io.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
  67. * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
  68. * prefer to use sub-pages only for EV and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include "ubi.h"
  90. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  91. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. #else
  99. #define paranoid_check_not_bad(ubi, pnum) 0
  100. #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
  101. #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
  102. #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
  103. #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
  104. #endif
  105. /**
  106. * ubi_io_read - read data from a physical eraseblock.
  107. * @ubi: UBI device description object
  108. * @buf: buffer where to store the read data
  109. * @pnum: physical eraseblock number to read from
  110. * @offset: offset within the physical eraseblock from where to read
  111. * @len: how many bytes to read
  112. *
  113. * This function reads data from offset @offset of physical eraseblock @pnum
  114. * and stores the read data in the @buf buffer. The following return codes are
  115. * possible:
  116. *
  117. * o %0 if all the requested data were successfully read;
  118. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  119. * correctable bit-flips were detected; this is harmless but may indicate
  120. * that this eraseblock may become bad soon (but do not have to);
  121. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  122. * example it can be an ECC error in case of NAND; this most probably means
  123. * that the data is corrupted;
  124. * o %-EIO if some I/O error occurred;
  125. * o other negative error codes in case of other errors.
  126. */
  127. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  128. int len)
  129. {
  130. int err, retries = 0;
  131. size_t read;
  132. loff_t addr;
  133. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  134. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  135. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  136. ubi_assert(len > 0);
  137. err = paranoid_check_not_bad(ubi, pnum);
  138. if (err)
  139. return err > 0 ? -EINVAL : err;
  140. addr = (loff_t)pnum * ubi->peb_size + offset;
  141. retry:
  142. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  143. if (err) {
  144. if (err == -EUCLEAN) {
  145. /*
  146. * -EUCLEAN is reported if there was a bit-flip which
  147. * was corrected, so this is harmless.
  148. *
  149. * We do not report about it here unless debugging is
  150. * enabled. A corresponding message will be printed
  151. * later, when it is has been scrubbed.
  152. */
  153. dbg_msg("fixable bit-flip detected at PEB %d", pnum);
  154. ubi_assert(len == read);
  155. return UBI_IO_BITFLIPS;
  156. }
  157. if (read != len && retries++ < UBI_IO_RETRIES) {
  158. dbg_io("error %d while reading %d bytes from PEB %d:%d,"
  159. " read only %zd bytes, retry",
  160. err, len, pnum, offset, read);
  161. yield();
  162. goto retry;
  163. }
  164. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  165. "read %zd bytes", err, len, pnum, offset, read);
  166. ubi_dbg_dump_stack();
  167. /*
  168. * The driver should never return -EBADMSG if it failed to read
  169. * all the requested data. But some buggy drivers might do
  170. * this, so we change it to -EIO.
  171. */
  172. if (read != len && err == -EBADMSG) {
  173. ubi_assert(0);
  174. err = -EIO;
  175. }
  176. } else {
  177. ubi_assert(len == read);
  178. if (ubi_dbg_is_bitflip()) {
  179. dbg_gen("bit-flip (emulated)");
  180. err = UBI_IO_BITFLIPS;
  181. }
  182. }
  183. return err;
  184. }
  185. /**
  186. * ubi_io_write - write data to a physical eraseblock.
  187. * @ubi: UBI device description object
  188. * @buf: buffer with the data to write
  189. * @pnum: physical eraseblock number to write to
  190. * @offset: offset within the physical eraseblock where to write
  191. * @len: how many bytes to write
  192. *
  193. * This function writes @len bytes of data from buffer @buf to offset @offset
  194. * of physical eraseblock @pnum. If all the data were successfully written,
  195. * zero is returned. If an error occurred, this function returns a negative
  196. * error code. If %-EIO is returned, the physical eraseblock most probably went
  197. * bad.
  198. *
  199. * Note, in case of an error, it is possible that something was still written
  200. * to the flash media, but may be some garbage.
  201. */
  202. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  203. int len)
  204. {
  205. int err;
  206. size_t written;
  207. loff_t addr;
  208. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  209. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  210. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  211. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  212. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  213. if (ubi->ro_mode) {
  214. ubi_err("read-only mode");
  215. return -EROFS;
  216. }
  217. /* The below has to be compiled out if paranoid checks are disabled */
  218. err = paranoid_check_not_bad(ubi, pnum);
  219. if (err)
  220. return err > 0 ? -EINVAL : err;
  221. /* The area we are writing to has to contain all 0xFF bytes */
  222. err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
  223. if (err)
  224. return err > 0 ? -EINVAL : err;
  225. if (offset >= ubi->leb_start) {
  226. /*
  227. * We write to the data area of the physical eraseblock. Make
  228. * sure it has valid EC and VID headers.
