes it much more
  1485. * likely that bios will be send down in a sane order to the
  1486. * devices
  1487. */
  1488. fs_info->submit_workers.idle_thresh = 64;
  1489. fs_info->workers.idle_thresh = 16;
  1490. fs_info->workers.ordered = 1;
  1491. fs_info->delalloc_workers.idle_thresh = 2;
  1492. fs_info->delalloc_workers.ordered = 1;
  1493. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1494. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1495. fs_info->thread_pool_size);
  1496. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1497. fs_info->thread_pool_size);
  1498. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1499. "endio-meta-write", fs_info->thread_pool_size);
  1500. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1501. fs_info->thread_pool_size);
  1502. /*
  1503. * endios are largely parallel and should have a very
  1504. * low idle thresh
  1505. */
  1506. fs_info->endio_workers.idle_thresh = 4;
  1507. fs_info->endio_meta_workers.idle_thresh = 4;
  1508. fs_info->endio_write_workers.idle_thresh = 2;
  1509. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1510. fs_info->endio_workers.atomic_worker_start = 1;
  1511. fs_info->endio_meta_workers.atomic_worker_start = 1;
  1512. fs_info->endio_write_workers.atomic_worker_start = 1;
  1513. fs_info->endio_meta_write_workers.atomic_worker_start = 1;
  1514. btrfs_start_workers(&fs_info->workers, 1);
  1515. btrfs_start_workers(&fs_info->submit_workers, 1);
  1516. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1517. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1518. btrfs_start_workers(&fs_info->endio_workers, 1);
  1519. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1520. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1521. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1522. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1523. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1524. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1525. nodesize = btrfs_super_nodesize(disk_super);
  1526. leafsize = btrfs_super_leafsize(disk_super);
  1527. sectorsize = btrfs_super_sectorsize(disk_super);
  1528. stripesize = btrfs_super_stripesize(disk_super);
  1529. tree_root->nodesize = nodesize;
  1530. tree_root->leafsize = leafsize;
  1531. tree_root->sectorsize = sectorsize;
  1532. tree_root->stripesize = stripesize;
  1533. sb->s_blocksize = sectorsize;
  1534. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1535. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1536. sizeof(disk_super->magic))) {
  1537. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1538. goto fail_sb_buffer;
  1539. }
  1540. mutex_lock(&fs_info->chunk_mutex);
  1541. ret = btrfs_read_sys_array(tree_root);
  1542. mutex_unlock(&fs_info->chunk_mutex);
  1543. if (ret) {
  1544. printk(KERN_WARNING "btrfs: failed to read the system "
  1545. "array on %s\n", sb->s_id);
  1546. goto fail_sb_buffer;
  1547. }
  1548. blocksize = btrfs_level_size(tree_root,
  1549. btrfs_super_chunk_root_level(disk_super));
  1550. generation = btrfs_super_chunk_root_generation(disk_super);
  1551. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1552. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1553. chunk_root->node = read_tree_block(chunk_root,
  1554. btrfs_super_chunk_root(disk_super),
  1555. blocksize, generation);
  1556. BUG_ON(!chunk_root->node);
  1557. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1558. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1559. sb->s_id);
  1560. goto fail_chunk_root;
  1561. }
  1562. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1563. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1564. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1565. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1566. BTRFS_UUID_SIZE);
  1567. mutex_lock(&fs_info->chunk_mutex);
  1568. ret = btrfs_read_chunk_tree(chunk_root);
