direct.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/task_io_accounting_ops.h>
  48. #include <linux/nfs_fs.h>
  49. #include <linux/nfs_page.h>
  50. #include <linux/sunrpc/clnt.h>
  51. #include <asm/uaccess.h>
  52. #include <linux/atomic.h>
  53. #include "internal.h"
  54. #include "iostat.h"
  55. #include "pnfs.h"
  56. #define NFSDBG_FACILITY NFSDBG_VFS
  57. static struct kmem_cache *nfs_direct_cachep;
  58. /*
  59. * This represents a set of asynchronous requests that we're waiting on
  60. */
  61. struct nfs_direct_req {
  62. struct kref kref; /* release manager */
  63. /* I/O parameters */
  64. struct nfs_open_context *ctx; /* file open context info */
  65. struct nfs_lock_context *l_ctx; /* Lock context info */
  66. struct kiocb * iocb; /* controlling i/o request */
  67. struct inode * inode; /* target file of i/o */
  68. /* completion state */
  69. atomic_t io_count; /* i/os we're waiting for */
  70. spinlock_t lock; /* protect completion state */
  71. ssize_t count, /* bytes actually processed */
  72. error; /* any reported error */
  73. struct completion completion; /* wait for i/o completion */
  74. /* commit state */
  75. struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
  76. struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
  77. struct work_struct work;
  78. int flags;
  79. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  80. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  81. struct nfs_writeverf verf; /* unstable write verifier */
  82. };
  83. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  84. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  85. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  86. static void nfs_direct_write_schedule_work(struct work_struct *work);
  87. static inline void get_dreq(struct nfs_direct_req *dreq)
  88. {
  89. atomic_inc(&dreq->io_count);
  90. }
  91. static inline int put_dreq(struct nfs_direct_req *dreq)
  92. {
  93. return atomic_dec_and_test(&dreq->io_count);
  94. }
  95. /**
  96. * nfs_direct_IO - NFS address space operation for direct I/O
  97. * @rw: direction (read or write)
  98. * @iocb: target I/O control block
  99. * @iov: array of vectors that define I/O buffer
  100. * @pos: offset in file to begin the operation
  101. * @nr_segs: size of iovec array
  102. *
  103. * The presence of this routine in the address space ops vector means
  104. * the NFS client supports direct I/O. However, we shunt off direct
  105. * read and write requests before the VFS gets them, so this method
  106. * should never be called.
  107. */
  108. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  109. {
  110. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  111. iocb->ki_filp->f_path.dentry->d_name.name,
  112. (long long) pos, nr_segs);
  113. return -EINVAL;
  114. }
  115. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  116. {
  117. unsigned int i;
  118. for (i = 0; i < npages; i++)
  119. page_cache_release(pages[i]);
  120. }
  121. void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
  122. struct nfs_direct_req *dreq)
  123. {
  124. cinfo->lock = &dreq->lock;
  125. cinfo->mds = &dreq->mds_cinfo;
  126. cinfo->ds = &dreq->ds_cinfo;
  127. cinfo->dreq = dreq;
  128. cinfo->completion_ops = &nfs_direct_commit_completion_ops;
  129. }
  130. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  131. {
  132. struct nfs_direct_req *dreq;
  133. dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
  134. if (!dreq)
  135. return NULL;
  136. kref_init(&dreq->kref);
  137. kref_get(&dreq->kref);
  138. init_completion(&dreq->completion);
  139. INIT_LIST_HEAD(&dreq->mds_cinfo.list);
  140. INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
  141. spin_lock_init(&dreq->lock);
  142. return dreq;
  143. }
  144. static void nfs_direct_req_free(struct kref *kref)
  145. {
  146. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  147. if (dreq->l_ctx != NULL)
  148. nfs_put_lock_context(dreq->l_ctx);
  149. if (dreq->ctx != NULL)
  150. put_nfs_open_context(dreq->ctx);
  151. kmem_cache_free(nfs_direct_cachep, dreq);
  152. }
  153. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  154. {
  155. kref_put(&dreq->kref, nfs_direct_req_free);
  156. }
  157. /*
  158. * Collects and returns the final error value/byte-count.