  229. */
  230. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  231. if (err)
  232. return err > 0 ? -EINVAL : err;
  233. err = paranoid_check_peb_vid_hdr(ubi, pnum);
  234. if (err)
  235. return err > 0 ? -EINVAL : err;
  236. }
  237. if (ubi_dbg_is_write_failure()) {
  238. dbg_err("cannot write %d bytes to PEB %d:%d "
  239. "(emulated)", len, pnum, offset);
  240. ubi_dbg_dump_stack();
  241. return -EIO;
  242. }
  243. addr = (loff_t)pnum * ubi->peb_size + offset;
  244. err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
  245. if (err) {
  246. ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
  247. " %zd bytes", err, len, pnum, offset, written);
  248. ubi_dbg_dump_stack();
  249. } else
  250. ubi_assert(written == len);
  251. return err;
  252. }
  253. /**
  254. * erase_callback - MTD erasure call-back.
  255. * @ei: MTD erase information object.
  256. *
  257. * Note, even though MTD erase interface is asynchronous, all the current
  258. * implementations are synchronous anyway.
  259. */
  260. static void erase_callback(struct erase_info *ei)
  261. {
  262. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  263. }
  264. /**
  265. * do_sync_erase - synchronously erase a physical eraseblock.
  266. * @ubi: UBI device description object
  267. * @pnum: the physical eraseblock number to erase
  268. *
  269. * This function synchronously erases physical eraseblock @pnum and returns
  270. * zero in case of success and a negative error code in case of failure. If
  271. * %-EIO is returned, the physical eraseblock most probably went bad.
  272. */
  273. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  274. {
  275. int err, retries = 0;
  276. struct erase_info ei;
  277. wait_queue_head_t wq;
  278. dbg_io("erase PEB %d", pnum);
  279. retry:
  280. init_waitqueue_head(&wq);
  281. memset(&ei, 0, sizeof(struct erase_info));
  282. ei.mtd = ubi->mtd;
  283. ei.addr = (loff_t)pnum * ubi->peb_size;
  284. ei.len = ubi->peb_size;
  285. ei.callback = erase_callback;
  286. ei.priv = (unsigned long)&wq;
  287. err = ubi->mtd->erase(ubi->mtd, &ei);
  288. if (err) {
  289. if (retries++ < UBI_IO_RETRIES) {
  290. dbg_io("error %d while erasing PEB %d, retry",
  291. err, pnum);
  292. yield();
  293. goto retry;
  294. }
  295. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  296. ubi_dbg_dump_stack();
  297. return err;
  298. }
  299. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  300. ei.state == MTD_ERASE_FAILED);
  301. if (err) {
  302. ubi_err("interrupted PEB %d erasure", pnum);
  303. return -EINTR;
  304. }
  305. if (ei.state == MTD_ERASE_FAILED) {
  306. if (retries++ < UBI_IO_RETRIES) {
  307. dbg_io("error while erasing PEB %d, retry", pnum);
  308. yield();
  309. goto retry;
  310. }
  311. ubi_err("cannot erase PEB %d", pnum);
  312. ubi_dbg_dump_stack();
  313. return -EIO;
  314. }
  315. err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  316. if (err)
  317. return err > 0 ? -EINVAL : err;
  318. if (ubi_dbg_is_erase_failure() && !err) {
  319. dbg_err("cannot erase PEB %d (emulated)", pnum);
  320. return -EIO;
  321. }
  322. return 0;
  323. }
  324. /**
  325. * check_pattern - check if buffer contains only a certain byte pattern.
  326. * @buf: buffer to check
  327. * @patt: the pattern to check
  328. * @size: buffer size in bytes
  329. *
  330. * This function returns %1 in there are only @patt bytes in @buf, and %0 if
  331. * something else was also found.
  332. */
  333. static int check_pattern(const void *buf, uint8_t patt, int size)
  334. {
  335. int i;
  336. for (i = 0; i < size; i++)
  337. if (((const uint8_t *)buf)[i] != patt)
  338. return 0;
  339. return 1;
  340. }
  341. /* Patterns to write to a physical eraseblock when torturing it */
  342. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  343. /**
  344. * torture_peb - test a supposedly bad physical eraseblock.
