i2c-exynos5.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. /**
  2. * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
  3. *
  4. * Copyright (C) 2013 Samsung Electronics Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/i2c.h>
  13. #include <linux/init.h>
  14. #include <linux/time.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/delay.h>
  17. #include <linux/errno.h>
  18. #include <linux/err.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/clk.h>
  21. #include <linux/slab.h>
  22. #include <linux/io.h>
  23. #include <linux/of_address.h>
  24. #include <linux/of_irq.h>
  25. #include <linux/spinlock.h>
  26. /*
  27. * HSI2C controller from Samsung supports 2 modes of operation
  28. * 1. Auto mode: Where in master automatically controls the whole transaction
  29. * 2. Manual mode: Software controls the transaction by issuing commands
  30. * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
  31. *
  32. * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
  33. *
  34. * Special bits are available for both modes of operation to set commands
  35. * and for checking transfer status
  36. */
  37. /* Register Map */
  38. #define HSI2C_CTL 0x00
  39. #define HSI2C_FIFO_CTL 0x04
  40. #define HSI2C_TRAILIG_CTL 0x08
  41. #define HSI2C_CLK_CTL 0x0C
  42. #define HSI2C_CLK_SLOT 0x10
  43. #define HSI2C_INT_ENABLE 0x20
  44. #define HSI2C_INT_STATUS 0x24
  45. #define HSI2C_ERR_STATUS 0x2C
  46. #define HSI2C_FIFO_STATUS 0x30
  47. #define HSI2C_TX_DATA 0x34
  48. #define HSI2C_RX_DATA 0x38
  49. #define HSI2C_CONF 0x40
  50. #define HSI2C_AUTO_CONF 0x44
  51. #define HSI2C_TIMEOUT 0x48
  52. #define HSI2C_MANUAL_CMD 0x4C
  53. #define HSI2C_TRANS_STATUS 0x50
  54. #define HSI2C_TIMING_HS1 0x54
  55. #define HSI2C_TIMING_HS2 0x58
  56. #define HSI2C_TIMING_HS3 0x5C
  57. #define HSI2C_TIMING_FS1 0x60
  58. #define HSI2C_TIMING_FS2 0x64
  59. #define HSI2C_TIMING_FS3 0x68
  60. #define HSI2C_TIMING_SLA 0x6C
  61. #define HSI2C_ADDR 0x70
  62. /* I2C_CTL Register bits */
  63. #define HSI2C_FUNC_MODE_I2C (1u << 0)
  64. #define HSI2C_MASTER (1u << 3)
  65. #define HSI2C_RXCHON (1u << 6)
  66. #define HSI2C_TXCHON (1u << 7)
  67. #define HSI2C_SW_RST (1u << 31)
  68. /* I2C_FIFO_CTL Register bits */
  69. #define HSI2C_RXFIFO_EN (1u << 0)
  70. #define HSI2C_TXFIFO_EN (1u << 1)
  71. #define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
  72. #define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
  73. /* As per user manual FIFO max depth is 64bytes */
  74. #define HSI2C_FIFO_MAX 0x40
  75. /* default trigger levels for Tx and Rx FIFOs */
  76. #define HSI2C_DEF_TXFIFO_LVL (HSI2C_FIFO_MAX - 0x30)
  77. #define HSI2C_DEF_RXFIFO_LVL (HSI2C_FIFO_MAX - 0x10)
  78. /* I2C_TRAILING_CTL Register bits */
  79. #define HSI2C_TRAILING_COUNT (0xf)
  80. /* I2C_INT_EN Register bits */
  81. #define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
  82. #define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
  83. #define HSI2C_INT_TRAILING_EN (1u << 6)
  84. #define HSI2C_INT_I2C_EN (1u << 9)
  85. /* I2C_INT_STAT Register bits */
  86. #define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
  87. #define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
  88. #define HSI2C_INT_TX_UNDERRUN (1u << 2)
  89. #define HSI2C_INT_TX_OVERRUN (1u << 3)
  90. #define HSI2C_INT_RX_UNDERRUN (1u << 4)
  91. #define HSI2C_INT_RX_OVERRUN (1u << 5)
  92. #define HSI2C_INT_TRAILING (1u << 6)
  93. #define HSI2C_INT_I2C (1u << 9)
  94. /* I2C_FIFO_STAT Register bits */
  95. #define HSI2C_RX_FIFO_EMPTY (1u << 24)
  96. #define HSI2C_RX_FIFO_FULL (1u << 23)