  159. */
  160. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  161. {
  162. ssize_t result = -EIOCBQUEUED;
  163. /* Async requests don't wait here */
  164. if (dreq->iocb)
  165. goto out;
  166. result = wait_for_completion_killable(&dreq->completion);
  167. if (!result)
  168. result = dreq->error;
  169. if (!result)
  170. result = dreq->count;
  171. out:
  172. return (ssize_t) result;
  173. }
  174. /*
  175. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  176. * the iocb is still valid here if this is a synchronous request.
  177. */
  178. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  179. {
  180. if (dreq->iocb) {
  181. long res = (long) dreq->error;
  182. if (!res)
  183. res = (long) dreq->count;
  184. aio_complete(dreq->iocb, res, 0);
  185. }
  186. complete_all(&dreq->completion);
  187. nfs_direct_req_release(dreq);
  188. }
  189. static void nfs_direct_readpage_release(struct nfs_page *req)
  190. {
  191. dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
  192. req->wb_context->dentry->d_inode->i_sb->s_id,
  193. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  194. req->wb_bytes,
  195. (long long)req_offset(req));
  196. nfs_release_request(req);
  197. }
  198. static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
  199. {
  200. unsigned long bytes = 0;
  201. struct nfs_direct_req *dreq = hdr->dreq;
  202. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  203. goto out_put;
  204. spin_lock(&dreq->lock);
  205. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
  206. dreq->error = hdr->error;
  207. else
  208. dreq->count += hdr->good_bytes;
  209. spin_unlock(&dreq->lock);
  210. while (!list_empty(&hdr->pages)) {
  211. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  212. struct page *page = req->wb_page;
  213. if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
  214. if (bytes > hdr->good_bytes)
  215. zero_user(page, 0, PAGE_SIZE);
  216. else if (hdr->good_bytes - bytes < PAGE_SIZE)
  217. zero_user_segment(page,
  218. hdr->good_bytes & ~PAGE_MASK,
  219. PAGE_SIZE);
  220. }
  221. if (!PageCompound(page)) {
  222. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  223. if (bytes < hdr->good_bytes)
  224. set_page_dirty(page);
  225. } else
  226. set_page_dirty(page);
  227. }
  228. bytes += req->wb_bytes;
  229. nfs_list_remove_request(req);
  230. nfs_direct_readpage_release(req);
  231. }
  232. out_put:
  233. if (put_dreq(dreq))
  234. nfs_direct_complete(dreq);
  235. hdr->release(hdr);
  236. }
  237. static void nfs_read_sync_pgio_error(struct list_head *head)
  238. {
  239. struct nfs_page *req;
  240. while (!list_empty(head)) {
  241. req = nfs_list_entry(head->next);
  242. nfs_list_remove_request(req);
  243. nfs_release_request(req);
  244. }
  245. }
  246. static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
  247. {
  248. get_dreq(hdr->dreq);
  249. }
  250. static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
  251. .error_cleanup = nfs_read_sync_pgio_error,
  252. .init_hdr = nfs_direct_pgio_init,
  253. .completion = nfs_direct_read_completion,
  254. };
  255. /*
  256. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  257. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  258. * bail and stop sending more reads. Read length accounting is
  259. * handled automatically by nfs_direct_read_result(). Otherwise, if
  260. * no requests have been sent, just return an error.