  345. * @ubi: UBI device description object
  346. * @pnum: the physical eraseblock number to test
  347. *
  348. * This function returns %-EIO if the physical eraseblock did not pass the
  349. * test, a positive number of erase operations done if the test was
  350. * successfully passed, and other negative error codes in case of other errors.
  351. */
  352. static int torture_peb(struct ubi_device *ubi, int pnum)
  353. {
  354. int err, i, patt_count;
  355. ubi_msg("run torture test for PEB %d", pnum);
  356. patt_count = ARRAY_SIZE(patterns);
  357. ubi_assert(patt_count > 0);
  358. mutex_lock(&ubi->buf_mutex);
  359. for (i = 0; i < patt_count; i++) {
  360. err = do_sync_erase(ubi, pnum);
  361. if (err)
  362. goto out;
  363. /* Make sure the PEB contains only 0xFF bytes */
  364. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  365. if (err)
  366. goto out;
  367. err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
  368. if (err == 0) {
  369. ubi_err("erased PEB %d, but a non-0xFF byte found",
  370. pnum);
  371. err = -EIO;
  372. goto out;
  373. }
  374. /* Write a pattern and check it */
  375. memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
  376. err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  377. if (err)
  378. goto out;
  379. memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
  380. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  381. if (err)
  382. goto out;
  383. err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
  384. if (err == 0) {
  385. ubi_err("pattern %x checking failed for PEB %d",
  386. patterns[i], pnum);
  387. err = -EIO;
  388. goto out;
  389. }
  390. }
  391. err = patt_count;
  392. ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
  393. out:
  394. mutex_unlock(&ubi->buf_mutex);
  395. if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
  396. /*
  397. * If a bit-flip or data integrity error was detected, the test
  398. * has not passed because it happened on a freshly erased
  399. * physical eraseblock which means something is wrong with it.
  400. */
  401. ubi_err("read problems on freshly erased PEB %d, must be bad",
  402. pnum);
  403. err = -EIO;
  404. }
  405. return err;
  406. }
  407. /**
  408. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  409. * @ubi: UBI device description object
  410. * @pnum: physical eraseblock number to erase
  411. * @torture: if this physical eraseblock has to be tortured
  412. *
  413. * This function synchronously erases physical eraseblock @pnum. If @torture
  414. * flag is not zero, the physical eraseblock is checked by means of writing
  415. * different patterns to it and reading them back. If the torturing is enabled,
  416. * the physical eraseblock is erased more than once.
  417. *
  418. * This function returns the number of erasures made in case of success, %-EIO
  419. * if the erasure failed or the torturing test failed, and other negative error
  420. * codes in case of other errors. Note, %-EIO means that the physical
  421. * eraseblock is bad.
  422. */
  423. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  424. {
  425. int err, ret = 0;
  426. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  427. err = paranoid_check_not_bad(ubi, pnum);
  428. if (err != 0)
  429. return err > 0 ? -EINVAL : err;
  430. if (ubi->ro_mode) {
  431. ubi_err("read-only mode");
  432. return -EROFS;
  433. }
  434. if (torture) {
  435. ret = torture_peb(ubi, pnum);
  436. if (ret < 0)
  437. return ret;
  438. }
  439. err = do_sync_erase(ubi, pnum);
  440. if (err)
  441. return err;
  442. return ret + 1;
  443. }
  444. /**
  445. * ubi_io_is_bad - check if a physical eraseblock is bad.
  446. * @ubi: UBI device description object
  447. * @pnum: the physical eraseblock number to check
  448. *
  449. * This function returns a positive number if the physical eraseblock is bad,
  450. * zero if not, and a negative error code if an error occurred.
  451. */
  452. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  453. {
  454. struct mtd_info *mtd = ubi->mtd;
  455. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  456. if (ubi->bad_allowed) {
  457. int ret;
  458. ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  459. if (ret < 0)
  460. ubi_err("error %d while checking if PEB %d is bad",
  461. ret, pnum);
  462. else if (ret)
  463. dbg_io("PEB %d is bad", pnum);
  464. return ret;
  465. }
  466. return 0;
  467. }
  468. /**
  469. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  470. * @ubi: UBI device description object
  471. * @pnum: the physical eraseblock number to mark
  472. *
  473. * This function returns zero in case of success and a negative error code in
  474. * case of failure.
