slub_def.h 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. #include <linux/kmemleak.h>
  13. enum stat_item {
  14. ALLOC_FASTPATH, /* Allocation from cpu slab */
  15. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  16. FREE_FASTPATH, /* Free to cpu slub */
  17. FREE_SLOWPATH, /* Freeing not to cpu slab */
  18. FREE_FROZEN, /* Freeing to frozen slab */
  19. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  20. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  21. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  22. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  23. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  24. ALLOC_NODE_MISMATCH, /* Switching cpu slab */
  25. FREE_SLAB, /* Slab freed to the page allocator */
  26. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  27. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  28. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  29. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  30. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  31. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  32. DEACTIVATE_BYPASS, /* Implicit deactivation */
  33. ORDER_FALLBACK, /* Number of times fallback was necessary */
  34. CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
  35. CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
  36. CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
  37. CPU_PARTIAL_FREE, /* USed cpu partial on free */
  38. NR_SLUB_STAT_ITEMS };
  39. struct kmem_cache_cpu {
  40. void **freelist; /* Pointer to next available object */
  41. unsigned long tid; /* Globally unique transaction id */
  42. struct page *page; /* The slab from which we are allocating */
  43. struct page *partial; /* Partially allocated frozen slabs */
  44. int node; /* The node of the page (or -1 for debug) */
  45. #ifdef CONFIG_SLUB_STATS
  46. unsigned stat[NR_SLUB_STAT_ITEMS];
  47. #endif
  48. };
  49. struct kmem_cache_node {
  50. spinlock_t list_lock; /* Protect partial list and nr_partial */
  51. unsigned long nr_partial;
  52. struct list_head partial;
  53. #ifdef CONFIG_SLUB_DEBUG
  54. atomic_long_t nr_slabs;
  55. atomic_long_t total_objects;
  56. struct list_head full;
  57. #endif
  58. };
  59. /*
  60. * Word size structure that can be atomically updated or read and that
  61. * contains both the order and the number of objects that a slab of the
  62. * given order would contain.
  63. */
  64. struct kmem_cache_order_objects {
  65. unsigned long x;
  66. };
  67. /*
  68. * Slab cache management.
  69. */
  70. struct kmem_cache {
  71. struct kmem_cache_cpu __percpu *cpu_slab;
  72. /* Used for retriving partial slabs etc */
  73. unsigned long flags;
  74. unsigned long min_partial;
  75. int size; /* The size of an object including meta data */
  76. int objsize; /* The size of an object without meta data */
  77. int offset; /* Free pointer offset. */
  78. int cpu_partial; /* Number of per cpu partial objects to keep around */
  79. struct kmem_cache_order_objects oo;
  80. /* Allocation and freeing of slabs */
  81. struct kmem_cache_order_objects max;
  82. struct kmem_cache_order_objects min;
  83. gfp_t allocflags; /* gfp flags to use on each alloc */
  84. int refcount; /* Refcount for slab cache destroy */
  85. void (*ctor)(void *);
  86. int inuse; /* Offset to metadata */
  87. int align; /* Alignment */
  88. int reserved; /* Reserved bytes at the end of slabs */
  89. const char *name; /* Name (only for display!) */
  90. struct list_head list; /* List of slab caches */
  91. #ifdef CONFIG_SYSFS
  92. struct kobject kobj; /* For sysfs */
  93. #endif
  94. #ifdef CONFIG_NUMA
  95. /*
  96. * Defragmentation by allocating from a remote node.
  97. */
  98. int remote_node_defrag_ratio;
  99. #endif
  100. struct kmem_cache_node *node[MAX_NUMNODES];
  101. };
  102. /*
  103. * Kmalloc subsystem.
  104. */
  105. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  106. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  107. #else
  108. #define KMALLOC_MIN_SIZE 8
  109. #endif
  110. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  111. /*
  112. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  113. * are passed through to the page allocator. The page allocator "fastpath"
  114. * is relatively slow so we need this value sufficiently high so that
  115. * performance critical objects are allocated through the SLUB fastpath.
  116. *
  117. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  118. * "fastpath" becomes competitive with the slab allocator fastpaths.
  119. */
  120. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  121. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  122. #ifdef CONFIG_ZONE_DMA
  123. #define SLUB_DMA __GFP_DMA
  124. #else
  125. /* Disable DMA functionality */
  126. #define SLUB_DMA (__force gfp_t)0
  127. #endif
  128. /*
  129. * We keep the general caches in an array of slab caches that are used for
  130. * 2^x bytes of allocations.