  261. */
  262. static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
  263. const struct iovec *iov,
  264. loff_t pos)
  265. {
  266. struct nfs_direct_req *dreq = desc->pg_dreq;
  267. struct nfs_open_context *ctx = dreq->ctx;
  268. struct inode *inode = ctx->dentry->d_inode;
  269. unsigned long user_addr = (unsigned long)iov->iov_base;
  270. size_t count = iov->iov_len;
  271. size_t rsize = NFS_SERVER(inode)->rsize;
  272. unsigned int pgbase;
  273. int result;
  274. ssize_t started = 0;
  275. struct page **pagevec = NULL;
  276. unsigned int npages;
  277. do {
  278. size_t bytes;
  279. int i;
  280. pgbase = user_addr & ~PAGE_MASK;
  281. bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
  282. result = -ENOMEM;
  283. npages = nfs_page_array_len(pgbase, bytes);
  284. if (!pagevec)
  285. pagevec = kmalloc(npages * sizeof(struct page *),
  286. GFP_KERNEL);
  287. if (!pagevec)
  288. break;
  289. down_read(&current->mm->mmap_sem);
  290. result = get_user_pages(current, current->mm, user_addr,
  291. npages, 1, 0, pagevec, NULL);
  292. up_read(&current->mm->mmap_sem);
  293. if (result < 0)
  294. break;
  295. if ((unsigned)result < npages) {
  296. bytes = result * PAGE_SIZE;
  297. if (bytes <= pgbase) {
  298. nfs_direct_release_pages(pagevec, result);
  299. break;
  300. }
  301. bytes -= pgbase;
  302. npages = result;
  303. }
  304. for (i = 0; i < npages; i++) {
  305. struct nfs_page *req;
  306. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  307. /* XXX do we need to do the eof zeroing found in async_filler? */
  308. req = nfs_create_request(dreq->ctx, dreq->inode,
  309. pagevec[i],
  310. pgbase, req_len);
  311. if (IS_ERR(req)) {
  312. result = PTR_ERR(req);
  313. break;
  314. }
  315. req->wb_index = pos >> PAGE_SHIFT;
  316. req->wb_offset = pos & ~PAGE_MASK;
  317. if (!nfs_pageio_add_request(desc, req)) {
  318. result = desc->pg_error;
  319. nfs_release_request(req);
  320. break;
  321. }
  322. pgbase = 0;
  323. bytes -= req_len;
  324. started += req_len;
  325. user_addr += req_len;
  326. pos += req_len;
  327. count -= req_len;
  328. }
  329. /* The nfs_page now hold references to these pages */
  330. nfs_direct_release_pages(pagevec, npages);
  331. } while (count != 0 && result >= 0);
  332. kfree(pagevec);
  333. if (started)
  334. return started;
  335. return result < 0 ? (ssize_t) result : -EFAULT;
  336. }
  337. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  338. const struct iovec *iov,
  339. unsigned long nr_segs,
  340. loff_t pos)
  341. {
  342. struct nfs_pageio_descriptor desc;
  343. ssize_t result = -EINVAL;
  344. size_t requested_bytes = 0;
  345. unsigned long seg;
  346. nfs_pageio_init_read(&desc, dreq->inode,
  347. &nfs_direct_read_completion_ops);
  348. get_dreq(dreq);
  349. desc.pg_dreq = dreq;
  350. for (seg = 0; seg < nr_segs; seg++) {
  351. const struct iovec *vec = &iov[seg];
  352. result = nfs_direct_read_schedule_segment(&desc, vec, pos);
  353. if (result < 0)
  354. break;
  355. requested_bytes += result;
  356. if ((size_t)result < vec->iov_len)
  357. break;
  358. pos += vec->iov_len;
  359. }
  360. nfs_pageio_complete(&desc);
  361. /*
  362. * If no bytes were started, return the error, and let the
  363. * generic layer handle the completion.