  475. */
  476. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  477. {
  478. int err;
  479. struct mtd_info *mtd = ubi->mtd;
  480. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  481. if (ubi->ro_mode) {
  482. ubi_err("read-only mode");
  483. return -EROFS;
  484. }
  485. if (!ubi->bad_allowed)
  486. return 0;
  487. err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  488. if (err)
  489. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  490. return err;
  491. }
  492. /**
  493. * validate_ec_hdr - validate an erase counter header.
  494. * @ubi: UBI device description object
  495. * @ec_hdr: the erase counter header to check
  496. *
  497. * This function returns zero if the erase counter header is OK, and %1 if
  498. * not.
  499. */
  500. static int validate_ec_hdr(const struct ubi_device *ubi,
  501. const struct ubi_ec_hdr *ec_hdr)
  502. {
  503. long long ec;
  504. int vid_hdr_offset, leb_start;
  505. ec = be64_to_cpu(ec_hdr->ec);
  506. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  507. leb_start = be32_to_cpu(ec_hdr->data_offset);
  508. if (ec_hdr->version != UBI_VERSION) {
  509. ubi_err("node with incompatible UBI version found: "
  510. "this UBI version is %d, image version is %d",
  511. UBI_VERSION, (int)ec_hdr->version);
  512. goto bad;
  513. }
  514. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  515. ubi_err("bad VID header offset %d, expected %d",
  516. vid_hdr_offset, ubi->vid_hdr_offset);
  517. goto bad;
  518. }
  519. if (leb_start != ubi->leb_start) {
  520. ubi_err("bad data offset %d, expected %d",
  521. leb_start, ubi->leb_start);
  522. goto bad;
  523. }
  524. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  525. ubi_err("bad erase counter %lld", ec);
  526. goto bad;
  527. }
  528. return 0;
  529. bad:
  530. ubi_err("bad EC header");
  531. ubi_dbg_dump_ec_hdr(ec_hdr);
  532. ubi_dbg_dump_stack();
  533. return 1;
  534. }
  535. /**
  536. * ubi_io_read_ec_hdr - read and check an erase counter header.
  537. * @ubi: UBI device description object
  538. * @pnum: physical eraseblock to read from
  539. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  540. * header
  541. * @verbose: be verbose if the header is corrupted or was not found
  542. *
  543. * This function reads erase counter header from physical eraseblock @pnum and
  544. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  545. * erase counter header. The following codes may be returned:
  546. *
  547. * o %0 if the CRC checksum is correct and the header was successfully read;
  548. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  549. * and corrected by the flash driver; this is harmless but may indicate that
  550. * this eraseblock may become bad soon (but may be not);
  551. * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
  552. * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
  553. * o a negative error code in case of failure.
  554. */
  555. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  556. struct ubi_ec_hdr *ec_hdr, int verbose)
  557. {
  558. int err, read_err = 0;
  559. uint32_t crc, magic, hdr_crc;
  560. dbg_io("read EC header from PEB %d", pnum);
  561. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  562. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  563. if (err) {
  564. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  565. return err;
  566. /*
  567. * We read all the data, but either a correctable bit-flip
  568. * occurred, or MTD reported about some data integrity error,
  569. * like an ECC error in case of NAND. The former is harmless,
  570. * the later may mean that the read data is corrupted. But we
  571. * have a CRC check-sum and we will detect this. If the EC
  572. * header is still OK, we just report this as there was a
  573. * bit-flip.
  574. */
  575. read_err = err;
  576. }
  577. magic = be32_to_cpu(ec_hdr->magic);
  578. if (magic != UBI_EC_HDR_MAGIC) {
  579. /*
  580. * The magic field is wrong. Let's check if we have read all
  581. * 0xFF. If yes, this physical eraseblock is assumed to be
  582. * empty.
  583. *
  584. * But if there was a read error, we do not test it for all
  585. * 0xFFs. Even if it does contain all 0xFFs, this error
  586. * indicates that something is still wrong with this physical
  587. * eraseblock and we anyway cannot treat it as empty.
  588. */
  589. if (read_err != -EBADMSG &&
  590. check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  591. /* The physical eraseblock is supposedly empty */
  592. if (verbose)
  593. ubi_warn("no EC header found at PEB %d, "
  594. "only 0xFF bytes", pnum);
  595. else if (UBI_IO_DEBUG)
  596. dbg_msg("no EC header found at PEB %d, "
  597. "only 0xFF bytes", pnum);
  598. return UBI_IO_PEB_EMPTY;
  599. }
  600. /*
  601. * This is not a valid erase counter header, and these are not
  602. * 0xFF bytes. Report that the header is corrupted.