  97. #define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
  98. #define HSI2C_TX_FIFO_EMPTY (1u << 8)
  99. #define HSI2C_TX_FIFO_FULL (1u << 7)
  100. #define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
  101. /* I2C_CONF Register bits */
  102. #define HSI2C_AUTO_MODE (1u << 31)
  103. #define HSI2C_10BIT_ADDR_MODE (1u << 30)
  104. #define HSI2C_HS_MODE (1u << 29)
  105. /* I2C_AUTO_CONF Register bits */
  106. #define HSI2C_READ_WRITE (1u << 16)
  107. #define HSI2C_STOP_AFTER_TRANS (1u << 17)
  108. #define HSI2C_MASTER_RUN (1u << 31)
  109. /* I2C_TIMEOUT Register bits */
  110. #define HSI2C_TIMEOUT_EN (1u << 31)
  111. #define HSI2C_TIMEOUT_MASK 0xff
  112. /* I2C_TRANS_STATUS register bits */
  113. #define HSI2C_MASTER_BUSY (1u << 17)
  114. #define HSI2C_SLAVE_BUSY (1u << 16)
  115. #define HSI2C_TIMEOUT_AUTO (1u << 4)
  116. #define HSI2C_NO_DEV (1u << 3)
  117. #define HSI2C_NO_DEV_ACK (1u << 2)
  118. #define HSI2C_TRANS_ABORT (1u << 1)
  119. #define HSI2C_TRANS_DONE (1u << 0)
  120. /* I2C_ADDR register bits */
  121. #define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
  122. #define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
  123. #define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
  124. #define MASTER_ID(x) ((x & 0x7) + 0x08)
  125. /*
  126. * Controller operating frequency, timing values for operation
  127. * are calculated against this frequency
  128. */
  129. #define HSI2C_HS_TX_CLOCK 1000000
  130. #define HSI2C_FS_TX_CLOCK 100000
  131. #define HSI2C_HIGH_SPD 1
  132. #define HSI2C_FAST_SPD 0
  133. #define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(1000))
  134. struct exynos5_i2c {
  135. struct i2c_adapter adap;
  136. unsigned int suspended:1;
  137. struct i2c_msg *msg;
  138. struct completion msg_complete;
  139. unsigned int msg_ptr;
  140. unsigned int irq;
  141. void __iomem *regs;
  142. struct clk *clk;
  143. struct device *dev;
  144. int state;
  145. spinlock_t lock; /* IRQ synchronization */
  146. /*
  147. * Since the TRANS_DONE bit is cleared on read, and we may read it
  148. * either during an IRQ or after a transaction, keep track of its
  149. * state here.
  150. */
  151. int trans_done;
  152. /* Controller operating frequency */
  153. unsigned int fs_clock;
  154. unsigned int hs_clock;
  155. /*
  156. * HSI2C Controller can operate in
  157. * 1. High speed upto 3.4Mbps
  158. * 2. Fast speed upto 1Mbps
  159. */
  160. int speed_mode;
  161. };
  162. static const struct of_device_id exynos5_i2c_match[] = {
  163. { .compatible = "samsung,exynos5-hsi2c" },
  164. {},
  165. };
  166. MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
  167. static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
  168. {
  169. writel(readl(i2c->regs + HSI2C_INT_STATUS),
  170. i2c->regs + HSI2C_INT_STATUS);
  171. }
  172. /*
  173. * exynos5_i2c_set_timing: updates the registers with appropriate
  174. * timing values calculated
  175. *
  176. * Returns 0 on success, -EINVAL if the cycle length cannot
  177. * be calculated.
  178. */
  179. static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, int mode)
  180. {
  181. u32 i2c_timing_s1;
  182. u32 i2c_timing_s2;
  183. u32 i2c_timing_s3;
  184. u32 i2c_timing_sla;
  185. unsigned int t_start_su, t_start_hd;
  186. unsigned int t_stop_su;
  187. unsigned int t_data_su, t_data_hd;
  188. unsigned int t_scl_l, t_scl_h;
  189. unsigned int t_sr_release;
  190. unsigned int t_ftl_cycle;
  191. unsigned int clkin = clk_get_rate(i2c->clk);
  192. unsigned int div, utemp0 = 0, utemp1 = 0, clk_cycle;
  193. unsigned int op_clk = (mode == HSI2C_HIGH_SPD) ?
  194. i2c->hs_clock : i2c->fs_clock;
  195. /*
  196. * FPCLK / FI2C =
  197. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
  198. * utemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
  199. * utemp1 = (TSCLK_L + TSCLK_H + 2)
  200. */
  201. t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
  202. utemp0 = (clkin / op_clk) - 8 - 2 * t_ftl_cycle;
  203. /* CLK_DIV max is 256 */
  204. for (div = 0; div < 256; div++) {
  205. utemp1 = utemp0 / (div + 1);
  206. /*
  207. * SCL_L and SCL_H each has max value of 255
  208. * Hence, For the clk_cycle to the have right value
  209. * utemp1 has to be less then 512 and more than 4.
  210. */
  211. if ((utemp1 < 512) && (utemp1 > 4)) {
  212. clk_cycle = utemp1 - 2;
  213. break;
  214. } else if (div == 255) {
  215. dev_warn(i2c->dev, "Failed to calculate divisor");
  216. return -EINVAL;
  217. }
  218. }
  219. t_scl_l = clk_cycle / 2;
  220. t_scl_h = clk_cycle / 2;
  221. t_start_su = t_scl_l;
  222. t_start_hd = t_scl_l;
  223. t_stop_su = t_scl_l;
  224. t_data_su = t_scl_l / 2;
  225. t_data_hd = t_scl_l / 2;
  226. t_sr_release = clk_cycle;
  227. i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
  228. i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
  229. i2c_timing_s3 = div << 16 | t_sr_release << 0;
  230. i2c_timing_sla = t_data_hd << 0;
  231. dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
  232. t_start_su, t_start_hd, t_stop_su);
  233. dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
  234. t_data_su, t_scl_l, t_scl_h);
  235. dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
  236. div, t_sr_release);
  237. dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
  238. if (mode == HSI2C_HIGH_SPD) {
  239. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
  240. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
  241. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
  242. } else {
  243. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
  244. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
  245. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
  246. }
  247. writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
  248. return 0;
  249. }
  250. static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
  251. {
  252. /*
  253. * Configure the Fast speed timing values
  254. * Even the High Speed mode initially starts with Fast mode
  255. */
  256. if (exynos5_i2c_set_timing(i2c, HSI2C_FAST_SPD)) {
  257. dev_err(i2c->dev, "HSI2C FS Clock set up failed\n");
  258. return -EINVAL;
  259. }
  260. /* configure the High speed timing values */
  261. if (i2c->speed_mode == HSI2C_HIGH_SPD) {
  262. if (exynos5_i2c_set_timing(i2c, HSI2C_HIGH_SPD)) {
  263. dev_err(i2c->dev, "HSI2C HS Clock set up failed\n");
  264. return -EINVAL;
  265. }
  266. }
  267. return 0;
  268. }
  269. /*
  270. * exynos5_i2c_init: configures the controller for I2C functionality
  271. * Programs I2C controller for Master mode operation
  272. */
  273. static void exynos5_i2c_init(struct exynos5_i2c *i2c)
  274. {
  275. u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
  276. u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
  277. /* Clear to disable Timeout */
  278. i2c_timeout &= ~HSI2C_TIMEOUT_EN;
  279. writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
  280. writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
  281. i2c->regs + HSI2C_CTL);
  282. writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
  283. if (i2c->speed_mode == HSI2C_HIGH_SPD) {
  284. writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
  285. i2c->regs + HSI2C_ADDR);
  286. i2c_conf |= HSI2C_HS_MODE;
  287. }
  288. writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
  289. }
  290. static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
  291. {
  292. u32 i2c_ctl;
  293. /* Set and clear the bit for reset */
  294. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  295. i2c_ctl |= HSI2C_SW_RST;
  296. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  297. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  298. i2c_ctl &= ~HSI2C_SW_RST;
  299. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  300. /* We don't expect calculations to fail during the run */
  301. exynos5_hsi2c_clock_setup(i2c);
  302. /* Initialize the configure registers */
  303. exynos5_i2c_init(i2c);
  304. }
  305. /*
  306. * exynos5_i2c_irq: top level IRQ servicing routine
  307. *
  308. * INT_STATUS registers gives the interrupt details. Further,
  309. * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
  310. * state of the bus.
  311. */
  312. static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
  313. {
  314. struct exynos5_i2c *i2c = dev_id;
  315. u32 fifo_level, int_status, fifo_status, trans_status;
  316. unsigned char byte;
  317. int len = 0;
  318. i2c->state = -EINVAL;
  319. spin_lock(&i2c->lock);
  320. int_status = readl(i2c->regs + HSI2C_INT_STATUS);
  321. writel(int_status, i2c->regs + HSI2C_INT_STATUS);
  322. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  323. /* handle interrupt related to the transfer status */
  324. if (int_status & HSI2C_INT_I2C) {
  325. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  326. if (trans_status & HSI2C_NO_DEV_ACK) {
  327. dev_dbg(i2c->dev, "No ACK from device\n");
  328. i2c->state = -ENXIO;
  329. goto stop;
  330. } else if (trans_status & HSI2C_NO_DEV) {
  331. dev_dbg(i2c->dev, "No device\n");
  332. i2c->state = -ENXIO;
  333. goto stop;
  334. } else if (trans_status & HSI2C_TRANS_ABORT) {
  335. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  336. i2c->state = -EAGAIN;
  337. goto stop;
  338. } else if (trans_status & HSI2C_TIMEOUT_AUTO) {
  339. dev_dbg(i2c->dev, "Accessing device timed out\n");
  340. i2c->state = -EAGAIN;
  341. goto stop;
  342. } else if (trans_status & HSI2C_TRANS_DONE) {
  343. i2c->trans_done = 1;
  344. i2c->state = 0;
  345. }
  346. }
  347. if ((i2c->msg->flags & I2C_M_RD) && (int_status &
  348. (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
  349. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  350. fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
  351. len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
  352. while (len > 0) {
  353. byte = (unsigned char)
  354. readl(i2c->regs + HSI2C_RX_DATA);
  355. i2c->msg->buf[i2c->msg_ptr++] = byte;
  356. len--;
  357. }
  358. i2c->state = 0;
  359. } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
  360. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  361. fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
  362. len = HSI2C_FIFO_MAX - fifo_level;
  363. if (len > (i2c->msg->len - i2c->msg_ptr))
  364. len = i2c->msg->len - i2c->msg_ptr;
  365. while (len > 0) {
  366. byte = i2c->msg->buf[i2c->msg_ptr++];
  367. writel(byte, i2c->regs + HSI2C_TX_DATA);
  368. len--;
  369. }
  370. i2c->state = 0;
  371. }
  372. stop:
  373. if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
  374. (i2c->state < 0)) {
  375. writel(0, i2c->regs + HSI2C_INT_ENABLE);
  376. exynos5_i2c_clr_pend_irq(i2c);
  377. complete(&i2c->msg_complete);
  378. }
  379. spin_unlock(&i2c->lock);
  380. return IRQ_HANDLED;
  381. }
  382. /*
  383. * exynos5_i2c_wait_bus_idle
  384. *
  385. * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
  386. * cleared.
  387. *
  388. * Returns -EBUSY if the bus cannot be bought to idle
  389. */
  390. static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
  391. {
  392. unsigned long stop_time;
  393. u32 trans_status;
  394. /* wait for 100 milli seconds for the bus to be idle */
  395. stop_time = jiffies + msecs_to_jiffies(100) + 1;
  396. do {
  397. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  398. if (!(trans_status & HSI2C_MASTER_BUSY))
  399. return 0;
  400. usleep_range(50, 200);
  401. } while (time_before(jiffies, stop_time));
  402. return -EBUSY;
  403. }
  404. /*
  405. * exynos5_i2c_message_start: Configures the bus and starts the xfer
  406. * i2c: struct exynos5_i2c pointer for the current bus
  407. * stop: Enables stop after transfer if set. Set for last transfer of
  408. * in the list of messages.
  409. *
  410. * Configures the bus for read/write function
  411. * Sets chip address to talk to, message length to be sent.
  412. * Enables appropriate interrupts and sends start xfer command.
  413. */
  414. static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
  415. {
  416. u32 i2c_ctl;
  417. u32 int_en = HSI2C_INT_I2C_EN;
  418. u32 i2c_auto_conf = 0;
  419. u32 fifo_ctl;
  420. unsigned long flags;
  421. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  422. i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
  423. fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
  424. if (i2c->msg->flags & I2C_M_RD) {
  425. i2c_ctl |= HSI2C_RXCHON;
  426. i2c_auto_conf = HSI2C_READ_WRITE;
  427. fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(HSI2C_DEF_TXFIFO_LVL);
  428. int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
  429. HSI2C_INT_TRAILING_EN);
  430. } else {
  431. i2c_ctl |= HSI2C_TXCHON;
  432. fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(HSI2C_DEF_RXFIFO_LVL);
  433. int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
  434. }
  435. writel(HSI2C_SLV_ADDR_MAS(i2c->msg->addr), i2c->regs + HSI2C_ADDR);
  436. writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
  437. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  438. /*
  439. * Enable interrupts before starting the transfer so that we don't
  440. * miss any INT_I2C interrupts.
  441. */
  442. spin_lock_irqsave(&i2c->lock, flags);
  443. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  444. if (stop == 1)
  445. i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
  446. i2c_auto_conf |= i2c->msg->len;
  447. i2c_auto_conf |= HSI2C_MASTER_RUN;
  448. writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
  449. spin_unlock_irqrestore(&i2c->lock, flags);
  450. }
  451. static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
  452. struct i2c_msg *msgs, int stop)
  453. {
  454. unsigned long timeout;
  455. int ret;
  456. i2c->msg = msgs;
  457. i2c->msg_ptr = 0;
  458. i2c->trans_done = 0;
  459. reinit_completion(&i2c->msg_complete);
  460. exynos5_i2c_message_start(i2c, stop);
  461. timeout = wait_for_completion_timeout(&i2c->msg_complete,
  462. EXYNOS5_I2C_TIMEOUT);
  463. if (timeout == 0)
  464. ret = -ETIMEDOUT;
  465. else
  466. ret = i2c->state;
  467. /*
  468. * If this is the last message to be transfered (stop == 1)
  469. * Then check if the bus can be brought back to idle.
  470. */
  471. if (ret == 0 && stop)
  472. ret = exynos5_i2c_wait_bus_idle(i2c);
  473. if (ret < 0) {
  474. exynos5_i2c_reset(i2c);
  475. if (ret == -ETIMEDOUT)
  476. dev_warn(i2c->dev, "%s timeout\n",
  477. (msgs->flags & I2C_M_RD) ? "rx" : "tx");
  478. }
  479. /* Return the state as in interrupt routine */
  480. return ret;
  481. }
  482. static int exynos5_i2c_xfer(struct i2c_adapter *adap,
  483. struct i2c_msg *msgs, int num)
  484. {
  485. struct exynos5_i2c *i2c = (struct exynos5_i2c *)adap->algo_data;
  486. int i = 0, ret = 0, stop = 0;
  487. if (i2c->suspended) {
  488. dev_err(i2c->dev, "HS-I2C is not initialzed.\n");
  489. return -EIO;
  490. }
  491. clk_prepare_enable(i2c->clk);
  492. for (i = 0; i < num; i++, msgs++) {
  493. stop = (i == num - 1);
  494. ret = exynos5_i2c_xfer_msg(i2c, msgs, stop);
  495. if (ret < 0)
  496. goto out;
  497. }
  498. if (i == num) {
  499. ret = num;
  500. } else {
  501. /* Only one message, cannot access the device */
  502. if (i == 1)
  503. ret = -EREMOTEIO;
  504. else
  505. ret = i;
  506. dev_warn(i2c->dev, "xfer message failed\n");
  507. }
  508. out:
  509. clk_disable_unprepare(i2c->clk);
  510. return ret;
  511. }
  512. static u32 exynos5_i2c_func(struct i2c_adapter *adap)
  513. {
  514. return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
  515. }
  516. static const struct i2c_algorithm exynos5_i2c_algorithm = {
  517. .master_xfer = exynos5_i2c_xfer,
  518. .functionality = exynos5_i2c_func,
  519. };
  520. static int exynos5_i2c_probe(struct platform_device *pdev)
  521. {
  522. struct device_node *np = pdev->dev.of_node;
  523. struct exynos5_i2c *i2c;
  524. struct resource *mem;
  525. unsigned int op_clock;
  526. int ret;
  527. i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
  528. if (!i2c) {
  529. dev_err(&pdev->dev, "no memory for state\n");
  530. return -ENOMEM;
  531. }
  532. if (of_property_read_u32(np, "clock-frequency", &op_clock)) {
  533. i2c->speed_mode = HSI2C_FAST_SPD;
  534. i2c->fs_clock = HSI2C_FS_TX_CLOCK;
  535. } else {
  536. if (op_clock >= HSI2C_HS_TX_CLOCK) {
  537. i2c->speed_mode = HSI2C_HIGH_SPD;
  538. i2c->fs_clock = HSI2C_FS_TX_CLOCK;
  539. i2c->hs_clock = op_clock;
  540. } else {
  541. i2c->speed_mode = HSI2C_FAST_SPD;
  542. i2c->fs_clock = op_clock;
  543. }
  544. }
  545. strlcpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
  546. i2c->adap.owner = THIS_MODULE;
  547. i2c->adap.algo = &exynos5_i2c_algorithm;
  548. i2c->adap.retries = 3;
  549. i2c->dev = &pdev->dev;
  550. i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
  551. if (IS_ERR(i2c->clk)) {
  552. dev_err(&pdev->dev, "cannot get clock\n");
  553. return -ENOENT;
  554. }
  555. clk_prepare_enable(i2c->clk);
  556. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  557. i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
  558. if (IS_ERR(i2c->regs)) {
  559. ret = PTR_ERR(i2c->regs);
  560. goto err_clk;
  561. }
  562. i2c->adap.dev.of_node = np;
  563. i2c->adap.algo_data = i2c;
  564. i2c->adap.dev.parent = &pdev->dev;
  565. /* Clear pending interrupts from u-boot or misc causes */
  566. exynos5_i2c_clr_pend_irq(i2c);
  567. spin_lock_init(&i2c->lock);
  568. init_completion(&i2c->msg_complete);
  569. i2c->irq = ret = platform_get_irq(pdev, 0);
  570. if (ret <= 0) {
  571. dev_err(&pdev->dev, "cannot find HS-I2C IRQ\n");
  572. ret = -EINVAL;
  573. goto err_clk;
  574. }
  575. ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
  576. IRQF_NO_SUSPEND | IRQF_ONESHOT,
  577. dev_name(&pdev->dev), i2c);
  578. if (ret != 0) {
  579. dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
  580. goto err_clk;
  581. }
  582. ret = exynos5_hsi2c_clock_setup(i2c);
  583. if (ret)
  584. goto err_clk;
  585. exynos5_i2c_init(i2c);
  586. ret = i2c_add_adapter(&i2c->adap);
  587. if (ret < 0) {
  588. dev_err(&pdev->dev, "failed to add bus to i2c core\n");
  589. goto err_clk;
  590. }
  591. platform_set_drvdata(pdev, i2c);
  592. err_clk:
  593. clk_disable_unprepare(i2c->clk);
  594. return ret;
  595. }
  596. static int exynos5_i2c_remove(struct platform_device *pdev)
  597. {
  598. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  599. i2c_del_adapter(&i2c->adap);
  600. return 0;
  601. }
  602. static int exynos5_i2c_suspend_noirq(struct device *dev)
  603. {
  604. struct platform_device *pdev = to_platform_device(dev);
  605. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  606. i2c->suspended = 1;
  607. return 0;
  608. }
  609. static int exynos5_i2c_resume_noirq(struct device *dev)
  610. {
  611. struct platform_device *pdev = to_platform_device(dev);
  612. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  613. int ret = 0;
  614. clk_prepare_enable(i2c->clk);
  615. ret = exynos5_hsi2c_clock_setup(i2c);
  616. if (ret) {
  617. clk_disable_unprepare(i2c->clk);
  618. return ret;
  619. }
  620. exynos5_i2c_init(i2c);
  621. clk_disable_unprepare(i2c->clk);
  622. i2c->suspended = 0;
  623. return 0;
  624. }
  625. static SIMPLE_DEV_PM_OPS(exynos5_i2c_dev_pm_ops, exynos5_i2c_suspend_noirq,
  626. exynos5_i2c_resume_noirq);
  627. static struct platform_driver exynos5_i2c_driver = {
  628. .probe = exynos5_i2c_probe,
  629. .remove = exynos5_i2c_remove,
  630. .driver = {
  631. .owner = THIS_MODULE,
  632. .name = "exynos5-hsi2c",
  633. .pm = &exynos5_i2c_dev_pm_ops,
  634. .of_match_table = exynos5_i2c_match,
  635. },
  636. };
  637. module_platform_driver(exynos5_i2c_driver);
  638. MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
  639. MODULE_AUTHOR("Naveen Krishna Chatradhi, <ch.naveen@samsung.com>");
  640. MODULE_AUTHOR("Taekgyun Ko, <taeggyun.ko@samsung.com>");
  641. MODULE_LICENSE("GPL v2");