skd_main.c 139 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432
  1. /* Copyright 2012 STEC, Inc.
  2. *
  3. * This file is licensed under the terms of the 3-clause
  4. * BSD License (http://opensource.org/licenses/BSD-3-Clause)
  5. * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
  6. * at your option. Both licenses are also available in the LICENSE file
  7. * distributed with this project. This file may not be copied, modified,
  8. * or distributed except in accordance with those terms.
  9. * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
  10. * Initial Driver Design!
  11. * Thomas Swann <tswann@stec-inc.com>
  12. * Interrupt handling.
  13. * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
  14. * biomode implementation.
  15. * Akhil Bhansali <abhansali@stec-inc.com>
  16. * Added support for DISCARD / FLUSH and FUA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/init.h>
  21. #include <linux/pci.h>
  22. #include <linux/slab.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/sched.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/compiler.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/bitops.h>
  30. #include <linux/delay.h>
  31. #include <linux/time.h>
  32. #include <linux/hdreg.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/completion.h>
  35. #include <linux/scatterlist.h>
  36. #include <linux/version.h>
  37. #include <linux/err.h>
  38. #include <linux/scatterlist.h>
  39. #include <linux/aer.h>
  40. #include <linux/ctype.h>
  41. #include <linux/wait.h>
  42. #include <linux/uio.h>
  43. #include <scsi/scsi.h>
  44. #include <scsi/sg.h>
  45. #include <linux/io.h>
  46. #include <linux/uaccess.h>
  47. #include <asm/unaligned.h>
  48. #include "skd_s1120.h"
  49. static int skd_dbg_level;
  50. static int skd_isr_comp_limit = 4;
  51. enum {
  52. STEC_LINK_2_5GTS = 0,
  53. STEC_LINK_5GTS = 1,
  54. STEC_LINK_8GTS = 2,
  55. STEC_LINK_UNKNOWN = 0xFF
  56. };
  57. enum {
  58. SKD_FLUSH_INITIALIZER,
  59. SKD_FLUSH_ZERO_SIZE_FIRST,
  60. SKD_FLUSH_DATA_SECOND,
  61. };
  62. #define SKD_ASSERT(expr) \
  63. do { \
  64. if (unlikely(!(expr))) { \
  65. pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
  66. # expr, __FILE__, __func__, __LINE__); \
  67. } \
  68. } while (0)
  69. #define DRV_NAME "skd"
  70. #define DRV_VERSION "2.2.1"
  71. #define DRV_BUILD_ID "0260"
  72. #define PFX DRV_NAME ": "
  73. #define DRV_BIN_VERSION 0x100
  74. #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
  75. MODULE_AUTHOR("bug-reports: support@stec-inc.com");
  76. MODULE_LICENSE("Dual BSD/GPL");
  77. MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
  78. MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
  79. #define PCI_VENDOR_ID_STEC 0x1B39
  80. #define PCI_DEVICE_ID_S1120 0x0001
  81. #define SKD_FUA_NV (1 << 1)
  82. #define SKD_MINORS_PER_DEVICE 16
  83. #define SKD_MAX_QUEUE_DEPTH 200u
  84. #define SKD_PAUSE_TIMEOUT (5 * 1000)
  85. #define SKD_N_FITMSG_BYTES (512u)
  86. #define SKD_N_SPECIAL_CONTEXT 32u
  87. #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
  88. /* SG elements are 32 bytes, so we can make this 4096 and still be under the
  89. * 128KB limit. That allows 4096*4K = 16M xfer size
  90. */
  91. #define SKD_N_SG_PER_REQ_DEFAULT 256u
  92. #define SKD_N_SG_PER_SPECIAL 256u
  93. #define SKD_N_COMPLETION_ENTRY 256u
  94. #define SKD_N_READ_CAP_BYTES (8u)
  95. #define SKD_N_INTERNAL_BYTES (512u)
  96. /* 5 bits of uniqifier, 0xF800 */
  97. #define SKD_ID_INCR (0x400)
  98. #define SKD_ID_TABLE_MASK (3u << 8u)
  99. #define SKD_ID_RW_REQUEST (0u << 8u)
  100. #define SKD_ID_INTERNAL (1u << 8u)
  101. #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
  102. #define SKD_ID_FIT_MSG (3u << 8u)
  103. #define SKD_ID_SLOT_MASK 0x00FFu
  104. #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
  105. #define SKD_N_TIMEOUT_SLOT 4u
  106. #define SKD_TIMEOUT_SLOT_MASK 3u
  107. #define SKD_N_MAX_SECTORS 2048u
  108. #define SKD_MAX_RETRIES 2u
  109. #define SKD_TIMER_SECONDS(seconds) (seconds)
  110. #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
  111. #define INQ_STD_NBYTES 36
  112. #define SKD_DISCARD_CDB_LENGTH 24
  113. enum skd_drvr_state {
  114. SKD_DRVR_STATE_LOAD,
  115. SKD_DRVR_STATE_IDLE,
  116. SKD_DRVR_STATE_BUSY,
  117. SKD_DRVR_STATE_STARTING,
  118. SKD_DRVR_STATE_ONLINE,
  119. SKD_DRVR_STATE_PAUSING,
  120. SKD_DRVR_STATE_PAUSED,
  121. SKD_DRVR_STATE_DRAINING_TIMEOUT,
  122. SKD_DRVR_STATE_RESTARTING,
  123. SKD_DRVR_STATE_RESUMING,
  124. SKD_DRVR_STATE_STOPPING,
  125. SKD_DRVR_STATE_FAULT,
  126. SKD_DRVR_STATE_DISAPPEARED,
  127. SKD_DRVR_STATE_PROTOCOL_MISMATCH,
  128. SKD_DRVR_STATE_BUSY_ERASE,
  129. SKD_DRVR_STATE_BUSY_SANITIZE,
  130. SKD_DRVR_STATE_BUSY_IMMINENT,
  131. SKD_DRVR_STATE_WAIT_BOOT,
  132. SKD_DRVR_STATE_SYNCING,
  133. };
  134. #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
  135. #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
  136. #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
  137. #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
  138. #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
  139. #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
  140. #define SKD_START_WAIT_SECONDS 90u
  141. enum skd_req_state {
  142. SKD_REQ_STATE_IDLE,
  143. SKD_REQ_STATE_SETUP,
  144. SKD_REQ_STATE_BUSY,
  145. SKD_REQ_STATE_COMPLETED,
  146. SKD_REQ_STATE_TIMEOUT,
  147. SKD_REQ_STATE_ABORTED,
  148. };
  149. enum skd_fit_msg_state {
  150. SKD_MSG_STATE_IDLE,
  151. SKD_MSG_STATE_BUSY,
  152. };
  153. enum skd_check_status_action {
  154. SKD_CHECK_STATUS_REPORT_GOOD,
  155. SKD_CHECK_STATUS_REPORT_SMART_ALERT,
  156. SKD_CHECK_STATUS_REQUEUE_REQUEST,
  157. SKD_CHECK_STATUS_REPORT_ERROR,
  158. SKD_CHECK_STATUS_BUSY_IMMINENT,
  159. };
  160. struct skd_fitmsg_context {
  161. enum skd_fit_msg_state state;
  162. struct skd_fitmsg_context *next;
  163. u32 id;
  164. u16 outstanding;
  165. u32 length;
  166. u32 offset;
  167. u8 *msg_buf;
  168. dma_addr_t mb_dma_address;
  169. };
  170. struct skd_request_context {
  171. enum skd_req_state state;
  172. struct skd_request_context *next;
  173. u16 id;
  174. u32 fitmsg_id;
  175. struct request *req;
  176. u8 flush_cmd;
  177. u8 discard_page;
  178. u32 timeout_stamp;
  179. u8 sg_data_dir;
  180. struct scatterlist *sg;
  181. u32 n_sg;
  182. u32 sg_byte_count;
  183. struct fit_sg_descriptor *sksg_list;
  184. dma_addr_t sksg_dma_address;
  185. struct fit_completion_entry_v1 completion;
  186. struct fit_comp_error_info err_info;
  187. };
  188. #define SKD_DATA_DIR_HOST_TO_CARD 1
  189. #define SKD_DATA_DIR_CARD_TO_HOST 2
  190. #define SKD_DATA_DIR_NONE 3 /* especially for DISCARD requests. */
  191. struct skd_special_context {
  192. struct skd_request_context req;
  193. u8 orphaned;
  194. void *data_buf;
  195. dma_addr_t db_dma_address;
  196. u8 *msg_buf;
  197. dma_addr_t mb_dma_address;
  198. };
  199. struct skd_sg_io {
  200. fmode_t mode;
  201. void __user *argp;
  202. struct sg_io_hdr sg;
  203. u8 cdb[16];
  204. u32 dxfer_len;
  205. u32 iovcnt;
  206. struct sg_iovec *iov;
  207. struct sg_iovec no_iov_iov;
  208. struct skd_special_context *skspcl;
  209. };
  210. typedef enum skd_irq_type {
  211. SKD_IRQ_LEGACY,
  212. SKD_IRQ_MSI,
  213. SKD_IRQ_MSIX
  214. } skd_irq_type_t;
  215. #define SKD_MAX_BARS 2
  216. struct skd_device {
  217. volatile void __iomem *mem_map[SKD_MAX_BARS];
  218. resource_size_t mem_phys[SKD_MAX_BARS];
  219. u32 mem_size[SKD_MAX_BARS];
  220. skd_irq_type_t irq_type;
  221. u32 msix_count;
  222. struct skd_msix_entry *msix_entries;
  223. struct pci_dev *pdev;
  224. int pcie_error_reporting_is_enabled;
  225. spinlock_t lock;
  226. struct gendisk *disk;
  227. struct request_queue *queue;
  228. struct device *class_dev;
  229. int gendisk_on;
  230. int sync_done;
  231. atomic_t device_count;
  232. u32 devno;
  233. u32 major;
  234. char name[32];
  235. char isr_name[30];
  236. enum skd_drvr_state state;
  237. u32 drive_state;
  238. u32 in_flight;
  239. u32 cur_max_queue_depth;
  240. u32 queue_low_water_mark;
  241. u32 dev_max_queue_depth;
  242. u32 num_fitmsg_context;
  243. u32 num_req_context;
  244. u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
  245. u32 timeout_stamp;
  246. struct skd_fitmsg_context *skmsg_free_list;
  247. struct skd_fitmsg_context *skmsg_table;
  248. struct skd_request_context *skreq_free_list;
  249. struct skd_request_context *skreq_table;
  250. struct skd_special_context *skspcl_free_list;
  251. struct skd_special_context *skspcl_table;
  252. struct skd_special_context internal_skspcl;
  253. u32 read_cap_blocksize;
  254. u32 read_cap_last_lba;
  255. int read_cap_is_valid;
  256. int inquiry_is_valid;
  257. u8 inq_serial_num[13]; /*12 chars plus null term */
  258. u8 id_str[80]; /* holds a composite name (pci + sernum) */
  259. u8 skcomp_cycle;
  260. u32 skcomp_ix;
  261. struct fit_completion_entry_v1 *skcomp_table;
  262. struct fit_comp_error_info *skerr_table;
  263. dma_addr_t cq_dma_address;
  264. wait_queue_head_t waitq;
  265. struct timer_list timer;
  266. u32 timer_countdown;
  267. u32 timer_substate;
  268. int n_special;
  269. int sgs_per_request;
  270. u32 last_mtd;
  271. u32 proto_ver;
  272. int dbg_level;
  273. u32 connect_time_stamp;
  274. int connect_retries;
  275. #define SKD_MAX_CONNECT_RETRIES 16
  276. u32 drive_jiffies;
  277. u32 timo_slot;
  278. struct work_struct completion_worker;
  279. };
  280. #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
  281. #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
  282. #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
  283. static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
  284. {
  285. u32 val;
  286. if (likely(skdev->dbg_level < 2))
  287. return readl(skdev->mem_map[1] + offset);
  288. else {
  289. barrier();
  290. val = readl(skdev->mem_map[1] + offset);
  291. barrier();
  292. pr_debug("%s:%s:%d offset %x = %x\n",
  293. skdev->name, __func__, __LINE__, offset, val);
  294. return val;
  295. }
  296. }
  297. static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
  298. u32 offset)
  299. {
  300. if (likely(skdev->dbg_level < 2)) {
  301. writel(val, skdev->mem_map[1] + offset);
  302. barrier();
  303. } else {
  304. barrier();
  305. writel(val, skdev->mem_map[1] + offset);
  306. barrier();
  307. pr_debug("%s:%s:%d offset %x = %x\n",
  308. skdev->name, __func__, __LINE__, offset, val);
  309. }
  310. }
  311. static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
  312. u32 offset)
  313. {
  314. if (likely(skdev->dbg_level < 2)) {
  315. writeq(val, skdev->mem_map[1] + offset);
  316. barrier();
  317. } else {
  318. barrier();
  319. writeq(val, skdev->mem_map[1] + offset);
  320. barrier();
  321. pr_debug("%s:%s:%d offset %x = %016llx\n",
  322. skdev->name, __func__, __LINE__, offset, val);
  323. }
  324. }
  325. #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
  326. static int skd_isr_type = SKD_IRQ_DEFAULT;
  327. module_param(skd_isr_type, int, 0444);
  328. MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
  329. " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
  330. #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
  331. static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  332. module_param(skd_max_req_per_msg, int, 0444);
  333. MODULE_PARM_DESC(skd_max_req_per_msg,
  334. "Maximum SCSI requests packed in a single message."
  335. " (1-14, default==1)");
  336. #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
  337. #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
  338. static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  339. module_param(skd_max_queue_depth, int, 0444);
  340. MODULE_PARM_DESC(skd_max_queue_depth,
  341. "Maximum SCSI requests issued to s1120."
  342. " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
  343. static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  344. module_param(skd_sgs_per_request, int, 0444);
  345. MODULE_PARM_DESC(skd_sgs_per_request,
  346. "Maximum SG elements per block request."
  347. " (1-4096, default==256)");
  348. static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
  349. module_param(skd_max_pass_thru, int, 0444);
  350. MODULE_PARM_DESC(skd_max_pass_thru,
  351. "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
  352. module_param(skd_dbg_level, int, 0444);
  353. MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
  354. module_param(skd_isr_comp_limit, int, 0444);
  355. MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
  356. /* Major device number dynamically assigned. */
  357. static u32 skd_major;
  358. static void skd_destruct(struct skd_device *skdev);
  359. static const struct block_device_operations skd_blockdev_ops;
  360. static void skd_send_fitmsg(struct skd_device *skdev,
  361. struct skd_fitmsg_context *skmsg);
  362. static void skd_send_special_fitmsg(struct skd_device *skdev,
  363. struct skd_special_context *skspcl);
  364. static void skd_request_fn(struct request_queue *rq);
  365. static void skd_end_request(struct skd_device *skdev,
  366. struct skd_request_context *skreq, int error);
  367. static int skd_preop_sg_list(struct skd_device *skdev,
  368. struct skd_request_context *skreq);
  369. static void skd_postop_sg_list(struct skd_device *skdev,
  370. struct skd_request_context *skreq);
  371. static void skd_restart_device(struct skd_device *skdev);
  372. static int skd_quiesce_dev(struct skd_device *skdev);
  373. static int skd_unquiesce_dev(struct skd_device *skdev);
  374. static void skd_release_special(struct skd_device *skdev,
  375. struct skd_special_context *skspcl);
  376. static void skd_disable_interrupts(struct skd_device *skdev);
  377. static void skd_isr_fwstate(struct skd_device *skdev);
  378. static void skd_recover_requests(struct skd_device *skdev, int requeue);
  379. static void skd_soft_reset(struct skd_device *skdev);
  380. static const char *skd_name(struct skd_device *skdev);
  381. const char *skd_drive_state_to_str(int state);
  382. const char *skd_skdev_state_to_str(enum skd_drvr_state state);
  383. static void skd_log_skdev(struct skd_device *skdev, const char *event);
  384. static void skd_log_skmsg(struct skd_device *skdev,
  385. struct skd_fitmsg_context *skmsg, const char *event);
  386. static void skd_log_skreq(struct skd_device *skdev,
  387. struct skd_request_context *skreq, const char *event);
  388. /*
  389. *****************************************************************************
  390. * READ/WRITE REQUESTS
  391. *****************************************************************************
  392. */
  393. static void skd_fail_all_pending(struct skd_device *skdev)
  394. {
  395. struct request_queue *q = skdev->queue;
  396. struct request *req;
  397. for (;; ) {
  398. req = blk_peek_request(q);
  399. if (req == NULL)
  400. break;
  401. blk_start_request(req);
  402. __blk_end_request_all(req, -EIO);
  403. }
  404. }
  405. static void
  406. skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
  407. int data_dir, unsigned lba,
  408. unsigned count)
  409. {
  410. if (data_dir == READ)
  411. scsi_req->cdb[0] = 0x28;
  412. else
  413. scsi_req->cdb[0] = 0x2a;
  414. scsi_req->cdb[1] = 0;
  415. scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
  416. scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
  417. scsi_req->cdb[4] = (lba & 0xff00) >> 8;
  418. scsi_req->cdb[5] = (lba & 0xff);
  419. scsi_req->cdb[6] = 0;
  420. scsi_req->cdb[7] = (count & 0xff00) >> 8;
  421. scsi_req->cdb[8] = count & 0xff;
  422. scsi_req->cdb[9] = 0;
  423. }
  424. static void
  425. skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
  426. struct skd_request_context *skreq)
  427. {
  428. skreq->flush_cmd = 1;
  429. scsi_req->cdb[0] = 0x35;
  430. scsi_req->cdb[1] = 0;
  431. scsi_req->cdb[2] = 0;
  432. scsi_req->cdb[3] = 0;
  433. scsi_req->cdb[4] = 0;
  434. scsi_req->cdb[5] = 0;
  435. scsi_req->cdb[6] = 0;
  436. scsi_req->cdb[7] = 0;
  437. scsi_req->cdb[8] = 0;
  438. scsi_req->cdb[9] = 0;
  439. }
  440. static void
  441. skd_prep_discard_cdb(struct skd_scsi_request *scsi_req,
  442. struct skd_request_context *skreq,
  443. struct page *page,
  444. u32 lba, u32 count)
  445. {
  446. char *buf;
  447. unsigned long len;
  448. struct request *req;
  449. buf = page_address(page);
  450. len = SKD_DISCARD_CDB_LENGTH;
  451. scsi_req->cdb[0] = UNMAP;
  452. scsi_req->cdb[8] = len;
  453. put_unaligned_be16(6 + 16, &buf[0]);
  454. put_unaligned_be16(16, &buf[2]);
  455. put_unaligned_be64(lba, &buf[8]);
  456. put_unaligned_be32(count, &buf[16]);
  457. req = skreq->req;
  458. blk_add_request_payload(req, page, len);
  459. req->buffer = buf;
  460. }
  461. static void skd_request_fn_not_online(struct request_queue *q);
  462. static void skd_request_fn(struct request_queue *q)
  463. {
  464. struct skd_device *skdev = q->queuedata;
  465. struct skd_fitmsg_context *skmsg = NULL;
  466. struct fit_msg_hdr *fmh = NULL;
  467. struct skd_request_context *skreq;
  468. struct request *req = NULL;
  469. struct skd_scsi_request *scsi_req;
  470. struct page *page;
  471. unsigned long io_flags;
  472. int error;
  473. u32 lba;
  474. u32 count;
  475. int data_dir;
  476. u32 be_lba;
  477. u32 be_count;
  478. u64 be_dmaa;
  479. u64 cmdctxt;
  480. u32 timo_slot;
  481. void *cmd_ptr;
  482. int flush, fua;
  483. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  484. skd_request_fn_not_online(q);
  485. return;
  486. }
  487. if (blk_queue_stopped(skdev->queue)) {
  488. if (skdev->skmsg_free_list == NULL ||
  489. skdev->skreq_free_list == NULL ||
  490. skdev->in_flight >= skdev->queue_low_water_mark)
  491. /* There is still some kind of shortage */
  492. return;
  493. queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
  494. }
  495. /*
  496. * Stop conditions:
  497. * - There are no more native requests
  498. * - There are already the maximum number of requests in progress
  499. * - There are no more skd_request_context entries
  500. * - There are no more FIT msg buffers
  501. */
  502. for (;; ) {
  503. flush = fua = 0;
  504. req = blk_peek_request(q);
  505. /* Are there any native requests to start? */
  506. if (req == NULL)
  507. break;
  508. lba = (u32)blk_rq_pos(req);
  509. count = blk_rq_sectors(req);
  510. data_dir = rq_data_dir(req);
  511. io_flags = req->cmd_flags;
  512. if (io_flags & REQ_FLUSH)
  513. flush++;
  514. if (io_flags & REQ_FUA)
  515. fua++;
  516. pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
  517. "count=%u(0x%x) dir=%d\n",
  518. skdev->name, __func__, __LINE__,
  519. req, lba, lba, count, count, data_dir);
  520. /* At this point we know there is a request */
  521. /* Are too many requets already in progress? */
  522. if (skdev->in_flight >= skdev->cur_max_queue_depth) {
  523. pr_debug("%s:%s:%d qdepth %d, limit %d\n",
  524. skdev->name, __func__, __LINE__,
  525. skdev->in_flight, skdev->cur_max_queue_depth);
  526. break;
  527. }
  528. /* Is a skd_request_context available? */
  529. skreq = skdev->skreq_free_list;
  530. if (skreq == NULL) {
  531. pr_debug("%s:%s:%d Out of req=%p\n",
  532. skdev->name, __func__, __LINE__, q);
  533. break;
  534. }
  535. SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
  536. SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
  537. /* Now we check to see if we can get a fit msg */
  538. if (skmsg == NULL) {
  539. if (skdev->skmsg_free_list == NULL) {
  540. pr_debug("%s:%s:%d Out of msg\n",
  541. skdev->name, __func__, __LINE__);
  542. break;
  543. }
  544. }
  545. skreq->flush_cmd = 0;
  546. skreq->n_sg = 0;
  547. skreq->sg_byte_count = 0;
  548. skreq->discard_page = 0;
  549. /*
  550. * OK to now dequeue request from q.
  551. *
  552. * At this point we are comitted to either start or reject
  553. * the native request. Note that skd_request_context is
  554. * available but is still at the head of the free list.