  603. */
  604. if (verbose) {
  605. ubi_warn("bad magic number at PEB %d: %08x instead of "
  606. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  607. ubi_dbg_dump_ec_hdr(ec_hdr);
  608. } else if (UBI_IO_DEBUG)
  609. dbg_msg("bad magic number at PEB %d: %08x instead of "
  610. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  611. return UBI_IO_BAD_EC_HDR;
  612. }
  613. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  614. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  615. if (hdr_crc != crc) {
  616. if (verbose) {
  617. ubi_warn("bad EC header CRC at PEB %d, calculated "
  618. "%#08x, read %#08x", pnum, crc, hdr_crc);
  619. ubi_dbg_dump_ec_hdr(ec_hdr);
  620. } else if (UBI_IO_DEBUG)
  621. dbg_msg("bad EC header CRC at PEB %d, calculated "
  622. "%#08x, read %#08x", pnum, crc, hdr_crc);
  623. return UBI_IO_BAD_EC_HDR;
  624. }
  625. /* And of course validate what has just been read from the media */
  626. err = validate_ec_hdr(ubi, ec_hdr);
  627. if (err) {
  628. ubi_err("validation failed for PEB %d", pnum);
  629. return -EINVAL;
  630. }
  631. return read_err ? UBI_IO_BITFLIPS : 0;
  632. }
  633. /**
  634. * ubi_io_write_ec_hdr - write an erase counter header.
  635. * @ubi: UBI device description object
  636. * @pnum: physical eraseblock to write to
  637. * @ec_hdr: the erase counter header to write
  638. *
  639. * This function writes erase counter header described by @ec_hdr to physical
  640. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  641. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  642. * field.
  643. *
  644. * This function returns zero in case of success and a negative error code in
  645. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  646. * went bad.
  647. */
  648. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  649. struct ubi_ec_hdr *ec_hdr)
  650. {
  651. int err;
  652. uint32_t crc;
  653. dbg_io("write EC header to PEB %d", pnum);
  654. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  655. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  656. ec_hdr->version = UBI_VERSION;
  657. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  658. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  659. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  660. ec_hdr->hdr_crc = cpu_to_be32(crc);
  661. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  662. if (err)
  663. return -EINVAL;
  664. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  665. return err;
  666. }
  667. /**
  668. * validate_vid_hdr - validate a volume identifier header.
  669. * @ubi: UBI device description object
  670. * @vid_hdr: the volume identifier header to check
  671. *
  672. * This function checks that data stored in the volume identifier header
  673. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  674. */
  675. static int validate_vid_hdr(const struct ubi_device *ubi,
  676. const struct ubi_vid_hdr *vid_hdr)
  677. {
  678. int vol_type = vid_hdr->vol_type;
  679. int copy_flag = vid_hdr->copy_flag;
  680. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  681. int lnum = be32_to_cpu(vid_hdr->lnum);
  682. int compat = vid_hdr->compat;
  683. int data_size = be32_to_cpu(vid_hdr->data_size);
  684. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  685. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  686. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  687. int usable_leb_size = ubi->leb_size - data_pad;
  688. if (copy_flag != 0 && copy_flag != 1) {
  689. dbg_err("bad copy_flag");
  690. goto bad;
  691. }
  692. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  693. data_pad < 0) {
  694. dbg_err("negative values");
  695. goto bad;
  696. }
  697. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  698. dbg_err("bad vol_id");
  699. goto bad;
  700. }
  701. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  702. dbg_err("bad compat");
  703. goto bad;
  704. }
  705. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  706. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  707. compat != UBI_COMPAT_REJECT) {
  708. dbg_err("bad compat");
  709. goto bad;
  710. }
  711. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  712. dbg_err("bad vol_type");
  713. goto bad;
  714. }
  715. if (data_pad >= ubi->leb_size / 2) {
  716. dbg_err("bad data_pad");
  717. goto bad;
  718. }
  719. if (vol_type == UBI_VID_STATIC) {
  720. /*
  721. * Although from high-level point of view static volumes may
  722. * contain zero bytes of data, but no VID headers can contain
  723. * zero at these fields, because they empty volumes do not have
  724. * mapped logical eraseblocks.