  1569. mutex_unlock(&fs_info->chunk_mutex);
  1570. if (ret) {
  1571. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1572. sb->s_id);
  1573. goto fail_chunk_root;
  1574. }
  1575. btrfs_close_extra_devices(fs_devices);
  1576. blocksize = btrfs_level_size(tree_root,
  1577. btrfs_super_root_level(disk_super));
  1578. generation = btrfs_super_generation(disk_super);
  1579. tree_root->node = read_tree_block(tree_root,
  1580. btrfs_super_root(disk_super),
  1581. blocksize, generation);
  1582. if (!tree_root->node)
  1583. goto fail_chunk_root;
  1584. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1585. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1586. sb->s_id);
  1587. goto fail_tree_root;
  1588. }
  1589. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1590. tree_root->commit_root = btrfs_root_node(tree_root);
  1591. ret = find_and_setup_root(tree_root, fs_info,
  1592. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1593. if (ret)
  1594. goto fail_tree_root;
  1595. extent_root->track_dirty = 1;
  1596. ret = find_and_setup_root(tree_root, fs_info,
  1597. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1598. if (ret)
  1599. goto fail_extent_root;
  1600. dev_root->track_dirty = 1;
  1601. ret = find_and_setup_root(tree_root, fs_info,
  1602. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1603. if (ret)
  1604. goto fail_dev_root;
  1605. csum_root->track_dirty = 1;
  1606. btrfs_read_block_groups(extent_root);
  1607. fs_info->generation = generation;
  1608. fs_info->last_trans_committed = generation;
  1609. fs_info->data_alloc_profile = (u64)-1;
  1610. fs_info->metadata_alloc_profile = (u64)-1;
  1611. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1612. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1613. "btrfs-cleaner");
  1614. if (IS_ERR(fs_info->cleaner_kthread))
  1615. goto fail_csum_root;
  1616. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1617. tree_root,
  1618. "btrfs-transaction");
  1619. if (IS_ERR(fs_info->transaction_kthread))
  1620. goto fail_cleaner;
  1621. if (!btrfs_test_opt(tree_root, SSD) &&
  1622. !btrfs_test_opt(tree_root, NOSSD) &&
  1623. !fs_info->fs_devices->rotating) {
  1624. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1625. "mode\n");
  1626. btrfs_set_opt(fs_info->mount_opt, SSD);
  1627. }
  1628. if (btrfs_super_log_root(disk_super) != 0) {
  1629. u64 bytenr = btrfs_super_log_root(disk_super);
  1630. if (fs_devices->rw_devices == 0) {
  1631. printk(KERN_WARNING "Btrfs log replay required "
  1632. "on RO media\n");
  1633. err = -EIO;
  1634. goto fail_trans_kthread;
  1635. }
  1636. blocksize =
  1637. btrfs_level_size(tree_root,
  1638. btrfs_super_log_root_level(disk_super));
  1639. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1640. GFP_NOFS);
  1641. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1642. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1643. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1644. blocksize,
  1645. generation + 1);
  1646. ret = btrfs_recover_log_trees(log_tree_root);
  1647. BUG_ON(ret);
  1648. if (sb->s_flags & MS_RDONLY) {
  1649. ret = btrfs_commit_super(tree_root);
  1650. BUG_ON(ret);
  1651. }
  1652. }
  1653. if (!(sb->s_flags & MS_RDONLY)) {
  1654. ret = btrfs_recover_relocation(tree_root);
  1655. BUG_ON(ret);
  1656. }
  1657. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1658. location.type = BTRFS_ROOT_ITEM_KEY;
  1659. location.offset = (u64)-1;
  1660. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1661. if (!fs_info->fs_root)
  1662. goto fail_trans_kthread;
  1663. return tree_root;
  1664. fail_trans_kthread:
  1665. kthread_stop(fs_info->transaction_kthread);
  1666. fail_cleaner:
  1667. kthread_stop(fs_info->cleaner_kthread);
  1668. /*
  1669. * make sure we're done with the btree inode before we stop our
  1670. * kthreads
  1671. */