  364. */
  365. if (requested_bytes == 0) {
  366. nfs_direct_req_release(dreq);
  367. return result < 0 ? result : -EIO;
  368. }
  369. if (put_dreq(dreq))
  370. nfs_direct_complete(dreq);
  371. return 0;
  372. }
  373. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  374. unsigned long nr_segs, loff_t pos)
  375. {
  376. ssize_t result = -ENOMEM;
  377. struct inode *inode = iocb->ki_filp->f_mapping->host;
  378. struct nfs_direct_req *dreq;
  379. dreq = nfs_direct_req_alloc();
  380. if (dreq == NULL)
  381. goto out;
  382. dreq->inode = inode;
  383. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  384. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  385. if (dreq->l_ctx == NULL)
  386. goto out_release;
  387. if (!is_sync_kiocb(iocb))
  388. dreq->iocb = iocb;
  389. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  390. if (!result)
  391. result = nfs_direct_wait(dreq);
  392. out_release:
  393. nfs_direct_req_release(dreq);
  394. out:
  395. return result;
  396. }
  397. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  398. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  399. {
  400. struct nfs_pageio_descriptor desc;
  401. struct nfs_page *req, *tmp;
  402. LIST_HEAD(reqs);
  403. struct nfs_commit_info cinfo;
  404. LIST_HEAD(failed);
  405. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  406. pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
  407. spin_lock(cinfo.lock);
  408. nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
  409. spin_unlock(cinfo.lock);
  410. dreq->count = 0;
  411. get_dreq(dreq);
  412. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
  413. &nfs_direct_write_completion_ops);
  414. desc.pg_dreq = dreq;
  415. list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
  416. if (!nfs_pageio_add_request(&desc, req)) {
  417. nfs_list_add_request(req, &failed);
  418. spin_lock(cinfo.lock);
  419. dreq->flags = 0;
  420. dreq->error = -EIO;
  421. spin_unlock(cinfo.lock);
  422. }
  423. }
  424. nfs_pageio_complete(&desc);
  425. while (!list_empty(&failed)) {
  426. nfs_release_request(req);
  427. nfs_unlock_request(req);
  428. }
  429. if (put_dreq(dreq))
  430. nfs_direct_write_complete(dreq, dreq->inode);
  431. }
  432. static void nfs_direct_commit_complete(struct nfs_commit_data *data)
  433. {
  434. struct nfs_direct_req *dreq = data->dreq;
  435. struct nfs_commit_info cinfo;
  436. struct nfs_page *req;
  437. int status = data->task.tk_status;
  438. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  439. if (status < 0) {
  440. dprintk("NFS: %5u commit failed with error %d.\n",
  441. data->task.tk_pid, status);
  442. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  443. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  444. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  445. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  446. }
  447. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  448. while (!list_empty(&data->pages)) {
  449. req = nfs_list_entry(data->pages.next);
  450. nfs_list_remove_request(req);
  451. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
  452. /* Note the rewrite will go through mds */
  453. nfs_mark_request_commit(req, NULL, &cinfo);
  454. } else
  455. nfs_release_request(req);
  456. nfs_unlock_request(req);
  457. }
  458. if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
  459. nfs_direct_write_complete(dreq, data->inode);
  460. }
  461. static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
  462. {
  463. /* There is no lock to clear */
  464. }
  465. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
  466. .completion = nfs_direct_commit_complete,
  467. .error_cleanup = nfs_direct_error_cleanup,
  468. };
  469. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  470. {
  471. int res;
  472. struct nfs_commit_info cinfo;
  473. LIST_HEAD(mds_list);
  474. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  475. nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
  476. res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
  477. if (res < 0) /* res == -ENOMEM */
  478. nfs_direct_write_reschedule(dreq);
  479. }
  480. static void nfs_direct_write_schedule_work(struct work_struct *work)
  481. {
  482. struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
  483. int flags = dreq->flags;
  484. dreq->flags = 0;
  485. switch (flags) {
  486. case NFS_ODIRECT_DO_COMMIT:
  487. nfs_direct_commit_schedule(dreq);
  488. break;
  489. case NFS_ODIRECT_RESCHED_WRITES:
  490. nfs_direct_write_reschedule(dreq);
  491. break;
  492. default:
  493. nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
  494. nfs_direct_complete(dreq);
  495. }
  496. }
  497. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  498. {
  499. schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
  500. }
  501. #else
  502. static void nfs_direct_write_schedule_work(struct work_struct *work)
  503. {
  504. }
  505. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  506. {
  507. nfs_zap_mapping(inode, inode->i_mapping);
  508. nfs_direct_complete(dreq);
  509. }
  510. #endif
  511. /*
  512. * NB: Return the value of the first error return code. Subsequent
  513. * errors after the first one are ignored.