  725. */
  726. if (used_ebs == 0) {
  727. dbg_err("zero used_ebs");
  728. goto bad;
  729. }
  730. if (data_size == 0) {
  731. dbg_err("zero data_size");
  732. goto bad;
  733. }
  734. if (lnum < used_ebs - 1) {
  735. if (data_size != usable_leb_size) {
  736. dbg_err("bad data_size");
  737. goto bad;
  738. }
  739. } else if (lnum == used_ebs - 1) {
  740. if (data_size == 0) {
  741. dbg_err("bad data_size at last LEB");
  742. goto bad;
  743. }
  744. } else {
  745. dbg_err("too high lnum");
  746. goto bad;
  747. }
  748. } else {
  749. if (copy_flag == 0) {
  750. if (data_crc != 0) {
  751. dbg_err("non-zero data CRC");
  752. goto bad;
  753. }
  754. if (data_size != 0) {
  755. dbg_err("non-zero data_size");
  756. goto bad;
  757. }
  758. } else {
  759. if (data_size == 0) {
  760. dbg_err("zero data_size of copy");
  761. goto bad;
  762. }
  763. }
  764. if (used_ebs != 0) {
  765. dbg_err("bad used_ebs");
  766. goto bad;
  767. }
  768. }
  769. return 0;
  770. bad:
  771. ubi_err("bad VID header");
  772. ubi_dbg_dump_vid_hdr(vid_hdr);
  773. ubi_dbg_dump_stack();
  774. return 1;
  775. }
  776. /**
  777. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  778. * @ubi: UBI device description object
  779. * @pnum: physical eraseblock number to read from
  780. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  781. * identifier header
  782. * @verbose: be verbose if the header is corrupted or wasn't found
  783. *
  784. * This function reads the volume identifier header from physical eraseblock
  785. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  786. * volume identifier header. The following codes may be returned:
  787. *
  788. * o %0 if the CRC checksum is correct and the header was successfully read;
  789. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  790. * and corrected by the flash driver; this is harmless but may indicate that
  791. * this eraseblock may become bad soon;
  792. * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
  793. * error detected);
  794. * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
  795. * header there);
  796. * o a negative error code in case of failure.
  797. */
  798. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  799. struct ubi_vid_hdr *vid_hdr, int verbose)
  800. {
  801. int err, read_err = 0;
  802. uint32_t crc, magic, hdr_crc;
  803. void *p;
  804. dbg_io("read VID header from PEB %d", pnum);
  805. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  806. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  807. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  808. ubi->vid_hdr_alsize);
  809. if (err) {
  810. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  811. return err;
  812. /*
  813. * We read all the data, but either a correctable bit-flip
  814. * occurred, or MTD reported about some data integrity error,
  815. * like an ECC error in case of NAND. The former is harmless,
  816. * the later may mean the read data is corrupted. But we have a
  817. * CRC check-sum and we will identify this. If the VID header is
  818. * still OK, we just report this as there was a bit-flip.
  819. */
  820. read_err = err;
  821. }
  822. magic = be32_to_cpu(vid_hdr->magic);
  823. if (magic != UBI_VID_HDR_MAGIC) {
  824. /*
  825. * If we have read all 0xFF bytes, the VID header probably does
  826. * not exist and the physical eraseblock is assumed to be free.
  827. *
  828. * But if there was a read error, we do not test the data for
  829. * 0xFFs. Even if it does contain all 0xFFs, this error
  830. * indicates that something is still wrong with this physical
  831. * eraseblock and it cannot be regarded as free.
  832. */
  833. if (read_err != -EBADMSG &&
  834. check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  835. /* The physical eraseblock is supposedly free */
  836. if (verbose)
  837. ubi_warn("no VID header found at PEB %d, "
  838. "only 0xFF bytes", pnum);
  839. else if (UBI_IO_DEBUG)
  840. dbg_msg("no VID header found at PEB %d, "
  841. "only 0xFF bytes", pnum);
  842. return UBI_IO_PEB_FREE;
  843. }
  844. /*
  845. * This is not a valid VID header, and these are not 0xFF
  846. * bytes. Report that the header is corrupted.