  555. */
  556. blk_start_request(req);
  557. skreq->req = req;
  558. skreq->fitmsg_id = 0;
  559. /* Either a FIT msg is in progress or we have to start one. */
  560. if (skmsg == NULL) {
  561. /* Are there any FIT msg buffers available? */
  562. skmsg = skdev->skmsg_free_list;
  563. if (skmsg == NULL) {
  564. pr_debug("%s:%s:%d Out of msg skdev=%p\n",
  565. skdev->name, __func__, __LINE__,
  566. skdev);
  567. break;
  568. }
  569. SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
  570. SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
  571. skdev->skmsg_free_list = skmsg->next;
  572. skmsg->state = SKD_MSG_STATE_BUSY;
  573. skmsg->id += SKD_ID_INCR;
  574. /* Initialize the FIT msg header */
  575. fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
  576. memset(fmh, 0, sizeof(*fmh));
  577. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  578. skmsg->length = sizeof(*fmh);
  579. }
  580. skreq->fitmsg_id = skmsg->id;
  581. /*
  582. * Note that a FIT msg may have just been started
  583. * but contains no SoFIT requests yet.
  584. */
  585. /*
  586. * Transcode the request, checking as we go. The outcome of
  587. * the transcoding is represented by the error variable.
  588. */
  589. cmd_ptr = &skmsg->msg_buf[skmsg->length];
  590. memset(cmd_ptr, 0, 32);
  591. be_lba = cpu_to_be32(lba);
  592. be_count = cpu_to_be32(count);
  593. be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
  594. cmdctxt = skreq->id + SKD_ID_INCR;
  595. scsi_req = cmd_ptr;
  596. scsi_req->hdr.tag = cmdctxt;
  597. scsi_req->hdr.sg_list_dma_address = be_dmaa;
  598. if (data_dir == READ)
  599. skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
  600. else
  601. skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
  602. if (io_flags & REQ_DISCARD) {
  603. page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
  604. if (!page) {
  605. pr_err("request_fn:Page allocation failed.\n");
  606. skd_end_request(skdev, skreq, -ENOMEM);
  607. break;
  608. }
  609. skreq->discard_page = 1;
  610. skd_prep_discard_cdb(scsi_req, skreq, page, lba, count);
  611. } else if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
  612. skd_prep_zerosize_flush_cdb(scsi_req, skreq);
  613. SKD_ASSERT(skreq->flush_cmd == 1);
  614. } else {
  615. skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
  616. }
  617. if (fua)
  618. scsi_req->cdb[1] |= SKD_FUA_NV;
  619. if (!req->bio)
  620. goto skip_sg;
  621. error = skd_preop_sg_list(skdev, skreq);
  622. if (error != 0) {
  623. /*
  624. * Complete the native request with error.
  625. * Note that the request context is still at the
  626. * head of the free list, and that the SoFIT request
  627. * was encoded into the FIT msg buffer but the FIT
  628. * msg length has not been updated. In short, the
  629. * only resource that has been allocated but might
  630. * not be used is that the FIT msg could be empty.
  631. */
  632. pr_debug("%s:%s:%d error Out\n",
  633. skdev->name, __func__, __LINE__);
  634. skd_end_request(skdev, skreq, error);
  635. continue;
  636. }
  637. skip_sg:
  638. scsi_req->hdr.sg_list_len_bytes =
  639. cpu_to_be32(skreq->sg_byte_count);
  640. /* Complete resource allocations. */
  641. skdev->skreq_free_list = skreq->next;
  642. skreq->state = SKD_REQ_STATE_BUSY;
  643. skreq->id += SKD_ID_INCR;
  644. skmsg->length += sizeof(struct skd_scsi_request);
  645. fmh->num_protocol_cmds_coalesced++;
  646. /*
  647. * Update the active request counts.
  648. * Capture the timeout timestamp.
  649. */
  650. skreq->timeout_stamp = skdev->timeout_stamp;
  651. timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  652. skdev->timeout_slot[timo_slot]++;
  653. skdev->in_flight++;
  654. pr_debug("%s:%s:%d req=0x%x busy=%d\n",
  655. skdev->name, __func__, __LINE__,
  656. skreq->id, skdev->in_flight);
  657. /*
  658. * If the FIT msg buffer is full send it.
  659. */
  660. if (skmsg->length >= SKD_N_FITMSG_BYTES ||
  661. fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
  662. skd_send_fitmsg(skdev, skmsg);
  663. skmsg = NULL;
  664. fmh = NULL;
  665. }
  666. }
  667. /*
  668. * Is a FIT msg in progress? If it is empty put the buffer back
  669. * on the free list. If it is non-empty send what we got.
  670. * This minimizes latency when there are fewer requests than
  671. * what fits in a FIT msg.
  672. */
  673. if (skmsg != NULL) {
  674. /* Bigger than just a FIT msg header? */
  675. if (skmsg->length > sizeof(struct fit_msg_hdr)) {
  676. pr_debug("%s:%s:%d sending msg=%p, len %d\n",
  677. skdev->name, __func__, __LINE__,
  678. skmsg, skmsg->length);
  679. skd_send_fitmsg(skdev, skmsg);
  680. } else {
  681. /*
  682. * The FIT msg is empty. It means we got started
  683. * on the msg, but the requests were rejected.
  684. */
  685. skmsg->state = SKD_MSG_STATE_IDLE;
  686. skmsg->id += SKD_ID_INCR;
  687. skmsg->next = skdev->skmsg_free_list;
  688. skdev->skmsg_free_list = skmsg;
  689. }
  690. skmsg = NULL;
  691. fmh = NULL;
  692. }
  693. /*
  694. * If req is non-NULL it means there is something to do but
  695. * we are out of a resource.
  696. */
  697. if (req)
  698. blk_stop_queue(skdev->queue);
  699. }
  700. static void skd_end_request(struct skd_device *skdev,
  701. struct skd_request_context *skreq, int error)
  702. {
  703. struct request *req = skreq->req;
  704. unsigned int io_flags = req->cmd_flags;
  705. if ((io_flags & REQ_DISCARD) &&
  706. (skreq->discard_page == 1)) {
  707. pr_debug("%s:%s:%d, free the page!",
  708. skdev->name, __func__, __LINE__);
  709. free_page((unsigned long)req->buffer);
  710. req->buffer = NULL;
  711. }
  712. if (unlikely(error)) {
  713. struct request *req = skreq->req;
  714. char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
  715. u32 lba = (u32)blk_rq_pos(req);
  716. u32 count = blk_rq_sectors(req);
  717. pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
  718. skd_name(skdev), cmd, lba, count, skreq->id);
  719. } else
  720. pr_debug("%s:%s:%d id=0x%x error=%d\n",
  721. skdev->name, __func__, __LINE__, skreq->id, error);
  722. __blk_end_request_all(skreq->req, error);
  723. }
  724. static int skd_preop_sg_list(struct skd_device *skdev,
  725. struct skd_request_context *skreq)
  726. {
  727. struct request *req = skreq->req;
  728. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  729. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  730. struct scatterlist *sg = &skreq->sg[0];
  731. int n_sg;
  732. int i;
  733. skreq->sg_byte_count = 0;
  734. /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
  735. skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
  736. n_sg = blk_rq_map_sg(skdev->queue, req, sg);
  737. if (n_sg <= 0)
  738. return -EINVAL;
  739. /*
  740. * Map scatterlist to PCI bus addresses.
  741. * Note PCI might change the number of entries.
  742. */
  743. n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
  744. if (n_sg <= 0)
  745. return -EINVAL;
  746. SKD_ASSERT(n_sg <= skdev->sgs_per_request);
  747. skreq->n_sg = n_sg;
  748. for (i = 0; i < n_sg; i++) {
  749. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  750. u32 cnt = sg_dma_len(&sg[i]);
  751. uint64_t dma_addr = sg_dma_address(&sg[i]);
  752. sgd->control = FIT_SGD_CONTROL_NOT_LAST;
  753. sgd->byte_count = cnt;
  754. skreq->sg_byte_count += cnt;
  755. sgd->host_side_addr = dma_addr;
  756. sgd->dev_side_addr = 0;
  757. }
  758. skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
  759. skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
  760. if (unlikely(skdev->dbg_level > 1)) {
  761. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  762. skdev->name, __func__, __LINE__,
  763. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  764. for (i = 0; i < n_sg; i++) {
  765. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  766. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  767. "addr=0x%llx next=0x%llx\n",
  768. skdev->name, __func__, __LINE__,
  769. i, sgd->byte_count, sgd->control,
  770. sgd->host_side_addr, sgd->next_desc_ptr);
  771. }
  772. }
  773. return 0;
  774. }
  775. static void skd_postop_sg_list(struct skd_device *skdev,
  776. struct skd_request_context *skreq)
  777. {
  778. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  779. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  780. /*
  781. * restore the next ptr for next IO request so we
  782. * don't have to set it every time.
  783. */
  784. skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
  785. skreq->sksg_dma_address +
  786. ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
  787. pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
  788. }
  789. static void skd_request_fn_not_online(struct request_queue *q)
  790. {
  791. struct skd_device *skdev = q->queuedata;
  792. int error;
  793. SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
  794. skd_log_skdev(skdev, "req_not_online");
  795. switch (skdev->state) {
  796. case SKD_DRVR_STATE_PAUSING:
  797. case SKD_DRVR_STATE_PAUSED:
  798. case SKD_DRVR_STATE_STARTING:
  799. case SKD_DRVR_STATE_RESTARTING:
  800. case SKD_DRVR_STATE_WAIT_BOOT:
  801. /* In case of starting, we haven't started the queue,
  802. * so we can't get here... but requests are
  803. * possibly hanging out waiting for us because we
  804. * reported the dev/skd0 already. They'll wait
  805. * forever if connect doesn't complete.
  806. * What to do??? delay dev/skd0 ??
  807. */
  808. case SKD_DRVR_STATE_BUSY:
  809. case SKD_DRVR_STATE_BUSY_IMMINENT:
  810. case SKD_DRVR_STATE_BUSY_ERASE:
  811. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  812. return;
  813. case SKD_DRVR_STATE_BUSY_SANITIZE:
  814. case SKD_DRVR_STATE_STOPPING:
  815. case SKD_DRVR_STATE_SYNCING:
  816. case SKD_DRVR_STATE_FAULT:
  817. case SKD_DRVR_STATE_DISAPPEARED:
  818. default:
  819. error = -EIO;
  820. break;
  821. }
  822. /* If we get here, terminate all pending block requeusts
  823. * with EIO and any scsi pass thru with appropriate sense
  824. */
  825. skd_fail_all_pending(skdev);
  826. }
  827. /*
  828. *****************************************************************************
  829. * TIMER
  830. *****************************************************************************
  831. */
  832. static void skd_timer_tick_not_online(struct skd_device *skdev);
  833. static void skd_timer_tick(ulong arg)
  834. {
  835. struct skd_device *skdev = (struct skd_device *)arg;
  836. u32 timo_slot;
  837. u32 overdue_timestamp;
  838. unsigned long reqflags;
  839. u32 state;
  840. if (skdev->state == SKD_DRVR_STATE_FAULT)
  841. /* The driver has declared fault, and we want it to
  842. * stay that way until driver is reloaded.
  843. */
  844. return;
  845. spin_lock_irqsave(&skdev->lock, reqflags);
  846. state = SKD_READL(skdev, FIT_STATUS);
  847. state &= FIT_SR_DRIVE_STATE_MASK;
  848. if (state != skdev->drive_state)
  849. skd_isr_fwstate(skdev);
  850. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  851. skd_timer_tick_not_online(skdev);
  852. goto timer_func_out;
  853. }
  854. skdev->timeout_stamp++;
  855. timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  856. /*
  857. * All requests that happened during the previous use of
  858. * this slot should be done by now. The previous use was
  859. * over 7 seconds ago.
  860. */
  861. if (skdev->timeout_slot[timo_slot] == 0)
  862. goto timer_func_out;
  863. /* Something is overdue */
  864. overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
  865. pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
  866. skdev->name, __func__, __LINE__,
  867. skdev->timeout_slot[timo_slot], skdev->in_flight);
  868. pr_err("(%s): Overdue IOs (%d), busy %d\n",
  869. skd_name(skdev), skdev->timeout_slot[timo_slot],
  870. skdev->in_flight);
  871. skdev->timer_countdown = SKD_DRAINING_TIMO;
  872. skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
  873. skdev->timo_slot = timo_slot;
  874. blk_stop_queue(skdev->queue);
  875. timer_func_out:
  876. mod_timer(&skdev->timer, (jiffies + HZ));
  877. spin_unlock_irqrestore(&skdev->lock, reqflags);
  878. }
  879. static void skd_timer_tick_not_online(struct skd_device *skdev)
  880. {
  881. switch (skdev->state) {
  882. case SKD_DRVR_STATE_IDLE:
  883. case SKD_DRVR_STATE_LOAD:
  884. break;
  885. case SKD_DRVR_STATE_BUSY_SANITIZE:
  886. pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
  887. skdev->name, __func__, __LINE__,
  888. skdev->drive_state, skdev->state);
  889. /* If we've been in sanitize for 3 seconds, we figure we're not
  890. * going to get anymore completions, so recover requests now
  891. */
  892. if (skdev->timer_countdown > 0) {
  893. skdev->timer_countdown--;
  894. return;
  895. }
  896. skd_recover_requests(skdev, 0);
  897. break;
  898. case SKD_DRVR_STATE_BUSY:
  899. case SKD_DRVR_STATE_BUSY_IMMINENT:
  900. case SKD_DRVR_STATE_BUSY_ERASE:
  901. pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
  902. skdev->name, __func__, __LINE__,
  903. skdev->state, skdev->timer_countdown);
  904. if (skdev->timer_countdown > 0) {
  905. skdev->timer_countdown--;
  906. return;
  907. }
  908. pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
  909. skdev->name, __func__, __LINE__,
  910. skdev->state, skdev->timer_countdown);
  911. skd_restart_device(skdev);
  912. break;
  913. case SKD_DRVR_STATE_WAIT_BOOT:
  914. case SKD_DRVR_STATE_STARTING:
  915. if (skdev->timer_countdown > 0) {
  916. skdev->timer_countdown--;
  917. return;
  918. }
  919. /* For now, we fault the drive. Could attempt resets to
  920. * revcover at some point. */
  921. skdev->state = SKD_DRVR_STATE_FAULT;
  922. pr_err("(%s): DriveFault Connect Timeout (%x)\n",
  923. skd_name(skdev), skdev->drive_state);
  924. /*start the queue so we can respond with error to requests */
  925. /* wakeup anyone waiting for startup complete */
  926. blk_start_queue(skdev->queue);
  927. skdev->gendisk_on = -1;
  928. wake_up_interruptible(&skdev->waitq);
  929. break;
  930. case SKD_DRVR_STATE_ONLINE:
  931. /* shouldn't get here. */
  932. break;
  933. case SKD_DRVR_STATE_PAUSING:
  934. case SKD_DRVR_STATE_PAUSED:
  935. break;
  936. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  937. pr_debug("%s:%s:%d "
  938. "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
  939. skdev->name, __func__, __LINE__,
  940. skdev->timo_slot,
  941. skdev->timer_countdown,
  942. skdev->in_flight,
  943. skdev->timeout_slot[skdev->timo_slot]);
  944. /* if the slot has cleared we can let the I/O continue */
  945. if (skdev->timeout_slot[skdev->timo_slot] == 0) {
  946. pr_debug("%s:%s:%d Slot drained, starting queue.\n",
  947. skdev->name, __func__, __LINE__);
  948. skdev->state = SKD_DRVR_STATE_ONLINE;
  949. blk_start_queue(skdev->queue);
  950. return;
  951. }
  952. if (skdev->timer_countdown > 0) {
  953. skdev->timer_countdown--;
  954. return;
  955. }
  956. skd_restart_device(skdev);
  957. break;
  958. case SKD_DRVR_STATE_RESTARTING:
  959. if (skdev->timer_countdown > 0) {
  960. skdev->timer_countdown--;
  961. return;
  962. }
  963. /* For now, we fault the drive. Could attempt resets to
  964. * revcover at some point. */
  965. skdev->state = SKD_DRVR_STATE_FAULT;
  966. pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
  967. skd_name(skdev), skdev->drive_state);
  968. /*
  969. * Recovering does two things:
  970. * 1. completes IO with error
  971. * 2. reclaims dma resources
  972. * When is it safe to recover requests?
  973. * - if the drive state is faulted
  974. * - if the state is still soft reset after out timeout
  975. * - if the drive registers are dead (state = FF)
  976. * If it is "unsafe", we still need to recover, so we will
  977. * disable pci bus mastering and disable our interrupts.