  514. */
  515. /*
  516. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  517. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  518. * bail and stop sending more writes. Write length accounting is
  519. * handled automatically by nfs_direct_write_result(). Otherwise, if
  520. * no requests have been sent, just return an error.
  521. */
  522. static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
  523. const struct iovec *iov,
  524. loff_t pos)
  525. {
  526. struct nfs_direct_req *dreq = desc->pg_dreq;
  527. struct nfs_open_context *ctx = dreq->ctx;
  528. struct inode *inode = ctx->dentry->d_inode;
  529. unsigned long user_addr = (unsigned long)iov->iov_base;
  530. size_t count = iov->iov_len;
  531. size_t wsize = NFS_SERVER(inode)->wsize;
  532. unsigned int pgbase;
  533. int result;
  534. ssize_t started = 0;
  535. struct page **pagevec = NULL;
  536. unsigned int npages;
  537. do {
  538. size_t bytes;
  539. int i;
  540. pgbase = user_addr & ~PAGE_MASK;
  541. bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
  542. result = -ENOMEM;
  543. npages = nfs_page_array_len(pgbase, bytes);
  544. if (!pagevec)
  545. pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
  546. if (!pagevec)
  547. break;
  548. down_read(&current->mm->mmap_sem);
  549. result = get_user_pages(current, current->mm, user_addr,
  550. npages, 0, 0, pagevec, NULL);
  551. up_read(&current->mm->mmap_sem);
  552. if (result < 0)
  553. break;
  554. if ((unsigned)result < npages) {
  555. bytes = result * PAGE_SIZE;
  556. if (bytes <= pgbase) {
  557. nfs_direct_release_pages(pagevec, result);
  558. break;
  559. }
  560. bytes -= pgbase;
  561. npages = result;
  562. }
  563. for (i = 0; i < npages; i++) {
  564. struct nfs_page *req;
  565. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  566. req = nfs_create_request(dreq->ctx, dreq->inode,
  567. pagevec[i],
  568. pgbase, req_len);
  569. if (IS_ERR(req)) {
  570. result = PTR_ERR(req);
  571. break;
  572. }
  573. nfs_lock_request(req);
  574. req->wb_index = pos >> PAGE_SHIFT;
  575. req->wb_offset = pos & ~PAGE_MASK;
  576. if (!nfs_pageio_add_request(desc, req)) {
  577. result = desc->pg_error;
  578. nfs_unlock_request(req);
  579. nfs_release_request(req);
  580. break;
  581. }
  582. pgbase = 0;
  583. bytes -= req_len;
  584. started += req_len;
  585. user_addr += req_len;
  586. pos += req_len;
  587. count -= req_len;
  588. }
  589. /* The nfs_page now hold references to these pages */
  590. nfs_direct_release_pages(pagevec, npages);
  591. } while (count != 0 && result >= 0);
  592. kfree(pagevec);
  593. if (started)
  594. return started;
  595. return result < 0 ? (ssize_t) result : -EFAULT;
  596. }
  597. static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
  598. {
  599. struct nfs_direct_req *dreq = hdr->dreq;
  600. struct nfs_commit_info cinfo;
  601. int bit = -1;
  602. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  603. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  604. goto out_put;
  605. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  606. spin_lock(&dreq->lock);
  607. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  608. dreq->flags = 0;
  609. dreq->error = hdr->error;
  610. }
  611. if (dreq->error != 0)
  612. bit = NFS_IOHDR_ERROR;
  613. else {
  614. dreq->count += hdr->good_bytes;
  615. if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
  616. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  617. bit = NFS_IOHDR_NEED_RESCHED;
  618. } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
  619. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
  620. bit = NFS_IOHDR_NEED_RESCHED;
  621. else if (dreq->flags == 0) {
  622. memcpy(&dreq->verf, &req->wb_verf,
  623. sizeof(dreq->verf));
  624. bit = NFS_IOHDR_NEED_COMMIT;
  625. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  626. } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
  627. if (memcmp(&dreq->verf, &req->wb_verf, sizeof(dreq->verf))) {
