mmu.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include "vmx.h"
  26. #include "kvm.h"
  27. #define pgprintk(x...) do { printk(x); } while (0)
  28. #define rmap_printk(x...) do { printk(x); } while (0)
  29. #define ASSERT(x) \
  30. if (!(x)) { \
  31. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  32. __FILE__, __LINE__, #x); \
  33. }
  34. #define PT64_PT_BITS 9
  35. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  36. #define PT32_PT_BITS 10
  37. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  38. #define PT_WRITABLE_SHIFT 1
  39. #define PT_PRESENT_MASK (1ULL << 0)
  40. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  41. #define PT_USER_MASK (1ULL << 2)
  42. #define PT_PWT_MASK (1ULL << 3)
  43. #define PT_PCD_MASK (1ULL << 4)
  44. #define PT_ACCESSED_MASK (1ULL << 5)
  45. #define PT_DIRTY_MASK (1ULL << 6)
  46. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  47. #define PT_PAT_MASK (1ULL << 7)
  48. #define PT_GLOBAL_MASK (1ULL << 8)
  49. #define PT64_NX_MASK (1ULL << 63)
  50. #define PT_PAT_SHIFT 7
  51. #define PT_DIR_PAT_SHIFT 12
  52. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  53. #define PT32_DIR_PSE36_SIZE 4
  54. #define PT32_DIR_PSE36_SHIFT 13
  55. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  56. #define PT32_PTE_COPY_MASK \
  57. (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
  58. #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
  59. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  60. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  61. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  62. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  63. #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
  64. #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
  65. #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
  66. #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
  67. #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
  68. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  69. #define PT64_LEVEL_BITS 9
  70. #define PT64_LEVEL_SHIFT(level) \
  71. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  72. #define PT64_LEVEL_MASK(level) \
  73. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  74. #define PT64_INDEX(address, level)\
  75. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  76. #define PT32_LEVEL_BITS 10
  77. #define PT32_LEVEL_SHIFT(level) \
  78. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  79. #define PT32_LEVEL_MASK(level) \
  80. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  81. #define PT32_INDEX(address, level)\
  82. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  83. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
  84. #define PT64_DIR_BASE_ADDR_MASK \
  85. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  86. #define PT32_BASE_ADDR_MASK PAGE_MASK
  87. #define PT32_DIR_BASE_ADDR_MASK \
  88. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  89. #define PFERR_PRESENT_MASK (1U << 0)
  90. #define PFERR_WRITE_MASK (1U << 1)
  91. #define PFERR_USER_MASK (1U << 2)
  92. #define PT64_ROOT_LEVEL 4
  93. #define PT32_ROOT_LEVEL 2
  94. #define PT32E_ROOT_LEVEL 3
  95. #define PT_DIRECTORY_LEVEL 2
  96. #define PT_PAGE_TABLE_LEVEL 1
  97. #define RMAP_EXT 4
  98. struct kvm_rmap_desc {
  99. u64 *shadow_ptes[RMAP_EXT];
  100. struct kvm_rmap_desc *more;
  101. };
  102. static int is_write_protection(struct kvm_vcpu *vcpu)
  103. {
  104. return vcpu->cr0 & CR0_WP_MASK;
  105. }
  106. static int is_cpuid_PSE36(void)
  107. {
  108. return 1;
  109. }
  110. static int is_present_pte(unsigned long pte)
  111. {
  112. return pte & PT_PRESENT_MASK;
  113. }
  114. static int is_writeble_pte(unsigned long pte)
  115. {
  116. return pte & PT_WRITABLE_MASK;
  117. }
  118. static int is_io_pte(unsigned long pte)
  119. {
  120. return pte & PT_SHADOW_IO_MARK;
  121. }
  122. static int is_rmap_pte(u64 pte)
  123. {
  124. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  125. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  126. }
  127. /*
  128. * Reverse mapping data structures:
  129. *
  130. * If page->private bit zero is zero, then page->private points to the
  131. * shadow page table entry that points to page_address(page).
  132. *
  133. * If page->private bit zero is one, (then page->private & ~1) points
  134. * to a struct kvm_rmap_desc containing more mappings.
  135. */
  136. static void rmap_add(struct kvm *kvm, u64 *spte)
  137. {
  138. struct page *page;
  139. struct kvm_rmap_desc *desc;
  140. int i;
  141. if (!is_rmap_pte(*spte))
  142. return;
  143. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  144. if (!page->private) {
  145. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  146. page->private = (unsigned long)spte;
  147. } else if (!(page->private & 1)) {
  148. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  149. desc = kzalloc(sizeof *desc, GFP_NOWAIT);
  150. if (!desc)
  151. BUG(); /* FIXME: return error */
  152. desc->shadow_ptes[0] = (u64 *)page->private;
  153. desc->shadow_ptes[1] = spte;
  154. page->private = (unsigned long)desc | 1;
  155. } else {
  156. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  157. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  158. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  159. desc = desc->more;
  160. if (desc->shadow_ptes[RMAP_EXT-1]) {
  161. desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
  162. if (!desc->more)
  163. BUG(); /* FIXME: return error */
  164. desc = desc->more;
  165. }
  166. for (i = 0; desc->shadow_ptes[i]; ++i)
  167. ;
  168. desc->shadow_ptes[i] = spte;
  169. }
  170. }
  171. static void rmap_desc_remove_entry(struct page *page,
  172. struct kvm_rmap_desc *desc,
  173. int i,
  174. struct kvm_rmap_desc *prev_desc)
  175. {
  176. int j;
  177. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  178. ;
  179. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  180. desc->shadow_ptes[j] = 0;
  181. if (j != 0)
  182. return;
  183. if (!prev_desc && !desc->more)
  184. page->private = (unsigned long)desc->shadow_ptes[0];
  185. else
  186. if (prev_desc)
  187. prev_desc->more = desc->more;
  188. else
  189. page->private = (unsigned long)desc->more | 1;
  190. kfree(desc);
  191. }
  192. static void rmap_remove(struct kvm *kvm, u64 *spte)
  193. {
  194. struct page *page;
  195. struct kvm_rmap_desc *desc;
  196. struct kvm_rmap_desc *prev_desc;
  197. int i;
  198. if (!is_rmap_pte(*spte))
  199. return;
  200. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  201. if (!page->private) {
  202. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  203. BUG();
  204. } else if (!(page->private & 1)) {
  205. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  206. if ((u64 *)page->private != spte) {
  207. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  208. spte, *spte);
  209. BUG();
  210. }
  211. page->private = 0;
  212. } else {
  213. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  214. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  215. prev_desc = NULL;
  216. while (desc) {
  217. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  218. if (desc->shadow_ptes[i] == spte) {
  219. rmap_desc_remove_entry(page, desc, i,
  220. prev_desc);
  221. return;
  222. }
  223. prev_desc = desc;
  224. desc = desc->more;
  225. }
  226. BUG();
  227. }
  228. }
  229. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  230. {
  231. struct page *page;
  232. struct kvm_memory_slot *slot;
  233. struct kvm_rmap_desc *desc;
  234. u64 *spte;
  235. slot = gfn_to_memslot(kvm, gfn);
  236. BUG_ON(!slot);
  237. page = gfn_to_page(slot, gfn);
  238. while (page->private) {
  239. if (!(page->private & 1))
  240. spte = (u64 *)page->private;
  241. else {
  242. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  243. spte = desc->shadow_ptes[0];
  244. }
  245. BUG_ON(!spte);
  246. BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
  247. page_to_pfn(page) << PAGE_SHIFT);
  248. BUG_ON(!(*spte & PT_PRESENT_MASK));
  249. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  250. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  251. rmap_remove(kvm, spte);
  252. *spte &= ~(u64)PT_WRITABLE_MASK;
  253. }
  254. }
  255. static int is_empty_shadow_page(hpa_t page_hpa)
  256. {
  257. u64 *pos;
  258. u64 *end;
  259. for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
  260. pos != end; pos++)
  261. if (*pos != 0) {
  262. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  263. pos, *pos);
  264. return 0;
  265. }
  266. return 1;
  267. }
  268. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
  269. {
  270. struct kvm_mmu_page *page_head = page_header(page_hpa);
  271. ASSERT(is_empty_shadow_page(page_hpa));
  272. list_del(&page_head->link);
  273. page_head->page_hpa = page_hpa;
  274. list_add(&page_head->link, &vcpu->free_pages);
  275. ++vcpu->kvm->n_free_mmu_pages;
  276. }
  277. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  278. {
  279. return gfn;
  280. }
  281. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  282. u64 *parent_pte)
  283. {
  284. struct kvm_mmu_page *page;
  285. if (list_empty(&vcpu->free_pages))
  286. return NULL;
  287. page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
  288. list_del(&page->link);
  289. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  290. ASSERT(is_empty_shadow_page(page->page_hpa));
  291. page->slot_bitmap = 0;
  292. page->global = 1;
  293. page->multimapped = 0;
  294. page->parent_pte = parent_pte;
  295. --vcpu->kvm->n_free_mmu_pages;
  296. return page;
  297. }
  298. static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
  299. {
  300. struct kvm_pte_chain *pte_chain;
  301. struct hlist_node *node;
  302. int i;
  303. if (!parent_pte)
  304. return;
  305. if (!page->multimapped) {
  306. u64 *old = page->parent_pte;
  307. if (!old) {
  308. page->parent_pte = parent_pte;
  309. return;
  310. }
  311. page->multimapped = 1;
  312. pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
  313. BUG_ON(!pte_chain);
  314. INIT_HLIST_HEAD(&page->parent_ptes);
  315. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  316. pte_chain->parent_ptes[0] = old;
  317. }
  318. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  319. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  320. continue;
  321. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  322. if (!pte_chain->parent_ptes[i]) {
  323. pte_chain->parent_ptes[i] = parent_pte;
  324. return;
  325. }
  326. }
  327. pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
  328. BUG_ON(!pte_chain);
  329. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  330. pte_chain->parent_ptes[0] = parent_pte;
  331. }
  332. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  333. u64 *parent_pte)
  334. {
  335. struct kvm_pte_chain *pte_chain;
  336. struct hlist_node *node;
  337. int i;
  338. if (!page->multimapped) {
  339. BUG_ON(page->parent_pte != parent_pte);
  340. page->parent_pte = NULL;
  341. return;
  342. }
  343. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  344. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  345. if (!pte_chain->parent_ptes[i])
  346. break;
  347. if (pte_chain->parent_ptes[i] != parent_pte)
  348. continue;
  349. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  350. && pte_chain->parent_ptes[i + 1]) {
  351. pte_chain->parent_ptes[i]
  352. = pte_chain->parent_ptes[i + 1];
  353. ++i;
  354. }
  355. pte_chain->parent_ptes[i] = NULL;
  356. if (i == 0) {
  357. hlist_del(&pte_chain->link);
  358. kfree(pte_chain);
  359. if (hlist_empty(&page->parent_ptes)) {
  360. page->multimapped = 0;
  361. page->parent_pte = NULL;
  362. }
  363. }
  364. return;
  365. }
  366. BUG();
  367. }
  368. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  369. gfn_t gfn)
  370. {
  371. unsigned index;
  372. struct hlist_head *bucket;
  373. struct kvm_mmu_page *page;
  374. struct hlist_node *node;
  375. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  376. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  377. bucket = &vcpu->kvm->mmu_page_hash[index];
  378. hlist_for_each_entry(page, node, bucket, hash_link)
  379. if (page->gfn == gfn && !page->role.metaphysical) {
  380. pgprintk("%s: found role %x\n",
  381. __FUNCTION__, page->role.word);
  382. return page;
  383. }
  384. return NULL;
  385. }
  386. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  387. gfn_t gfn,
  388. gva_t gaddr,
  389. unsigned level,
  390. int metaphysical,
  391. u64 *parent_pte)
  392. {
  393. union kvm_mmu_page_role role;
  394. unsigned index;
  395. unsigned quadrant;
  396. struct hlist_head *bucket;
  397. struct kvm_mmu_page *page;
  398. struct hlist_node *node;
  399. role.word = 0;
  400. role.glevels = vcpu->mmu.root_level;
  401. role.level = level;
  402. role.metaphysical = metaphysical;
  403. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  404. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  405. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  406. role.quadrant = quadrant;
  407. }
  408. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  409. gfn, role.word);
  410. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  411. bucket = &vcpu->kvm->mmu_page_hash[index];
  412. hlist_for_each_entry(page, node, bucket, hash_link)
  413. if (page->gfn == gfn && page->role.word == role.word) {
  414. mmu_page_add_parent_pte(page, parent_pte);
  415. pgprintk("%s: found\n", __FUNCTION__);
  416. return page;
  417. }
  418. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  419. if (!page)
  420. return page;
  421. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  422. page->gfn = gfn;
  423. page->role = role;
  424. hlist_add_head(&page->hash_link, bucket);
  425. if (!metaphysical)
  426. rmap_write_protect(vcpu->kvm, gfn);
  427. return page;
  428. }
  429. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  430. struct kvm_mmu_page *page)
  431. {
  432. unsigned i;
  433. u64 *pt;
  434. u64 ent;
  435. pt = __va(page->page_hpa);
  436. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  437. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  438. if (pt[i] & PT_PRESENT_MASK)
  439. rmap_remove(vcpu->kvm, &pt[i]);
  440. pt[i] = 0;
  441. }
  442. return;
  443. }
  444. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  445. ent = pt[i];
  446. pt[i] = 0;
  447. if (!(ent & PT_PRESENT_MASK))
  448. continue;
  449. ent &= PT64_BASE_ADDR_MASK;
  450. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  451. }
  452. }
  453. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  454. struct kvm_mmu_page *page,
  455. u64 *parent_pte)
  456. {
  457. mmu_page_remove_parent_pte(page, parent_pte);
  458. }
  459. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  460. struct kvm_mmu_page *page)
  461. {
  462. u64 *parent_pte;
  463. while (page->multimapped || page->parent_pte) {
  464. if (!page->multimapped)
  465. parent_pte = page->parent_pte;
  466. else {
  467. struct kvm_pte_chain *chain;
  468. chain = container_of(page->parent_ptes.first,
  469. struct kvm_pte_chain, link);
  470. parent_pte = chain->parent_ptes[0];
  471. }
  472. BUG_ON(!parent_pte);
  473. kvm_mmu_put_page(vcpu, page, parent_pte);
  474. *parent_pte = 0;
  475. }
  476. kvm_mmu_page_unlink_children(vcpu, page);
  477. hlist_del(&page->hash_link);
  478. kvm_mmu_free_page(vcpu, page->page_hpa);
  479. }
  480. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  481. {
  482. unsigned index;
  483. struct hlist_head *bucket;
  484. struct kvm_mmu_page *page;
  485. struct hlist_node *node, *n;
  486. int r;
  487. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  488. r = 0;
  489. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  490. bucket = &vcpu->kvm->mmu_page_hash[index];
  491. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  492. if (page->gfn == gfn && !page->role.metaphysical) {
  493. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  494. page->role.word);
  495. kvm_mmu_zap_page(vcpu, page);
  496. r = 1;
  497. }
  498. return r;
  499. }
  500. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  501. {
  502. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  503. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  504. __set_bit(slot, &page_head->slot_bitmap);
  505. }
  506. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  507. {
  508. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  509. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  510. }
  511. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  512. {
  513. struct kvm_memory_slot *slot;
  514. struct page *page;
  515. ASSERT((gpa & HPA_ERR_MASK) == 0);
  516. slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  517. if (!slot)
  518. return gpa | HPA_ERR_MASK;
  519. page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
  520. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  521. | (gpa & (PAGE_SIZE-1));
  522. }
  523. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  524. {
  525. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  526. if (gpa == UNMAPPED_GVA)
  527. return UNMAPPED_GVA;
  528. return gpa_to_hpa(vcpu, gpa);
  529. }
  530. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  531. {
  532. }
  533. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  534. {
  535. int level = PT32E_ROOT_LEVEL;
  536. hpa_t table_addr = vcpu->mmu.root_hpa;
  537. for (; ; level--) {
  538. u32 index = PT64_INDEX(v, level);
  539. u64 *table;
  540. u64 pte;
  541. ASSERT(VALID_PAGE(table_addr));
  542. table = __va(table_addr);
  543. if (level == 1) {
  544. pte = table[index];
  545. if (is_present_pte(pte) && is_writeble_pte(pte))
  546. return 0;
  547. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  548. page_header_update_slot(vcpu->kvm, table, v);
  549. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  550. PT_USER_MASK;
  551. rmap_add(vcpu->kvm, &table[index]);
  552. return 0;
  553. }
  554. if (table[index] == 0) {
  555. struct kvm_mmu_page *new_table;
  556. gfn_t pseudo_gfn;
  557. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  558. >> PAGE_SHIFT;
  559. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  560. v, level - 1,
  561. 1, &table[index]);
  562. if (!new_table) {
  563. pgprintk("nonpaging_map: ENOMEM\n");
  564. return -ENOMEM;
  565. }
  566. table[index] = new_table->page_hpa | PT_PRESENT_MASK
  567. | PT_WRITABLE_MASK | PT_USER_MASK;
  568. }
  569. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  570. }
  571. }
  572. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  573. {
  574. int i;
  575. #ifdef CONFIG_X86_64
  576. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  577. hpa_t root = vcpu->mmu.root_hpa;
  578. ASSERT(VALID_PAGE(root));
  579. vcpu->mmu.root_hpa = INVALID_PAGE;
  580. return;
  581. }
  582. #endif
  583. for (i = 0; i < 4; ++i) {
  584. hpa_t root = vcpu->mmu.pae_root[i];
  585. ASSERT(VALID_PAGE(root));
  586. root &= PT64_BASE_ADDR_MASK;
  587. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  588. }
  589. vcpu->mmu.root_hpa = INVALID_PAGE;
  590. }
  591. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  592. {
  593. int i;
  594. gfn_t root_gfn;
  595. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  596. #ifdef CONFIG_X86_64
  597. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  598. hpa_t root = vcpu->mmu.root_hpa;
  599. ASSERT(!VALID_PAGE(root));
  600. root = kvm_mmu_get_page(vcpu, root_gfn, 0,
  601. PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
  602. vcpu->mmu.root_hpa = root;
  603. return;
  604. }
  605. #endif
  606. for (i = 0; i < 4; ++i) {
  607. hpa_t root = vcpu->mmu.pae_root[i];
  608. ASSERT(!VALID_PAGE(root));
  609. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
  610. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  611. else if (vcpu->mmu.root_level == 0)
  612. root_gfn = 0;
  613. root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  614. PT32_ROOT_LEVEL, !is_paging(vcpu),
  615. NULL)->page_hpa;
  616. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  617. }
  618. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  619. }
  620. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  621. {
  622. return vaddr;
  623. }
  624. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  625. u32 error_code)
  626. {
  627. gpa_t addr = gva;
  628. hpa_t paddr;
  629. ASSERT(vcpu);
  630. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  631. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  632. if (is_error_hpa(paddr))
  633. return 1;
  634. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  635. }
  636. static void nonpaging_free(struct kvm_vcpu *vcpu)
  637. {
  638. mmu_free_roots(vcpu);
  639. }
  640. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  641. {
  642. struct kvm_mmu *context = &vcpu->mmu;
  643. context->new_cr3 = nonpaging_new_cr3;
  644. context->page_fault = nonpaging_page_fault;
  645. context->gva_to_gpa = nonpaging_gva_to_gpa;
  646. context->free = nonpaging_free;
  647. context->root_level = 0;
  648. context->shadow_root_level = PT32E_ROOT_LEVEL;
  649. mmu_alloc_roots(vcpu);
  650. ASSERT(VALID_PAGE(context->root_hpa));
  651. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  652. return 0;
  653. }
  654. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  655. {
  656. ++kvm_stat.tlb_flush;
  657. kvm_arch_ops->tlb_flush(vcpu);
  658. }
  659. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  660. {
  661. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  662. mmu_free_roots(vcpu);
  663. mmu_alloc_roots(vcpu);
  664. kvm_mmu_flush_tlb(vcpu);
  665. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  666. }
  667. static void mark_pagetable_nonglobal(void *shadow_pte)
  668. {
  669. page_header(__pa(shadow_pte))->global = 0;
  670. }
  671. static inline void set_pte_common(struct kvm_vcpu *vcpu,
  672. u64 *shadow_pte,
  673. gpa_t gaddr,
  674. int dirty,
  675. u64 access_bits,
  676. gfn_t gfn)
  677. {
  678. hpa_t paddr;
  679. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  680. if (!dirty)
  681. access_bits &= ~PT_WRITABLE_MASK;
  682. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  683. *shadow_pte |= access_bits;
  684. if (!(*shadow_pte & PT_GLOBAL_MASK))
  685. mark_pagetable_nonglobal(shadow_pte);
  686. if (is_error_hpa(paddr)) {
  687. *shadow_pte |= gaddr;
  688. *shadow_pte |= PT_SHADOW_IO_MARK;
  689. *shadow_pte &= ~PT_PRESENT_MASK;
  690. return;
  691. }
  692. *shadow_pte |= paddr;
  693. if (access_bits & PT_WRITABLE_MASK) {
  694. struct kvm_mmu_page *shadow;
  695. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  696. if (shadow) {
  697. pgprintk("%s: found shadow page for %lx, marking ro\n",
  698. __FUNCTION__, gfn);
  699. access_bits &= ~PT_WRITABLE_MASK;
  700. *shadow_pte &= ~PT_WRITABLE_MASK;
  701. }
  702. }
  703. if (access_bits & PT_WRITABLE_MASK)
  704. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  705. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  706. rmap_add(vcpu->kvm, shadow_pte);
  707. }
  708. static void inject_page_fault(struct kvm_vcpu *vcpu,
  709. u64 addr,
  710. u32 err_code)
  711. {
  712. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  713. }
  714. static inline int fix_read_pf(u64 *shadow_ent)
  715. {
  716. if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
  717. !(*shadow_ent & PT_USER_MASK)) {
  718. /*
  719. * If supervisor write protect is disabled, we shadow kernel
  720. * pages as user pages so we can trap the write access.
  721. */
  722. *shadow_ent |= PT_USER_MASK;
  723. *shadow_ent &= ~PT_WRITABLE_MASK;
  724. return 1;
  725. }
  726. return 0;
  727. }
  728. static int may_access(u64 pte, int write, int user)
  729. {
  730. if (user && !(pte & PT_USER_MASK))
  731. return 0;
  732. if (write && !(pte & PT_WRITABLE_MASK))
  733. return 0;
  734. return 1;
  735. }
  736. static void paging_free(struct kvm_vcpu *vcpu)
  737. {
  738. nonpaging_free(vcpu);
  739. }
  740. #define PTTYPE 64
  741. #include "paging_tmpl.h"
  742. #undef PTTYPE
  743. #define PTTYPE 32
  744. #include "paging_tmpl.h"
  745. #undef PTTYPE
  746. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  747. {
  748. struct kvm_mmu *context = &vcpu->mmu;
  749. ASSERT(is_pae(vcpu));
  750. context->new_cr3 = paging_new_cr3;
  751. context->page_fault = paging64_page_fault;
  752. context->gva_to_gpa = paging64_gva_to_gpa;
  753. context->free = paging_free;
  754. context->root_level = level;
  755. context->shadow_root_level = level;
  756. mmu_alloc_roots(vcpu);
  757. ASSERT(VALID_PAGE(context->root_hpa));
  758. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  759. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  760. return 0;
  761. }
  762. static int paging64_init_context(struct kvm_vcpu *vcpu)
  763. {
  764. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  765. }
  766. static int paging32_init_context(struct kvm_vcpu *vcpu)
  767. {
  768. struct kvm_mmu *context = &vcpu->mmu;
  769. context->new_cr3 = paging_new_cr3;
  770. context->page_fault = paging32_page_fault;
  771. context->gva_to_gpa = paging32_gva_to_gpa;
  772. context->free = paging_free;
  773. context->root_level = PT32_ROOT_LEVEL;
  774. context->shadow_root_level = PT32E_ROOT_LEVEL;
  775. mmu_alloc_roots(vcpu);
  776. ASSERT(VALID_PAGE(context->root_hpa));
  777. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  778. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  779. return 0;
  780. }
  781. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  782. {
  783. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  784. }
  785. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  786. {
  787. ASSERT(vcpu);
  788. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  789. if (!is_paging(vcpu))
  790. return nonpaging_init_context(vcpu);
  791. else if (is_long_mode(vcpu))
  792. return paging64_init_context(vcpu);
  793. else if (is_pae(vcpu))
  794. return paging32E_init_context(vcpu);
  795. else
  796. return paging32_init_context(vcpu);
  797. }
  798. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  799. {
  800. ASSERT(vcpu);
  801. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  802. vcpu->mmu.free(vcpu);
  803. vcpu->mmu.root_hpa = INVALID_PAGE;
  804. }
  805. }
  806. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  807. {
  808. destroy_kvm_mmu(vcpu);
  809. return init_kvm_mmu(vcpu);
  810. }
  811. void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  812. {
  813. gfn_t gfn = gpa >> PAGE_SHIFT;
  814. struct kvm_mmu_page *page;
  815. struct kvm_mmu_page *child;
  816. struct hlist_node *node, *n;
  817. struct hlist_head *bucket;
  818. unsigned index;
  819. u64 *spte;
  820. u64 pte;
  821. unsigned offset = offset_in_page(gpa);
  822. unsigned pte_size;
  823. unsigned page_offset;
  824. unsigned misaligned;
  825. int level;
  826. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  827. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  828. bucket = &vcpu->kvm->mmu_page_hash[index];
  829. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  830. if (page->gfn != gfn || page->role.metaphysical)
  831. continue;
  832. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  833. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  834. if (misaligned) {
  835. /*
  836. * Misaligned accesses are too much trouble to fix
  837. * up; also, they usually indicate a page is not used
  838. * as a page table.
  839. */
  840. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  841. gpa, bytes, page->role.word);
  842. kvm_mmu_zap_page(vcpu, page);
  843. continue;
  844. }
  845. page_offset = offset;
  846. level = page->role.level;
  847. if (page->role.glevels == PT32_ROOT_LEVEL) {
  848. page_offset <<= 1; /* 32->64 */
  849. page_offset &= ~PAGE_MASK;
  850. }
  851. spte = __va(page->page_hpa);
  852. spte += page_offset / sizeof(*spte);
  853. pte = *spte;
  854. if (is_present_pte(pte)) {
  855. if (level == PT_PAGE_TABLE_LEVEL)
  856. rmap_remove(vcpu->kvm, spte);
  857. else {
  858. child = page_header(pte & PT64_BASE_ADDR_MASK);
  859. mmu_page_remove_parent_pte(child, spte);
  860. }
  861. }
  862. *spte = 0;
  863. }
  864. }
  865. void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  866. {
  867. }
  868. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  869. {
  870. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  871. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  872. }
  873. void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  874. {
  875. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  876. struct kvm_mmu_page *page;
  877. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  878. struct kvm_mmu_page, link);
  879. kvm_mmu_zap_page(vcpu, page);
  880. }
  881. }
  882. EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
  883. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  884. {
  885. while (!list_empty(&vcpu->free_pages)) {
  886. struct kvm_mmu_page *page;
  887. page = list_entry(vcpu->free_pages.next,
  888. struct kvm_mmu_page, link);
  889. list_del(&page->link);
  890. __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
  891. page->page_hpa = INVALID_PAGE;
  892. }
  893. free_page((unsigned long)vcpu->mmu.pae_root);
  894. }
  895. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  896. {
  897. struct page *page;
  898. int i;
  899. ASSERT(vcpu);
  900. for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
  901. struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
  902. INIT_LIST_HEAD(&page_header->link);
  903. if ((page = alloc_page(GFP_KERNEL)) == NULL)
  904. goto error_1;
  905. page->private = (unsigned long)page_header;
  906. page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
  907. memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
  908. list_add(&page_header->link, &vcpu->free_pages);
  909. ++vcpu->kvm->n_free_mmu_pages;
  910. }
  911. /*
  912. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  913. * Therefore we need to allocate shadow page tables in the first
  914. * 4GB of memory, which happens to fit the DMA32 zone.
  915. */
  916. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  917. if (!page)
  918. goto error_1;
  919. vcpu->mmu.pae_root = page_address(page);
  920. for (i = 0; i < 4; ++i)
  921. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  922. return 0;
  923. error_1:
  924. free_mmu_pages(vcpu);
  925. return -ENOMEM;
  926. }
  927. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  928. {
  929. ASSERT(vcpu);
  930. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  931. ASSERT(list_empty(&vcpu->free_pages));
  932. return alloc_mmu_pages(vcpu);
  933. }
  934. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  935. {
  936. ASSERT(vcpu);
  937. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  938. ASSERT(!list_empty(&vcpu->free_pages));
  939. return init_kvm_mmu(vcpu);
  940. }
  941. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  942. {
  943. ASSERT(vcpu);
  944. destroy_kvm_mmu(vcpu);
  945. free_mmu_pages(vcpu);
  946. }
  947. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  948. {
  949. struct kvm_mmu_page *page;
  950. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  951. int i;
  952. u64 *pt;
  953. if (!test_bit(slot, &page->slot_bitmap))
  954. continue;
  955. pt = __va(page->page_hpa);
  956. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  957. /* avoid RMW */
  958. if (pt[i] & PT_WRITABLE_MASK) {
  959. rmap_remove(kvm, &pt[i]);
  960. pt[i] &= ~PT_WRITABLE_MASK;
  961. }
  962. }
  963. }