  978. */
  979. if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
  980. (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
  981. (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
  982. /* It never came out of soft reset. Try to
  983. * recover the requests and then let them
  984. * fail. This is to mitigate hung processes. */
  985. skd_recover_requests(skdev, 0);
  986. else {
  987. pr_err("(%s): Disable BusMaster (%x)\n",
  988. skd_name(skdev), skdev->drive_state);
  989. pci_disable_device(skdev->pdev);
  990. skd_disable_interrupts(skdev);
  991. skd_recover_requests(skdev, 0);
  992. }
  993. /*start the queue so we can respond with error to requests */
  994. /* wakeup anyone waiting for startup complete */
  995. blk_start_queue(skdev->queue);
  996. skdev->gendisk_on = -1;
  997. wake_up_interruptible(&skdev->waitq);
  998. break;
  999. case SKD_DRVR_STATE_RESUMING:
  1000. case SKD_DRVR_STATE_STOPPING:
  1001. case SKD_DRVR_STATE_SYNCING:
  1002. case SKD_DRVR_STATE_FAULT:
  1003. case SKD_DRVR_STATE_DISAPPEARED:
  1004. default:
  1005. break;
  1006. }
  1007. }
  1008. static int skd_start_timer(struct skd_device *skdev)
  1009. {
  1010. int rc;
  1011. init_timer(&skdev->timer);
  1012. setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
  1013. rc = mod_timer(&skdev->timer, (jiffies + HZ));
  1014. if (rc)
  1015. pr_err("%s: failed to start timer %d\n",
  1016. __func__, rc);
  1017. return rc;
  1018. }
  1019. static void skd_kill_timer(struct skd_device *skdev)
  1020. {
  1021. del_timer_sync(&skdev->timer);
  1022. }
  1023. /*
  1024. *****************************************************************************
  1025. * IOCTL
  1026. *****************************************************************************
  1027. */
  1028. static int skd_ioctl_sg_io(struct skd_device *skdev,
  1029. fmode_t mode, void __user *argp);
  1030. static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
  1031. struct skd_sg_io *sksgio);
  1032. static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
  1033. struct skd_sg_io *sksgio);
  1034. static int skd_sg_io_prep_buffering(struct skd_device *skdev,
  1035. struct skd_sg_io *sksgio);
  1036. static int skd_sg_io_copy_buffer(struct skd_device *skdev,
  1037. struct skd_sg_io *sksgio, int dxfer_dir);
  1038. static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
  1039. struct skd_sg_io *sksgio);
  1040. static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
  1041. static int skd_sg_io_release_skspcl(struct skd_device *skdev,
  1042. struct skd_sg_io *sksgio);
  1043. static int skd_sg_io_put_status(struct skd_device *skdev,
  1044. struct skd_sg_io *sksgio);
  1045. static void skd_complete_special(struct skd_device *skdev,
  1046. volatile struct fit_completion_entry_v1
  1047. *skcomp,
  1048. volatile struct fit_comp_error_info *skerr,
  1049. struct skd_special_context *skspcl);
  1050. static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
  1051. uint cmd_in, ulong arg)
  1052. {
  1053. int rc = 0;
  1054. struct gendisk *disk = bdev->bd_disk;
  1055. struct skd_device *skdev = disk->private_data;
  1056. void __user *p = (void *)arg;
  1057. pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
  1058. skdev->name, __func__, __LINE__,
  1059. disk->disk_name, current->comm, mode, cmd_in, arg);
  1060. if (!capable(CAP_SYS_ADMIN))
  1061. return -EPERM;
  1062. switch (cmd_in) {
  1063. case SG_SET_TIMEOUT:
  1064. case SG_GET_TIMEOUT:
  1065. case SG_GET_VERSION_NUM:
  1066. rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
  1067. break;
  1068. case SG_IO:
  1069. rc = skd_ioctl_sg_io(skdev, mode, p);
  1070. break;
  1071. default:
  1072. rc = -ENOTTY;
  1073. break;
  1074. }
  1075. pr_debug("%s:%s:%d %s: completion rc %d\n",
  1076. skdev->name, __func__, __LINE__, disk->disk_name, rc);
  1077. return rc;
  1078. }
  1079. static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
  1080. void __user *argp)
  1081. {
  1082. int rc;
  1083. struct skd_sg_io sksgio;
  1084. memset(&sksgio, 0, sizeof(sksgio));
  1085. sksgio.mode = mode;
  1086. sksgio.argp = argp;
  1087. sksgio.iov = &sksgio.no_iov_iov;
  1088. switch (skdev->state) {
  1089. case SKD_DRVR_STATE_ONLINE:
  1090. case SKD_DRVR_STATE_BUSY_IMMINENT:
  1091. break;
  1092. default:
  1093. pr_debug("%s:%s:%d drive not online\n",
  1094. skdev->name, __func__, __LINE__);
  1095. rc = -ENXIO;
  1096. goto out;
  1097. }
  1098. rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
  1099. if (rc)
  1100. goto out;
  1101. rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
  1102. if (rc)
  1103. goto out;
  1104. rc = skd_sg_io_prep_buffering(skdev, &sksgio);
  1105. if (rc)
  1106. goto out;
  1107. rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
  1108. if (rc)
  1109. goto out;
  1110. rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
  1111. if (rc)
  1112. goto out;
  1113. rc = skd_sg_io_await(skdev, &sksgio);
  1114. if (rc)
  1115. goto out;
  1116. rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
  1117. if (rc)
  1118. goto out;
  1119. rc = skd_sg_io_put_status(skdev, &sksgio);
  1120. if (rc)
  1121. goto out;
  1122. rc = 0;
  1123. out:
  1124. skd_sg_io_release_skspcl(skdev, &sksgio);
  1125. if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
  1126. kfree(sksgio.iov);
  1127. return rc;
  1128. }
  1129. static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
  1130. struct skd_sg_io *sksgio)
  1131. {
  1132. struct sg_io_hdr *sgp = &sksgio->sg;
  1133. int i, acc;
  1134. if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
  1135. pr_debug("%s:%s:%d access sg failed %p\n",
  1136. skdev->name, __func__, __LINE__, sksgio->argp);
  1137. return -EFAULT;
  1138. }
  1139. if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
  1140. pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
  1141. skdev->name, __func__, __LINE__, sksgio->argp);
  1142. return -EFAULT;
  1143. }
  1144. if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
  1145. pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
  1146. skdev->name, __func__, __LINE__, sgp->interface_id);
  1147. return -EINVAL;
  1148. }
  1149. if (sgp->cmd_len > sizeof(sksgio->cdb)) {
  1150. pr_debug("%s:%s:%d cmd_len invalid %d\n",
  1151. skdev->name, __func__, __LINE__, sgp->cmd_len);
  1152. return -EINVAL;
  1153. }
  1154. if (sgp->iovec_count > 256) {
  1155. pr_debug("%s:%s:%d iovec_count invalid %d\n",
  1156. skdev->name, __func__, __LINE__, sgp->iovec_count);
  1157. return -EINVAL;
  1158. }
  1159. if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
  1160. pr_debug("%s:%s:%d dxfer_len invalid %d\n",
  1161. skdev->name, __func__, __LINE__, sgp->dxfer_len);
  1162. return -EINVAL;
  1163. }
  1164. switch (sgp->dxfer_direction) {
  1165. case SG_DXFER_NONE:
  1166. acc = -1;
  1167. break;
  1168. case SG_DXFER_TO_DEV:
  1169. acc = VERIFY_READ;
  1170. break;
  1171. case SG_DXFER_FROM_DEV:
  1172. case SG_DXFER_TO_FROM_DEV:
  1173. acc = VERIFY_WRITE;
  1174. break;
  1175. default:
  1176. pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
  1177. skdev->name, __func__, __LINE__, sgp->dxfer_direction);
  1178. return -EINVAL;
  1179. }
  1180. if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
  1181. pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
  1182. skdev->name, __func__, __LINE__, sgp->cmdp);
  1183. return -EFAULT;
  1184. }
  1185. if (sgp->mx_sb_len != 0) {
  1186. if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
  1187. pr_debug("%s:%s:%d access sbp failed %p\n",
  1188. skdev->name, __func__, __LINE__, sgp->sbp);
  1189. return -EFAULT;
  1190. }
  1191. }
  1192. if (sgp->iovec_count == 0) {
  1193. sksgio->iov[0].iov_base = sgp->dxferp;
  1194. sksgio->iov[0].iov_len = sgp->dxfer_len;
  1195. sksgio->iovcnt = 1;
  1196. sksgio->dxfer_len = sgp->dxfer_len;
  1197. } else {
  1198. struct sg_iovec *iov;
  1199. uint nbytes = sizeof(*iov) * sgp->iovec_count;
  1200. size_t iov_data_len;
  1201. iov = kmalloc(nbytes, GFP_KERNEL);
  1202. if (iov == NULL) {
  1203. pr_debug("%s:%s:%d alloc iovec failed %d\n",
  1204. skdev->name, __func__, __LINE__,
  1205. sgp->iovec_count);
  1206. return -ENOMEM;
  1207. }
  1208. sksgio->iov = iov;
  1209. sksgio->iovcnt = sgp->iovec_count;
  1210. if (copy_from_user(iov, sgp->dxferp, nbytes)) {
  1211. pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
  1212. skdev->name, __func__, __LINE__, sgp->dxferp);
  1213. return -EFAULT;
  1214. }
  1215. /*
  1216. * Sum up the vecs, making sure they don't overflow
  1217. */
  1218. iov_data_len = 0;
  1219. for (i = 0; i < sgp->iovec_count; i++) {
  1220. if (iov_data_len + iov[i].iov_len < iov_data_len)
  1221. return -EINVAL;
  1222. iov_data_len += iov[i].iov_len;
  1223. }
  1224. /* SG_IO howto says that the shorter of the two wins */
  1225. if (sgp->dxfer_len < iov_data_len) {
  1226. sksgio->iovcnt = iov_shorten((struct iovec *)iov,
  1227. sgp->iovec_count,
  1228. sgp->dxfer_len);
  1229. sksgio->dxfer_len = sgp->dxfer_len;
  1230. } else
  1231. sksgio->dxfer_len = iov_data_len;
  1232. }
  1233. if (sgp->dxfer_direction != SG_DXFER_NONE) {
  1234. struct sg_iovec *iov = sksgio->iov;
  1235. for (i = 0; i < sksgio->iovcnt; i++, iov++) {
  1236. if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
  1237. pr_debug("%s:%s:%d access data failed %p/%d\n",
  1238. skdev->name, __func__, __LINE__,
  1239. iov->iov_base, (int)iov->iov_len);
  1240. return -EFAULT;
  1241. }
  1242. }
  1243. }
  1244. return 0;
  1245. }
  1246. static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
  1247. struct skd_sg_io *sksgio)
  1248. {
  1249. struct skd_special_context *skspcl = NULL;
  1250. int rc;
  1251. for (;;) {
  1252. ulong flags;
  1253. spin_lock_irqsave(&skdev->lock, flags);
  1254. skspcl = skdev->skspcl_free_list;
  1255. if (skspcl != NULL) {
  1256. skdev->skspcl_free_list =
  1257. (struct skd_special_context *)skspcl->req.next;
  1258. skspcl->req.id += SKD_ID_INCR;
  1259. skspcl->req.state = SKD_REQ_STATE_SETUP;
  1260. skspcl->orphaned = 0;
  1261. skspcl->req.n_sg = 0;
  1262. }
  1263. spin_unlock_irqrestore(&skdev->lock, flags);
  1264. if (skspcl != NULL) {
  1265. rc = 0;
  1266. break;
  1267. }
  1268. pr_debug("%s:%s:%d blocking\n",
  1269. skdev->name, __func__, __LINE__);
  1270. rc = wait_event_interruptible_timeout(
  1271. skdev->waitq,
  1272. (skdev->skspcl_free_list != NULL),
  1273. msecs_to_jiffies(sksgio->sg.timeout));
  1274. pr_debug("%s:%s:%d unblocking, rc=%d\n",
  1275. skdev->name, __func__, __LINE__, rc);
  1276. if (rc <= 0) {
  1277. if (rc == 0)
  1278. rc = -ETIMEDOUT;
  1279. else
  1280. rc = -EINTR;
  1281. break;
  1282. }
  1283. /*
  1284. * If we get here rc > 0 meaning the timeout to
  1285. * wait_event_interruptible_timeout() had time left, hence the
  1286. * sought event -- non-empty free list -- happened.
  1287. * Retry the allocation.
  1288. */
  1289. }
  1290. sksgio->skspcl = skspcl;
  1291. return rc;
  1292. }
  1293. static int skd_skreq_prep_buffering(struct skd_device *skdev,
  1294. struct skd_request_context *skreq,
  1295. u32 dxfer_len)
  1296. {
  1297. u32 resid = dxfer_len;
  1298. /*
  1299. * The DMA engine must have aligned addresses and byte counts.
  1300. */
  1301. resid += (-resid) & 3;
  1302. skreq->sg_byte_count = resid;
  1303. skreq->n_sg = 0;
  1304. while (resid > 0) {
  1305. u32 nbytes = PAGE_SIZE;
  1306. u32 ix = skreq->n_sg;
  1307. struct scatterlist *sg = &skreq->sg[ix];
  1308. struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
  1309. struct page *page;
  1310. if (nbytes > resid)
  1311. nbytes = resid;
  1312. page = alloc_page(GFP_KERNEL);
  1313. if (page == NULL)
  1314. return -ENOMEM;
  1315. sg_set_page(sg, page, nbytes, 0);
  1316. /* TODO: This should be going through a pci_???()
  1317. * routine to do proper mapping. */
  1318. sksg->control = FIT_SGD_CONTROL_NOT_LAST;
  1319. sksg->byte_count = nbytes;
  1320. sksg->host_side_addr = sg_phys(sg);
  1321. sksg->dev_side_addr = 0;
  1322. sksg->next_desc_ptr = skreq->sksg_dma_address +
  1323. (ix + 1) * sizeof(*sksg);
  1324. skreq->n_sg++;
  1325. resid -= nbytes;
  1326. }
  1327. if (skreq->n_sg > 0) {
  1328. u32 ix = skreq->n_sg - 1;
  1329. struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
  1330. sksg->control = FIT_SGD_CONTROL_LAST;
  1331. sksg->next_desc_ptr = 0;
  1332. }
  1333. if (unlikely(skdev->dbg_level > 1)) {
  1334. u32 i;
  1335. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  1336. skdev->name, __func__, __LINE__,
  1337. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  1338. for (i = 0; i < skreq->n_sg; i++) {
  1339. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  1340. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  1341. "addr=0x%llx next=0x%llx\n",
  1342. skdev->name, __func__, __LINE__,
  1343. i, sgd->byte_count, sgd->control,
  1344. sgd->host_side_addr, sgd->next_desc_ptr);
  1345. }
  1346. }
  1347. return 0;
  1348. }
  1349. static int skd_sg_io_prep_buffering(struct skd_device *skdev,
  1350. struct skd_sg_io *sksgio)
  1351. {
  1352. struct skd_special_context *skspcl = sksgio->skspcl;
  1353. struct skd_request_context *skreq = &skspcl->req;
  1354. u32 dxfer_len = sksgio->dxfer_len;
  1355. int rc;
  1356. rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
  1357. /*
  1358. * Eventually, errors or not, skd_release_special() is called
  1359. * to recover allocations including partial allocations.
  1360. */
  1361. return rc;
  1362. }
  1363. static int skd_sg_io_copy_buffer(struct skd_device *skdev,
  1364. struct skd_sg_io *sksgio, int dxfer_dir)
  1365. {
  1366. struct skd_special_context *skspcl = sksgio->skspcl;
  1367. u32 iov_ix = 0;
  1368. struct sg_iovec curiov;
  1369. u32 sksg_ix = 0;
  1370. u8 *bufp = NULL;
  1371. u32 buf_len = 0;
  1372. u32 resid = sksgio->dxfer_len;
  1373. int rc;
  1374. curiov.iov_len = 0;
  1375. curiov.iov_base = NULL;
  1376. if (dxfer_dir != sksgio->sg.dxfer_direction) {
  1377. if (dxfer_dir != SG_DXFER_TO_DEV ||
  1378. sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
  1379. return 0;
  1380. }
  1381. while (resid > 0) {
  1382. u32 nbytes = PAGE_SIZE;
  1383. if (curiov.iov_len == 0) {
  1384. curiov = sksgio->iov[iov_ix++];
  1385. continue;
  1386. }
  1387. if (buf_len == 0) {
  1388. struct page *page;
  1389. page = sg_page(&skspcl->req.sg[sksg_ix++]);
  1390. bufp = page_address(page);
  1391. buf_len = PAGE_SIZE;
  1392. }
  1393. nbytes = min_t(u32, nbytes, resid);
  1394. nbytes = min_t(u32, nbytes, curiov.iov_len);
  1395. nbytes = min_t(u32, nbytes, buf_len);
  1396. if (dxfer_dir == SG_DXFER_TO_DEV)
  1397. rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
  1398. else
  1399. rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
  1400. if (rc)
  1401. return -EFAULT;
  1402. resid -= nbytes;
  1403. curiov.iov_len -= nbytes;
  1404. curiov.iov_base += nbytes;
  1405. buf_len -= nbytes;
  1406. }
  1407. return 0;
  1408. }
  1409. static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
  1410. struct skd_sg_io *sksgio)
  1411. {
  1412. struct skd_special_context *skspcl = sksgio->skspcl;
  1413. struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
  1414. struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
  1415. memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
  1416. /* Initialize the FIT msg header */
  1417. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  1418. fmh->num_protocol_cmds_coalesced = 1;
  1419. /* Initialize the SCSI request */
  1420. if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
  1421. scsi_req->hdr.sg_list_dma_address =
  1422. cpu_to_be64(skspcl->req.sksg_dma_address);
  1423. scsi_req->hdr.tag = skspcl->req.id;
  1424. scsi_req->hdr.sg_list_len_bytes =
  1425. cpu_to_be32(skspcl->req.sg_byte_count);
  1426. memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
  1427. skspcl->req.state = SKD_REQ_STATE_BUSY;
  1428. skd_send_special_fitmsg(skdev, skspcl);
  1429. return 0;
  1430. }
  1431. static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
  1432. {
  1433. unsigned long flags;
  1434. int rc;
  1435. rc = wait_event_interruptible_timeout(skdev->waitq,
  1436. (sksgio->skspcl->req.state !=
  1437. SKD_REQ_STATE_BUSY),
  1438. msecs_to_jiffies(sksgio->sg.
  1439. timeout));
  1440. spin_lock_irqsave(&skdev->lock, flags);
  1441. if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
  1442. pr_debug("%s:%s:%d skspcl %p aborted\n",
  1443. skdev->name, __func__, __LINE__, sksgio->skspcl);
  1444. /* Build check cond, sense and let command finish. */
  1445. /* For a timeout, we must fabricate completion and sense
  1446. * data to complete the command */
  1447. sksgio->skspcl->req.completion.status =
  1448. SAM_STAT_CHECK_CONDITION;
  1449. memset(&sksgio->skspcl->req.err_info, 0,
  1450. sizeof(sksgio->skspcl->req.err_info));
  1451. sksgio->skspcl->req.err_info.type = 0x70;
  1452. sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
  1453. sksgio->skspcl->req.err_info.code = 0x44;
  1454. sksgio->skspcl->req.err_info.qual = 0;
  1455. rc = 0;
  1456. } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
  1457. /* No longer on the adapter. We finish. */
  1458. rc = 0;
  1459. else {
  1460. /* Something's gone wrong. Still busy. Timeout or
  1461. * user interrupted (control-C). Mark as an orphan
  1462. * so it will be disposed when completed. */
  1463. sksgio->skspcl->orphaned = 1;
  1464. sksgio->skspcl = NULL;
  1465. if (rc == 0) {
  1466. pr_debug("%s:%s:%d timed out %p (%u ms)\n",
  1467. skdev->name, __func__, __LINE__,
  1468. sksgio, sksgio->sg.timeout);
  1469. rc = -ETIMEDOUT;
  1470. } else {
  1471. pr_debug("%s:%s:%d cntlc %p\n",
  1472. skdev->name, __func__, __LINE__, sksgio);
  1473. rc = -EINTR;
  1474. }
  1475. }
  1476. spin_unlock_irqrestore(&skdev->lock, flags);
  1477. return rc;
  1478. }
  1479. static int skd_sg_io_put_status(struct skd_device *skdev,
  1480. struct skd_sg_io *sksgio)
  1481. {
  1482. struct sg_io_hdr *sgp = &sksgio->sg;
  1483. struct skd_special_context *skspcl = sksgio->skspcl;
  1484. int resid = 0;
  1485. u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
  1486. sgp->status = skspcl->req.completion.status;
  1487. resid = sksgio->dxfer_len - nb;
  1488. sgp->masked_status = sgp->status & STATUS_MASK;
  1489. sgp->msg_status = 0;
  1490. sgp->host_status = 0;
  1491. sgp->driver_status = 0;
  1492. sgp->resid = resid;
  1493. if (sgp->masked_status || sgp->host_status || sgp->driver_status)
  1494. sgp->info |= SG_INFO_CHECK;
  1495. pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
  1496. skdev->name, __func__, __LINE__,
  1497. sgp->status, sgp->masked_status, sgp->resid);
  1498. if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
  1499. if (sgp->mx_sb_len > 0) {
  1500. struct fit_comp_error_info *ei = &skspcl->req.err_info;
  1501. u32 nbytes = sizeof(*ei);
  1502. nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
  1503. sgp->sb_len_wr = nbytes;
  1504. if (__copy_to_user(sgp->sbp, ei, nbytes)) {
  1505. pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
  1506. skdev->name, __func__, __LINE__,
  1507. sgp->sbp);
  1508. return -EFAULT;
  1509. }
  1510. }
  1511. }
  1512. if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
  1513. pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
  1514. skdev->name, __func__, __LINE__, sksgio->argp);
  1515. return -EFAULT;
  1516. }
  1517. return 0;
  1518. }
  1519. static int skd_sg_io_release_skspcl(struct skd_device *skdev,
  1520. struct skd_sg_io *sksgio)
  1521. {
  1522. struct skd_special_context *skspcl = sksgio->skspcl;
  1523. if (skspcl != NULL) {
  1524. ulong flags;
  1525. sksgio->skspcl = NULL;
  1526. spin_lock_irqsave(&skdev->lock, flags);
  1527. skd_release_special(skdev, skspcl);
  1528. spin_unlock_irqrestore(&skdev->lock, flags);
  1529. }
  1530. return 0;
  1531. }
  1532. /*
  1533. *****************************************************************************
  1534. * INTERNAL REQUESTS -- generated by driver itself
  1535. *****************************************************************************
  1536. */
  1537. static int skd_format_internal_skspcl(struct skd_device *skdev)
  1538. {
  1539. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1540. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  1541. struct fit_msg_hdr *fmh;
  1542. uint64_t dma_address;
  1543. struct skd_scsi_request *scsi;
  1544. fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
  1545. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  1546. fmh->num_protocol_cmds_coalesced = 1;
  1547. scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1548. memset(scsi, 0, sizeof(*scsi));
  1549. dma_address = skspcl->req.sksg_dma_address;
  1550. scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
  1551. sgd->control = FIT_SGD_CONTROL_LAST;
  1552. sgd->byte_count = 0;
  1553. sgd->host_side_addr = skspcl->db_dma_address;
  1554. sgd->dev_side_addr = 0;
  1555. sgd->next_desc_ptr = 0LL;
  1556. return 1;
  1557. }
  1558. #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
  1559. static void skd_send_internal_skspcl(struct skd_device *skdev,
  1560. struct skd_special_context *skspcl,
  1561. u8 opcode)
  1562. {
  1563. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  1564. struct skd_scsi_request *scsi;
  1565. unsigned char *buf = skspcl->data_buf;
  1566. int i;
  1567. if (skspcl->req.state != SKD_REQ_STATE_IDLE)
  1568. /*
  1569. * A refresh is already in progress.
  1570. * Just wait for it to finish.
  1571. */
  1572. return;
  1573. SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
  1574. skspcl->req.state = SKD_REQ_STATE_BUSY;
  1575. skspcl->req.id += SKD_ID_INCR;
  1576. scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1577. scsi->hdr.tag = skspcl->req.id;
  1578. memset(scsi->cdb, 0, sizeof(scsi->cdb));
  1579. switch (opcode) {
  1580. case TEST_UNIT_READY:
  1581. scsi->cdb[0] = TEST_UNIT_READY;
  1582. sgd->byte_count = 0;
  1583. scsi->hdr.sg_list_len_bytes = 0;
  1584. break;
  1585. case READ_CAPACITY:
  1586. scsi->cdb[0] = READ_CAPACITY;
  1587. sgd->byte_count = SKD_N_READ_CAP_BYTES;
  1588. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1589. break;
  1590. case INQUIRY:
  1591. scsi->cdb[0] = INQUIRY;
  1592. scsi->cdb[1] = 0x01; /* evpd */
  1593. scsi->cdb[2] = 0x80; /* serial number page */
  1594. scsi->cdb[4] = 0x10;
  1595. sgd->byte_count = 16;
  1596. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1597. break;
  1598. case SYNCHRONIZE_CACHE:
  1599. scsi->cdb[0] = SYNCHRONIZE_CACHE;
  1600. sgd->byte_count = 0;
  1601. scsi->hdr.sg_list_len_bytes = 0;
  1602. break;
  1603. case WRITE_BUFFER:
  1604. scsi->cdb[0] = WRITE_BUFFER;
  1605. scsi->cdb[1] = 0x02;
  1606. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  1607. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  1608. sgd->byte_count = WR_BUF_SIZE;
  1609. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1610. /* fill incrementing byte pattern */
  1611. for (i = 0; i < sgd->byte_count; i++)
  1612. buf[i] = i & 0xFF;
  1613. break;
  1614. case READ_BUFFER:
  1615. scsi->cdb[0] = READ_BUFFER;
  1616. scsi->cdb[1] = 0x02;
  1617. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  1618. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  1619. sgd->byte_count = WR_BUF_SIZE;
  1620. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1621. memset(skspcl->data_buf, 0, sgd->byte_count);
  1622. break;
  1623. default:
  1624. SKD_ASSERT("Don't know what to send");
  1625. return;
  1626. }
  1627. skd_send_special_fitmsg(skdev, skspcl);
  1628. }
  1629. static void skd_refresh_device_data(struct skd_device *skdev)
  1630. {
  1631. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1632. skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
  1633. }
  1634. static int skd_chk_read_buf(struct skd_device *skdev,
  1635. struct skd_special_context *skspcl)
  1636. {
  1637. unsigned char *buf = skspcl->data_buf;
  1638. int i;
  1639. /* check for incrementing byte pattern */
  1640. for (i = 0; i < WR_BUF_SIZE; i++)
  1641. if (buf[i] != (i & 0xFF))
  1642. return 1;
  1643. return 0;
  1644. }
  1645. static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
  1646. u8 code, u8 qual, u8 fruc)
  1647. {
  1648. /* If the check condition is of special interest, log a message */
  1649. if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
  1650. && (code == 0x04) && (qual == 0x06)) {
  1651. pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
  1652. "ascq/fruc %02x/%02x/%02x/%02x\n",
  1653. skd_name(skdev), key, code, qual, fruc);
  1654. }
  1655. }
  1656. static void skd_complete_internal(struct skd_device *skdev,
  1657. volatile struct fit_completion_entry_v1
  1658. *skcomp,
  1659. volatile struct fit_comp_error_info *skerr,
  1660. struct skd_special_context *skspcl)
  1661. {
  1662. u8 *buf = skspcl->data_buf;
  1663. u8 status;
  1664. int i;
  1665. struct skd_scsi_request *scsi =
  1666. (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1667. SKD_ASSERT(skspcl == &skdev->internal_skspcl);
  1668. pr_debug("%s:%s:%d complete internal %x\n",
  1669. skdev->name, __func__, __LINE__, scsi->cdb[0]);
  1670. skspcl->req.completion = *skcomp;
  1671. skspcl->req.state = SKD_REQ_STATE_IDLE;
  1672. skspcl->req.id += SKD_ID_INCR;
  1673. status = skspcl->req.completion.status;
  1674. skd_log_check_status(skdev, status, skerr->key, skerr->code,
  1675. skerr->qual, skerr->fruc);
  1676. switch (scsi->cdb[0]) {
  1677. case TEST_UNIT_READY:
  1678. if (status == SAM_STAT_GOOD)
  1679. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  1680. else if ((status == SAM_STAT_CHECK_CONDITION) &&
  1681. (skerr->key == MEDIUM_ERROR))
  1682. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  1683. else {
  1684. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1685. pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
  1686. skdev->name, __func__, __LINE__,
  1687. skdev->state);
  1688. return;
  1689. }
  1690. pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
  1691. skdev->name, __func__, __LINE__);
  1692. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1693. }
  1694. break;
  1695. case WRITE_BUFFER:
  1696. if (status == SAM_STAT_GOOD)
  1697. skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
  1698. else {
  1699. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1700. pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
  1701. skdev->name, __func__, __LINE__,
  1702. skdev->state);
  1703. return;
  1704. }
  1705. pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
  1706. skdev->name, __func__, __LINE__);
  1707. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1708. }
  1709. break;
  1710. case READ_BUFFER:
  1711. if (status == SAM_STAT_GOOD) {
  1712. if (skd_chk_read_buf(skdev, skspcl) == 0)
  1713. skd_send_internal_skspcl(skdev, skspcl,
  1714. READ_CAPACITY);
  1715. else {
  1716. pr_err(
  1717. "(%s):*** W/R Buffer mismatch %d ***\n",
  1718. skd_name(skdev), skdev->connect_retries);
  1719. if (skdev->connect_retries <
  1720. SKD_MAX_CONNECT_RETRIES) {
  1721. skdev->connect_retries++;
  1722. skd_soft_reset(skdev);
  1723. } else {
  1724. pr_err(
  1725. "(%s): W/R Buffer Connect Error\n",
  1726. skd_name(skdev));
  1727. return;
  1728. }
  1729. }
  1730. } else {
  1731. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1732. pr_debug("%s:%s:%d "
  1733. "read buffer failed, don't send anymore state 0x%x\n",
  1734. skdev->name, __func__, __LINE__,
  1735. skdev->state);
  1736. return;
  1737. }
  1738. pr_debug("%s:%s:%d "
  1739. "**** read buffer failed, retry skerr\n",
  1740. skdev->name, __func__, __LINE__);
  1741. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1742. }
  1743. break;
  1744. case READ_CAPACITY:
  1745. skdev->read_cap_is_valid = 0;
  1746. if (status == SAM_STAT_GOOD) {
  1747. skdev->read_cap_last_lba =
  1748. (buf[0] << 24) | (buf[1] << 16) |
  1749. (buf[2] << 8) | buf[3];
  1750. skdev->read_cap_blocksize =
  1751. (buf[4] << 24) | (buf[5] << 16) |
  1752. (buf[6] << 8) | buf[7];
  1753. pr_debug("%s:%s:%d last lba %d, bs %d\n",
  1754. skdev->name, __func__, __LINE__,
  1755. skdev->read_cap_last_lba,
  1756. skdev->read_cap_blocksize);
  1757. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  1758. skdev->read_cap_is_valid = 1;
  1759. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  1760. } else if ((status == SAM_STAT_CHECK_CONDITION) &&
  1761. (skerr->key == MEDIUM_ERROR)) {
  1762. skdev->read_cap_last_lba = ~0;
  1763. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  1764. pr_debug("%s:%s:%d "
  1765. "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
  1766. skdev->name, __func__, __LINE__);
  1767. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  1768. } else {
  1769. pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
  1770. skdev->name, __func__, __LINE__);
  1771. skd_send_internal_skspcl(skdev, skspcl,
  1772. TEST_UNIT_READY);
  1773. }
  1774. break;
  1775. case INQUIRY:
  1776. skdev->inquiry_is_valid = 0;
  1777. if (status == SAM_STAT_GOOD) {
  1778. skdev->inquiry_is_valid = 1;
  1779. for (i = 0; i < 12; i++)
  1780. skdev->inq_serial_num[i] = buf[i + 4];
  1781. skdev->inq_serial_num[12] = 0;
  1782. }
  1783. if (skd_unquiesce_dev(skdev) < 0)
  1784. pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
  1785. skdev->name, __func__, __LINE__);
  1786. /* connection is complete */
  1787. skdev->connect_retries = 0;
  1788. break;
  1789. case SYNCHRONIZE_CACHE:
  1790. if (status == SAM_STAT_GOOD)
  1791. skdev->sync_done = 1;
  1792. else
  1793. skdev->sync_done = -1;
  1794. wake_up_interruptible(&skdev->waitq);
  1795. break;
  1796. default:
  1797. SKD_ASSERT("we didn't send this");
  1798. }
  1799. }
  1800. /*
  1801. *****************************************************************************
  1802. * FIT MESSAGES
  1803. *****************************************************************************
  1804. */
  1805. static void skd_send_fitmsg(struct skd_device *skdev,
  1806. struct skd_fitmsg_context *skmsg)
  1807. {
  1808. u64 qcmd;
  1809. struct fit_msg_hdr *fmh;
  1810. pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
  1811. skdev->name, __func__, __LINE__,
  1812. skmsg->mb_dma_address, skdev->in_flight);
  1813. pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
  1814. skdev->name, __func__, __LINE__,
  1815. skmsg->msg_buf, skmsg->offset);
  1816. qcmd = skmsg->mb_dma_address;
  1817. qcmd |= FIT_QCMD_QID_NORMAL;
  1818. fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
  1819. skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
  1820. if (unlikely(skdev->dbg_level > 1)) {
  1821. u8 *bp = (u8 *)skmsg->msg_buf;
  1822. int i;
  1823. for (i = 0; i < skmsg->length; i += 8) {
  1824. pr_debug("%s:%s:%d msg[%2d] %02x %02x %02x %02x "
  1825. "%02x %02x %02x %02x\n",
  1826. skdev->name, __func__, __LINE__,
  1827. i, bp[i + 0], bp[i + 1], bp[i + 2],
  1828. bp[i + 3], bp[i + 4], bp[i + 5],
  1829. bp[i + 6], bp[i + 7]);
  1830. if (i == 0)
  1831. i = 64 - 8;
  1832. }
  1833. }
  1834. if (skmsg->length > 256)
  1835. qcmd |= FIT_QCMD_MSGSIZE_512;
  1836. else if (skmsg->length > 128)
  1837. qcmd |= FIT_QCMD_MSGSIZE_256;
  1838. else if (skmsg->length > 64)
  1839. qcmd |= FIT_QCMD_MSGSIZE_128;
  1840. else
  1841. /*
  1842. * This makes no sense because the FIT msg header is
  1843. * 64 bytes. If the msg is only 64 bytes long it has
  1844. * no payload.
  1845. */
  1846. qcmd |= FIT_QCMD_MSGSIZE_64;
  1847. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  1848. }
  1849. static void skd_send_special_fitmsg(struct skd_device *skdev,
  1850. struct skd_special_context *skspcl)
  1851. {
  1852. u64 qcmd;
  1853. if (unlikely(skdev->dbg_level > 1)) {
  1854. u8 *bp = (u8 *)skspcl->msg_buf;
  1855. int i;
  1856. for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
  1857. pr_debug("%s:%s:%d spcl[%2d] %02x %02x %02x %02x "
  1858. "%02x %02x %02x %02x\n",
  1859. skdev->name, __func__, __LINE__, i,
  1860. bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3],
  1861. bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]);
  1862. if (i == 0)
  1863. i = 64 - 8;
  1864. }
  1865. pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
  1866. skdev->name, __func__, __LINE__,
  1867. skspcl, skspcl->req.id, skspcl->req.sksg_list,
  1868. skspcl->req.sksg_dma_address);
  1869. for (i = 0; i < skspcl->req.n_sg; i++) {
  1870. struct fit_sg_descriptor *sgd =
  1871. &skspcl->req.sksg_list[i];
  1872. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  1873. "addr=0x%llx next=0x%llx\n",
  1874. skdev->name, __func__, __LINE__,
  1875. i, sgd->byte_count, sgd->control,
  1876. sgd->host_side_addr, sgd->next_desc_ptr);
  1877. }
  1878. }
  1879. /*
  1880. * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
  1881. * and one 64-byte SSDI command.
  1882. */
  1883. qcmd = skspcl->mb_dma_address;
  1884. qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
  1885. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  1886. }
  1887. /*
  1888. *****************************************************************************
  1889. * COMPLETION QUEUE
  1890. *****************************************************************************
  1891. */
  1892. static void skd_complete_other(struct skd_device *skdev,
  1893. volatile struct fit_completion_entry_v1 *skcomp,
  1894. volatile struct fit_comp_error_info *skerr);
  1895. struct sns_info {
  1896. u8 type;
  1897. u8 stat;
  1898. u8 key;
  1899. u8 asc;
  1900. u8 ascq;
  1901. u8 mask;
  1902. enum skd_check_status_action action;
  1903. };
  1904. static struct sns_info skd_chkstat_table[] = {
  1905. /* Good */
  1906. { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
  1907. SKD_CHECK_STATUS_REPORT_GOOD },
  1908. /* Smart alerts */
  1909. { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
  1910. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1911. { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
  1912. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1913. { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
  1914. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1915. /* Retry (with limits) */
  1916. { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
  1917. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1918. { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
  1919. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1920. { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
  1921. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1922. { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
  1923. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1924. /* Busy (or about to be) */
  1925. { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
  1926. SKD_CHECK_STATUS_BUSY_IMMINENT },
  1927. };
  1928. /*
  1929. * Look up status and sense data to decide how to handle the error
  1930. * from the device.
  1931. * mask says which fields must match e.g., mask=0x18 means check
  1932. * type and stat, ignore key, asc, ascq.
  1933. */
  1934. static enum skd_check_status_action
  1935. skd_check_status(struct skd_device *skdev,
  1936. u8 cmp_status, volatile struct fit_comp_error_info *skerr)
  1937. {
  1938. int i, n;
  1939. pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
  1940. skd_name(skdev), skerr->key, skerr->code, skerr->qual,
  1941. skerr->fruc);
  1942. pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
  1943. skdev->name, __func__, __LINE__, skerr->type, cmp_status,
  1944. skerr->key, skerr->code, skerr->qual, skerr->fruc);
  1945. /* Does the info match an entry in the good category? */
  1946. n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
  1947. for (i = 0; i < n; i++) {
  1948. struct sns_info *sns = &skd_chkstat_table[i];
  1949. if (sns->mask & 0x10)
  1950. if (skerr->type != sns->type)
  1951. continue;
  1952. if (sns->mask & 0x08)
  1953. if (cmp_status != sns->stat)
  1954. continue;
  1955. if (sns->mask & 0x04)
  1956. if (skerr->key != sns->key)
  1957. continue;
  1958. if (sns->mask & 0x02)
  1959. if (skerr->code != sns->asc)
  1960. continue;
  1961. if (sns->mask & 0x01)
  1962. if (skerr->qual != sns->ascq)
  1963. continue;
  1964. if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
  1965. pr_err("(%s): SMART Alert: sense key/asc/ascq "
  1966. "%02x/%02x/%02x\n",
  1967. skd_name(skdev), skerr->key,
  1968. skerr->code, skerr->qual);
  1969. }
  1970. return sns->action;
  1971. }
  1972. /* No other match, so nonzero status means error,
  1973. * zero status means good
  1974. */
  1975. if (cmp_status) {
  1976. pr_debug("%s:%s:%d status check: error\n",
  1977. skdev->name, __func__, __LINE__);
  1978. return SKD_CHECK_STATUS_REPORT_ERROR;
  1979. }
  1980. pr_debug("%s:%s:%d status check good default\n",
  1981. skdev->name, __func__, __LINE__);
  1982. return SKD_CHECK_STATUS_REPORT_GOOD;
  1983. }
  1984. static void skd_resolve_req_exception(struct skd_device *skdev,
  1985. struct skd_request_context *skreq)
  1986. {
  1987. u8 cmp_status = skreq->completion.status;
  1988. switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
  1989. case SKD_CHECK_STATUS_REPORT_GOOD:
  1990. case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
  1991. skd_end_request(skdev, skreq, 0);
  1992. break;
  1993. case SKD_CHECK_STATUS_BUSY_IMMINENT:
  1994. skd_log_skreq(skdev, skreq, "retry(busy)");
  1995. blk_requeue_request(skdev->queue, skreq->req);
  1996. pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
  1997. skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
  1998. skdev->timer_countdown = SKD_TIMER_MINUTES(20);
  1999. skd_quiesce_dev(skdev);
  2000. break;
  2001. case SKD_CHECK_STATUS_REQUEUE_REQUEST:
  2002. if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
  2003. skd_log_skreq(skdev, skreq, "retry");
  2004. blk_requeue_request(skdev->queue, skreq->req);
  2005. break;
  2006. }
  2007. /* fall through to report error */
  2008. case SKD_CHECK_STATUS_REPORT_ERROR:
  2009. default:
  2010. skd_end_request(skdev, skreq, -EIO);
  2011. break;
  2012. }
  2013. }
  2014. /* assume spinlock is already held */
  2015. static void skd_release_skreq(struct skd_device *skdev,
  2016. struct skd_request_context *skreq)
  2017. {
  2018. u32 msg_slot;
  2019. struct skd_fitmsg_context *skmsg;
  2020. u32 timo_slot;
  2021. /*
  2022. * Reclaim the FIT msg buffer if this is
  2023. * the first of the requests it carried to
  2024. * be completed. The FIT msg buffer used to
  2025. * send this request cannot be reused until
  2026. * we are sure the s1120 card has copied
  2027. * it to its memory. The FIT msg might have
  2028. * contained several requests. As soon as
  2029. * any of them are completed we know that
  2030. * the entire FIT msg was transferred.
  2031. * Only the first completed request will
  2032. * match the FIT msg buffer id. The FIT
  2033. * msg buffer id is immediately updated.
  2034. * When subsequent requests complete the FIT
  2035. * msg buffer id won't match, so we know
  2036. * quite cheaply that it is already done.
  2037. */
  2038. msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
  2039. SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
  2040. skmsg = &skdev->skmsg_table[msg_slot];
  2041. if (skmsg->id == skreq->fitmsg_id) {
  2042. SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
  2043. SKD_ASSERT(skmsg->outstanding > 0);
  2044. skmsg->outstanding--;
  2045. if (skmsg->outstanding == 0) {
  2046. skmsg->state = SKD_MSG_STATE_IDLE;
  2047. skmsg->id += SKD_ID_INCR;
  2048. skmsg->next = skdev->skmsg_free_list;
  2049. skdev->skmsg_free_list = skmsg;
  2050. }
  2051. }
  2052. /*
  2053. * Decrease the number of active requests.
  2054. * Also decrements the count in the timeout slot.
  2055. */
  2056. SKD_ASSERT(skdev->in_flight > 0);
  2057. skdev->in_flight -= 1;
  2058. timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  2059. SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
  2060. skdev->timeout_slot[timo_slot] -= 1;
  2061. /*
  2062. * Reset backpointer
  2063. */
  2064. skreq->req = NULL;
  2065. /*
  2066. * Reclaim the skd_request_context
  2067. */
  2068. skreq->state = SKD_REQ_STATE_IDLE;
  2069. skreq->id += SKD_ID_INCR;
  2070. skreq->next = skdev->skreq_free_list;
  2071. skdev->skreq_free_list = skreq;
  2072. }
  2073. #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
  2074. static void skd_do_inq_page_00(struct skd_device *skdev,
  2075. volatile struct fit_completion_entry_v1 *skcomp,
  2076. volatile struct fit_comp_error_info *skerr,
  2077. uint8_t *cdb, uint8_t *buf)
  2078. {
  2079. uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
  2080. /* Caller requested "supported pages". The driver needs to insert
  2081. * its page.
  2082. */
  2083. pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
  2084. skdev->name, __func__, __LINE__);
  2085. /* If the device rejected the request because the CDB was
  2086. * improperly formed, then just leave.
  2087. */
  2088. if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
  2089. skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
  2090. return;
  2091. /* Get the amount of space the caller allocated */
  2092. max_bytes = (cdb[3] << 8) | cdb[4];
  2093. /* Get the number of pages actually returned by the device */
  2094. drive_pages = (buf[2] << 8) | buf[3];
  2095. drive_bytes = drive_pages + 4;
  2096. new_size = drive_pages + 1;
  2097. /* Supported pages must be in numerical order, so find where
  2098. * the driver page needs to be inserted into the list of
  2099. * pages returned by the device.
  2100. */
  2101. for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
  2102. if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
  2103. return; /* Device using this page code. abort */
  2104. else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
  2105. break;
  2106. }
  2107. if (insert_pt < max_bytes) {
  2108. uint16_t u;
  2109. /* Shift everything up one byte to make room. */
  2110. for (u = new_size + 3; u > insert_pt; u--)
  2111. buf[u] = buf[u - 1];
  2112. buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
  2113. /* SCSI byte order increment of num_returned_bytes by 1 */
  2114. skcomp->num_returned_bytes =
  2115. be32_to_cpu(skcomp->num_returned_bytes) + 1;
  2116. skcomp->num_returned_bytes =
  2117. be32_to_cpu(skcomp->num_returned_bytes);
  2118. }
  2119. /* update page length field to reflect the driver's page too */
  2120. buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
  2121. buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
  2122. }
  2123. static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
  2124. {
  2125. int pcie_reg;
  2126. u16 pci_bus_speed;
  2127. u8 pci_lanes;
  2128. pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  2129. if (pcie_reg) {
  2130. u16 linksta;
  2131. pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
  2132. pci_bus_speed = linksta & 0xF;
  2133. pci_lanes = (linksta & 0x3F0) >> 4;
  2134. } else {
  2135. *speed = STEC_LINK_UNKNOWN;
  2136. *width = 0xFF;
  2137. return;
  2138. }
  2139. switch (pci_bus_speed) {
  2140. case 1:
  2141. *speed = STEC_LINK_2_5GTS;
  2142. break;
  2143. case 2:
  2144. *speed = STEC_LINK_5GTS;
  2145. break;
  2146. case 3:
  2147. *speed = STEC_LINK_8GTS;
  2148. break;
  2149. default:
  2150. *speed = STEC_LINK_UNKNOWN;
  2151. break;
  2152. }
  2153. if (pci_lanes <= 0x20)
  2154. *width = pci_lanes;
  2155. else
  2156. *width = 0xFF;
  2157. }
  2158. static void skd_do_inq_page_da(struct skd_device *skdev,
  2159. volatile struct fit_completion_entry_v1 *skcomp,
  2160. volatile struct fit_comp_error_info *skerr,
  2161. uint8_t *cdb, uint8_t *buf)
  2162. {
  2163. struct pci_dev *pdev = skdev->pdev;
  2164. unsigned max_bytes;
  2165. struct driver_inquiry_data inq;
  2166. u16 val;
  2167. pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
  2168. skdev->name, __func__, __LINE__);
  2169. memset(&inq, 0, sizeof(inq));
  2170. inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
  2171. skd_get_link_info(pdev, &inq.pcie_link_speed, &inq.pcie_link_lanes);
  2172. inq.pcie_bus_number = cpu_to_be16(pdev->bus->number);
  2173. inq.pcie_device_number = PCI_SLOT(pdev->devfn);
  2174. inq.pcie_function_number = PCI_FUNC(pdev->devfn);
  2175. pci_read_config_word(pdev, PCI_VENDOR_ID, &val);
  2176. inq.pcie_vendor_id = cpu_to_be16(val);
  2177. pci_read_config_word(pdev, PCI_DEVICE_ID, &val);
  2178. inq.pcie_device_id = cpu_to_be16(val);
  2179. pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &val);
  2180. inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
  2181. pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &val);
  2182. inq.pcie_subsystem_device_id = cpu_to_be16(val);
  2183. /* Driver version, fixed lenth, padded with spaces on the right */
  2184. inq.driver_version_length = sizeof(inq.driver_version);
  2185. memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
  2186. memcpy(inq.driver_version, DRV_VER_COMPL,
  2187. min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
  2188. inq.page_length = cpu_to_be16((sizeof(inq) - 4));
  2189. /* Clear the error set by the device */
  2190. skcomp->status = SAM_STAT_GOOD;
  2191. memset((void *)skerr, 0, sizeof(*skerr));
  2192. /* copy response into output buffer */
  2193. max_bytes = (cdb[3] << 8) | cdb[4];
  2194. memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
  2195. skcomp->num_returned_bytes =
  2196. be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
  2197. }
  2198. static void skd_do_driver_inq(struct skd_device *skdev,
  2199. volatile struct fit_completion_entry_v1 *skcomp,
  2200. volatile struct fit_comp_error_info *skerr,
  2201. uint8_t *cdb, uint8_t *buf)
  2202. {
  2203. if (!buf)
  2204. return;
  2205. else if (cdb[0] != INQUIRY)
  2206. return; /* Not an INQUIRY */
  2207. else if ((cdb[1] & 1) == 0)
  2208. return; /* EVPD not set */
  2209. else if (cdb[2] == 0)
  2210. /* Need to add driver's page to supported pages list */
  2211. skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
  2212. else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
  2213. /* Caller requested driver's page */
  2214. skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
  2215. }
  2216. static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
  2217. {
  2218. if (!sg)
  2219. return NULL;
  2220. if (!sg_page(sg))
  2221. return NULL;
  2222. return sg_virt(sg);
  2223. }
  2224. static void skd_process_scsi_inq(struct skd_device *skdev,
  2225. volatile struct fit_completion_entry_v1
  2226. *skcomp,
  2227. volatile struct fit_comp_error_info *skerr,
  2228. struct skd_special_context *skspcl)
  2229. {
  2230. uint8_t *buf;
  2231. struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
  2232. struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
  2233. dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
  2234. skspcl->req.sg_data_dir);
  2235. buf = skd_sg_1st_page_ptr(skspcl->req.sg);
  2236. if (buf)
  2237. skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
  2238. }
  2239. static int skd_isr_completion_posted(struct skd_device *skdev,
  2240. int limit, int *enqueued)
  2241. {
  2242. volatile struct fit_completion_entry_v1 *skcmp = NULL;
  2243. volatile struct fit_comp_error_info *skerr;
  2244. u16 req_id;
  2245. u32 req_slot;
  2246. struct skd_request_context *skreq;
  2247. u16 cmp_cntxt = 0;
  2248. u8 cmp_status = 0;
  2249. u8 cmp_cycle = 0;
  2250. u32 cmp_bytes = 0;
  2251. int rc = 0;
  2252. int processed = 0;
  2253. for (;; ) {
  2254. SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
  2255. skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
  2256. cmp_cycle = skcmp->cycle;
  2257. cmp_cntxt = skcmp->tag;
  2258. cmp_status = skcmp->status;
  2259. cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
  2260. skerr = &skdev->skerr_table[skdev->skcomp_ix];
  2261. pr_debug("%s:%s:%d "
  2262. "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
  2263. "busy=%d rbytes=0x%x proto=%d\n",
  2264. skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
  2265. skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
  2266. skdev->in_flight, cmp_bytes, skdev->proto_ver);
  2267. if (cmp_cycle != skdev->skcomp_cycle) {
  2268. pr_debug("%s:%s:%d end of completions\n",
  2269. skdev->name, __func__, __LINE__);
  2270. break;
  2271. }
  2272. /*
  2273. * Update the completion queue head index and possibly
  2274. * the completion cycle count. 8-bit wrap-around.
  2275. */
  2276. skdev->skcomp_ix++;
  2277. if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
  2278. skdev->skcomp_ix = 0;
  2279. skdev->skcomp_cycle++;
  2280. }
  2281. /*
  2282. * The command context is a unique 32-bit ID. The low order
  2283. * bits help locate the request. The request is usually a
  2284. * r/w request (see skd_start() above) or a special request.
  2285. */
  2286. req_id = cmp_cntxt;
  2287. req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
  2288. /* Is this other than a r/w request? */
  2289. if (req_slot >= skdev->num_req_context) {
  2290. /*
  2291. * This is not a completion for a r/w request.
  2292. */
  2293. skd_complete_other(skdev, skcmp, skerr);
  2294. continue;
  2295. }
  2296. skreq = &skdev->skreq_table[req_slot];
  2297. /*
  2298. * Make sure the request ID for the slot matches.
  2299. */
  2300. if (skreq->id != req_id) {
  2301. pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
  2302. skdev->name, __func__, __LINE__,
  2303. req_id, skreq->id);
  2304. {
  2305. u16 new_id = cmp_cntxt;
  2306. pr_err("(%s): Completion mismatch "
  2307. "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
  2308. skd_name(skdev), req_id,
  2309. skreq->id, new_id);
  2310. continue;
  2311. }
  2312. }
  2313. SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
  2314. if (skreq->state == SKD_REQ_STATE_ABORTED) {
  2315. pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
  2316. skdev->name, __func__, __LINE__,
  2317. skreq, skreq->id);
  2318. /* a previously timed out command can
  2319. * now be cleaned up */
  2320. skd_release_skreq(skdev, skreq);
  2321. continue;
  2322. }
  2323. skreq->completion = *skcmp;
  2324. if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
  2325. skreq->err_info = *skerr;
  2326. skd_log_check_status(skdev, cmp_status, skerr->key,
  2327. skerr->code, skerr->qual,
  2328. skerr->fruc);
  2329. }
  2330. /* Release DMA resources for the request. */
  2331. if (skreq->n_sg > 0)
  2332. skd_postop_sg_list(skdev, skreq);
  2333. if (!skreq->req) {
  2334. pr_debug("%s:%s:%d NULL backptr skdreq %p, "
  2335. "req=0x%x req_id=0x%x\n",
  2336. skdev->name, __func__, __LINE__,
  2337. skreq, skreq->id, req_id);
  2338. } else {
  2339. /*
  2340. * Capture the outcome and post it back to the
  2341. * native request.
  2342. */
  2343. if (likely(cmp_status == SAM_STAT_GOOD))
  2344. skd_end_request(skdev, skreq, 0);
  2345. else
  2346. skd_resolve_req_exception(skdev, skreq);
  2347. }
  2348. /*
  2349. * Release the skreq, its FIT msg (if one), timeout slot,
  2350. * and queue depth.
  2351. */
  2352. skd_release_skreq(skdev, skreq);
  2353. /* skd_isr_comp_limit equal zero means no limit */
  2354. if (limit) {
  2355. if (++processed >= limit) {
  2356. rc = 1;
  2357. break;
  2358. }
  2359. }
  2360. }
  2361. if ((skdev->state == SKD_DRVR_STATE_PAUSING)
  2362. && (skdev->in_flight) == 0) {
  2363. skdev->state = SKD_DRVR_STATE_PAUSED;
  2364. wake_up_interruptible(&skdev->waitq);
  2365. }
  2366. return rc;
  2367. }
  2368. static void skd_complete_other(struct skd_device *skdev,
  2369. volatile struct fit_completion_entry_v1 *skcomp,
  2370. volatile struct fit_comp_error_info *skerr)
  2371. {
  2372. u32 req_id = 0;
  2373. u32 req_table;
  2374. u32 req_slot;
  2375. struct skd_special_context *skspcl;
  2376. req_id = skcomp->tag;
  2377. req_table = req_id & SKD_ID_TABLE_MASK;
  2378. req_slot = req_id & SKD_ID_SLOT_MASK;
  2379. pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
  2380. skdev->name, __func__, __LINE__,
  2381. req_table, req_id, req_slot);
  2382. /*
  2383. * Based on the request id, determine how to dispatch this completion.
  2384. * This swich/case is finding the good cases and forwarding the
  2385. * completion entry. Errors are reported below the switch.
  2386. */
  2387. switch (req_table) {
  2388. case SKD_ID_RW_REQUEST:
  2389. /*
  2390. * The caller, skd_completion_posted_isr() above,
  2391. * handles r/w requests. The only way we get here
  2392. * is if the req_slot is out of bounds.
  2393. */
  2394. break;
  2395. case SKD_ID_SPECIAL_REQUEST:
  2396. /*
  2397. * Make sure the req_slot is in bounds and that the id
  2398. * matches.
  2399. */
  2400. if (req_slot < skdev->n_special) {
  2401. skspcl = &skdev->skspcl_table[req_slot];
  2402. if (skspcl->req.id == req_id &&
  2403. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2404. skd_complete_special(skdev,
  2405. skcomp, skerr, skspcl);
  2406. return;
  2407. }
  2408. }
  2409. break;
  2410. case SKD_ID_INTERNAL:
  2411. if (req_slot == 0) {
  2412. skspcl = &skdev->internal_skspcl;
  2413. if (skspcl->req.id == req_id &&
  2414. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2415. skd_complete_internal(skdev,
  2416. skcomp, skerr, skspcl);
  2417. return;
  2418. }
  2419. }
  2420. break;
  2421. case SKD_ID_FIT_MSG:
  2422. /*
  2423. * These id's should never appear in a completion record.
  2424. */
  2425. break;
  2426. default:
  2427. /*
  2428. * These id's should never appear anywhere;
  2429. */
  2430. break;
  2431. }
  2432. /*
  2433. * If we get here it is a bad or stale id.
  2434. */
  2435. }
  2436. static void skd_complete_special(struct skd_device *skdev,
  2437. volatile struct fit_completion_entry_v1
  2438. *skcomp,
  2439. volatile struct fit_comp_error_info *skerr,
  2440. struct skd_special_context *skspcl)
  2441. {
  2442. pr_debug("%s:%s:%d completing special request %p\n",
  2443. skdev->name, __func__, __LINE__, skspcl);
  2444. if (skspcl->orphaned) {
  2445. /* Discard orphaned request */
  2446. /* ?: Can this release directly or does it need
  2447. * to use a worker? */
  2448. pr_debug("%s:%s:%d release orphaned %p\n",
  2449. skdev->name, __func__, __LINE__, skspcl);
  2450. skd_release_special(skdev, skspcl);
  2451. return;
  2452. }
  2453. skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
  2454. skspcl->req.state = SKD_REQ_STATE_COMPLETED;
  2455. skspcl->req.completion = *skcomp;
  2456. skspcl->req.err_info = *skerr;
  2457. skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
  2458. skerr->code, skerr->qual, skerr->fruc);
  2459. wake_up_interruptible(&skdev->waitq);
  2460. }
  2461. /* assume spinlock is already held */
  2462. static void skd_release_special(struct skd_device *skdev,
  2463. struct skd_special_context *skspcl)
  2464. {
  2465. int i, was_depleted;
  2466. for (i = 0; i < skspcl->req.n_sg; i++) {
  2467. struct page *page = sg_page(&skspcl->req.sg[i]);
  2468. __free_page(page);
  2469. }
  2470. was_depleted = (skdev->skspcl_free_list == NULL);
  2471. skspcl->req.state = SKD_REQ_STATE_IDLE;
  2472. skspcl->req.id += SKD_ID_INCR;
  2473. skspcl->req.next =
  2474. (struct skd_request_context *)skdev->skspcl_free_list;
  2475. skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
  2476. if (was_depleted) {
  2477. pr_debug("%s:%s:%d skspcl was depleted\n",
  2478. skdev->name, __func__, __LINE__);
  2479. /* Free list was depleted. Their might be waiters. */
  2480. wake_up_interruptible(&skdev->waitq);
  2481. }
  2482. }
  2483. static void skd_reset_skcomp(struct skd_device *skdev)
  2484. {
  2485. u32 nbytes;
  2486. struct fit_completion_entry_v1 *skcomp;
  2487. nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
  2488. nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
  2489. memset(skdev->skcomp_table, 0, nbytes);
  2490. skdev->skcomp_ix = 0;
  2491. skdev->skcomp_cycle = 1;
  2492. }
  2493. /*
  2494. *****************************************************************************
  2495. * INTERRUPTS
  2496. *****************************************************************************
  2497. */
  2498. static void skd_completion_worker(struct work_struct *work)
  2499. {
  2500. struct skd_device *skdev =
  2501. container_of(work, struct skd_device, completion_worker);
  2502. unsigned long flags;
  2503. int flush_enqueued = 0;
  2504. spin_lock_irqsave(&skdev->lock, flags);
  2505. /*
  2506. * pass in limit=0, which means no limit..
  2507. * process everything in compq
  2508. */
  2509. skd_isr_completion_posted(skdev, 0, &flush_enqueued);
  2510. skd_request_fn(skdev->queue);
  2511. spin_unlock_irqrestore(&skdev->lock, flags);
  2512. }
  2513. static void skd_isr_msg_from_dev(struct skd_device *skdev);
  2514. irqreturn_t
  2515. static skd_isr(int irq, void *ptr)
  2516. {
  2517. struct skd_device *skdev;
  2518. u32 intstat;
  2519. u32 ack;
  2520. int rc = 0;
  2521. int deferred = 0;
  2522. int flush_enqueued = 0;
  2523. skdev = (struct skd_device *)ptr;
  2524. spin_lock(&skdev->lock);
  2525. for (;; ) {
  2526. intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  2527. ack = FIT_INT_DEF_MASK;
  2528. ack &= intstat;
  2529. pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
  2530. skdev->name, __func__, __LINE__, intstat, ack);
  2531. /* As long as there is an int pending on device, keep
  2532. * running loop. When none, get out, but if we've never
  2533. * done any processing, call completion handler?
  2534. */
  2535. if (ack == 0) {
  2536. /* No interrupts on device, but run the completion
  2537. * processor anyway?
  2538. */
  2539. if (rc == 0)
  2540. if (likely (skdev->state
  2541. == SKD_DRVR_STATE_ONLINE))
  2542. deferred = 1;
  2543. break;
  2544. }
  2545. rc = IRQ_HANDLED;
  2546. SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
  2547. if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
  2548. (skdev->state != SKD_DRVR_STATE_STOPPING))) {
  2549. if (intstat & FIT_ISH_COMPLETION_POSTED) {
  2550. /*
  2551. * If we have already deferred completion
  2552. * processing, don't bother running it again
  2553. */
  2554. if (deferred == 0)
  2555. deferred =
  2556. skd_isr_completion_posted(skdev,
  2557. skd_isr_comp_limit, &flush_enqueued);
  2558. }
  2559. if (intstat & FIT_ISH_FW_STATE_CHANGE) {
  2560. skd_isr_fwstate(skdev);
  2561. if (skdev->state == SKD_DRVR_STATE_FAULT ||
  2562. skdev->state ==
  2563. SKD_DRVR_STATE_DISAPPEARED) {
  2564. spin_unlock(&skdev->lock);
  2565. return rc;
  2566. }
  2567. }
  2568. if (intstat & FIT_ISH_MSG_FROM_DEV)
  2569. skd_isr_msg_from_dev(skdev);
  2570. }
  2571. }
  2572. if (unlikely(flush_enqueued))
  2573. skd_request_fn(skdev->queue);
  2574. if (deferred)
  2575. schedule_work(&skdev->completion_worker);
  2576. else if (!flush_enqueued)
  2577. skd_request_fn(skdev->queue);
  2578. spin_unlock(&skdev->lock);
  2579. return rc;
  2580. }
  2581. static void skd_drive_fault(struct skd_device *skdev)
  2582. {
  2583. skdev->state = SKD_DRVR_STATE_FAULT;
  2584. pr_err("(%s): Drive FAULT\n", skd_name(skdev));
  2585. }
  2586. static void skd_drive_disappeared(struct skd_device *skdev)
  2587. {
  2588. skdev->state = SKD_DRVR_STATE_DISAPPEARED;
  2589. pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
  2590. }
  2591. static void skd_isr_fwstate(struct skd_device *skdev)
  2592. {
  2593. u32 sense;
  2594. u32 state;
  2595. u32 mtd;
  2596. int prev_driver_state = skdev->state;
  2597. sense = SKD_READL(skdev, FIT_STATUS);
  2598. state = sense & FIT_SR_DRIVE_STATE_MASK;
  2599. pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
  2600. skd_name(skdev),
  2601. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  2602. skd_drive_state_to_str(state), state);
  2603. skdev->drive_state = state;
  2604. switch (skdev->drive_state) {
  2605. case FIT_SR_DRIVE_INIT:
  2606. if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
  2607. skd_disable_interrupts(skdev);
  2608. break;
  2609. }
  2610. if (skdev->state == SKD_DRVR_STATE_RESTARTING)
  2611. skd_recover_requests(skdev, 0);
  2612. if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
  2613. skdev->timer_countdown = SKD_STARTING_TIMO;
  2614. skdev->state = SKD_DRVR_STATE_STARTING;
  2615. skd_soft_reset(skdev);
  2616. break;
  2617. }
  2618. mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
  2619. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2620. skdev->last_mtd = mtd;
  2621. break;
  2622. case FIT_SR_DRIVE_ONLINE:
  2623. skdev->cur_max_queue_depth = skd_max_queue_depth;
  2624. if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
  2625. skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
  2626. skdev->queue_low_water_mark =
  2627. skdev->cur_max_queue_depth * 2 / 3 + 1;
  2628. if (skdev->queue_low_water_mark < 1)
  2629. skdev->queue_low_water_mark = 1;
  2630. pr_info(
  2631. "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
  2632. skd_name(skdev),
  2633. skdev->cur_max_queue_depth,
  2634. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  2635. skd_refresh_device_data(skdev);
  2636. break;
  2637. case FIT_SR_DRIVE_BUSY:
  2638. skdev->state = SKD_DRVR_STATE_BUSY;
  2639. skdev->timer_countdown = SKD_BUSY_TIMO;
  2640. skd_quiesce_dev(skdev);
  2641. break;
  2642. case FIT_SR_DRIVE_BUSY_SANITIZE:
  2643. /* set timer for 3 seconds, we'll abort any unfinished
  2644. * commands after that expires
  2645. */
  2646. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  2647. skdev->timer_countdown = SKD_TIMER_SECONDS(3);
  2648. blk_start_queue(skdev->queue);
  2649. break;
  2650. case FIT_SR_DRIVE_BUSY_ERASE:
  2651. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  2652. skdev->timer_countdown = SKD_BUSY_TIMO;
  2653. break;
  2654. case FIT_SR_DRIVE_OFFLINE:
  2655. skdev->state = SKD_DRVR_STATE_IDLE;
  2656. break;
  2657. case FIT_SR_DRIVE_SOFT_RESET:
  2658. switch (skdev->state) {
  2659. case SKD_DRVR_STATE_STARTING:
  2660. case SKD_DRVR_STATE_RESTARTING:
  2661. /* Expected by a caller of skd_soft_reset() */
  2662. break;
  2663. default:
  2664. skdev->state = SKD_DRVR_STATE_RESTARTING;
  2665. break;
  2666. }
  2667. break;
  2668. case FIT_SR_DRIVE_FW_BOOTING:
  2669. pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
  2670. skdev->name, __func__, __LINE__, skdev->name);
  2671. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  2672. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  2673. break;
  2674. case FIT_SR_DRIVE_DEGRADED:
  2675. case FIT_SR_PCIE_LINK_DOWN:
  2676. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  2677. break;
  2678. case FIT_SR_DRIVE_FAULT:
  2679. skd_drive_fault(skdev);
  2680. skd_recover_requests(skdev, 0);
  2681. blk_start_queue(skdev->queue);
  2682. break;
  2683. /* PCIe bus returned all Fs? */
  2684. case 0xFF:
  2685. pr_info("(%s): state=0x%x sense=0x%x\n",
  2686. skd_name(skdev), state, sense);
  2687. skd_drive_disappeared(skdev);
  2688. skd_recover_requests(skdev, 0);
  2689. blk_start_queue(skdev->queue);
  2690. break;
  2691. default:
  2692. /*
  2693. * Uknown FW State. Wait for a state we recognize.
  2694. */
  2695. break;
  2696. }
  2697. pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
  2698. skd_name(skdev),
  2699. skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
  2700. skd_skdev_state_to_str(skdev->state), skdev->state);
  2701. }
  2702. static void skd_recover_requests(struct skd_device *skdev, int requeue)
  2703. {
  2704. int i;
  2705. for (i = 0; i < skdev->num_req_context; i++) {
  2706. struct skd_request_context *skreq = &skdev->skreq_table[i];
  2707. if (skreq->state == SKD_REQ_STATE_BUSY) {
  2708. skd_log_skreq(skdev, skreq, "recover");
  2709. SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
  2710. SKD_ASSERT(skreq->req != NULL);
  2711. /* Release DMA resources for the request. */
  2712. if (skreq->n_sg > 0)
  2713. skd_postop_sg_list(skdev, skreq);
  2714. if (requeue &&
  2715. (unsigned long) ++skreq->req->special <
  2716. SKD_MAX_RETRIES)
  2717. blk_requeue_request(skdev->queue, skreq->req);
  2718. else
  2719. skd_end_request(skdev, skreq, -EIO);
  2720. skreq->req = NULL;
  2721. skreq->state = SKD_REQ_STATE_IDLE;
  2722. skreq->id += SKD_ID_INCR;
  2723. }
  2724. if (i > 0)
  2725. skreq[-1].next = skreq;
  2726. skreq->next = NULL;
  2727. }
  2728. skdev->skreq_free_list = skdev->skreq_table;
  2729. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  2730. struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
  2731. if (skmsg->state == SKD_MSG_STATE_BUSY) {
  2732. skd_log_skmsg(skdev, skmsg, "salvaged");
  2733. SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
  2734. skmsg->state = SKD_MSG_STATE_IDLE;
  2735. skmsg->id += SKD_ID_INCR;
  2736. }
  2737. if (i > 0)
  2738. skmsg[-1].next = skmsg;
  2739. skmsg->next = NULL;
  2740. }
  2741. skdev->skmsg_free_list = skdev->skmsg_table;
  2742. for (i = 0; i < skdev->n_special; i++) {
  2743. struct skd_special_context *skspcl = &skdev->skspcl_table[i];
  2744. /* If orphaned, reclaim it because it has already been reported
  2745. * to the process as an error (it was just waiting for
  2746. * a completion that didn't come, and now it will never come)
  2747. * If busy, change to a state that will cause it to error
  2748. * out in the wait routine and let it do the normal
  2749. * reporting and reclaiming
  2750. */
  2751. if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2752. if (skspcl->orphaned) {
  2753. pr_debug("%s:%s:%d orphaned %p\n",
  2754. skdev->name, __func__, __LINE__,
  2755. skspcl);
  2756. skd_release_special(skdev, skspcl);
  2757. } else {
  2758. pr_debug("%s:%s:%d not orphaned %p\n",
  2759. skdev->name, __func__, __LINE__,
  2760. skspcl);
  2761. skspcl->req.state = SKD_REQ_STATE_ABORTED;
  2762. }
  2763. }
  2764. }
  2765. skdev->skspcl_free_list = skdev->skspcl_table;
  2766. for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
  2767. skdev->timeout_slot[i] = 0;
  2768. skdev->in_flight = 0;
  2769. }
  2770. static void skd_isr_msg_from_dev(struct skd_device *skdev)
  2771. {
  2772. u32 mfd;
  2773. u32 mtd;
  2774. u32 data;
  2775. mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  2776. pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
  2777. skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
  2778. /* ignore any mtd that is an ack for something we didn't send */
  2779. if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
  2780. return;
  2781. switch (FIT_MXD_TYPE(mfd)) {
  2782. case FIT_MTD_FITFW_INIT:
  2783. skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
  2784. if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
  2785. pr_err("(%s): protocol mismatch\n",
  2786. skdev->name);
  2787. pr_err("(%s): got=%d support=%d\n",
  2788. skdev->name, skdev->proto_ver,
  2789. FIT_PROTOCOL_VERSION_1);
  2790. pr_err("(%s): please upgrade driver\n",
  2791. skdev->name);
  2792. skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
  2793. skd_soft_reset(skdev);
  2794. break;
  2795. }
  2796. mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
  2797. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2798. skdev->last_mtd = mtd;
  2799. break;
  2800. case FIT_MTD_GET_CMDQ_DEPTH:
  2801. skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
  2802. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
  2803. SKD_N_COMPLETION_ENTRY);
  2804. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2805. skdev->last_mtd = mtd;
  2806. break;
  2807. case FIT_MTD_SET_COMPQ_DEPTH:
  2808. SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
  2809. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
  2810. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2811. skdev->last_mtd = mtd;
  2812. break;
  2813. case FIT_MTD_SET_COMPQ_ADDR:
  2814. skd_reset_skcomp(skdev);
  2815. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
  2816. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2817. skdev->last_mtd = mtd;
  2818. break;
  2819. case FIT_MTD_CMD_LOG_HOST_ID:
  2820. skdev->connect_time_stamp = get_seconds();
  2821. data = skdev->connect_time_stamp & 0xFFFF;
  2822. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
  2823. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2824. skdev->last_mtd = mtd;
  2825. break;
  2826. case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
  2827. skdev->drive_jiffies = FIT_MXD_DATA(mfd);
  2828. data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
  2829. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
  2830. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2831. skdev->last_mtd = mtd;
  2832. break;
  2833. case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
  2834. skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
  2835. mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
  2836. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2837. skdev->last_mtd = mtd;
  2838. pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
  2839. skd_name(skdev),
  2840. skdev->connect_time_stamp, skdev->drive_jiffies);
  2841. break;
  2842. case FIT_MTD_ARM_QUEUE:
  2843. skdev->last_mtd = 0;
  2844. /*
  2845. * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
  2846. */
  2847. break;
  2848. default:
  2849. break;
  2850. }
  2851. }
  2852. static void skd_disable_interrupts(struct skd_device *skdev)
  2853. {
  2854. u32 sense;
  2855. sense = SKD_READL(skdev, FIT_CONTROL);
  2856. sense &= ~FIT_CR_ENABLE_INTERRUPTS;
  2857. SKD_WRITEL(skdev, sense, FIT_CONTROL);
  2858. pr_debug("%s:%s:%d sense 0x%x\n",
  2859. skdev->name, __func__, __LINE__, sense);
  2860. /* Note that the 1s is written. A 1-bit means
  2861. * disable, a 0 means enable.
  2862. */
  2863. SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
  2864. }
  2865. static void skd_enable_interrupts(struct skd_device *skdev)
  2866. {
  2867. u32 val;
  2868. /* unmask interrupts first */
  2869. val = FIT_ISH_FW_STATE_CHANGE +
  2870. FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
  2871. /* Note that the compliment of mask is written. A 1-bit means
  2872. * disable, a 0 means enable. */
  2873. SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
  2874. pr_debug("%s:%s:%d interrupt mask=0x%x\n",
  2875. skdev->name, __func__, __LINE__, ~val);
  2876. val = SKD_READL(skdev, FIT_CONTROL);
  2877. val |= FIT_CR_ENABLE_INTERRUPTS;
  2878. pr_debug("%s:%s:%d control=0x%x\n",
  2879. skdev->name, __func__, __LINE__, val);
  2880. SKD_WRITEL(skdev, val, FIT_CONTROL);
  2881. }
  2882. /*
  2883. *****************************************************************************
  2884. * START, STOP, RESTART, QUIESCE, UNQUIESCE
  2885. *****************************************************************************
  2886. */
  2887. static void skd_soft_reset(struct skd_device *skdev)
  2888. {
  2889. u32 val;
  2890. val = SKD_READL(skdev, FIT_CONTROL);
  2891. val |= (FIT_CR_SOFT_RESET);
  2892. pr_debug("%s:%s:%d control=0x%x\n",
  2893. skdev->name, __func__, __LINE__, val);
  2894. SKD_WRITEL(skdev, val, FIT_CONTROL);
  2895. }
  2896. static void skd_start_device(struct skd_device *skdev)
  2897. {
  2898. unsigned long flags;
  2899. u32 sense;
  2900. u32 state;
  2901. spin_lock_irqsave(&skdev->lock, flags);
  2902. /* ack all ghost interrupts */
  2903. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  2904. sense = SKD_READL(skdev, FIT_STATUS);
  2905. pr_debug("%s:%s:%d initial status=0x%x\n",
  2906. skdev->name, __func__, __LINE__, sense);
  2907. state = sense & FIT_SR_DRIVE_STATE_MASK;
  2908. skdev->drive_state = state;
  2909. skdev->last_mtd = 0;
  2910. skdev->state = SKD_DRVR_STATE_STARTING;
  2911. skdev->timer_countdown = SKD_STARTING_TIMO;
  2912. skd_enable_interrupts(skdev);
  2913. switch (skdev->drive_state) {
  2914. case FIT_SR_DRIVE_OFFLINE:
  2915. pr_err("(%s): Drive offline...\n", skd_name(skdev));
  2916. break;
  2917. case FIT_SR_DRIVE_FW_BOOTING:
  2918. pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
  2919. skdev->name, __func__, __LINE__, skdev->name);
  2920. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  2921. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  2922. break;
  2923. case FIT_SR_DRIVE_BUSY_SANITIZE:
  2924. pr_info("(%s): Start: BUSY_SANITIZE\n",
  2925. skd_name(skdev));
  2926. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  2927. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2928. break;
  2929. case FIT_SR_DRIVE_BUSY_ERASE:
  2930. pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
  2931. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  2932. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2933. break;
  2934. case FIT_SR_DRIVE_INIT:
  2935. case FIT_SR_DRIVE_ONLINE:
  2936. skd_soft_reset(skdev);
  2937. break;
  2938. case FIT_SR_DRIVE_BUSY:
  2939. pr_err("(%s): Drive Busy...\n", skd_name(skdev));
  2940. skdev->state = SKD_DRVR_STATE_BUSY;
  2941. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2942. break;
  2943. case FIT_SR_DRIVE_SOFT_RESET:
  2944. pr_err("(%s) drive soft reset in prog\n",
  2945. skd_name(skdev));
  2946. break;
  2947. case FIT_SR_DRIVE_FAULT:
  2948. /* Fault state is bad...soft reset won't do it...
  2949. * Hard reset, maybe, but does it work on device?
  2950. * For now, just fault so the system doesn't hang.
  2951. */
  2952. skd_drive_fault(skdev);
  2953. /*start the queue so we can respond with error to requests */
  2954. pr_debug("%s:%s:%d starting %s queue\n",
  2955. skdev->name, __func__, __LINE__, skdev->name);
  2956. blk_start_queue(skdev->queue);
  2957. skdev->gendisk_on = -1;
  2958. wake_up_interruptible(&skdev->waitq);
  2959. break;
  2960. case 0xFF:
  2961. /* Most likely the device isn't there or isn't responding
  2962. * to the BAR1 addresses. */
  2963. skd_drive_disappeared(skdev);
  2964. /*start the queue so we can respond with error to requests */
  2965. pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
  2966. skdev->name, __func__, __LINE__, skdev->name);
  2967. blk_start_queue(skdev->queue);
  2968. skdev->gendisk_on = -1;
  2969. wake_up_interruptible(&skdev->waitq);
  2970. break;
  2971. default:
  2972. pr_err("(%s) Start: unknown state %x\n",
  2973. skd_name(skdev), skdev->drive_state);
  2974. break;
  2975. }
  2976. state = SKD_READL(skdev, FIT_CONTROL);
  2977. pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
  2978. skdev->name, __func__, __LINE__, state);
  2979. state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  2980. pr_debug("%s:%s:%d Intr Status=0x%x\n",
  2981. skdev->name, __func__, __LINE__, state);
  2982. state = SKD_READL(skdev, FIT_INT_MASK_HOST);
  2983. pr_debug("%s:%s:%d Intr Mask=0x%x\n",
  2984. skdev->name, __func__, __LINE__, state);
  2985. state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  2986. pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
  2987. skdev->name, __func__, __LINE__, state);
  2988. state = SKD_READL(skdev, FIT_HW_VERSION);
  2989. pr_debug("%s:%s:%d HW version=0x%x\n",
  2990. skdev->name, __func__, __LINE__, state);
  2991. spin_unlock_irqrestore(&skdev->lock, flags);
  2992. }
  2993. static void skd_stop_device(struct skd_device *skdev)
  2994. {
  2995. unsigned long flags;
  2996. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  2997. u32 dev_state;
  2998. int i;
  2999. spin_lock_irqsave(&skdev->lock, flags);
  3000. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  3001. pr_err("(%s): skd_stop_device not online no sync\n",
  3002. skd_name(skdev));
  3003. goto stop_out;
  3004. }
  3005. if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
  3006. pr_err("(%s): skd_stop_device no special\n",
  3007. skd_name(skdev));
  3008. goto stop_out;
  3009. }
  3010. skdev->state = SKD_DRVR_STATE_SYNCING;
  3011. skdev->sync_done = 0;
  3012. skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
  3013. spin_unlock_irqrestore(&skdev->lock, flags);
  3014. wait_event_interruptible_timeout(skdev->waitq,
  3015. (skdev->sync_done), (10 * HZ));
  3016. spin_lock_irqsave(&skdev->lock, flags);
  3017. switch (skdev->sync_done) {
  3018. case 0:
  3019. pr_err("(%s): skd_stop_device no sync\n",
  3020. skd_name(skdev));
  3021. break;
  3022. case 1:
  3023. pr_err("(%s): skd_stop_device sync done\n",
  3024. skd_name(skdev));
  3025. break;
  3026. default:
  3027. pr_err("(%s): skd_stop_device sync error\n",
  3028. skd_name(skdev));
  3029. }
  3030. stop_out:
  3031. skdev->state = SKD_DRVR_STATE_STOPPING;
  3032. spin_unlock_irqrestore(&skdev->lock, flags);
  3033. skd_kill_timer(skdev);
  3034. spin_lock_irqsave(&skdev->lock, flags);
  3035. skd_disable_interrupts(skdev);
  3036. /* ensure all ints on device are cleared */
  3037. /* soft reset the device to unload with a clean slate */
  3038. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  3039. SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
  3040. spin_unlock_irqrestore(&skdev->lock, flags);
  3041. /* poll every 100ms, 1 second timeout */
  3042. for (i = 0; i < 10; i++) {
  3043. dev_state =
  3044. SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
  3045. if (dev_state == FIT_SR_DRIVE_INIT)
  3046. break;
  3047. set_current_state(TASK_INTERRUPTIBLE);
  3048. schedule_timeout(msecs_to_jiffies(100));
  3049. }
  3050. if (dev_state != FIT_SR_DRIVE_INIT)
  3051. pr_err("(%s): skd_stop_device state error 0x%02x\n",
  3052. skd_name(skdev), dev_state);
  3053. }
  3054. /* assume spinlock is held */
  3055. static void skd_restart_device(struct skd_device *skdev)
  3056. {
  3057. u32 state;
  3058. /* ack all ghost interrupts */
  3059. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  3060. state = SKD_READL(skdev, FIT_STATUS);
  3061. pr_debug("%s:%s:%d drive status=0x%x\n",
  3062. skdev->name, __func__, __LINE__, state);
  3063. state &= FIT_SR_DRIVE_STATE_MASK;
  3064. skdev->drive_state = state;
  3065. skdev->last_mtd = 0;
  3066. skdev->state = SKD_DRVR_STATE_RESTARTING;
  3067. skdev->timer_countdown = SKD_RESTARTING_TIMO;
  3068. skd_soft_reset(skdev);
  3069. }
  3070. /* assume spinlock is held */
  3071. static int skd_quiesce_dev(struct skd_device *skdev)
  3072. {
  3073. int rc = 0;
  3074. switch (skdev->state) {
  3075. case SKD_DRVR_STATE_BUSY:
  3076. case SKD_DRVR_STATE_BUSY_IMMINENT:
  3077. pr_debug("%s:%s:%d stopping %s queue\n",
  3078. skdev->name, __func__, __LINE__, skdev->name);
  3079. blk_stop_queue(skdev->queue);
  3080. break;
  3081. case SKD_DRVR_STATE_ONLINE:
  3082. case SKD_DRVR_STATE_STOPPING:
  3083. case SKD_DRVR_STATE_SYNCING:
  3084. case SKD_DRVR_STATE_PAUSING:
  3085. case SKD_DRVR_STATE_PAUSED:
  3086. case SKD_DRVR_STATE_STARTING:
  3087. case SKD_DRVR_STATE_RESTARTING:
  3088. case SKD_DRVR_STATE_RESUMING:
  3089. default:
  3090. rc = -EINVAL;
  3091. pr_debug("%s:%s:%d state [%d] not implemented\n",
  3092. skdev->name, __func__, __LINE__, skdev->state);
  3093. }
  3094. return rc;
  3095. }
  3096. /* assume spinlock is held */
  3097. static int skd_unquiesce_dev(struct skd_device *skdev)
  3098. {
  3099. int prev_driver_state = skdev->state;
  3100. skd_log_skdev(skdev, "unquiesce");
  3101. if (skdev->state == SKD_DRVR_STATE_ONLINE) {
  3102. pr_debug("%s:%s:%d **** device already ONLINE\n",
  3103. skdev->name, __func__, __LINE__);
  3104. return 0;
  3105. }
  3106. if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
  3107. /*
  3108. * If there has been an state change to other than
  3109. * ONLINE, we will rely on controller state change
  3110. * to come back online and restart the queue.
  3111. * The BUSY state means that driver is ready to
  3112. * continue normal processing but waiting for controller
  3113. * to become available.
  3114. */
  3115. skdev->state = SKD_DRVR_STATE_BUSY;
  3116. pr_debug("%s:%s:%d drive BUSY state\n",
  3117. skdev->name, __func__, __LINE__);
  3118. return 0;
  3119. }
  3120. /*
  3121. * Drive has just come online, driver is either in startup,
  3122. * paused performing a task, or bust waiting for hardware.
  3123. */
  3124. switch (skdev->state) {
  3125. case SKD_DRVR_STATE_PAUSED:
  3126. case SKD_DRVR_STATE_BUSY:
  3127. case SKD_DRVR_STATE_BUSY_IMMINENT:
  3128. case SKD_DRVR_STATE_BUSY_ERASE:
  3129. case SKD_DRVR_STATE_STARTING:
  3130. case SKD_DRVR_STATE_RESTARTING:
  3131. case SKD_DRVR_STATE_FAULT:
  3132. case SKD_DRVR_STATE_IDLE:
  3133. case SKD_DRVR_STATE_LOAD:
  3134. skdev->state = SKD_DRVR_STATE_ONLINE;
  3135. pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
  3136. skd_name(skdev),
  3137. skd_skdev_state_to_str(prev_driver_state),
  3138. prev_driver_state, skd_skdev_state_to_str(skdev->state),
  3139. skdev->state);
  3140. pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
  3141. skdev->name, __func__, __LINE__);
  3142. pr_debug("%s:%s:%d starting %s queue\n",
  3143. skdev->name, __func__, __LINE__, skdev->name);
  3144. pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
  3145. blk_start_queue(skdev->queue);
  3146. skdev->gendisk_on = 1;
  3147. wake_up_interruptible(&skdev->waitq);
  3148. break;
  3149. case SKD_DRVR_STATE_DISAPPEARED:
  3150. default:
  3151. pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
  3152. skdev->name, __func__, __LINE__,
  3153. skdev->state);
  3154. return -EBUSY;
  3155. }
  3156. return 0;
  3157. }
  3158. /*
  3159. *****************************************************************************
  3160. * PCIe MSI/MSI-X INTERRUPT HANDLERS
  3161. *****************************************************************************
  3162. */
  3163. static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
  3164. {
  3165. struct skd_device *skdev = skd_host_data;
  3166. unsigned long flags;
  3167. spin_lock_irqsave(&skdev->lock, flags);
  3168. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3169. skdev->name, __func__, __LINE__,
  3170. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3171. pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
  3172. irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3173. SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
  3174. spin_unlock_irqrestore(&skdev->lock, flags);
  3175. return IRQ_HANDLED;
  3176. }
  3177. static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
  3178. {
  3179. struct skd_device *skdev = skd_host_data;
  3180. unsigned long flags;
  3181. spin_lock_irqsave(&skdev->lock, flags);
  3182. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3183. skdev->name, __func__, __LINE__,
  3184. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3185. SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
  3186. skd_isr_fwstate(skdev);
  3187. spin_unlock_irqrestore(&skdev->lock, flags);
  3188. return IRQ_HANDLED;
  3189. }
  3190. static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
  3191. {
  3192. struct skd_device *skdev = skd_host_data;
  3193. unsigned long flags;
  3194. int flush_enqueued = 0;
  3195. int deferred;
  3196. spin_lock_irqsave(&skdev->lock, flags);
  3197. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3198. skdev->name, __func__, __LINE__,
  3199. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3200. SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
  3201. deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
  3202. &flush_enqueued);
  3203. if (flush_enqueued)
  3204. skd_request_fn(skdev->queue);
  3205. if (deferred)
  3206. schedule_work(&skdev->completion_worker);
  3207. else if (!flush_enqueued)
  3208. skd_request_fn(skdev->queue);
  3209. spin_unlock_irqrestore(&skdev->lock, flags);
  3210. return IRQ_HANDLED;
  3211. }
  3212. static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
  3213. {
  3214. struct skd_device *skdev = skd_host_data;
  3215. unsigned long flags;
  3216. spin_lock_irqsave(&skdev->lock, flags);
  3217. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3218. skdev->name, __func__, __LINE__,
  3219. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3220. SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
  3221. skd_isr_msg_from_dev(skdev);
  3222. spin_unlock_irqrestore(&skdev->lock, flags);
  3223. return IRQ_HANDLED;
  3224. }
  3225. static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
  3226. {
  3227. struct skd_device *skdev = skd_host_data;
  3228. unsigned long flags;
  3229. spin_lock_irqsave(&skdev->lock, flags);
  3230. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3231. skdev->name, __func__, __LINE__,
  3232. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3233. SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
  3234. spin_unlock_irqrestore(&skdev->lock, flags);
  3235. return IRQ_HANDLED;
  3236. }
  3237. /*
  3238. *****************************************************************************
  3239. * PCIe MSI/MSI-X SETUP
  3240. *****************************************************************************
  3241. */
  3242. struct skd_msix_entry {
  3243. int have_irq;
  3244. u32 vector;
  3245. u32 entry;
  3246. struct skd_device *rsp;
  3247. char isr_name[30];
  3248. };
  3249. struct skd_init_msix_entry {
  3250. const char *name;
  3251. irq_handler_t handler;
  3252. };
  3253. #define SKD_MAX_MSIX_COUNT 13
  3254. #define SKD_MIN_MSIX_COUNT 7
  3255. #define SKD_BASE_MSIX_IRQ 4
  3256. static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
  3257. { "(DMA 0)", skd_reserved_isr },
  3258. { "(DMA 1)", skd_reserved_isr },
  3259. { "(DMA 2)", skd_reserved_isr },
  3260. { "(DMA 3)", skd_reserved_isr },
  3261. { "(State Change)", skd_statec_isr },
  3262. { "(COMPL_Q)", skd_comp_q },
  3263. { "(MSG)", skd_msg_isr },
  3264. { "(Reserved)", skd_reserved_isr },
  3265. { "(Reserved)", skd_reserved_isr },
  3266. { "(Queue Full 0)", skd_qfull_isr },
  3267. { "(Queue Full 1)", skd_qfull_isr },
  3268. { "(Queue Full 2)", skd_qfull_isr },
  3269. { "(Queue Full 3)", skd_qfull_isr },
  3270. };
  3271. static void skd_release_msix(struct skd_device *skdev)
  3272. {
  3273. struct skd_msix_entry *qentry;
  3274. int i;
  3275. if (skdev->msix_entries == NULL)
  3276. return;
  3277. for (i = 0; i < skdev->msix_count; i++) {
  3278. qentry = &skdev->msix_entries[i];
  3279. skdev = qentry->rsp;
  3280. if (qentry->have_irq)
  3281. devm_free_irq(&skdev->pdev->dev,
  3282. qentry->vector, qentry->rsp);
  3283. }
  3284. pci_disable_msix(skdev->pdev);
  3285. kfree(skdev->msix_entries);
  3286. skdev->msix_count = 0;
  3287. skdev->msix_entries = NULL;
  3288. }
  3289. static int skd_acquire_msix(struct skd_device *skdev)
  3290. {
  3291. int i, rc;
  3292. struct pci_dev *pdev;
  3293. struct msix_entry *entries = NULL;
  3294. struct skd_msix_entry *qentry;
  3295. pdev = skdev->pdev;
  3296. skdev->msix_count = SKD_MAX_MSIX_COUNT;
  3297. entries = kzalloc(sizeof(struct msix_entry) * SKD_MAX_MSIX_COUNT,
  3298. GFP_KERNEL);
  3299. if (!entries)
  3300. return -ENOMEM;
  3301. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++)
  3302. entries[i].entry = i;
  3303. rc = pci_enable_msix(pdev, entries, SKD_MAX_MSIX_COUNT);
  3304. if (rc < 0)
  3305. goto msix_out;
  3306. if (rc) {
  3307. if (rc < SKD_MIN_MSIX_COUNT) {
  3308. pr_err("(%s): failed to enable MSI-X %d\n",
  3309. skd_name(skdev), rc);
  3310. goto msix_out;
  3311. }
  3312. pr_debug("%s:%s:%d %s: <%s> allocated %d MSI-X vectors\n",
  3313. skdev->name, __func__, __LINE__,
  3314. pci_name(pdev), skdev->name, rc);
  3315. skdev->msix_count = rc;
  3316. rc = pci_enable_msix(pdev, entries, skdev->msix_count);
  3317. if (rc) {
  3318. pr_err("(%s): failed to enable MSI-X "
  3319. "support (%d) %d\n",
  3320. skd_name(skdev), skdev->msix_count, rc);
  3321. goto msix_out;
  3322. }
  3323. }
  3324. skdev->msix_entries = kzalloc(sizeof(struct skd_msix_entry) *
  3325. skdev->msix_count, GFP_KERNEL);
  3326. if (!skdev->msix_entries) {
  3327. rc = -ENOMEM;
  3328. skdev->msix_count = 0;
  3329. pr_err("(%s): msix table allocation error\n",
  3330. skd_name(skdev));
  3331. goto msix_out;
  3332. }
  3333. qentry = skdev->msix_entries;
  3334. for (i = 0; i < skdev->msix_count; i++) {
  3335. qentry->vector = entries[i].vector;
  3336. qentry->entry = entries[i].entry;
  3337. qentry->rsp = NULL;
  3338. qentry->have_irq = 0;
  3339. pr_debug("%s:%s:%d %s: <%s> msix (%d) vec %d, entry %x\n",
  3340. skdev->name, __func__, __LINE__,
  3341. pci_name(pdev), skdev->name,
  3342. i, qentry->vector, qentry->entry);
  3343. qentry++;
  3344. }
  3345. /* Enable MSI-X vectors for the base queue */
  3346. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
  3347. qentry = &skdev->msix_entries[i];
  3348. snprintf(qentry->isr_name, sizeof(qentry->isr_name),
  3349. "%s%d-msix %s", DRV_NAME, skdev->devno,
  3350. msix_entries[i].name);
  3351. rc = devm_request_irq(&skdev->pdev->dev, qentry->vector,
  3352. msix_entries[i].handler, 0,
  3353. qentry->isr_name, skdev);
  3354. if (rc) {
  3355. pr_err("(%s): Unable to register(%d) MSI-X "
  3356. "handler %d: %s\n",
  3357. skd_name(skdev), rc, i, qentry->isr_name);
  3358. goto msix_out;
  3359. } else {
  3360. qentry->have_irq = 1;
  3361. qentry->rsp = skdev;
  3362. }
  3363. }
  3364. pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
  3365. skdev->name, __func__, __LINE__,
  3366. pci_name(pdev), skdev->name, skdev->msix_count);
  3367. return 0;
  3368. msix_out:
  3369. if (entries)
  3370. kfree(entries);
  3371. skd_release_msix(skdev);
  3372. return rc;
  3373. }
  3374. static int skd_acquire_irq(struct skd_device *skdev)
  3375. {
  3376. int rc;
  3377. struct pci_dev *pdev;
  3378. pdev = skdev->pdev;
  3379. skdev->msix_count = 0;
  3380. RETRY_IRQ_TYPE:
  3381. switch (skdev->irq_type) {
  3382. case SKD_IRQ_MSIX:
  3383. rc = skd_acquire_msix(skdev);
  3384. if (!rc)
  3385. pr_info("(%s): MSI-X %d irqs enabled\n",
  3386. skd_name(skdev), skdev->msix_count);
  3387. else {
  3388. pr_err(
  3389. "(%s): failed to enable MSI-X, re-trying with MSI %d\n",
  3390. skd_name(skdev), rc);
  3391. skdev->irq_type = SKD_IRQ_MSI;
  3392. goto RETRY_IRQ_TYPE;
  3393. }
  3394. break;
  3395. case SKD_IRQ_MSI:
  3396. snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-msi",
  3397. DRV_NAME, skdev->devno);
  3398. rc = pci_enable_msi(pdev);
  3399. if (!rc) {
  3400. rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, 0,
  3401. skdev->isr_name, skdev);
  3402. if (rc) {
  3403. pci_disable_msi(pdev);
  3404. pr_err(
  3405. "(%s): failed to allocate the MSI interrupt %d\n",
  3406. skd_name(skdev), rc);
  3407. goto RETRY_IRQ_LEGACY;
  3408. }
  3409. pr_info("(%s): MSI irq %d enabled\n",
  3410. skd_name(skdev), pdev->irq);
  3411. } else {
  3412. RETRY_IRQ_LEGACY:
  3413. pr_err(
  3414. "(%s): failed to enable MSI, re-trying with LEGACY %d\n",
  3415. skd_name(skdev), rc);
  3416. skdev->irq_type = SKD_IRQ_LEGACY;
  3417. goto RETRY_IRQ_TYPE;
  3418. }
  3419. break;
  3420. case SKD_IRQ_LEGACY:
  3421. snprintf(skdev->isr_name, sizeof(skdev->isr_name),
  3422. "%s%d-legacy", DRV_NAME, skdev->devno);
  3423. rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
  3424. IRQF_SHARED, skdev->isr_name, skdev);
  3425. if (!rc)
  3426. pr_info("(%s): LEGACY irq %d enabled\n",
  3427. skd_name(skdev), pdev->irq);
  3428. else
  3429. pr_err("(%s): request LEGACY irq error %d\n",
  3430. skd_name(skdev), rc);
  3431. break;
  3432. default:
  3433. pr_info("(%s): irq_type %d invalid, re-set to %d\n",
  3434. skd_name(skdev), skdev->irq_type, SKD_IRQ_DEFAULT);
  3435. skdev->irq_type = SKD_IRQ_LEGACY;
  3436. goto RETRY_IRQ_TYPE;
  3437. }
  3438. return rc;
  3439. }
  3440. static void skd_release_irq(struct skd_device *skdev)
  3441. {
  3442. switch (skdev->irq_type) {
  3443. case SKD_IRQ_MSIX:
  3444. skd_release_msix(skdev);
  3445. break;
  3446. case SKD_IRQ_MSI:
  3447. devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
  3448. pci_disable_msi(skdev->pdev);
  3449. break;
  3450. case SKD_IRQ_LEGACY:
  3451. devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
  3452. break;
  3453. default:
  3454. pr_err("(%s): wrong irq type %d!",
  3455. skd_name(skdev), skdev->irq_type);
  3456. break;
  3457. }
  3458. }
  3459. /*
  3460. *****************************************************************************
  3461. * CONSTRUCT
  3462. *****************************************************************************
  3463. */
  3464. static int skd_cons_skcomp(struct skd_device *skdev)
  3465. {
  3466. int rc = 0;
  3467. struct fit_completion_entry_v1 *skcomp;
  3468. u32 nbytes;
  3469. nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
  3470. nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
  3471. pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
  3472. skdev->name, __func__, __LINE__,
  3473. nbytes, SKD_N_COMPLETION_ENTRY);
  3474. skcomp = pci_alloc_consistent(skdev->pdev, nbytes,
  3475. &skdev->cq_dma_address);
  3476. if (skcomp == NULL) {
  3477. rc = -ENOMEM;
  3478. goto err_out;
  3479. }
  3480. memset(skcomp, 0, nbytes);
  3481. skdev->skcomp_table = skcomp;
  3482. skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
  3483. sizeof(*skcomp) *
  3484. SKD_N_COMPLETION_ENTRY);
  3485. err_out:
  3486. return rc;
  3487. }
  3488. static int skd_cons_skmsg(struct skd_device *skdev)
  3489. {
  3490. int rc = 0;
  3491. u32 i;
  3492. pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
  3493. skdev->name, __func__, __LINE__,
  3494. sizeof(struct skd_fitmsg_context),
  3495. skdev->num_fitmsg_context,
  3496. sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
  3497. skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
  3498. *skdev->num_fitmsg_context, GFP_KERNEL);
  3499. if (skdev->skmsg_table == NULL) {
  3500. rc = -ENOMEM;
  3501. goto err_out;
  3502. }
  3503. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  3504. struct skd_fitmsg_context *skmsg;
  3505. skmsg = &skdev->skmsg_table[i];
  3506. skmsg->id = i + SKD_ID_FIT_MSG;
  3507. skmsg->state = SKD_MSG_STATE_IDLE;
  3508. skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
  3509. SKD_N_FITMSG_BYTES + 64,
  3510. &skmsg->mb_dma_address);
  3511. if (skmsg->msg_buf == NULL) {
  3512. rc = -ENOMEM;
  3513. goto err_out;
  3514. }
  3515. skmsg->offset = (u32)((u64)skmsg->msg_buf &
  3516. (~FIT_QCMD_BASE_ADDRESS_MASK));
  3517. skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
  3518. skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
  3519. FIT_QCMD_BASE_ADDRESS_MASK);
  3520. skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
  3521. skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
  3522. memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
  3523. skmsg->next = &skmsg[1];
  3524. }
  3525. /* Free list is in order starting with the 0th entry. */
  3526. skdev->skmsg_table[i - 1].next = NULL;
  3527. skdev->skmsg_free_list = skdev->skmsg_table;
  3528. err_out:
  3529. return rc;
  3530. }
  3531. static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
  3532. u32 n_sg,
  3533. dma_addr_t *ret_dma_addr)
  3534. {
  3535. struct fit_sg_descriptor *sg_list;
  3536. u32 nbytes;
  3537. nbytes = sizeof(*sg_list) * n_sg;
  3538. sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
  3539. if (sg_list != NULL) {
  3540. uint64_t dma_address = *ret_dma_addr;
  3541. u32 i;
  3542. memset(sg_list, 0, nbytes);
  3543. for (i = 0; i < n_sg - 1; i++) {
  3544. uint64_t ndp_off;
  3545. ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
  3546. sg_list[i].next_desc_ptr = dma_address + ndp_off;
  3547. }
  3548. sg_list[i].next_desc_ptr = 0LL;
  3549. }
  3550. return sg_list;
  3551. }
  3552. static int skd_cons_skreq(struct skd_device *skdev)
  3553. {
  3554. int rc = 0;
  3555. u32 i;
  3556. pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
  3557. skdev->name, __func__, __LINE__,
  3558. sizeof(struct skd_request_context),
  3559. skdev->num_req_context,
  3560. sizeof(struct skd_request_context) * skdev->num_req_context);
  3561. skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
  3562. * skdev->num_req_context, GFP_KERNEL);
  3563. if (skdev->skreq_table == NULL) {
  3564. rc = -ENOMEM;
  3565. goto err_out;
  3566. }
  3567. pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
  3568. skdev->name, __func__, __LINE__,
  3569. skdev->sgs_per_request, sizeof(struct scatterlist),
  3570. skdev->sgs_per_request * sizeof(struct scatterlist));
  3571. for (i = 0; i < skdev->num_req_context; i++) {
  3572. struct skd_request_context *skreq;
  3573. skreq = &skdev->skreq_table[i];
  3574. skreq->id = i + SKD_ID_RW_REQUEST;
  3575. skreq->state = SKD_REQ_STATE_IDLE;
  3576. skreq->sg = kzalloc(sizeof(struct scatterlist) *
  3577. skdev->sgs_per_request, GFP_KERNEL);
  3578. if (skreq->sg == NULL) {
  3579. rc = -ENOMEM;
  3580. goto err_out;
  3581. }
  3582. sg_init_table(skreq->sg, skdev->sgs_per_request);
  3583. skreq->sksg_list = skd_cons_sg_list(skdev,
  3584. skdev->sgs_per_request,
  3585. &skreq->sksg_dma_address);
  3586. if (skreq->sksg_list == NULL) {
  3587. rc = -ENOMEM;
  3588. goto err_out;
  3589. }
  3590. skreq->next = &skreq[1];
  3591. }
  3592. /* Free list is in order starting with the 0th entry. */
  3593. skdev->skreq_table[i - 1].next = NULL;
  3594. skdev->skreq_free_list = skdev->skreq_table;
  3595. err_out:
  3596. return rc;
  3597. }
  3598. static int skd_cons_skspcl(struct skd_device *skdev)
  3599. {
  3600. int rc = 0;
  3601. u32 i, nbytes;
  3602. pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
  3603. skdev->name, __func__, __LINE__,
  3604. sizeof(struct skd_special_context),
  3605. skdev->n_special,
  3606. sizeof(struct skd_special_context) * skdev->n_special);
  3607. skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
  3608. * skdev->n_special, GFP_KERNEL);
  3609. if (skdev->skspcl_table == NULL) {
  3610. rc = -ENOMEM;
  3611. goto err_out;
  3612. }
  3613. for (i = 0; i < skdev->n_special; i++) {
  3614. struct skd_special_context *skspcl;
  3615. skspcl = &skdev->skspcl_table[i];
  3616. skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
  3617. skspcl->req.state = SKD_REQ_STATE_IDLE;
  3618. skspcl->req.next = &skspcl[1].req;
  3619. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3620. skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  3621. &skspcl->mb_dma_address);
  3622. if (skspcl->msg_buf == NULL) {
  3623. rc = -ENOMEM;
  3624. goto err_out;
  3625. }
  3626. memset(skspcl->msg_buf, 0, nbytes);
  3627. skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
  3628. SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
  3629. if (skspcl->req.sg == NULL) {
  3630. rc = -ENOMEM;
  3631. goto err_out;
  3632. }
  3633. skspcl->req.sksg_list = skd_cons_sg_list(skdev,
  3634. SKD_N_SG_PER_SPECIAL,
  3635. &skspcl->req.
  3636. sksg_dma_address);
  3637. if (skspcl->req.sksg_list == NULL) {
  3638. rc = -ENOMEM;
  3639. goto err_out;
  3640. }
  3641. }
  3642. /* Free list is in order starting with the 0th entry. */
  3643. skdev->skspcl_table[i - 1].req.next = NULL;
  3644. skdev->skspcl_free_list = skdev->skspcl_table;
  3645. return rc;
  3646. err_out:
  3647. return rc;
  3648. }
  3649. static int skd_cons_sksb(struct skd_device *skdev)
  3650. {
  3651. int rc = 0;
  3652. struct skd_special_context *skspcl;
  3653. u32 nbytes;
  3654. skspcl = &skdev->internal_skspcl;
  3655. skspcl->req.id = 0 + SKD_ID_INTERNAL;
  3656. skspcl->req.state = SKD_REQ_STATE_IDLE;
  3657. nbytes = SKD_N_INTERNAL_BYTES;
  3658. skspcl->data_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  3659. &skspcl->db_dma_address);
  3660. if (skspcl->data_buf == NULL) {
  3661. rc = -ENOMEM;
  3662. goto err_out;
  3663. }
  3664. memset(skspcl->data_buf, 0, nbytes);
  3665. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3666. skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  3667. &skspcl->mb_dma_address);
  3668. if (skspcl->msg_buf == NULL) {
  3669. rc = -ENOMEM;
  3670. goto err_out;
  3671. }
  3672. memset(skspcl->msg_buf, 0, nbytes);
  3673. skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
  3674. &skspcl->req.sksg_dma_address);
  3675. if (skspcl->req.sksg_list == NULL) {
  3676. rc = -ENOMEM;
  3677. goto err_out;
  3678. }
  3679. if (!skd_format_internal_skspcl(skdev)) {
  3680. rc = -EINVAL;
  3681. goto err_out;
  3682. }
  3683. err_out:
  3684. return rc;
  3685. }
  3686. static int skd_cons_disk(struct skd_device *skdev)
  3687. {
  3688. int rc = 0;
  3689. struct gendisk *disk;
  3690. struct request_queue *q;
  3691. unsigned long flags;
  3692. disk = alloc_disk(SKD_MINORS_PER_DEVICE);
  3693. if (!disk) {
  3694. rc = -ENOMEM;
  3695. goto err_out;
  3696. }
  3697. skdev->disk = disk;
  3698. sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
  3699. disk->major = skdev->major;
  3700. disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
  3701. disk->fops = &skd_blockdev_ops;
  3702. disk->private_data = skdev;
  3703. q = blk_init_queue(skd_request_fn, &skdev->lock);
  3704. if (!q) {
  3705. rc = -ENOMEM;
  3706. goto err_out;
  3707. }
  3708. skdev->queue = q;
  3709. disk->queue = q;
  3710. q->queuedata = skdev;
  3711. blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
  3712. blk_queue_max_segments(q, skdev->sgs_per_request);
  3713. blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
  3714. /* set sysfs ptimal_io_size to 8K */
  3715. blk_queue_io_opt(q, 8192);
  3716. /* DISCARD Flag initialization. */
  3717. q->limits.discard_granularity = 8192;
  3718. q->limits.discard_alignment = 0;
  3719. q->limits.max_discard_sectors = UINT_MAX >> 9;
  3720. q->limits.discard_zeroes_data = 1;
  3721. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
  3722. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
  3723. spin_lock_irqsave(&skdev->lock, flags);
  3724. pr_debug("%s:%s:%d stopping %s queue\n",
  3725. skdev->name, __func__, __LINE__, skdev->name);
  3726. blk_stop_queue(skdev->queue);
  3727. spin_unlock_irqrestore(&skdev->lock, flags);
  3728. err_out:
  3729. return rc;
  3730. }
  3731. #define SKD_N_DEV_TABLE 16u
  3732. static u32 skd_next_devno;
  3733. static struct skd_device *skd_construct(struct pci_dev *pdev)
  3734. {
  3735. struct skd_device *skdev;
  3736. int blk_major = skd_major;
  3737. int rc;
  3738. skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
  3739. if (!skdev) {
  3740. pr_err(PFX "(%s): memory alloc failure\n",
  3741. pci_name(pdev));
  3742. return NULL;
  3743. }
  3744. skdev->state = SKD_DRVR_STATE_LOAD;
  3745. skdev->pdev = pdev;
  3746. skdev->devno = skd_next_devno++;
  3747. skdev->major = blk_major;
  3748. skdev->irq_type = skd_isr_type;
  3749. sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
  3750. skdev->dev_max_queue_depth = 0;
  3751. skdev->num_req_context = skd_max_queue_depth;
  3752. skdev->num_fitmsg_context = skd_max_queue_depth;
  3753. skdev->n_special = skd_max_pass_thru;
  3754. skdev->cur_max_queue_depth = 1;
  3755. skdev->queue_low_water_mark = 1;
  3756. skdev->proto_ver = 99;
  3757. skdev->sgs_per_request = skd_sgs_per_request;
  3758. skdev->dbg_level = skd_dbg_level;
  3759. atomic_set(&skdev->device_count, 0);
  3760. spin_lock_init(&skdev->lock);
  3761. INIT_WORK(&skdev->completion_worker, skd_completion_worker);
  3762. pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
  3763. rc = skd_cons_skcomp(skdev);
  3764. if (rc < 0)
  3765. goto err_out;
  3766. pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
  3767. rc = skd_cons_skmsg(skdev);
  3768. if (rc < 0)
  3769. goto err_out;
  3770. pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
  3771. rc = skd_cons_skreq(skdev);
  3772. if (rc < 0)
  3773. goto err_out;
  3774. pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
  3775. rc = skd_cons_skspcl(skdev);
  3776. if (rc < 0)
  3777. goto err_out;
  3778. pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
  3779. rc = skd_cons_sksb(skdev);
  3780. if (rc < 0)
  3781. goto err_out;
  3782. pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
  3783. rc = skd_cons_disk(skdev);
  3784. if (rc < 0)
  3785. goto err_out;
  3786. pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
  3787. return skdev;
  3788. err_out:
  3789. pr_debug("%s:%s:%d construct failed\n",
  3790. skdev->name, __func__, __LINE__);
  3791. skd_destruct(skdev);
  3792. return NULL;
  3793. }
  3794. /*
  3795. *****************************************************************************
  3796. * DESTRUCT (FREE)
  3797. *****************************************************************************
  3798. */
  3799. static void skd_free_skcomp(struct skd_device *skdev)
  3800. {
  3801. if (skdev->skcomp_table != NULL) {
  3802. u32 nbytes;
  3803. nbytes = sizeof(skdev->skcomp_table[0]) *
  3804. SKD_N_COMPLETION_ENTRY;
  3805. pci_free_consistent(skdev->pdev, nbytes,
  3806. skdev->skcomp_table, skdev->cq_dma_address);
  3807. }
  3808. skdev->skcomp_table = NULL;
  3809. skdev->cq_dma_address = 0;
  3810. }
  3811. static void skd_free_skmsg(struct skd_device *skdev)
  3812. {
  3813. u32 i;
  3814. if (skdev->skmsg_table == NULL)
  3815. return;
  3816. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  3817. struct skd_fitmsg_context *skmsg;
  3818. skmsg = &skdev->skmsg_table[i];
  3819. if (skmsg->msg_buf != NULL) {
  3820. skmsg->msg_buf += skmsg->offset;
  3821. skmsg->mb_dma_address += skmsg->offset;
  3822. pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
  3823. skmsg->msg_buf,
  3824. skmsg->mb_dma_address);
  3825. }
  3826. skmsg->msg_buf = NULL;
  3827. skmsg->mb_dma_address = 0;
  3828. }
  3829. kfree(skdev->skmsg_table);
  3830. skdev->skmsg_table = NULL;
  3831. }
  3832. static void skd_free_sg_list(struct skd_device *skdev,
  3833. struct fit_sg_descriptor *sg_list,
  3834. u32 n_sg, dma_addr_t dma_addr)
  3835. {
  3836. if (sg_list != NULL) {
  3837. u32 nbytes;
  3838. nbytes = sizeof(*sg_list) * n_sg;
  3839. pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
  3840. }
  3841. }
  3842. static void skd_free_skreq(struct skd_device *skdev)
  3843. {
  3844. u32 i;
  3845. if (skdev->skreq_table == NULL)
  3846. return;
  3847. for (i = 0; i < skdev->num_req_context; i++) {
  3848. struct skd_request_context *skreq;
  3849. skreq = &skdev->skreq_table[i];
  3850. skd_free_sg_list(skdev, skreq->sksg_list,
  3851. skdev->sgs_per_request,
  3852. skreq->sksg_dma_address);
  3853. skreq->sksg_list = NULL;
  3854. skreq->sksg_dma_address = 0;
  3855. kfree(skreq->sg);
  3856. }
  3857. kfree(skdev->skreq_table);
  3858. skdev->skreq_table = NULL;
  3859. }
  3860. static void skd_free_skspcl(struct skd_device *skdev)
  3861. {
  3862. u32 i;
  3863. u32 nbytes;
  3864. if (skdev->skspcl_table == NULL)
  3865. return;
  3866. for (i = 0; i < skdev->n_special; i++) {
  3867. struct skd_special_context *skspcl;
  3868. skspcl = &skdev->skspcl_table[i];
  3869. if (skspcl->msg_buf != NULL) {
  3870. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3871. pci_free_consistent(skdev->pdev, nbytes,
  3872. skspcl->msg_buf,
  3873. skspcl->mb_dma_address);
  3874. }
  3875. skspcl->msg_buf = NULL;
  3876. skspcl->mb_dma_address = 0;
  3877. skd_free_sg_list(skdev, skspcl->req.sksg_list,
  3878. SKD_N_SG_PER_SPECIAL,
  3879. skspcl->req.sksg_dma_address);
  3880. skspcl->req.sksg_list = NULL;
  3881. skspcl->req.sksg_dma_address = 0;
  3882. kfree(skspcl->req.sg);
  3883. }
  3884. kfree(skdev->skspcl_table);
  3885. skdev->skspcl_table = NULL;
  3886. }
  3887. static void skd_free_sksb(struct skd_device *skdev)
  3888. {
  3889. struct skd_special_context *skspcl;
  3890. u32 nbytes;
  3891. skspcl = &skdev->internal_skspcl;
  3892. if (skspcl->data_buf != NULL) {
  3893. nbytes = SKD_N_INTERNAL_BYTES;
  3894. pci_free_consistent(skdev->pdev, nbytes,
  3895. skspcl->data_buf, skspcl->db_dma_address);
  3896. }
  3897. skspcl->data_buf = NULL;
  3898. skspcl->db_dma_address = 0;
  3899. if (skspcl->msg_buf != NULL) {
  3900. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3901. pci_free_consistent(skdev->pdev, nbytes,
  3902. skspcl->msg_buf, skspcl->mb_dma_address);
  3903. }
  3904. skspcl->msg_buf = NULL;
  3905. skspcl->mb_dma_address = 0;
  3906. skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
  3907. skspcl->req.sksg_dma_address);
  3908. skspcl->req.sksg_list = NULL;
  3909. skspcl->req.sksg_dma_address = 0;
  3910. }
  3911. static void skd_free_disk(struct skd_device *skdev)
  3912. {
  3913. struct gendisk *disk = skdev->disk;
  3914. if (disk != NULL) {
  3915. struct request_queue *q = disk->queue;
  3916. if (disk->flags & GENHD_FL_UP)
  3917. del_gendisk(disk);
  3918. if (q)
  3919. blk_cleanup_queue(q);
  3920. put_disk(disk);
  3921. }
  3922. skdev->disk = NULL;
  3923. }
  3924. static void skd_destruct(struct skd_device *skdev)
  3925. {
  3926. if (skdev == NULL)
  3927. return;
  3928. pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
  3929. skd_free_disk(skdev);
  3930. pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
  3931. skd_free_sksb(skdev);
  3932. pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
  3933. skd_free_skspcl(skdev);
  3934. pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
  3935. skd_free_skreq(skdev);
  3936. pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
  3937. skd_free_skmsg(skdev);
  3938. pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
  3939. skd_free_skcomp(skdev);
  3940. pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
  3941. kfree(skdev);
  3942. }
  3943. /*
  3944. *****************************************************************************
  3945. * BLOCK DEVICE (BDEV) GLUE
  3946. *****************************************************************************
  3947. */
  3948. static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3949. {
  3950. struct skd_device *skdev;
  3951. u64 capacity;
  3952. skdev = bdev->bd_disk->private_data;
  3953. pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
  3954. skdev->name, __func__, __LINE__,
  3955. bdev->bd_disk->disk_name, current->comm);
  3956. if (skdev->read_cap_is_valid) {
  3957. capacity = get_capacity(skdev->disk);
  3958. geo->heads = 64;
  3959. geo->sectors = 255;
  3960. geo->cylinders = (capacity) / (255 * 64);
  3961. return 0;
  3962. }
  3963. return -EIO;
  3964. }
  3965. static int skd_bdev_attach(struct skd_device *skdev)
  3966. {
  3967. pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
  3968. add_disk(skdev->disk);
  3969. return 0;
  3970. }
  3971. static const struct block_device_operations skd_blockdev_ops = {
  3972. .owner = THIS_MODULE,
  3973. .ioctl = skd_bdev_ioctl,
  3974. .getgeo = skd_bdev_getgeo,
  3975. };
  3976. /*
  3977. *****************************************************************************
  3978. * PCIe DRIVER GLUE
  3979. *****************************************************************************
  3980. */
  3981. static DEFINE_PCI_DEVICE_TABLE(skd_pci_tbl) = {
  3982. { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
  3983. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  3984. { 0 } /* terminate list */
  3985. };
  3986. MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
  3987. static char *skd_pci_info(struct skd_device *skdev, char *str)
  3988. {
  3989. int pcie_reg;
  3990. strcpy(str, "PCIe (");
  3991. pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
  3992. if (pcie_reg) {
  3993. char lwstr[6];
  3994. uint16_t pcie_lstat, lspeed, lwidth;
  3995. pcie_reg += 0x12;
  3996. pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
  3997. lspeed = pcie_lstat & (0xF);
  3998. lwidth = (pcie_lstat & 0x3F0) >> 4;
  3999. if (lspeed == 1)
  4000. strcat(str, "2.5GT/s ");
  4001. else if (lspeed == 2)
  4002. strcat(str, "5.0GT/s ");
  4003. else
  4004. strcat(str, "<unknown> ");
  4005. snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
  4006. strcat(str, lwstr);
  4007. }
  4008. return str;
  4009. }
  4010. static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  4011. {
  4012. int i;
  4013. int rc = 0;
  4014. char pci_str[32];
  4015. struct skd_device *skdev;
  4016. pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
  4017. DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
  4018. pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
  4019. pci_name(pdev), pdev->vendor, pdev->device);
  4020. rc = pci_enable_device(pdev);
  4021. if (rc)
  4022. return rc;
  4023. rc = pci_request_regions(pdev, DRV_NAME);
  4024. if (rc)
  4025. goto err_out;
  4026. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  4027. if (!rc) {
  4028. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4029. pr_err("(%s): consistent DMA mask error %d\n",
  4030. pci_name(pdev), rc);
  4031. }
  4032. } else {
  4033. (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
  4034. if (rc) {
  4035. pr_err("(%s): DMA mask error %d\n",
  4036. pci_name(pdev), rc);
  4037. goto err_out_regions;
  4038. }
  4039. }
  4040. if (!skd_major) {
  4041. rc = register_blkdev(0, DRV_NAME);
  4042. if (rc < 0)
  4043. goto err_out_regions;
  4044. BUG_ON(!rc);
  4045. skd_major = rc;
  4046. }
  4047. skdev = skd_construct(pdev);
  4048. if (skdev == NULL) {
  4049. rc = -ENOMEM;
  4050. goto err_out_regions;
  4051. }
  4052. skd_pci_info(skdev, pci_str);
  4053. pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
  4054. pci_set_master(pdev);
  4055. rc = pci_enable_pcie_error_reporting(pdev);
  4056. if (rc) {
  4057. pr_err(
  4058. "(%s): bad enable of PCIe error reporting rc=%d\n",
  4059. skd_name(skdev), rc);
  4060. skdev->pcie_error_reporting_is_enabled = 0;
  4061. } else
  4062. skdev->pcie_error_reporting_is_enabled = 1;
  4063. pci_set_drvdata(pdev, skdev);
  4064. skdev->disk->driverfs_dev = &pdev->dev;
  4065. for (i = 0; i < SKD_MAX_BARS; i++) {
  4066. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  4067. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  4068. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  4069. skdev->mem_size[i]);
  4070. if (!skdev->mem_map[i]) {
  4071. pr_err("(%s): Unable to map adapter memory!\n",
  4072. skd_name(skdev));
  4073. rc = -ENODEV;
  4074. goto err_out_iounmap;
  4075. }
  4076. pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
  4077. skdev->name, __func__, __LINE__,
  4078. skdev->mem_map[i],
  4079. (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
  4080. }
  4081. rc = skd_acquire_irq(skdev);
  4082. if (rc) {
  4083. pr_err("(%s): interrupt resource error %d\n",
  4084. skd_name(skdev), rc);
  4085. goto err_out_iounmap;
  4086. }
  4087. rc = skd_start_timer(skdev);
  4088. if (rc)
  4089. goto err_out_timer;
  4090. init_waitqueue_head(&skdev->waitq);
  4091. skd_start_device(skdev);
  4092. rc = wait_event_interruptible_timeout(skdev->waitq,
  4093. (skdev->gendisk_on),
  4094. (SKD_START_WAIT_SECONDS * HZ));
  4095. if (skdev->gendisk_on > 0) {
  4096. /* device came on-line after reset */
  4097. skd_bdev_attach(skdev);
  4098. rc = 0;
  4099. } else {
  4100. /* we timed out, something is wrong with the device,
  4101. don't add the disk structure */
  4102. pr_err(
  4103. "(%s): error: waiting for s1120 timed out %d!\n",
  4104. skd_name(skdev), rc);
  4105. /* in case of no error; we timeout with ENXIO */
  4106. if (!rc)
  4107. rc = -ENXIO;
  4108. goto err_out_timer;
  4109. }
  4110. #ifdef SKD_VMK_POLL_HANDLER
  4111. if (skdev->irq_type == SKD_IRQ_MSIX) {
  4112. /* MSIX completion handler is being used for coredump */
  4113. vmklnx_scsi_register_poll_handler(skdev->scsi_host,
  4114. skdev->msix_entries[5].vector,
  4115. skd_comp_q, skdev);
  4116. } else {
  4117. vmklnx_scsi_register_poll_handler(skdev->scsi_host,
  4118. skdev->pdev->irq, skd_isr,
  4119. skdev);
  4120. }
  4121. #endif /* SKD_VMK_POLL_HANDLER */
  4122. return rc;
  4123. err_out_timer:
  4124. skd_stop_device(skdev);
  4125. skd_release_irq(skdev);
  4126. err_out_iounmap:
  4127. for (i = 0; i < SKD_MAX_BARS; i++)
  4128. if (skdev->mem_map[i])
  4129. iounmap(skdev->mem_map[i]);
  4130. if (skdev->pcie_error_reporting_is_enabled)
  4131. pci_disable_pcie_error_reporting(pdev);
  4132. skd_destruct(skdev);
  4133. err_out_regions:
  4134. pci_release_regions(pdev);
  4135. err_out:
  4136. pci_disable_device(pdev);
  4137. pci_set_drvdata(pdev, NULL);
  4138. return rc;
  4139. }
  4140. static void skd_pci_remove(struct pci_dev *pdev)
  4141. {
  4142. int i;
  4143. struct skd_device *skdev;
  4144. skdev = pci_get_drvdata(pdev);
  4145. if (!skdev) {
  4146. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4147. return;
  4148. }
  4149. skd_stop_device(skdev);
  4150. skd_release_irq(skdev);
  4151. for (i = 0; i < SKD_MAX_BARS; i++)
  4152. if (skdev->mem_map[i])
  4153. iounmap((u32 *)skdev->mem_map[i]);
  4154. if (skdev->pcie_error_reporting_is_enabled)
  4155. pci_disable_pcie_error_reporting(pdev);
  4156. skd_destruct(skdev);
  4157. pci_release_regions(pdev);
  4158. pci_disable_device(pdev);
  4159. pci_set_drvdata(pdev, NULL);
  4160. return;
  4161. }
  4162. static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  4163. {
  4164. int i;
  4165. struct skd_device *skdev;
  4166. skdev = pci_get_drvdata(pdev);
  4167. if (!skdev) {
  4168. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4169. return -EIO;
  4170. }
  4171. skd_stop_device(skdev);
  4172. skd_release_irq(skdev);
  4173. for (i = 0; i < SKD_MAX_BARS; i++)
  4174. if (skdev->mem_map[i])
  4175. iounmap((u32 *)skdev->mem_map[i]);
  4176. if (skdev->pcie_error_reporting_is_enabled)
  4177. pci_disable_pcie_error_reporting(pdev);
  4178. pci_release_regions(pdev);
  4179. pci_save_state(pdev);
  4180. pci_disable_device(pdev);
  4181. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4182. return 0;
  4183. }
  4184. static int skd_pci_resume(struct pci_dev *pdev)
  4185. {
  4186. int i;
  4187. int rc = 0;
  4188. struct skd_device *skdev;
  4189. skdev = pci_get_drvdata(pdev);
  4190. if (!skdev) {
  4191. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4192. return -1;
  4193. }
  4194. pci_set_power_state(pdev, PCI_D0);
  4195. pci_enable_wake(pdev, PCI_D0, 0);
  4196. pci_restore_state(pdev);
  4197. rc = pci_enable_device(pdev);
  4198. if (rc)
  4199. return rc;
  4200. rc = pci_request_regions(pdev, DRV_NAME);
  4201. if (rc)
  4202. goto err_out;
  4203. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  4204. if (!rc) {
  4205. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4206. pr_err("(%s): consistent DMA mask error %d\n",
  4207. pci_name(pdev), rc);
  4208. }
  4209. } else {
  4210. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4211. if (rc) {
  4212. pr_err("(%s): DMA mask error %d\n",
  4213. pci_name(pdev), rc);
  4214. goto err_out_regions;
  4215. }
  4216. }
  4217. pci_set_master(pdev);
  4218. rc = pci_enable_pcie_error_reporting(pdev);
  4219. if (rc) {
  4220. pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
  4221. skdev->name, rc);
  4222. skdev->pcie_error_reporting_is_enabled = 0;
  4223. } else
  4224. skdev->pcie_error_reporting_is_enabled = 1;
  4225. for (i = 0; i < SKD_MAX_BARS; i++) {
  4226. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  4227. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  4228. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  4229. skdev->mem_size[i]);
  4230. if (!skdev->mem_map[i]) {
  4231. pr_err("(%s): Unable to map adapter memory!\n",
  4232. skd_name(skdev));
  4233. rc = -ENODEV;
  4234. goto err_out_iounmap;
  4235. }
  4236. pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
  4237. skdev->name, __func__, __LINE__,
  4238. skdev->mem_map[i],
  4239. (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
  4240. }
  4241. rc = skd_acquire_irq(skdev);
  4242. if (rc) {
  4243. pr_err("(%s): interrupt resource error %d\n",
  4244. pci_name(pdev), rc);
  4245. goto err_out_iounmap;
  4246. }
  4247. rc = skd_start_timer(skdev);
  4248. if (rc)
  4249. goto err_out_timer;
  4250. init_waitqueue_head(&skdev->waitq);
  4251. skd_start_device(skdev);
  4252. return rc;
  4253. err_out_timer:
  4254. skd_stop_device(skdev);
  4255. skd_release_irq(skdev);
  4256. err_out_iounmap:
  4257. for (i = 0; i < SKD_MAX_BARS; i++)
  4258. if (skdev->mem_map[i])
  4259. iounmap(skdev->mem_map[i]);
  4260. if (skdev->pcie_error_reporting_is_enabled)
  4261. pci_disable_pcie_error_reporting(pdev);
  4262. err_out_regions:
  4263. pci_release_regions(pdev);
  4264. err_out:
  4265. pci_disable_device(pdev);
  4266. return rc;
  4267. }
  4268. static void skd_pci_shutdown(struct pci_dev *pdev)
  4269. {
  4270. struct skd_device *skdev;
  4271. pr_err("skd_pci_shutdown called\n");
  4272. skdev = pci_get_drvdata(pdev);
  4273. if (!skdev) {
  4274. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4275. return;
  4276. }
  4277. pr_err("%s: calling stop\n", skd_name(skdev));
  4278. skd_stop_device(skdev);
  4279. }
  4280. static struct pci_driver skd_driver = {
  4281. .name = DRV_NAME,
  4282. .id_table = skd_pci_tbl,
  4283. .probe = skd_pci_probe,
  4284. .remove = skd_pci_remove,
  4285. .suspend = skd_pci_suspend,
  4286. .resume = skd_pci_resume,
  4287. .shutdown = skd_pci_shutdown,
  4288. };
  4289. /*
  4290. *****************************************************************************
  4291. * LOGGING SUPPORT
  4292. *****************************************************************************
  4293. */
  4294. static const char *skd_name(struct skd_device *skdev)
  4295. {
  4296. memset(skdev->id_str, 0, sizeof(skdev->id_str));
  4297. if (skdev->inquiry_is_valid)
  4298. snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
  4299. skdev->name, skdev->inq_serial_num,
  4300. pci_name(skdev->pdev));
  4301. else
  4302. snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
  4303. skdev->name, pci_name(skdev->pdev));
  4304. return skdev->id_str;
  4305. }
  4306. const char *skd_drive_state_to_str(int state)
  4307. {
  4308. switch (state) {
  4309. case FIT_SR_DRIVE_OFFLINE:
  4310. return "OFFLINE";
  4311. case FIT_SR_DRIVE_INIT:
  4312. return "INIT";
  4313. case FIT_SR_DRIVE_ONLINE:
  4314. return "ONLINE";
  4315. case FIT_SR_DRIVE_BUSY:
  4316. return "BUSY";
  4317. case FIT_SR_DRIVE_FAULT:
  4318. return "FAULT";
  4319. case FIT_SR_DRIVE_DEGRADED:
  4320. return "DEGRADED";
  4321. case FIT_SR_PCIE_LINK_DOWN:
  4322. return "INK_DOWN";
  4323. case FIT_SR_DRIVE_SOFT_RESET:
  4324. return "SOFT_RESET";
  4325. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  4326. return "NEED_FW";
  4327. case FIT_SR_DRIVE_INIT_FAULT:
  4328. return "INIT_FAULT";
  4329. case FIT_SR_DRIVE_BUSY_SANITIZE:
  4330. return "BUSY_SANITIZE";
  4331. case FIT_SR_DRIVE_BUSY_ERASE:
  4332. return "BUSY_ERASE";
  4333. case FIT_SR_DRIVE_FW_BOOTING:
  4334. return "FW_BOOTING";
  4335. default:
  4336. return "???";
  4337. }
  4338. }
  4339. const char *skd_skdev_state_to_str(enum skd_drvr_state state)
  4340. {
  4341. switch (state) {
  4342. case SKD_DRVR_STATE_LOAD:
  4343. return "LOAD";
  4344. case SKD_DRVR_STATE_IDLE:
  4345. return "IDLE";
  4346. case SKD_DRVR_STATE_BUSY:
  4347. return "BUSY";
  4348. case SKD_DRVR_STATE_STARTING:
  4349. return "STARTING";
  4350. case SKD_DRVR_STATE_ONLINE:
  4351. return "ONLINE";
  4352. case SKD_DRVR_STATE_PAUSING:
  4353. return "PAUSING";
  4354. case SKD_DRVR_STATE_PAUSED:
  4355. return "PAUSED";
  4356. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  4357. return "DRAINING_TIMEOUT";
  4358. case SKD_DRVR_STATE_RESTARTING:
  4359. return "RESTARTING";
  4360. case SKD_DRVR_STATE_RESUMING:
  4361. return "RESUMING";
  4362. case SKD_DRVR_STATE_STOPPING:
  4363. return "STOPPING";
  4364. case SKD_DRVR_STATE_SYNCING:
  4365. return "SYNCING";
  4366. case SKD_DRVR_STATE_FAULT:
  4367. return "FAULT";
  4368. case SKD_DRVR_STATE_DISAPPEARED:
  4369. return "DISAPPEARED";
  4370. case SKD_DRVR_STATE_BUSY_ERASE:
  4371. return "BUSY_ERASE";
  4372. case SKD_DRVR_STATE_BUSY_SANITIZE:
  4373. return "BUSY_SANITIZE";
  4374. case SKD_DRVR_STATE_BUSY_IMMINENT:
  4375. return "BUSY_IMMINENT";
  4376. case SKD_DRVR_STATE_WAIT_BOOT:
  4377. return "WAIT_BOOT";
  4378. default:
  4379. return "???";
  4380. }
  4381. }
  4382. const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
  4383. {
  4384. switch (state) {
  4385. case SKD_MSG_STATE_IDLE:
  4386. return "IDLE";
  4387. case SKD_MSG_STATE_BUSY:
  4388. return "BUSY";
  4389. default:
  4390. return "???";
  4391. }
  4392. }
  4393. const char *skd_skreq_state_to_str(enum skd_req_state state)
  4394. {
  4395. switch (state) {
  4396. case SKD_REQ_STATE_IDLE:
  4397. return "IDLE";
  4398. case SKD_REQ_STATE_SETUP:
  4399. return "SETUP";
  4400. case SKD_REQ_STATE_BUSY:
  4401. return "BUSY";
  4402. case SKD_REQ_STATE_COMPLETED:
  4403. return "COMPLETED";
  4404. case SKD_REQ_STATE_TIMEOUT:
  4405. return "TIMEOUT";
  4406. case SKD_REQ_STATE_ABORTED:
  4407. return "ABORTED";
  4408. default:
  4409. return "???";
  4410. }
  4411. }
  4412. static void skd_log_skdev(struct skd_device *skdev, const char *event)
  4413. {
  4414. pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
  4415. skdev->name, __func__, __LINE__, skdev->name, skdev, event);
  4416. pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
  4417. skdev->name, __func__, __LINE__,
  4418. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  4419. skd_skdev_state_to_str(skdev->state), skdev->state);
  4420. pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
  4421. skdev->name, __func__, __LINE__,
  4422. skdev->in_flight, skdev->cur_max_queue_depth,
  4423. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  4424. pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
  4425. skdev->name, __func__, __LINE__,
  4426. skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
  4427. }
  4428. static void skd_log_skmsg(struct skd_device *skdev,
  4429. struct skd_fitmsg_context *skmsg, const char *event)
  4430. {
  4431. pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
  4432. skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
  4433. pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
  4434. skdev->name, __func__, __LINE__,
  4435. skd_skmsg_state_to_str(skmsg->state), skmsg->state,
  4436. skmsg->id, skmsg->length);
  4437. }
  4438. static void skd_log_skreq(struct skd_device *skdev,
  4439. struct skd_request_context *skreq, const char *event)
  4440. {
  4441. pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
  4442. skdev->name, __func__, __LINE__, skdev->name, skreq, event);
  4443. pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
  4444. skdev->name, __func__, __LINE__,
  4445. skd_skreq_state_to_str(skreq->state), skreq->state,
  4446. skreq->id, skreq->fitmsg_id);
  4447. pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
  4448. skdev->name, __func__, __LINE__,
  4449. skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
  4450. if (skreq->req != NULL) {
  4451. struct request *req = skreq->req;
  4452. u32 lba = (u32)blk_rq_pos(req);
  4453. u32 count = blk_rq_sectors(req);
  4454. pr_debug("%s:%s:%d "
  4455. "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
  4456. skdev->name, __func__, __LINE__,
  4457. req, lba, lba, count, count,
  4458. (int)rq_data_dir(req));
  4459. } else
  4460. pr_debug("%s:%s:%d req=NULL\n",
  4461. skdev->name, __func__, __LINE__);
  4462. }
  4463. /*
  4464. *****************************************************************************
  4465. * MODULE GLUE
  4466. *****************************************************************************
  4467. */
  4468. static int __init skd_init(void)
  4469. {
  4470. pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
  4471. switch (skd_isr_type) {
  4472. case SKD_IRQ_LEGACY:
  4473. case SKD_IRQ_MSI:
  4474. case SKD_IRQ_MSIX:
  4475. break;
  4476. default:
  4477. pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
  4478. skd_isr_type, SKD_IRQ_DEFAULT);
  4479. skd_isr_type = SKD_IRQ_DEFAULT;
  4480. }
  4481. if (skd_max_queue_depth < 1 ||
  4482. skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
  4483. pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
  4484. skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
  4485. skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  4486. }
  4487. if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
  4488. pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
  4489. skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
  4490. skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  4491. }
  4492. if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
  4493. pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
  4494. skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
  4495. skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  4496. }
  4497. if (skd_dbg_level < 0 || skd_dbg_level > 2) {
  4498. pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
  4499. skd_dbg_level, 0);
  4500. skd_dbg_level = 0;
  4501. }
  4502. if (skd_isr_comp_limit < 0) {
  4503. pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
  4504. skd_isr_comp_limit, 0);
  4505. skd_isr_comp_limit = 0;
  4506. }
  4507. if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
  4508. pr_err(PFX "skd_max_pass_thru %d invalid, re-set to %d\n",
  4509. skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
  4510. skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
  4511. }
  4512. return pci_register_driver(&skd_driver);
  4513. }
  4514. static void __exit skd_exit(void)
  4515. {
  4516. pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
  4517. pci_unregister_driver(&skd_driver);
  4518. if (skd_major)
  4519. unregister_blkdev(skd_major, DRV_NAME);
  4520. }
  4521. module_init(skd_init);
  4522. module_exit(skd_exit);