  847. */
  848. if (verbose) {
  849. ubi_warn("bad magic number at PEB %d: %08x instead of "
  850. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  851. ubi_dbg_dump_vid_hdr(vid_hdr);
  852. } else if (UBI_IO_DEBUG)
  853. dbg_msg("bad magic number at PEB %d: %08x instead of "
  854. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  855. return UBI_IO_BAD_VID_HDR;
  856. }
  857. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  858. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  859. if (hdr_crc != crc) {
  860. if (verbose) {
  861. ubi_warn("bad CRC at PEB %d, calculated %#08x, "
  862. "read %#08x", pnum, crc, hdr_crc);
  863. ubi_dbg_dump_vid_hdr(vid_hdr);
  864. } else if (UBI_IO_DEBUG)
  865. dbg_msg("bad CRC at PEB %d, calculated %#08x, "
  866. "read %#08x", pnum, crc, hdr_crc);
  867. return UBI_IO_BAD_VID_HDR;
  868. }
  869. /* Validate the VID header that we have just read */
  870. err = validate_vid_hdr(ubi, vid_hdr);
  871. if (err) {
  872. ubi_err("validation failed for PEB %d", pnum);
  873. return -EINVAL;
  874. }
  875. return read_err ? UBI_IO_BITFLIPS : 0;
  876. }
  877. /**
  878. * ubi_io_write_vid_hdr - write a volume identifier header.
  879. * @ubi: UBI device description object
  880. * @pnum: the physical eraseblock number to write to
  881. * @vid_hdr: the volume identifier header to write
  882. *
  883. * This function writes the volume identifier header described by @vid_hdr to
  884. * physical eraseblock @pnum. This function automatically fills the
  885. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  886. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  887. *
  888. * This function returns zero in case of success and a negative error code in
  889. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  890. * bad.
  891. */
  892. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  893. struct ubi_vid_hdr *vid_hdr)
  894. {
  895. int err;
  896. uint32_t crc;
  897. void *p;
  898. dbg_io("write VID header to PEB %d", pnum);
  899. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  900. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  901. if (err)
  902. return err > 0 ? -EINVAL : err;
  903. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  904. vid_hdr->version = UBI_VERSION;
  905. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  906. vid_hdr->hdr_crc = cpu_to_be32(crc);
  907. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  908. if (err)
  909. return -EINVAL;
  910. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  911. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  912. ubi->vid_hdr_alsize);
  913. return err;
  914. }
  915. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  916. /**
  917. * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
  918. * @ubi: UBI device description object
  919. * @pnum: physical eraseblock number to check
  920. *
  921. * This function returns zero if the physical eraseblock is good, a positive
  922. * number if it is bad and a negative error code if an error occurred.
  923. */
  924. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
  925. {
  926. int err;
  927. err = ubi_io_is_bad(ubi, pnum);
  928. if (!err)
  929. return err;
  930. ubi_err("paranoid check failed for PEB %d", pnum);
  931. ubi_dbg_dump_stack();
  932. return err;
  933. }
  934. /**
  935. * paranoid_check_ec_hdr - check if an erase counter header is all right.
  936. * @ubi: UBI device description object
  937. * @pnum: physical eraseblock number the erase counter header belongs to
  938. * @ec_hdr: the erase counter header to check
  939. *
  940. * This function returns zero if the erase counter header contains valid
  941. * values, and %1 if not.
  942. */
  943. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  944. const struct ubi_ec_hdr *ec_hdr)
  945. {
  946. int err;
  947. uint32_t magic;
  948. magic = be32_to_cpu(ec_hdr->magic);
  949. if (magic != UBI_EC_HDR_MAGIC) {
  950. ubi_err("bad magic %#08x, must be %#08x",
  951. magic, UBI_EC_HDR_MAGIC);
  952. goto fail;
  953. }
  954. err = validate_ec_hdr(ubi, ec_hdr);
  955. if (err) {
  956. ubi_err("paranoid check failed for PEB %d", pnum);
  957. goto fail;
  958. }
  959. return 0;
  960. fail:
  961. ubi_dbg_dump_ec_hdr(ec_hdr);
  962. ubi_dbg_dump_stack();
  963. return 1;
  964. }
  965. /**
  966. * paranoid_check_peb_ec_hdr - check erase counter header.
  967. * @ubi: UBI device description object
  968. * @pnum: the physical eraseblock number to check
  969. *
  970. * This function returns zero if the erase counter header is all right, %1 if
  971. * not, and a negative error code if an error occurred.