  628. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  629. bit = NFS_IOHDR_NEED_RESCHED;
  630. } else
  631. bit = NFS_IOHDR_NEED_COMMIT;
  632. }
  633. }
  634. }
  635. spin_unlock(&dreq->lock);
  636. while (!list_empty(&hdr->pages)) {
  637. req = nfs_list_entry(hdr->pages.next);
  638. nfs_list_remove_request(req);
  639. switch (bit) {
  640. case NFS_IOHDR_NEED_RESCHED:
  641. case NFS_IOHDR_NEED_COMMIT:
  642. nfs_mark_request_commit(req, hdr->lseg, &cinfo);
  643. break;
  644. default:
  645. nfs_release_request(req);
  646. }
  647. nfs_unlock_request(req);
  648. }
  649. out_put:
  650. if (put_dreq(dreq))
  651. nfs_direct_write_complete(dreq, hdr->inode);
  652. hdr->release(hdr);
  653. }
  654. static void nfs_write_sync_pgio_error(struct list_head *head)
  655. {
  656. struct nfs_page *req;
  657. while (!list_empty(head)) {
  658. req = nfs_list_entry(head->next);
  659. nfs_list_remove_request(req);
  660. nfs_release_request(req);
  661. nfs_unlock_request(req);
  662. }
  663. }
  664. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
  665. .error_cleanup = nfs_write_sync_pgio_error,
  666. .init_hdr = nfs_direct_pgio_init,
  667. .completion = nfs_direct_write_completion,
  668. };
  669. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  670. const struct iovec *iov,
  671. unsigned long nr_segs,
  672. loff_t pos)
  673. {
  674. struct nfs_pageio_descriptor desc;
  675. ssize_t result = 0;
  676. size_t requested_bytes = 0;
  677. unsigned long seg;
  678. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_COND_STABLE,
  679. &nfs_direct_write_completion_ops);
  680. desc.pg_dreq = dreq;
  681. get_dreq(dreq);
  682. for (seg = 0; seg < nr_segs; seg++) {
  683. const struct iovec *vec = &iov[seg];
  684. result = nfs_direct_write_schedule_segment(&desc, vec, pos);
  685. if (result < 0)
  686. break;
  687. requested_bytes += result;
  688. if ((size_t)result < vec->iov_len)
  689. break;
  690. pos += vec->iov_len;
  691. }
  692. nfs_pageio_complete(&desc);
  693. /*
  694. * If no bytes were started, return the error, and let the
  695. * generic layer handle the completion.
  696. */
  697. if (requested_bytes == 0) {
  698. nfs_direct_req_release(dreq);
  699. return result < 0 ? result : -EIO;
  700. }
  701. if (put_dreq(dreq))
  702. nfs_direct_write_complete(dreq, dreq->inode);
  703. return 0;
  704. }
  705. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  706. unsigned long nr_segs, loff_t pos,
  707. size_t count)
  708. {
  709. ssize_t result = -ENOMEM;
  710. struct inode *inode = iocb->ki_filp->f_mapping->host;
  711. struct nfs_direct_req *dreq;
  712. dreq = nfs_direct_req_alloc();
  713. if (!dreq)
  714. goto out;
  715. dreq->inode = inode;
  716. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  717. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  718. if (dreq->l_ctx == NULL)
  719. goto out_release;
  720. if (!is_sync_kiocb(iocb))
  721. dreq->iocb = iocb;
  722. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
  723. if (!result)
  724. result = nfs_direct_wait(dreq);
  725. out_release:
  726. nfs_direct_req_release(dreq);
  727. out:
  728. return result;
  729. }
  730. /**
  731. * nfs_file_direct_read - file direct read operation for NFS files
  732. * @iocb: target I/O control block
  733. * @iov: vector of user buffers into which to read data
  734. * @nr_segs: size of iov vector
  735. * @pos: byte offset in file where reading starts
  736. *
  737. * We use this function for direct reads instead of calling
  738. * generic_file_aio_read() in order to avoid gfar's check to see if
  739. * the request starts before the end of the file. For that check
  740. * to work, we must generate a GETATTR before each direct read, and
  741. * even then there is a window between the GETATTR and the subsequent
  742. * READ where the file size could change. Our preference is simply
  743. * to do all reads the application wants, and the server will take
  744. * care of managing the end of file boundary.