  131. */
  132. extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  133. /*
  134. * Sorry that the following has to be that ugly but some versions of GCC
  135. * have trouble with constant propagation and loops.
  136. */
  137. static __always_inline int kmalloc_index(size_t size)
  138. {
  139. if (!size)
  140. return 0;
  141. if (size <= KMALLOC_MIN_SIZE)
  142. return KMALLOC_SHIFT_LOW;
  143. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  144. return 1;
  145. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  146. return 2;
  147. if (size <= 8) return 3;
  148. if (size <= 16) return 4;
  149. if (size <= 32) return 5;
  150. if (size <= 64) return 6;
  151. if (size <= 128) return 7;
  152. if (size <= 256) return 8;
  153. if (size <= 512) return 9;
  154. if (size <= 1024) return 10;
  155. if (size <= 2 * 1024) return 11;
  156. if (size <= 4 * 1024) return 12;
  157. /*
  158. * The following is only needed to support architectures with a larger page
  159. * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
  160. * size we would have to go up to 128k.
  161. */
  162. if (size <= 8 * 1024) return 13;
  163. if (size <= 16 * 1024) return 14;
  164. if (size <= 32 * 1024) return 15;
  165. if (size <= 64 * 1024) return 16;
  166. if (size <= 128 * 1024) return 17;
  167. if (size <= 256 * 1024) return 18;
  168. if (size <= 512 * 1024) return 19;
  169. if (size <= 1024 * 1024) return 20;
  170. if (size <= 2 * 1024 * 1024) return 21;
  171. BUG();
  172. return -1; /* Will never be reached */
  173. /*
  174. * What we really wanted to do and cannot do because of compiler issues is:
  175. * int i;
  176. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  177. * if (size <= (1 << i))
  178. * return i;
  179. */
  180. }
  181. /*
  182. * Find the slab cache for a given combination of allocation flags and size.
  183. *
  184. * This ought to end up with a global pointer to the right cache
  185. * in kmalloc_caches.
  186. */
  187. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  188. {
  189. int index = kmalloc_index(size);
  190. if (index == 0)
  191. return NULL;
  192. return kmalloc_caches[index];
  193. }
  194. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  195. void *__kmalloc(size_t size, gfp_t flags);
  196. static __always_inline void *
  197. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  198. {
  199. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  200. kmemleak_alloc(ret, size, 1, flags);
  201. return ret;
  202. }
  203. /**
  204. * Calling this on allocated memory will check that the memory
  205. * is expected to be in use, and print warnings if not.
  206. */
  207. #ifdef CONFIG_SLUB_DEBUG
  208. extern bool verify_mem_not_deleted(const void *x);
  209. #else
  210. static inline bool verify_mem_not_deleted(const void *x)
  211. {
  212. return true;
  213. }
  214. #endif
  215. #ifdef CONFIG_TRACING
  216. extern void *
  217. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  218. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  219. #else
  220. static __always_inline void *
  221. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  222. {
  223. return kmem_cache_alloc(s, gfpflags);
  224. }
  225. static __always_inline void *
  226. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  227. {
  228. return kmalloc_order(size, flags, order);
  229. }
  230. #endif
  231. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  232. {
  233. unsigned int order = get_order(size);
  234. return kmalloc_order_trace(size, flags, order);
  235. }
  236. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  237. {
  238. if (__builtin_constant_p(size)) {
  239. if (size > SLUB_MAX_SIZE)
  240. return kmalloc_large(size, flags);
  241. if (!(flags & SLUB_DMA)) {
  242. struct kmem_cache *s = kmalloc_slab(size);
  243. if (!s)
  244. return ZERO_SIZE_PTR;
  245. return kmem_cache_alloc_trace(s, flags, size);
  246. }
  247. }
  248. return __kmalloc(size, flags);
  249. }
  250. #ifdef CONFIG_NUMA
  251. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  252. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  253. #ifdef CONFIG_TRACING
  254. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  255. gfp_t gfpflags,
  256. int node, size_t size);
  257. #else
  258. static __always_inline void *
  259. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  260. gfp_t gfpflags,
  261. int node, size_t size)
  262. {
  263. return kmem_cache_alloc_node(s, gfpflags, node);
  264. }
  265. #endif
  266. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  267. {
  268. if (__builtin_constant_p(size) &&
  269. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  270. struct kmem_cache *s = kmalloc_slab(size);
  271. if (!s)
  272. return ZERO_SIZE_PTR;
  273. return kmem_cache_alloc_node_trace(s, flags, node, size);
  274. }
  275. return __kmalloc_node(size, flags, node);
  276. }
  277. #endif
  278. #endif /* _LINUX_SLUB_DEF_H */