  1672. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1673. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1674. fail_csum_root:
  1675. free_extent_buffer(csum_root->node);
  1676. free_extent_buffer(csum_root->commit_root);
  1677. fail_dev_root:
  1678. free_extent_buffer(dev_root->node);
  1679. free_extent_buffer(dev_root->commit_root);
  1680. fail_extent_root:
  1681. free_extent_buffer(extent_root->node);
  1682. free_extent_buffer(extent_root->commit_root);
  1683. fail_tree_root:
  1684. free_extent_buffer(tree_root->node);
  1685. free_extent_buffer(tree_root->commit_root);
  1686. fail_chunk_root:
  1687. free_extent_buffer(chunk_root->node);
  1688. free_extent_buffer(chunk_root->commit_root);
  1689. fail_sb_buffer:
  1690. btrfs_stop_workers(&fs_info->fixup_workers);
  1691. btrfs_stop_workers(&fs_info->delalloc_workers);
  1692. btrfs_stop_workers(&fs_info->workers);
  1693. btrfs_stop_workers(&fs_info->endio_workers);
  1694. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1695. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1696. btrfs_stop_workers(&fs_info->endio_write_workers);
  1697. btrfs_stop_workers(&fs_info->submit_workers);
  1698. fail_iput:
  1699. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1700. iput(fs_info->btree_inode);
  1701. btrfs_close_devices(fs_info->fs_devices);
  1702. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1703. fail_bdi:
  1704. bdi_destroy(&fs_info->bdi);
  1705. fail:
  1706. kfree(extent_root);
  1707. kfree(tree_root);
  1708. kfree(fs_info);
  1709. kfree(chunk_root);
  1710. kfree(dev_root);
  1711. kfree(csum_root);
  1712. return ERR_PTR(err);
  1713. }
  1714. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1715. {
  1716. char b[BDEVNAME_SIZE];
  1717. if (uptodate) {
  1718. set_buffer_uptodate(bh);
  1719. } else {
  1720. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1721. printk(KERN_WARNING "lost page write due to "
  1722. "I/O error on %s\n",
  1723. bdevname(bh->b_bdev, b));
  1724. }
  1725. /* note, we dont' set_buffer_write_io_error because we have
  1726. * our own ways of dealing with the IO errors
  1727. */
  1728. clear_buffer_uptodate(bh);
  1729. }
  1730. unlock_buffer(bh);
  1731. put_bh(bh);
  1732. }
  1733. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1734. {
  1735. struct buffer_head *bh;
  1736. struct buffer_head *latest = NULL;
  1737. struct btrfs_super_block *super;
  1738. int i;
  1739. u64 transid = 0;
  1740. u64 bytenr;
  1741. /* we would like to check all the supers, but that would make
  1742. * a btrfs mount succeed after a mkfs from a different FS.
  1743. * So, we need to add a special mount option to scan for
  1744. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1745. */
  1746. for (i = 0; i < 1; i++) {
  1747. bytenr = btrfs_sb_offset(i);
  1748. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1749. break;
  1750. bh = __bread(bdev, bytenr / 4096, 4096);
  1751. if (!bh)
  1752. continue;
  1753. super = (struct btrfs_super_block *)bh->b_data;
  1754. if (btrfs_super_bytenr(super) != bytenr ||
  1755. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1756. sizeof(super->magic))) {
  1757. brelse(bh);
  1758. continue;
  1759. }
  1760. if (!latest || btrfs_super_generation(super) > transid) {
  1761. brelse(latest);
  1762. latest = bh;
  1763. transid = btrfs_super_generation(super);
  1764. } else {
  1765. brelse(bh);
  1766. }
  1767. }
  1768. return latest;
  1769. }
  1770. /*
  1771. * this should be called twice, once with wait == 0 and
  1772. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1773. * we write are pinned.
  1774. *
  1775. * They are released when wait == 1 is done.
  1776. * max_mirrors must be the same for both runs, and it indicates how
  1777. * many supers on this one device should be written.
  1778. *
  1779. * max_mirrors == 0 means to write them all.
  1780. */
  1781. static int write_dev_supers(struct btrfs_device *device,
  1782. struct btrfs_super_block *sb,
  1783. int do_barriers, int wait, int max_mirrors)
  1784. {
  1785. struct buffer_head *bh;
  1786. int i;
  1787. int ret;
  1788. int errors = 0;
  1789. u32 crc;
  1790. u64 bytenr;
  1791. int last_barrier = 0;
  1792. if (max_mirrors == 0)
  1793. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1794. /* make sure only the last submit_bh does a barrier */
  1795. if (do_barriers) {
  1796. for (i = 0; i < max_mirrors; i++) {
  1797. bytenr = btrfs_sb_offset(i);
  1798. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1799. device->total_bytes)
  1800. break;
  1801. last_barrier = i;
  1802. }
  1803. }
  1804. for (i = 0; i < max_mirrors; i++) {
  1805. bytenr = btrfs_sb_offset(i);
  1806. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1807. break;
  1808. if (wait) {
  1809. bh = __find_get_block(device->bdev, bytenr / 4096,
  1810. BTRFS_SUPER_INFO_SIZE);
  1811. BUG_ON(!bh);
  1812. wait_on_buffer(bh);
  1813. if (!buffer_uptodate(bh))
  1814. errors++;
  1815. /* drop our reference */
  1816. brelse(bh);
  1817. /* drop the reference from the wait == 0 run */
  1818. brelse(bh);
  1819. continue;
  1820. } else {
  1821. btrfs_set_super_bytenr(sb, bytenr);
  1822. crc = ~(u32)0;
  1823. crc = btrfs_csum_data(NULL, (char *)sb +
  1824. BTRFS_CSUM_SIZE, crc,
  1825. BTRFS_SUPER_INFO_SIZE -
  1826. BTRFS_CSUM_SIZE);
  1827. btrfs_csum_final(crc, sb->csum);
  1828. /*
  1829. * one reference for us, and we leave it for the
  1830. * caller
  1831. */
  1832. bh = __getblk(device->bdev, bytenr / 4096,
  1833. BTRFS_SUPER_INFO_SIZE);
  1834. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1835. /* one reference for submit_bh */
  1836. get_bh(bh);
  1837. set_buffer_uptodate(bh);
  1838. lock_buffer(bh);
  1839. bh->b_end_io = btrfs_end_buffer_write_sync;
  1840. }
  1841. if (i == last_barrier && do_barriers && device->barriers) {
  1842. ret = submit_bh(WRITE_BARRIER, bh);
  1843. if (ret == -EOPNOTSUPP) {
  1844. printk("btrfs: disabling barriers on dev %s\n",
  1845. device->name);
  1846. set_buffer_uptodate(bh);
  1847. device->barriers = 0;
  1848. /* one reference for submit_bh */
  1849. get_bh(bh);
  1850. lock_buffer(bh);
  1851. ret = submit_bh(WRITE_SYNC, bh);
  1852. }
  1853. } else {
  1854. ret = submit_bh(WRITE_SYNC, bh);
  1855. }
  1856. if (ret)
  1857. errors++;
  1858. }
  1859. return errors < i ? 0 : -1;
  1860. }
  1861. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1862. {
  1863. struct list_head *head;
  1864. struct btrfs_device *dev;
  1865. struct btrfs_super_block *sb;
  1866. struct btrfs_dev_item *dev_item;
  1867. int ret;
  1868. int do_barriers;
  1869. int max_errors;
  1870. int total_errors = 0;
  1871. u64 flags;
  1872. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1873. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1874. sb = &root->fs_info->super_for_commit;
  1875. dev_item = &sb->dev_item;
  1876. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1877. head = &root->fs_info->fs_devices->devices;
  1878. list_for_each_entry(dev, head, dev_list) {
  1879. if (!dev->bdev) {
  1880. total_errors++;
  1881. continue;
  1882. }
  1883. if (!dev->in_fs_metadata || !dev->writeable)
  1884. continue;
  1885. btrfs_set_stack_device_generation(dev_item, 0);
  1886. btrfs_set_stack_device_type(dev_item, dev->type);
  1887. btrfs_set_stack_device_id(dev_item, dev->devid);
  1888. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1889. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1890. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1891. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1892. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1893. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1894. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1895. flags = btrfs_super_flags(sb);
  1896. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1897. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1898. if (ret)
  1899. total_errors++;
  1900. }
  1901. if (total_errors > max_errors) {
  1902. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1903. total_errors);
  1904. BUG();
  1905. }
  1906. total_errors = 0;
  1907. list_for_each_entry(dev, head, dev_list) {
  1908. if (!dev->bdev)
  1909. continue;
  1910. if (!dev->in_fs_metadata || !dev->writeable)
  1911. continue;
  1912. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1913. if (ret)
  1914. total_errors++;
  1915. }
  1916. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1917. if (total_errors > max_errors) {
  1918. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1919. total_errors);
  1920. BUG();
  1921. }
  1922. return 0;
  1923. }
  1924. int write_ctree_super(struct btrfs_trans_handle *trans,
  1925. struct btrfs_root *root, int max_mirrors)
  1926. {
  1927. int ret;
  1928. ret = write_all_supers(root, max_mirrors);
  1929. return ret;
  1930. }
  1931. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1932. {
  1933. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  1934. radix_tree_delete(&fs_info->fs_roots_radix,
  1935. (unsigned long)root->root_key.objectid);
  1936. if (root->anon_super.s_dev) {
  1937. down_write(&root->anon_super.s_umount);
  1938. kill_anon_super(&root->anon_super);
  1939. }
  1940. if (root->node)
  1941. free_extent_buffer(root->node);
  1942. if (root->commit_root)
  1943. free_extent_buffer(root->commit_root);
  1944. kfree(root->name);
  1945. kfree(root);
  1946. return 0;
  1947. }
  1948. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1949. {
  1950. int ret;
  1951. struct btrfs_root *gang[8];
  1952. int i;
  1953. while (1) {
  1954. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1955. (void **)gang, 0,
  1956. ARRAY_SIZE(gang));
  1957. if (!ret)
  1958. break;
  1959. for (i = 0; i < ret; i++)
  1960. btrfs_free_fs_root(fs_info, gang[i]);
  1961. }
  1962. return 0;
  1963. }
  1964. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1965. {
  1966. u64 root_objectid = 0;
  1967. struct btrfs_root *gang[8];
  1968. int i;
  1969. int ret;
  1970. while (1) {
  1971. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1972. (void **)gang, root_objectid,
  1973. ARRAY_SIZE(gang));
  1974. if (!ret)
  1975. break;
  1976. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  1977. for (i = 0; i < ret; i++) {
  1978. root_objectid = gang[i]->root_key.objectid;
  1979. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1980. root_objectid);
  1981. BUG_ON(ret);
  1982. btrfs_orphan_cleanup(gang[i]);
  1983. }
  1984. root_objectid++;
  1985. }
  1986. return 0;
  1987. }
  1988. int btrfs_commit_super(struct btrfs_root *root)
  1989. {
  1990. struct btrfs_trans_handle *trans;
  1991. int ret;
  1992. mutex_lock(&root->fs_info->cleaner_mutex);
  1993. btrfs_clean_old_snapshots(root);
  1994. mutex_unlock(&root->fs_info->cleaner_mutex);
  1995. trans = btrfs_start_transaction(root, 1);
  1996. ret = btrfs_commit_transaction(trans, root);
  1997. BUG_ON(ret);
  1998. /* run commit again to drop the original snapshot */
  1999. trans = btrfs_start_transaction(root, 1);
  2000. btrfs_commit_transaction(trans, root);
  2001. ret = btrfs_write_and_wait_transaction(NULL, root);
  2002. BUG_ON(ret);
  2003. ret = write_ctree_super(NULL, root, 0);
  2004. return ret;
  2005. }
  2006. int close_ctree(struct btrfs_root *root)
  2007. {
  2008. struct btrfs_fs_info *fs_info = root->fs_info;
  2009. int ret;
  2010. fs_info->closing = 1;
  2011. smp_mb();
  2012. kthread_stop(root->fs_info->transaction_kthread);
  2013. kthread_stop(root->fs_info->cleaner_kthread);
  2014. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2015. ret = btrfs_commit_super(root);
  2016. if (ret)
  2017. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2018. }
  2019. fs_info->closing = 2;
  2020. smp_mb();
  2021. if (fs_info->delalloc_bytes) {
  2022. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2023. (unsigned long long)fs_info->delalloc_bytes);
  2024. }
  2025. if (fs_info->total_ref_cache_size) {
  2026. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2027. (unsigned long long)fs_info->total_ref_cache_size);
  2028. }
  2029. free_extent_buffer(fs_info->extent_root->node);
  2030. free_extent_buffer(fs_info->extent_root->commit_root);
  2031. free_extent_buffer(fs_info->tree_root->node);
  2032. free_extent_buffer(fs_info->tree_root->commit_root);
  2033. free_extent_buffer(root->fs_info->chunk_root->node);
  2034. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2035. free_extent_buffer(root->fs_info->dev_root->node);
  2036. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2037. free_extent_buffer(root->fs_info->csum_root->node);
  2038. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2039. btrfs_free_block_groups(root->fs_info);
  2040. del_fs_roots(fs_info);
  2041. iput(fs_info->btree_inode);
  2042. btrfs_stop_workers(&fs_info->fixup_workers);
  2043. btrfs_stop_workers(&fs_info->delalloc_workers);
  2044. btrfs_stop_workers(&fs_info->workers);
  2045. btrfs_stop_workers(&fs_info->endio_workers);
  2046. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2047. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2048. btrfs_stop_workers(&fs_info->endio_write_workers);
  2049. btrfs_stop_workers(&fs_info->submit_workers);
  2050. btrfs_close_devices(fs_info->fs_devices);
  2051. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2052. bdi_destroy(&fs_info->bdi);
  2053. kfree(fs_info->extent_root);
  2054. kfree(fs_info->tree_root);
  2055. kfree(fs_info->chunk_root);
  2056. kfree(fs_info->dev_root);
  2057. kfree(fs_info->csum_root);
  2058. return 0;
  2059. }
  2060. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2061. {
  2062. int ret;
  2063. struct inode *btree_inode = buf->first_page->mapping->host;
  2064. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  2065. if (!ret)
  2066. return ret;
  2067. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2068. parent_transid);
  2069. return !ret;
  2070. }
  2071. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2072. {
  2073. struct inode *btree_inode = buf->first_page->mapping->host;
  2074. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2075. buf);
  2076. }
  2077. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2078. {
  2079. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2080. u64 transid = btrfs_header_generation(buf);
  2081. struct inode *btree_inode = root->fs_info->btree_inode;
  2082. int was_dirty;
  2083. btrfs_assert_tree_locked(buf);
  2084. if (transid != root->fs_info->generation) {
  2085. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2086. "found %llu running %llu\n",
  2087. (unsigned long long)buf->start,
  2088. (unsigned long long)transid,
  2089. (unsigned long long)root->fs_info->generation);
  2090. WARN_ON(1);
  2091. }
  2092. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2093. buf);
  2094. if (!was_dirty) {
  2095. spin_lock(&root->fs_info->delalloc_lock);
  2096. root->fs_info->dirty_metadata_bytes += buf->len;
  2097. spin_unlock(&root->fs_info->delalloc_lock);
  2098. }
  2099. }
  2100. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2101. {
  2102. /*
  2103. * looks as though older kernels can get into trouble with
  2104. * this code, they end up stuck in balance_dirty_pages forever
  2105. */
  2106. u64 num_dirty;
  2107. unsigned long thresh = 32 * 1024 * 1024;
  2108. if (current->flags & PF_MEMALLOC)
  2109. return;
  2110. num_dirty = root->fs_info->dirty_metadata_bytes;
  2111. if (num_dirty > thresh) {
  2112. balance_dirty_pages_ratelimited_nr(
  2113. root->fs_info->btree_inode->i_mapping, 1);
  2114. }
  2115. return;
  2116. }
  2117. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2118. {
  2119. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2120. int ret;
  2121. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2122. if (ret == 0)
  2123. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2124. return ret;
  2125. }
  2126. int btree_lock_page_hook(struct page *page)
  2127. {
  2128. struct inode *inode = page->mapping->host;
  2129. struct btrfs_root *root = BTRFS_I(inode)->root;
  2130. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2131. struct extent_buffer *eb;
  2132. unsigned long len;
  2133. u64 bytenr = page_offset(page);
  2134. if (page->private == EXTENT_PAGE_PRIVATE)
  2135. goto out;
  2136. len = page->private >> 2;
  2137. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2138. if (!eb)
  2139. goto out;
  2140. btrfs_tree_lock(eb);
  2141. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2142. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2143. spin_lock(&root->fs_info->delalloc_lock);
  2144. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2145. root->fs_info->dirty_metadata_bytes -= eb->len;
  2146. else
  2147. WARN_ON(1);
  2148. spin_unlock(&root->fs_info->delalloc_lock);
  2149. }
  2150. btrfs_tree_unlock(eb);
  2151. free_extent_buffer(eb);
  2152. out:
  2153. lock_page(page);
  2154. return 0;
  2155. }
  2156. static struct extent_io_ops btree_extent_io_ops = {
  2157. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2158. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2159. .submit_bio_hook = btree_submit_bio_hook,
  2160. /* note we're sharing with inode.c for the merge bio hook */
  2161. .merge_bio_hook = btrfs_merge_bio_hook,
  2162. };