  745. *
  746. * This function also eliminates unnecessarily updating the file's
  747. * atime locally, as the NFS server sets the file's atime, and this
  748. * client must read the updated atime from the server back into its
  749. * cache.
  750. */
  751. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  752. unsigned long nr_segs, loff_t pos)
  753. {
  754. ssize_t retval = -EINVAL;
  755. struct file *file = iocb->ki_filp;
  756. struct address_space *mapping = file->f_mapping;
  757. size_t count;
  758. count = iov_length(iov, nr_segs);
  759. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  760. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  761. file->f_path.dentry->d_parent->d_name.name,
  762. file->f_path.dentry->d_name.name,
  763. count, (long long) pos);
  764. retval = 0;
  765. if (!count)
  766. goto out;
  767. retval = nfs_sync_mapping(mapping);
  768. if (retval)
  769. goto out;
  770. task_io_account_read(count);
  771. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  772. if (retval > 0)
  773. iocb->ki_pos = pos + retval;
  774. out:
  775. return retval;
  776. }
  777. /**
  778. * nfs_file_direct_write - file direct write operation for NFS files
  779. * @iocb: target I/O control block
  780. * @iov: vector of user buffers from which to write data
  781. * @nr_segs: size of iov vector
  782. * @pos: byte offset in file where writing starts
  783. *
  784. * We use this function for direct writes instead of calling
  785. * generic_file_aio_write() in order to avoid taking the inode
  786. * semaphore and updating the i_size. The NFS server will set
  787. * the new i_size and this client must read the updated size
  788. * back into its cache. We let the server do generic write
  789. * parameter checking and report problems.
  790. *
  791. * We eliminate local atime updates, see direct read above.
  792. *
  793. * We avoid unnecessary page cache invalidations for normal cached
  794. * readers of this file.
  795. *
  796. * Note that O_APPEND is not supported for NFS direct writes, as there
  797. * is no atomic O_APPEND write facility in the NFS protocol.
  798. */
  799. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  800. unsigned long nr_segs, loff_t pos)
  801. {
  802. ssize_t retval = -EINVAL;
  803. struct file *file = iocb->ki_filp;
  804. struct address_space *mapping = file->f_mapping;
  805. size_t count;
  806. count = iov_length(iov, nr_segs);
  807. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  808. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  809. file->f_path.dentry->d_parent->d_name.name,
  810. file->f_path.dentry->d_name.name,
  811. count, (long long) pos);
  812. retval = generic_write_checks(file, &pos, &count, 0);
  813. if (retval)
  814. goto out;
  815. retval = -EINVAL;
  816. if ((ssize_t) count < 0)
  817. goto out;
  818. retval = 0;
  819. if (!count)
  820. goto out;
  821. retval = nfs_sync_mapping(mapping);
  822. if (retval)
  823. goto out;
  824. task_io_account_write(count);
  825. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  826. if (retval > 0) {
  827. struct inode *inode = mapping->host;
  828. iocb->ki_pos = pos + retval;
  829. spin_lock(&inode->i_lock);
  830. if (i_size_read(inode) < iocb->ki_pos)
  831. i_size_write(inode, iocb->ki_pos);
  832. spin_unlock(&inode->i_lock);
  833. }
  834. out:
  835. return retval;
  836. }
  837. /**
  838. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  839. *
  840. */
  841. int __init nfs_init_directcache(void)
  842. {
  843. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  844. sizeof(struct nfs_direct_req),
  845. 0, (SLAB_RECLAIM_ACCOUNT|
  846. SLAB_MEM_SPREAD),
  847. NULL);
  848. if (nfs_direct_cachep == NULL)
  849. return -ENOMEM;
  850. return 0;
  851. }
  852. /**
  853. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  854. *
  855. */
  856. void nfs_destroy_directcache(void)
  857. {
  858. kmem_cache_destroy(nfs_direct_cachep);
  859. }