  972. */
  973. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  974. {
  975. int err;
  976. uint32_t crc, hdr_crc;
  977. struct ubi_ec_hdr *ec_hdr;
  978. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  979. if (!ec_hdr)
  980. return -ENOMEM;
  981. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  982. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  983. goto exit;
  984. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  985. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  986. if (hdr_crc != crc) {
  987. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  988. ubi_err("paranoid check failed for PEB %d", pnum);
  989. ubi_dbg_dump_ec_hdr(ec_hdr);
  990. ubi_dbg_dump_stack();
  991. err = 1;
  992. goto exit;
  993. }
  994. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  995. exit:
  996. kfree(ec_hdr);
  997. return err;
  998. }
  999. /**
  1000. * paranoid_check_vid_hdr - check that a volume identifier header is all right.
  1001. * @ubi: UBI device description object
  1002. * @pnum: physical eraseblock number the volume identifier header belongs to
  1003. * @vid_hdr: the volume identifier header to check
  1004. *
  1005. * This function returns zero if the volume identifier header is all right, and
  1006. * %1 if not.
  1007. */
  1008. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1009. const struct ubi_vid_hdr *vid_hdr)
  1010. {
  1011. int err;
  1012. uint32_t magic;
  1013. magic = be32_to_cpu(vid_hdr->magic);
  1014. if (magic != UBI_VID_HDR_MAGIC) {
  1015. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1016. magic, pnum, UBI_VID_HDR_MAGIC);
  1017. goto fail;
  1018. }
  1019. err = validate_vid_hdr(ubi, vid_hdr);
  1020. if (err) {
  1021. ubi_err("paranoid check failed for PEB %d", pnum);
  1022. goto fail;
  1023. }
  1024. return err;
  1025. fail:
  1026. ubi_err("paranoid check failed for PEB %d", pnum);
  1027. ubi_dbg_dump_vid_hdr(vid_hdr);
  1028. ubi_dbg_dump_stack();
  1029. return 1;
  1030. }
  1031. /**
  1032. * paranoid_check_peb_vid_hdr - check volume identifier header.
  1033. * @ubi: UBI device description object
  1034. * @pnum: the physical eraseblock number to check
  1035. *
  1036. * This function returns zero if the volume identifier header is all right,
  1037. * %1 if not, and a negative error code if an error occurred.
  1038. */
  1039. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1040. {
  1041. int err;
  1042. uint32_t crc, hdr_crc;
  1043. struct ubi_vid_hdr *vid_hdr;
  1044. void *p;
  1045. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1046. if (!vid_hdr)
  1047. return -ENOMEM;
  1048. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1049. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1050. ubi->vid_hdr_alsize);
  1051. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1052. goto exit;
  1053. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1054. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1055. if (hdr_crc != crc) {
  1056. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
  1057. "read %#08x", pnum, crc, hdr_crc);
  1058. ubi_err("paranoid check failed for PEB %d", pnum);
  1059. ubi_dbg_dump_vid_hdr(vid_hdr);
  1060. ubi_dbg_dump_stack();
  1061. err = 1;
  1062. goto exit;
  1063. }
  1064. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  1065. exit:
  1066. ubi_free_vid_hdr(ubi, vid_hdr);
  1067. return err;
  1068. }
  1069. /**
  1070. * ubi_dbg_check_all_ff - check that a region of flash is empty.
  1071. * @ubi: UBI device description object
  1072. * @pnum: the physical eraseblock number to check
  1073. * @offset: the starting offset within the physical eraseblock to check
  1074. * @len: the length of the region to check
  1075. *
  1076. * This function returns zero if only 0xFF bytes are present at offset
  1077. * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
  1078. * code if an error occurred.
  1079. */
  1080. int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1081. {
  1082. size_t read;
  1083. int err;
  1084. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1085. mutex_lock(&ubi->dbg_buf_mutex);
  1086. err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
  1087. if (err && err != -EUCLEAN) {
  1088. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  1089. "read %zd bytes", err, len, pnum, offset, read);
  1090. goto error;
  1091. }
  1092. err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
  1093. if (err == 0) {
  1094. ubi_err("flash region at PEB %d:%d, length %d does not "
  1095. "contain all 0xFF bytes", pnum, offset, len);
  1096. goto fail;
  1097. }
  1098. mutex_unlock(&ubi->dbg_buf_mutex);
  1099. return 0;
  1100. fail:
  1101. ubi_err("paranoid check failed for PEB %d", pnum);
  1102. ubi_msg("hex dump of the %d-%d region", offset, offset + len);
  1103. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1104. ubi->dbg_peb_buf, len, 1);
  1105. err = 1;
  1106. error:
  1107. ubi_dbg_dump_stack();
  1108. mutex_unlock(&ubi->dbg_buf_mutex);
  1109. return err;
  1110. }
  1111. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */