cgroup.c 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Notifications support
  8. * Copyright (C) 2009 Nokia Corporation
  9. * Author: Kirill A. Shutemov
  10. *
  11. * Copyright notices from the original cpuset code:
  12. * --------------------------------------------------
  13. * Copyright (C) 2003 BULL SA.
  14. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15. *
  16. * Portions derived from Patrick Mochel's sysfs code.
  17. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  18. *
  19. * 2003-10-10 Written by Simon Derr.
  20. * 2003-10-22 Updates by Stephen Hemminger.
  21. * 2004 May-July Rework by Paul Jackson.
  22. * ---------------------------------------------------
  23. *
  24. * This file is subject to the terms and conditions of the GNU General Public
  25. * License. See the file COPYING in the main directory of the Linux
  26. * distribution for more details.
  27. */
  28. #include <linux/cgroup.h>
  29. #include <linux/cred.h>
  30. #include <linux/ctype.h>
  31. #include <linux/errno.h>
  32. #include <linux/fs.h>
  33. #include <linux/init_task.h>
  34. #include <linux/kernel.h>
  35. #include <linux/list.h>
  36. #include <linux/mm.h>
  37. #include <linux/mutex.h>
  38. #include <linux/mount.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/proc_fs.h>
  41. #include <linux/rcupdate.h>
  42. #include <linux/sched.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/slab.h>
  46. #include <linux/magic.h>
  47. #include <linux/spinlock.h>
  48. #include <linux/string.h>
  49. #include <linux/sort.h>
  50. #include <linux/kmod.h>
  51. #include <linux/module.h>
  52. #include <linux/delayacct.h>
  53. #include <linux/cgroupstats.h>
  54. #include <linux/hash.h>
  55. #include <linux/namei.h>
  56. #include <linux/pid_namespace.h>
  57. #include <linux/idr.h>
  58. #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  59. #include <linux/eventfd.h>
  60. #include <linux/poll.h>
  61. #include <linux/flex_array.h> /* used in cgroup_attach_proc */
  62. #include <linux/atomic.h>
  63. /*
  64. * cgroup_mutex is the master lock. Any modification to cgroup or its
  65. * hierarchy must be performed while holding it.
  66. *
  67. * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
  68. * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
  69. * release_agent_path and so on. Modifying requires both cgroup_mutex and
  70. * cgroup_root_mutex. Readers can acquire either of the two. This is to
  71. * break the following locking order cycle.
  72. *
  73. * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
  74. * B. namespace_sem -> cgroup_mutex
  75. *
  76. * B happens only through cgroup_show_options() and using cgroup_root_mutex
  77. * breaks it.
  78. */
  79. static DEFINE_MUTEX(cgroup_mutex);
  80. static DEFINE_MUTEX(cgroup_root_mutex);
  81. /*
  82. * Generate an array of cgroup subsystem pointers. At boot time, this is
  83. * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
  84. * registered after that. The mutable section of this array is protected by
  85. * cgroup_mutex.
  86. */
  87. #define SUBSYS(_x) &_x ## _subsys,
  88. static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  89. #include <linux/cgroup_subsys.h>
  90. };
  91. #define MAX_CGROUP_ROOT_NAMELEN 64
  92. /*
  93. * A cgroupfs_root represents the root of a cgroup hierarchy,
  94. * and may be associated with a superblock to form an active
  95. * hierarchy
  96. */
  97. struct cgroupfs_root {
  98. struct super_block *sb;
  99. /*
  100. * The bitmask of subsystems intended to be attached to this
  101. * hierarchy
  102. */
  103. unsigned long subsys_bits;
  104. /* Unique id for this hierarchy. */
  105. int hierarchy_id;
  106. /* The bitmask of subsystems currently attached to this hierarchy */
  107. unsigned long actual_subsys_bits;
  108. /* A list running through the attached subsystems */
  109. struct list_head subsys_list;
  110. /* The root cgroup for this hierarchy */
  111. struct cgroup top_cgroup;
  112. /* Tracks how many cgroups are currently defined in hierarchy.*/
  113. int number_of_cgroups;
  114. /* A list running through the active hierarchies */
  115. struct list_head root_list;
  116. /* Hierarchy-specific flags */
  117. unsigned long flags;
  118. /* The path to use for release notifications. */
  119. char release_agent_path[PATH_MAX];
  120. /* The name for this hierarchy - may be empty */
  121. char name[MAX_CGROUP_ROOT_NAMELEN];
  122. };
  123. /*
  124. * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
  125. * subsystems that are otherwise unattached - it never has more than a
  126. * single cgroup, and all tasks are part of that cgroup.
  127. */
  128. static struct cgroupfs_root rootnode;
  129. /*
  130. * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
  131. * cgroup_subsys->use_id != 0.
  132. */
  133. #define CSS_ID_MAX (65535)
  134. struct css_id {
  135. /*
  136. * The css to which this ID points. This pointer is set to valid value
  137. * after cgroup is populated. If cgroup is removed, this will be NULL.
  138. * This pointer is expected to be RCU-safe because destroy()
  139. * is called after synchronize_rcu(). But for safe use, css_is_removed()
  140. * css_tryget() should be used for avoiding race.
  141. */
  142. struct cgroup_subsys_state __rcu *css;
  143. /*
  144. * ID of this css.
  145. */
  146. unsigned short id;
  147. /*
  148. * Depth in hierarchy which this ID belongs to.
  149. */
  150. unsigned short depth;
  151. /*
  152. * ID is freed by RCU. (and lookup routine is RCU safe.)
  153. */
  154. struct rcu_head rcu_head;
  155. /*
  156. * Hierarchy of CSS ID belongs to.
  157. */
  158. unsigned short stack[0]; /* Array of Length (depth+1) */
  159. };
  160. /*
  161. * cgroup_event represents events which userspace want to receive.
  162. */
  163. struct cgroup_event {
  164. /*
  165. * Cgroup which the event belongs to.
  166. */
  167. struct cgroup *cgrp;
  168. /*
  169. * Control file which the event associated.
  170. */
  171. struct cftype *cft;
  172. /*
  173. * eventfd to signal userspace about the event.
  174. */
  175. struct eventfd_ctx *eventfd;
  176. /*
  177. * Each of these stored in a list by the cgroup.
  178. */
  179. struct list_head list;
  180. /*
  181. * All fields below needed to unregister event when
  182. * userspace closes eventfd.
  183. */
  184. poll_table pt;
  185. wait_queue_head_t *wqh;
  186. wait_queue_t wait;
  187. struct work_struct remove;
  188. };
  189. /* The list of hierarchy roots */
  190. static LIST_HEAD(roots);
  191. static int root_count;
  192. static DEFINE_IDA(hierarchy_ida);
  193. static int next_hierarchy_id;
  194. static DEFINE_SPINLOCK(hierarchy_id_lock);
  195. /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
  196. #define dummytop (&rootnode.top_cgroup)
  197. /* This flag indicates whether tasks in the fork and exit paths should
  198. * check for fork/exit handlers to call. This avoids us having to do
  199. * extra work in the fork/exit path if none of the subsystems need to
  200. * be called.
  201. */
  202. static int need_forkexit_callback __read_mostly;
  203. #ifdef CONFIG_PROVE_LOCKING
  204. int cgroup_lock_is_held(void)
  205. {
  206. return lockdep_is_held(&cgroup_mutex);
  207. }
  208. #else /* #ifdef CONFIG_PROVE_LOCKING */
  209. int cgroup_lock_is_held(void)
  210. {
  211. return mutex_is_locked(&cgroup_mutex);
  212. }
  213. #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
  214. EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
  215. /* convenient tests for these bits */
  216. inline int cgroup_is_removed(const struct cgroup *cgrp)
  217. {
  218. return test_bit(CGRP_REMOVED, &cgrp->flags);
  219. }
  220. /* bits in struct cgroupfs_root flags field */
  221. enum {
  222. ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
  223. };
  224. static int cgroup_is_releasable(const struct cgroup *cgrp)
  225. {
  226. const int bits =
  227. (1 << CGRP_RELEASABLE) |
  228. (1 << CGRP_NOTIFY_ON_RELEASE);
  229. return (cgrp->flags & bits) == bits;
  230. }
  231. static int notify_on_release(const struct cgroup *cgrp)
  232. {
  233. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  234. }
  235. static int clone_children(const struct cgroup *cgrp)
  236. {
  237. return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  238. }
  239. /*
  240. * for_each_subsys() allows you to iterate on each subsystem attached to
  241. * an active hierarchy
  242. */
  243. #define for_each_subsys(_root, _ss) \
  244. list_for_each_entry(_ss, &_root->subsys_list, sibling)
  245. /* for_each_active_root() allows you to iterate across the active hierarchies */
  246. #define for_each_active_root(_root) \
  247. list_for_each_entry(_root, &roots, root_list)
  248. /* the list of cgroups eligible for automatic release. Protected by
  249. * release_list_lock */
  250. static LIST_HEAD(release_list);
  251. static DEFINE_RAW_SPINLOCK(release_list_lock);
  252. static void cgroup_release_agent(struct work_struct *work);
  253. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  254. static void check_for_release(struct cgroup *cgrp);
  255. /* Link structure for associating css_set objects with cgroups */
  256. struct cg_cgroup_link {
  257. /*
  258. * List running through cg_cgroup_links associated with a
  259. * cgroup, anchored on cgroup->css_sets
  260. */
  261. struct list_head cgrp_link_list;
  262. struct cgroup *cgrp;
  263. /*
  264. * List running through cg_cgroup_links pointing at a
  265. * single css_set object, anchored on css_set->cg_links
  266. */
  267. struct list_head cg_link_list;
  268. struct css_set *cg;
  269. };
  270. /* The default css_set - used by init and its children prior to any
  271. * hierarchies being mounted. It contains a pointer to the root state
  272. * for each subsystem. Also used to anchor the list of css_sets. Not
  273. * reference-counted, to improve performance when child cgroups
  274. * haven't been created.
  275. */
  276. static struct css_set init_css_set;
  277. static struct cg_cgroup_link init_css_set_link;
  278. static int cgroup_init_idr(struct cgroup_subsys *ss,
  279. struct cgroup_subsys_state *css);
  280. /* css_set_lock protects the list of css_set objects, and the
  281. * chain of tasks off each css_set. Nests outside task->alloc_lock
  282. * due to cgroup_iter_start() */
  283. static DEFINE_RWLOCK(css_set_lock);
  284. static int css_set_count;
  285. /*
  286. * hash table for cgroup groups. This improves the performance to find
  287. * an existing css_set. This hash doesn't (currently) take into
  288. * account cgroups in empty hierarchies.
  289. */
  290. #define CSS_SET_HASH_BITS 7
  291. #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
  292. static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
  293. static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
  294. {
  295. int i;
  296. int index;
  297. unsigned long tmp = 0UL;
  298. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
  299. tmp += (unsigned long)css[i];
  300. tmp = (tmp >> 16) ^ tmp;
  301. index = hash_long(tmp, CSS_SET_HASH_BITS);
  302. return &css_set_table[index];
  303. }
  304. /* We don't maintain the lists running through each css_set to its
  305. * task until after the first call to cgroup_iter_start(). This
  306. * reduces the fork()/exit() overhead for people who have cgroups
  307. * compiled into their kernel but not actually in use */
  308. static int use_task_css_set_links __read_mostly;
  309. static void __put_css_set(struct css_set *cg, int taskexit)
  310. {
  311. struct cg_cgroup_link *link;
  312. struct cg_cgroup_link *saved_link;
  313. /*
  314. * Ensure that the refcount doesn't hit zero while any readers
  315. * can see it. Similar to atomic_dec_and_lock(), but for an
  316. * rwlock
  317. */
  318. if (atomic_add_unless(&cg->refcount, -1, 1))
  319. return;
  320. write_lock(&css_set_lock);
  321. if (!atomic_dec_and_test(&cg->refcount)) {
  322. write_unlock(&css_set_lock);
  323. return;
  324. }
  325. /* This css_set is dead. unlink it and release cgroup refcounts */
  326. hlist_del(&cg->hlist);
  327. css_set_count--;
  328. list_for_each_entry_safe(link, saved_link, &cg->cg_links,
  329. cg_link_list) {
  330. struct cgroup *cgrp = link->cgrp;
  331. list_del(&link->cg_link_list);
  332. list_del(&link->cgrp_link_list);
  333. if (atomic_dec_and_test(&cgrp->count) &&
  334. notify_on_release(cgrp)) {
  335. if (taskexit)
  336. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  337. check_for_release(cgrp);
  338. }
  339. kfree(link);
  340. }
  341. write_unlock(&css_set_lock);
  342. kfree_rcu(cg, rcu_head);
  343. }
  344. /*
  345. * refcounted get/put for css_set objects
  346. */
  347. static inline void get_css_set(struct css_set *cg)
  348. {
  349. atomic_inc(&cg->refcount);
  350. }
  351. static inline void put_css_set(struct css_set *cg)
  352. {
  353. __put_css_set(cg, 0);
  354. }
  355. static inline void put_css_set_taskexit(struct css_set *cg)
  356. {
  357. __put_css_set(cg, 1);
  358. }
  359. /*
  360. * compare_css_sets - helper function for find_existing_css_set().
  361. * @cg: candidate css_set being tested
  362. * @old_cg: existing css_set for a task
  363. * @new_cgrp: cgroup that's being entered by the task
  364. * @template: desired set of css pointers in css_set (pre-calculated)
  365. *
  366. * Returns true if "cg" matches "old_cg" except for the hierarchy
  367. * which "new_cgrp" belongs to, for which it should match "new_cgrp".
  368. */
  369. static bool compare_css_sets(struct css_set *cg,
  370. struct css_set *old_cg,
  371. struct cgroup *new_cgrp,
  372. struct cgroup_subsys_state *template[])
  373. {
  374. struct list_head *l1, *l2;
  375. if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
  376. /* Not all subsystems matched */
  377. return false;
  378. }
  379. /*
  380. * Compare cgroup pointers in order to distinguish between
  381. * different cgroups in heirarchies with no subsystems. We
  382. * could get by with just this check alone (and skip the
  383. * memcmp above) but on most setups the memcmp check will
  384. * avoid the need for this more expensive check on almost all
  385. * candidates.
  386. */
  387. l1 = &cg->cg_links;
  388. l2 = &old_cg->cg_links;
  389. while (1) {
  390. struct cg_cgroup_link *cgl1, *cgl2;
  391. struct cgroup *cg1, *cg2;
  392. l1 = l1->next;
  393. l2 = l2->next;
  394. /* See if we reached the end - both lists are equal length. */
  395. if (l1 == &cg->cg_links) {
  396. BUG_ON(l2 != &old_cg->cg_links);
  397. break;
  398. } else {
  399. BUG_ON(l2 == &old_cg->cg_links);
  400. }
  401. /* Locate the cgroups associated with these links. */
  402. cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
  403. cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
  404. cg1 = cgl1->cgrp;
  405. cg2 = cgl2->cgrp;
  406. /* Hierarchies should be linked in the same order. */
  407. BUG_ON(cg1->root != cg2->root);
  408. /*
  409. * If this hierarchy is the hierarchy of the cgroup
  410. * that's changing, then we need to check that this
  411. * css_set points to the new cgroup; if it's any other
  412. * hierarchy, then this css_set should point to the
  413. * same cgroup as the old css_set.
  414. */
  415. if (cg1->root == new_cgrp->root) {
  416. if (cg1 != new_cgrp)
  417. return false;
  418. } else {
  419. if (cg1 != cg2)
  420. return false;
  421. }
  422. }
  423. return true;
  424. }
  425. /*
  426. * find_existing_css_set() is a helper for
  427. * find_css_set(), and checks to see whether an existing
  428. * css_set is suitable.
  429. *
  430. * oldcg: the cgroup group that we're using before the cgroup
  431. * transition
  432. *
  433. * cgrp: the cgroup that we're moving into
  434. *
  435. * template: location in which to build the desired set of subsystem
  436. * state objects for the new cgroup group
  437. */
  438. static struct css_set *find_existing_css_set(
  439. struct css_set *oldcg,
  440. struct cgroup *cgrp,
  441. struct cgroup_subsys_state *template[])
  442. {
  443. int i;
  444. struct cgroupfs_root *root = cgrp->root;
  445. struct hlist_head *hhead;
  446. struct hlist_node *node;
  447. struct css_set *cg;
  448. /*
  449. * Build the set of subsystem state objects that we want to see in the
  450. * new css_set. while subsystems can change globally, the entries here
  451. * won't change, so no need for locking.
  452. */
  453. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  454. if (root->subsys_bits & (1UL << i)) {
  455. /* Subsystem is in this hierarchy. So we want
  456. * the subsystem state from the new
  457. * cgroup */
  458. template[i] = cgrp->subsys[i];
  459. } else {
  460. /* Subsystem is not in this hierarchy, so we
  461. * don't want to change the subsystem state */
  462. template[i] = oldcg->subsys[i];
  463. }
  464. }
  465. hhead = css_set_hash(template);
  466. hlist_for_each_entry(cg, node, hhead, hlist) {
  467. if (!compare_css_sets(cg, oldcg, cgrp, template))
  468. continue;
  469. /* This css_set matches what we need */
  470. return cg;
  471. }
  472. /* No existing cgroup group matched */
  473. return NULL;
  474. }
  475. static void free_cg_links(struct list_head *tmp)
  476. {
  477. struct cg_cgroup_link *link;
  478. struct cg_cgroup_link *saved_link;
  479. list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
  480. list_del(&link->cgrp_link_list);
  481. kfree(link);
  482. }
  483. }
  484. /*
  485. * allocate_cg_links() allocates "count" cg_cgroup_link structures
  486. * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
  487. * success or a negative error
  488. */
  489. static int allocate_cg_links(int count, struct list_head *tmp)
  490. {
  491. struct cg_cgroup_link *link;
  492. int i;
  493. INIT_LIST_HEAD(tmp);
  494. for (i = 0; i < count; i++) {
  495. link = kmalloc(sizeof(*link), GFP_KERNEL);
  496. if (!link) {
  497. free_cg_links(tmp);
  498. return -ENOMEM;
  499. }
  500. list_add(&link->cgrp_link_list, tmp);
  501. }
  502. return 0;
  503. }
  504. /**
  505. * link_css_set - a helper function to link a css_set to a cgroup
  506. * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
  507. * @cg: the css_set to be linked
  508. * @cgrp: the destination cgroup
  509. */
  510. static void link_css_set(struct list_head *tmp_cg_links,
  511. struct css_set *cg, struct cgroup *cgrp)
  512. {
  513. struct cg_cgroup_link *link;
  514. BUG_ON(list_empty(tmp_cg_links));
  515. link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
  516. cgrp_link_list);
  517. link->cg = cg;
  518. link->cgrp = cgrp;
  519. atomic_inc(&cgrp->count);
  520. list_move(&link->cgrp_link_list, &cgrp->css_sets);
  521. /*
  522. * Always add links to the tail of the list so that the list
  523. * is sorted by order of hierarchy creation
  524. */
  525. list_add_tail(&link->cg_link_list, &cg->cg_links);
  526. }
  527. /*
  528. * find_css_set() takes an existing cgroup group and a
  529. * cgroup object, and returns a css_set object that's
  530. * equivalent to the old group, but with the given cgroup
  531. * substituted into the appropriate hierarchy. Must be called with
  532. * cgroup_mutex held
  533. */
  534. static struct css_set *find_css_set(
  535. struct css_set *oldcg, struct cgroup *cgrp)
  536. {
  537. struct css_set *res;
  538. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  539. struct list_head tmp_cg_links;
  540. struct hlist_head *hhead;
  541. struct cg_cgroup_link *link;
  542. /* First see if we already have a cgroup group that matches
  543. * the desired set */
  544. read_lock(&css_set_lock);
  545. res = find_existing_css_set(oldcg, cgrp, template);
  546. if (res)
  547. get_css_set(res);
  548. read_unlock(&css_set_lock);
  549. if (res)
  550. return res;
  551. res = kmalloc(sizeof(*res), GFP_KERNEL);
  552. if (!res)
  553. return NULL;
  554. /* Allocate all the cg_cgroup_link objects that we'll need */
  555. if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
  556. kfree(res);
  557. return NULL;
  558. }
  559. atomic_set(&res->refcount, 1);
  560. INIT_LIST_HEAD(&res->cg_links);
  561. INIT_LIST_HEAD(&res->tasks);
  562. INIT_HLIST_NODE(&res->hlist);
  563. /* Copy the set of subsystem state objects generated in
  564. * find_existing_css_set() */
  565. memcpy(res->subsys, template, sizeof(res->subsys));
  566. write_lock(&css_set_lock);
  567. /* Add reference counts and links from the new css_set. */
  568. list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
  569. struct cgroup *c = link->cgrp;
  570. if (c->root == cgrp->root)
  571. c = cgrp;
  572. link_css_set(&tmp_cg_links, res, c);
  573. }
  574. BUG_ON(!list_empty(&tmp_cg_links));
  575. css_set_count++;
  576. /* Add this cgroup group to the hash table */
  577. hhead = css_set_hash(res->subsys);
  578. hlist_add_head(&res->hlist, hhead);
  579. write_unlock(&css_set_lock);
  580. return res;
  581. }
  582. /*
  583. * Return the cgroup for "task" from the given hierarchy. Must be
  584. * called with cgroup_mutex held.
  585. */
  586. static struct cgroup *task_cgroup_from_root(struct task_struct *task,
  587. struct cgroupfs_root *root)
  588. {
  589. struct css_set *css;
  590. struct cgroup *res = NULL;
  591. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  592. read_lock(&css_set_lock);
  593. /*
  594. * No need to lock the task - since we hold cgroup_mutex the
  595. * task can't change groups, so the only thing that can happen
  596. * is that it exits and its css is set back to init_css_set.
  597. */
  598. css = task->cgroups;
  599. if (css == &init_css_set) {
  600. res = &root->top_cgroup;
  601. } else {
  602. struct cg_cgroup_link *link;
  603. list_for_each_entry(link, &css->cg_links, cg_link_list) {
  604. struct cgroup *c = link->cgrp;
  605. if (c->root == root) {
  606. res = c;
  607. break;
  608. }
  609. }
  610. }
  611. read_unlock(&css_set_lock);
  612. BUG_ON(!res);
  613. return res;
  614. }
  615. /*
  616. * There is one global cgroup mutex. We also require taking
  617. * task_lock() when dereferencing a task's cgroup subsys pointers.
  618. * See "The task_lock() exception", at the end of this comment.
  619. *
  620. * A task must hold cgroup_mutex to modify cgroups.
  621. *
  622. * Any task can increment and decrement the count field without lock.
  623. * So in general, code holding cgroup_mutex can't rely on the count
  624. * field not changing. However, if the count goes to zero, then only
  625. * cgroup_attach_task() can increment it again. Because a count of zero
  626. * means that no tasks are currently attached, therefore there is no
  627. * way a task attached to that cgroup can fork (the other way to
  628. * increment the count). So code holding cgroup_mutex can safely
  629. * assume that if the count is zero, it will stay zero. Similarly, if
  630. * a task holds cgroup_mutex on a cgroup with zero count, it
  631. * knows that the cgroup won't be removed, as cgroup_rmdir()
  632. * needs that mutex.
  633. *
  634. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  635. * (usually) take cgroup_mutex. These are the two most performance
  636. * critical pieces of code here. The exception occurs on cgroup_exit(),
  637. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  638. * is taken, and if the cgroup count is zero, a usermode call made
  639. * to the release agent with the name of the cgroup (path relative to
  640. * the root of cgroup file system) as the argument.
  641. *
  642. * A cgroup can only be deleted if both its 'count' of using tasks
  643. * is zero, and its list of 'children' cgroups is empty. Since all
  644. * tasks in the system use _some_ cgroup, and since there is always at
  645. * least one task in the system (init, pid == 1), therefore, top_cgroup
  646. * always has either children cgroups and/or using tasks. So we don't
  647. * need a special hack to ensure that top_cgroup cannot be deleted.
  648. *
  649. * The task_lock() exception
  650. *
  651. * The need for this exception arises from the action of
  652. * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
  653. * another. It does so using cgroup_mutex, however there are
  654. * several performance critical places that need to reference
  655. * task->cgroup without the expense of grabbing a system global
  656. * mutex. Therefore except as noted below, when dereferencing or, as
  657. * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
  658. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  659. * the task_struct routinely used for such matters.
  660. *
  661. * P.S. One more locking exception. RCU is used to guard the
  662. * update of a tasks cgroup pointer by cgroup_attach_task()
  663. */
  664. /**
  665. * cgroup_lock - lock out any changes to cgroup structures
  666. *
  667. */
  668. void cgroup_lock(void)
  669. {
  670. mutex_lock(&cgroup_mutex);
  671. }
  672. EXPORT_SYMBOL_GPL(cgroup_lock);
  673. /**
  674. * cgroup_unlock - release lock on cgroup changes
  675. *
  676. * Undo the lock taken in a previous cgroup_lock() call.
  677. */
  678. void cgroup_unlock(void)
  679. {
  680. mutex_unlock(&cgroup_mutex);
  681. }
  682. EXPORT_SYMBOL_GPL(cgroup_unlock);
  683. /*
  684. * A couple of forward declarations required, due to cyclic reference loop:
  685. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  686. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  687. * -> cgroup_mkdir.
  688. */
  689. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
  690. static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
  691. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  692. static int cgroup_populate_dir(struct cgroup *cgrp);
  693. static const struct inode_operations cgroup_dir_inode_operations;
  694. static const struct file_operations proc_cgroupstats_operations;
  695. static struct backing_dev_info cgroup_backing_dev_info = {
  696. .name = "cgroup",
  697. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  698. };
  699. static int alloc_css_id(struct cgroup_subsys *ss,
  700. struct cgroup *parent, struct cgroup *child);
  701. static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
  702. {
  703. struct inode *inode = new_inode(sb);
  704. if (inode) {
  705. inode->i_ino = get_next_ino();
  706. inode->i_mode = mode;
  707. inode->i_uid = current_fsuid();
  708. inode->i_gid = current_fsgid();
  709. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  710. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  711. }
  712. return inode;
  713. }
  714. /*
  715. * Call subsys's pre_destroy handler.
  716. * This is called before css refcnt check.
  717. */
  718. static int cgroup_call_pre_destroy(struct cgroup *cgrp)
  719. {
  720. struct cgroup_subsys *ss;
  721. int ret = 0;
  722. for_each_subsys(cgrp->root, ss)
  723. if (ss->pre_destroy) {
  724. ret = ss->pre_destroy(ss, cgrp);
  725. if (ret)
  726. break;
  727. }
  728. return ret;
  729. }
  730. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  731. {
  732. /* is dentry a directory ? if so, kfree() associated cgroup */
  733. if (S_ISDIR(inode->i_mode)) {
  734. struct cgroup *cgrp = dentry->d_fsdata;
  735. struct cgroup_subsys *ss;
  736. BUG_ON(!(cgroup_is_removed(cgrp)));
  737. /* It's possible for external users to be holding css
  738. * reference counts on a cgroup; css_put() needs to
  739. * be able to access the cgroup after decrementing
  740. * the reference count in order to know if it needs to
  741. * queue the cgroup to be handled by the release
  742. * agent */
  743. synchronize_rcu();
  744. mutex_lock(&cgroup_mutex);
  745. /*
  746. * Release the subsystem state objects.
  747. */
  748. for_each_subsys(cgrp->root, ss)
  749. ss->destroy(ss, cgrp);
  750. cgrp->root->number_of_cgroups--;
  751. mutex_unlock(&cgroup_mutex);
  752. /*
  753. * Drop the active superblock reference that we took when we
  754. * created the cgroup
  755. */
  756. deactivate_super(cgrp->root->sb);
  757. /*
  758. * if we're getting rid of the cgroup, refcount should ensure
  759. * that there are no pidlists left.
  760. */
  761. BUG_ON(!list_empty(&cgrp->pidlists));
  762. kfree_rcu(cgrp, rcu_head);
  763. }
  764. iput(inode);
  765. }
  766. static int cgroup_delete(const struct dentry *d)
  767. {
  768. return 1;
  769. }
  770. static void remove_dir(struct dentry *d)
  771. {
  772. struct dentry *parent = dget(d->d_parent);
  773. d_delete(d);
  774. simple_rmdir(parent->d_inode, d);
  775. dput(parent);
  776. }
  777. static void cgroup_clear_directory(struct dentry *dentry)
  778. {
  779. struct list_head *node;
  780. BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
  781. spin_lock(&dentry->d_lock);
  782. node = dentry->d_subdirs.next;
  783. while (node != &dentry->d_subdirs) {
  784. struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
  785. spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
  786. list_del_init(node);
  787. if (d->d_inode) {
  788. /* This should never be called on a cgroup
  789. * directory with child cgroups */
  790. BUG_ON(d->d_inode->i_mode & S_IFDIR);
  791. dget_dlock(d);
  792. spin_unlock(&d->d_lock);
  793. spin_unlock(&dentry->d_lock);
  794. d_delete(d);
  795. simple_unlink(dentry->d_inode, d);
  796. dput(d);
  797. spin_lock(&dentry->d_lock);
  798. } else
  799. spin_unlock(&d->d_lock);
  800. node = dentry->d_subdirs.next;
  801. }
  802. spin_unlock(&dentry->d_lock);
  803. }
  804. /*
  805. * NOTE : the dentry must have been dget()'ed
  806. */
  807. static void cgroup_d_remove_dir(struct dentry *dentry)
  808. {
  809. struct dentry *parent;
  810. cgroup_clear_directory(dentry);
  811. parent = dentry->d_parent;
  812. spin_lock(&parent->d_lock);
  813. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  814. list_del_init(&dentry->d_u.d_child);
  815. spin_unlock(&dentry->d_lock);
  816. spin_unlock(&parent->d_lock);
  817. remove_dir(dentry);
  818. }
  819. /*
  820. * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
  821. * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
  822. * reference to css->refcnt. In general, this refcnt is expected to goes down
  823. * to zero, soon.
  824. *
  825. * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
  826. */
  827. DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
  828. static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
  829. {
  830. if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
  831. wake_up_all(&cgroup_rmdir_waitq);
  832. }
  833. void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
  834. {
  835. css_get(css);
  836. }
  837. void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
  838. {
  839. cgroup_wakeup_rmdir_waiter(css->cgroup);
  840. css_put(css);
  841. }
  842. /*
  843. * Call with cgroup_mutex held. Drops reference counts on modules, including
  844. * any duplicate ones that parse_cgroupfs_options took. If this function
  845. * returns an error, no reference counts are touched.
  846. */
  847. static int rebind_subsystems(struct cgroupfs_root *root,
  848. unsigned long final_bits)
  849. {
  850. unsigned long added_bits, removed_bits;
  851. struct cgroup *cgrp = &root->top_cgroup;
  852. int i;
  853. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  854. BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
  855. removed_bits = root->actual_subsys_bits & ~final_bits;
  856. added_bits = final_bits & ~root->actual_subsys_bits;
  857. /* Check that any added subsystems are currently free */
  858. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  859. unsigned long bit = 1UL << i;
  860. struct cgroup_subsys *ss = subsys[i];
  861. if (!(bit & added_bits))
  862. continue;
  863. /*
  864. * Nobody should tell us to do a subsys that doesn't exist:
  865. * parse_cgroupfs_options should catch that case and refcounts
  866. * ensure that subsystems won't disappear once selected.
  867. */
  868. BUG_ON(ss == NULL);
  869. if (ss->root != &rootnode) {
  870. /* Subsystem isn't free */
  871. return -EBUSY;
  872. }
  873. }
  874. /* Currently we don't handle adding/removing subsystems when
  875. * any child cgroups exist. This is theoretically supportable
  876. * but involves complex error handling, so it's being left until
  877. * later */
  878. if (root->number_of_cgroups > 1)
  879. return -EBUSY;
  880. /* Process each subsystem */
  881. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  882. struct cgroup_subsys *ss = subsys[i];
  883. unsigned long bit = 1UL << i;
  884. if (bit & added_bits) {
  885. /* We're binding this subsystem to this hierarchy */
  886. BUG_ON(ss == NULL);
  887. BUG_ON(cgrp->subsys[i]);
  888. BUG_ON(!dummytop->subsys[i]);
  889. BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
  890. mutex_lock(&ss->hierarchy_mutex);
  891. cgrp->subsys[i] = dummytop->subsys[i];
  892. cgrp->subsys[i]->cgroup = cgrp;
  893. list_move(&ss->sibling, &root->subsys_list);
  894. ss->root = root;
  895. if (ss->bind)
  896. ss->bind(ss, cgrp);
  897. mutex_unlock(&ss->hierarchy_mutex);
  898. /* refcount was already taken, and we're keeping it */
  899. } else if (bit & removed_bits) {
  900. /* We're removing this subsystem */
  901. BUG_ON(ss == NULL);
  902. BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
  903. BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
  904. mutex_lock(&ss->hierarchy_mutex);
  905. if (ss->bind)
  906. ss->bind(ss, dummytop);
  907. dummytop->subsys[i]->cgroup = dummytop;
  908. cgrp->subsys[i] = NULL;
  909. subsys[i]->root = &rootnode;
  910. list_move(&ss->sibling, &rootnode.subsys_list);
  911. mutex_unlock(&ss->hierarchy_mutex);
  912. /* subsystem is now free - drop reference on module */
  913. module_put(ss->module);
  914. } else if (bit & final_bits) {
  915. /* Subsystem state should already exist */
  916. BUG_ON(ss == NULL);
  917. BUG_ON(!cgrp->subsys[i]);
  918. /*
  919. * a refcount was taken, but we already had one, so
  920. * drop the extra reference.
  921. */
  922. module_put(ss->module);
  923. #ifdef CONFIG_MODULE_UNLOAD
  924. BUG_ON(ss->module && !module_refcount(ss->module));
  925. #endif
  926. } else {
  927. /* Subsystem state shouldn't exist */
  928. BUG_ON(cgrp->subsys[i]);
  929. }
  930. }
  931. root->subsys_bits = root->actual_subsys_bits = final_bits;
  932. synchronize_rcu();
  933. return 0;
  934. }
  935. static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
  936. {
  937. struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
  938. struct cgroup_subsys *ss;
  939. mutex_lock(&cgroup_root_mutex);
  940. for_each_subsys(root, ss)
  941. seq_printf(seq, ",%s", ss->name);
  942. if (test_bit(ROOT_NOPREFIX, &root->flags))
  943. seq_puts(seq, ",noprefix");
  944. if (strlen(root->release_agent_path))
  945. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  946. if (clone_children(&root->top_cgroup))
  947. seq_puts(seq, ",clone_children");
  948. if (strlen(root->name))
  949. seq_printf(seq, ",name=%s", root->name);
  950. mutex_unlock(&cgroup_root_mutex);
  951. return 0;
  952. }
  953. struct cgroup_sb_opts {
  954. unsigned long subsys_bits;
  955. unsigned long flags;
  956. char *release_agent;
  957. bool clone_children;
  958. char *name;
  959. /* User explicitly requested empty subsystem */
  960. bool none;
  961. struct cgroupfs_root *new_root;
  962. };
  963. /*
  964. * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
  965. * with cgroup_mutex held to protect the subsys[] array. This function takes
  966. * refcounts on subsystems to be used, unless it returns error, in which case
  967. * no refcounts are taken.
  968. */
  969. static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
  970. {
  971. char *token, *o = data;
  972. bool all_ss = false, one_ss = false;
  973. unsigned long mask = (unsigned long)-1;
  974. int i;
  975. bool module_pin_failed = false;
  976. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  977. #ifdef CONFIG_CPUSETS
  978. mask = ~(1UL << cpuset_subsys_id);
  979. #endif
  980. memset(opts, 0, sizeof(*opts));
  981. while ((token = strsep(&o, ",")) != NULL) {
  982. if (!*token)
  983. return -EINVAL;
  984. if (!strcmp(token, "none")) {
  985. /* Explicitly have no subsystems */
  986. opts->none = true;
  987. continue;
  988. }
  989. if (!strcmp(token, "all")) {
  990. /* Mutually exclusive option 'all' + subsystem name */
  991. if (one_ss)
  992. return -EINVAL;
  993. all_ss = true;
  994. continue;
  995. }
  996. if (!strcmp(token, "noprefix")) {
  997. set_bit(ROOT_NOPREFIX, &opts->flags);
  998. continue;
  999. }
  1000. if (!strcmp(token, "clone_children")) {
  1001. opts->clone_children = true;
  1002. continue;
  1003. }
  1004. if (!strncmp(token, "release_agent=", 14)) {
  1005. /* Specifying two release agents is forbidden */
  1006. if (opts->release_agent)
  1007. return -EINVAL;
  1008. opts->release_agent =
  1009. kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
  1010. if (!opts->release_agent)
  1011. return -ENOMEM;
  1012. continue;
  1013. }
  1014. if (!strncmp(token, "name=", 5)) {
  1015. const char *name = token + 5;
  1016. /* Can't specify an empty name */
  1017. if (!strlen(name))
  1018. return -EINVAL;
  1019. /* Must match [\w.-]+ */
  1020. for (i = 0; i < strlen(name); i++) {
  1021. char c = name[i];
  1022. if (isalnum(c))
  1023. continue;
  1024. if ((c == '.') || (c == '-') || (c == '_'))
  1025. continue;
  1026. return -EINVAL;
  1027. }
  1028. /* Specifying two names is forbidden */
  1029. if (opts->name)
  1030. return -EINVAL;
  1031. opts->name = kstrndup(name,
  1032. MAX_CGROUP_ROOT_NAMELEN - 1,
  1033. GFP_KERNEL);
  1034. if (!opts->name)
  1035. return -ENOMEM;
  1036. continue;
  1037. }
  1038. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1039. struct cgroup_subsys *ss = subsys[i];
  1040. if (ss == NULL)
  1041. continue;
  1042. if (strcmp(token, ss->name))
  1043. continue;
  1044. if (ss->disabled)
  1045. continue;
  1046. /* Mutually exclusive option 'all' + subsystem name */
  1047. if (all_ss)
  1048. return -EINVAL;
  1049. set_bit(i, &opts->subsys_bits);
  1050. one_ss = true;
  1051. break;
  1052. }
  1053. if (i == CGROUP_SUBSYS_COUNT)
  1054. return -ENOENT;
  1055. }
  1056. /*
  1057. * If the 'all' option was specified select all the subsystems,
  1058. * otherwise 'all, 'none' and a subsystem name options were not
  1059. * specified, let's default to 'all'
  1060. */
  1061. if (all_ss || (!all_ss && !one_ss && !opts->none)) {
  1062. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1063. struct cgroup_subsys *ss = subsys[i];
  1064. if (ss == NULL)
  1065. continue;
  1066. if (ss->disabled)
  1067. continue;
  1068. set_bit(i, &opts->subsys_bits);
  1069. }
  1070. }
  1071. /* Consistency checks */
  1072. /*
  1073. * Option noprefix was introduced just for backward compatibility
  1074. * with the old cpuset, so we allow noprefix only if mounting just
  1075. * the cpuset subsystem.
  1076. */
  1077. if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
  1078. (opts->subsys_bits & mask))
  1079. return -EINVAL;
  1080. /* Can't specify "none" and some subsystems */
  1081. if (opts->subsys_bits && opts->none)
  1082. return -EINVAL;
  1083. /*
  1084. * We either have to specify by name or by subsystems. (So all
  1085. * empty hierarchies must have a name).
  1086. */
  1087. if (!opts->subsys_bits && !opts->name)
  1088. return -EINVAL;
  1089. /*
  1090. * Grab references on all the modules we'll need, so the subsystems
  1091. * don't dance around before rebind_subsystems attaches them. This may
  1092. * take duplicate reference counts on a subsystem that's already used,
  1093. * but rebind_subsystems handles this case.
  1094. */
  1095. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  1096. unsigned long bit = 1UL << i;
  1097. if (!(bit & opts->subsys_bits))
  1098. continue;
  1099. if (!try_module_get(subsys[i]->module)) {
  1100. module_pin_failed = true;
  1101. break;
  1102. }
  1103. }
  1104. if (module_pin_failed) {
  1105. /*
  1106. * oops, one of the modules was going away. this means that we
  1107. * raced with a module_delete call, and to the user this is
  1108. * essentially a "subsystem doesn't exist" case.
  1109. */
  1110. for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
  1111. /* drop refcounts only on the ones we took */
  1112. unsigned long bit = 1UL << i;
  1113. if (!(bit & opts->subsys_bits))
  1114. continue;
  1115. module_put(subsys[i]->module);
  1116. }
  1117. return -ENOENT;
  1118. }
  1119. return 0;
  1120. }
  1121. static void drop_parsed_module_refcounts(unsigned long subsys_bits)
  1122. {
  1123. int i;
  1124. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  1125. unsigned long bit = 1UL << i;
  1126. if (!(bit & subsys_bits))
  1127. continue;
  1128. module_put(subsys[i]->module);
  1129. }
  1130. }
  1131. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  1132. {
  1133. int ret = 0;
  1134. struct cgroupfs_root *root = sb->s_fs_info;
  1135. struct cgroup *cgrp = &root->top_cgroup;
  1136. struct cgroup_sb_opts opts;
  1137. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1138. mutex_lock(&cgroup_mutex);
  1139. mutex_lock(&cgroup_root_mutex);
  1140. /* See what subsystems are wanted */
  1141. ret = parse_cgroupfs_options(data, &opts);
  1142. if (ret)
  1143. goto out_unlock;
  1144. /* Don't allow flags or name to change at remount */
  1145. if (opts.flags != root->flags ||
  1146. (opts.name && strcmp(opts.name, root->name))) {
  1147. ret = -EINVAL;
  1148. drop_parsed_module_refcounts(opts.subsys_bits);
  1149. goto out_unlock;
  1150. }
  1151. ret = rebind_subsystems(root, opts.subsys_bits);
  1152. if (ret) {
  1153. drop_parsed_module_refcounts(opts.subsys_bits);
  1154. goto out_unlock;
  1155. }
  1156. /* (re)populate subsystem files */
  1157. cgroup_populate_dir(cgrp);
  1158. if (opts.release_agent)
  1159. strcpy(root->release_agent_path, opts.release_agent);
  1160. out_unlock:
  1161. kfree(opts.release_agent);
  1162. kfree(opts.name);
  1163. mutex_unlock(&cgroup_root_mutex);
  1164. mutex_unlock(&cgroup_mutex);
  1165. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1166. return ret;
  1167. }
  1168. static const struct super_operations cgroup_ops = {
  1169. .statfs = simple_statfs,
  1170. .drop_inode = generic_delete_inode,
  1171. .show_options = cgroup_show_options,
  1172. .remount_fs = cgroup_remount,
  1173. };
  1174. static void init_cgroup_housekeeping(struct cgroup *cgrp)
  1175. {
  1176. INIT_LIST_HEAD(&cgrp->sibling);
  1177. INIT_LIST_HEAD(&cgrp->children);
  1178. INIT_LIST_HEAD(&cgrp->css_sets);
  1179. INIT_LIST_HEAD(&cgrp->release_list);
  1180. INIT_LIST_HEAD(&cgrp->pidlists);
  1181. mutex_init(&cgrp->pidlist_mutex);
  1182. INIT_LIST_HEAD(&cgrp->event_list);
  1183. spin_lock_init(&cgrp->event_list_lock);
  1184. }
  1185. static void init_cgroup_root(struct cgroupfs_root *root)
  1186. {
  1187. struct cgroup *cgrp = &root->top_cgroup;
  1188. INIT_LIST_HEAD(&root->subsys_list);
  1189. INIT_LIST_HEAD(&root->root_list);
  1190. root->number_of_cgroups = 1;
  1191. cgrp->root = root;
  1192. cgrp->top_cgroup = cgrp;
  1193. init_cgroup_housekeeping(cgrp);
  1194. }
  1195. static bool init_root_id(struct cgroupfs_root *root)
  1196. {
  1197. int ret = 0;
  1198. do {
  1199. if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
  1200. return false;
  1201. spin_lock(&hierarchy_id_lock);
  1202. /* Try to allocate the next unused ID */
  1203. ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
  1204. &root->hierarchy_id);
  1205. if (ret == -ENOSPC)
  1206. /* Try again starting from 0 */
  1207. ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
  1208. if (!ret) {
  1209. next_hierarchy_id = root->hierarchy_id + 1;
  1210. } else if (ret != -EAGAIN) {
  1211. /* Can only get here if the 31-bit IDR is full ... */
  1212. BUG_ON(ret);
  1213. }
  1214. spin_unlock(&hierarchy_id_lock);
  1215. } while (ret);
  1216. return true;
  1217. }
  1218. static int cgroup_test_super(struct super_block *sb, void *data)
  1219. {
  1220. struct cgroup_sb_opts *opts = data;
  1221. struct cgroupfs_root *root = sb->s_fs_info;
  1222. /* If we asked for a name then it must match */
  1223. if (opts->name && strcmp(opts->name, root->name))
  1224. return 0;
  1225. /*
  1226. * If we asked for subsystems (or explicitly for no
  1227. * subsystems) then they must match
  1228. */
  1229. if ((opts->subsys_bits || opts->none)
  1230. && (opts->subsys_bits != root->subsys_bits))
  1231. return 0;
  1232. return 1;
  1233. }
  1234. static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
  1235. {
  1236. struct cgroupfs_root *root;
  1237. if (!opts->subsys_bits && !opts->none)
  1238. return NULL;
  1239. root = kzalloc(sizeof(*root), GFP_KERNEL);
  1240. if (!root)
  1241. return ERR_PTR(-ENOMEM);
  1242. if (!init_root_id(root)) {
  1243. kfree(root);
  1244. return ERR_PTR(-ENOMEM);
  1245. }
  1246. init_cgroup_root(root);
  1247. root->subsys_bits = opts->subsys_bits;
  1248. root->flags = opts->flags;
  1249. if (opts->release_agent)
  1250. strcpy(root->release_agent_path, opts->release_agent);
  1251. if (opts->name)
  1252. strcpy(root->name, opts->name);
  1253. if (opts->clone_children)
  1254. set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
  1255. return root;
  1256. }
  1257. static void cgroup_drop_root(struct cgroupfs_root *root)
  1258. {
  1259. if (!root)
  1260. return;
  1261. BUG_ON(!root->hierarchy_id);
  1262. spin_lock(&hierarchy_id_lock);
  1263. ida_remove(&hierarchy_ida, root->hierarchy_id);
  1264. spin_unlock(&hierarchy_id_lock);
  1265. kfree(root);
  1266. }
  1267. static int cgroup_set_super(struct super_block *sb, void *data)
  1268. {
  1269. int ret;
  1270. struct cgroup_sb_opts *opts = data;
  1271. /* If we don't have a new root, we can't set up a new sb */
  1272. if (!opts->new_root)
  1273. return -EINVAL;
  1274. BUG_ON(!opts->subsys_bits && !opts->none);
  1275. ret = set_anon_super(sb, NULL);
  1276. if (ret)
  1277. return ret;
  1278. sb->s_fs_info = opts->new_root;
  1279. opts->new_root->sb = sb;
  1280. sb->s_blocksize = PAGE_CACHE_SIZE;
  1281. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  1282. sb->s_magic = CGROUP_SUPER_MAGIC;
  1283. sb->s_op = &cgroup_ops;
  1284. return 0;
  1285. }
  1286. static int cgroup_get_rootdir(struct super_block *sb)
  1287. {
  1288. static const struct dentry_operations cgroup_dops = {
  1289. .d_iput = cgroup_diput,
  1290. .d_delete = cgroup_delete,
  1291. };
  1292. struct inode *inode =
  1293. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  1294. struct dentry *dentry;
  1295. if (!inode)
  1296. return -ENOMEM;
  1297. inode->i_fop = &simple_dir_operations;
  1298. inode->i_op = &cgroup_dir_inode_operations;
  1299. /* directories start off with i_nlink == 2 (for "." entry) */
  1300. inc_nlink(inode);
  1301. dentry = d_alloc_root(inode);
  1302. if (!dentry) {
  1303. iput(inode);
  1304. return -ENOMEM;
  1305. }
  1306. sb->s_root = dentry;
  1307. /* for everything else we want ->d_op set */
  1308. sb->s_d_op = &cgroup_dops;
  1309. return 0;
  1310. }
  1311. static struct dentry *cgroup_mount(struct file_system_type *fs_type,
  1312. int flags, const char *unused_dev_name,
  1313. void *data)
  1314. {
  1315. struct cgroup_sb_opts opts;
  1316. struct cgroupfs_root *root;
  1317. int ret = 0;
  1318. struct super_block *sb;
  1319. struct cgroupfs_root *new_root;
  1320. struct inode *inode;
  1321. /* First find the desired set of subsystems */
  1322. mutex_lock(&cgroup_mutex);
  1323. ret = parse_cgroupfs_options(data, &opts);
  1324. mutex_unlock(&cgroup_mutex);
  1325. if (ret)
  1326. goto out_err;
  1327. /*
  1328. * Allocate a new cgroup root. We may not need it if we're
  1329. * reusing an existing hierarchy.
  1330. */
  1331. new_root = cgroup_root_from_opts(&opts);
  1332. if (IS_ERR(new_root)) {
  1333. ret = PTR_ERR(new_root);
  1334. goto drop_modules;
  1335. }
  1336. opts.new_root = new_root;
  1337. /* Locate an existing or new sb for this hierarchy */
  1338. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
  1339. if (IS_ERR(sb)) {
  1340. ret = PTR_ERR(sb);
  1341. cgroup_drop_root(opts.new_root);
  1342. goto drop_modules;
  1343. }
  1344. root = sb->s_fs_info;
  1345. BUG_ON(!root);
  1346. if (root == opts.new_root) {
  1347. /* We used the new root structure, so this is a new hierarchy */
  1348. struct list_head tmp_cg_links;
  1349. struct cgroup *root_cgrp = &root->top_cgroup;
  1350. struct cgroupfs_root *existing_root;
  1351. const struct cred *cred;
  1352. int i;
  1353. BUG_ON(sb->s_root != NULL);
  1354. ret = cgroup_get_rootdir(sb);
  1355. if (ret)
  1356. goto drop_new_super;
  1357. inode = sb->s_root->d_inode;
  1358. mutex_lock(&inode->i_mutex);
  1359. mutex_lock(&cgroup_mutex);
  1360. mutex_lock(&cgroup_root_mutex);
  1361. /* Check for name clashes with existing mounts */
  1362. ret = -EBUSY;
  1363. if (strlen(root->name))
  1364. for_each_active_root(existing_root)
  1365. if (!strcmp(existing_root->name, root->name))
  1366. goto unlock_drop;
  1367. /*
  1368. * We're accessing css_set_count without locking
  1369. * css_set_lock here, but that's OK - it can only be
  1370. * increased by someone holding cgroup_lock, and
  1371. * that's us. The worst that can happen is that we
  1372. * have some link structures left over
  1373. */
  1374. ret = allocate_cg_links(css_set_count, &tmp_cg_links);
  1375. if (ret)
  1376. goto unlock_drop;
  1377. ret = rebind_subsystems(root, root->subsys_bits);
  1378. if (ret == -EBUSY) {
  1379. free_cg_links(&tmp_cg_links);
  1380. goto unlock_drop;
  1381. }
  1382. /*
  1383. * There must be no failure case after here, since rebinding
  1384. * takes care of subsystems' refcounts, which are explicitly
  1385. * dropped in the failure exit path.
  1386. */
  1387. /* EBUSY should be the only error here */
  1388. BUG_ON(ret);
  1389. list_add(&root->root_list, &roots);
  1390. root_count++;
  1391. sb->s_root->d_fsdata = root_cgrp;
  1392. root->top_cgroup.dentry = sb->s_root;
  1393. /* Link the top cgroup in this hierarchy into all
  1394. * the css_set objects */
  1395. write_lock(&css_set_lock);
  1396. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  1397. struct hlist_head *hhead = &css_set_table[i];
  1398. struct hlist_node *node;
  1399. struct css_set *cg;
  1400. hlist_for_each_entry(cg, node, hhead, hlist)
  1401. link_css_set(&tmp_cg_links, cg, root_cgrp);
  1402. }
  1403. write_unlock(&css_set_lock);
  1404. free_cg_links(&tmp_cg_links);
  1405. BUG_ON(!list_empty(&root_cgrp->sibling));
  1406. BUG_ON(!list_empty(&root_cgrp->children));
  1407. BUG_ON(root->number_of_cgroups != 1);
  1408. cred = override_creds(&init_cred);
  1409. cgroup_populate_dir(root_cgrp);
  1410. revert_creds(cred);
  1411. mutex_unlock(&cgroup_root_mutex);
  1412. mutex_unlock(&cgroup_mutex);
  1413. mutex_unlock(&inode->i_mutex);
  1414. } else {
  1415. /*
  1416. * We re-used an existing hierarchy - the new root (if
  1417. * any) is not needed
  1418. */
  1419. cgroup_drop_root(opts.new_root);
  1420. /* no subsys rebinding, so refcounts don't change */
  1421. drop_parsed_module_refcounts(opts.subsys_bits);
  1422. }
  1423. kfree(opts.release_agent);
  1424. kfree(opts.name);
  1425. return dget(sb->s_root);
  1426. unlock_drop:
  1427. mutex_unlock(&cgroup_root_mutex);
  1428. mutex_unlock(&cgroup_mutex);
  1429. mutex_unlock(&inode->i_mutex);
  1430. drop_new_super:
  1431. deactivate_locked_super(sb);
  1432. drop_modules:
  1433. drop_parsed_module_refcounts(opts.subsys_bits);
  1434. out_err:
  1435. kfree(opts.release_agent);
  1436. kfree(opts.name);
  1437. return ERR_PTR(ret);
  1438. }
  1439. static void cgroup_kill_sb(struct super_block *sb) {
  1440. struct cgroupfs_root *root = sb->s_fs_info;
  1441. struct cgroup *cgrp = &root->top_cgroup;
  1442. int ret;
  1443. struct cg_cgroup_link *link;
  1444. struct cg_cgroup_link *saved_link;
  1445. BUG_ON(!root);
  1446. BUG_ON(root->number_of_cgroups != 1);
  1447. BUG_ON(!list_empty(&cgrp->children));
  1448. BUG_ON(!list_empty(&cgrp->sibling));
  1449. mutex_lock(&cgroup_mutex);
  1450. mutex_lock(&cgroup_root_mutex);
  1451. /* Rebind all subsystems back to the default hierarchy */
  1452. ret = rebind_subsystems(root, 0);
  1453. /* Shouldn't be able to fail ... */
  1454. BUG_ON(ret);
  1455. /*
  1456. * Release all the links from css_sets to this hierarchy's
  1457. * root cgroup
  1458. */
  1459. write_lock(&css_set_lock);
  1460. list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
  1461. cgrp_link_list) {
  1462. list_del(&link->cg_link_list);
  1463. list_del(&link->cgrp_link_list);
  1464. kfree(link);
  1465. }
  1466. write_unlock(&css_set_lock);
  1467. if (!list_empty(&root->root_list)) {
  1468. list_del(&root->root_list);
  1469. root_count--;
  1470. }
  1471. mutex_unlock(&cgroup_root_mutex);
  1472. mutex_unlock(&cgroup_mutex);
  1473. kill_litter_super(sb);
  1474. cgroup_drop_root(root);
  1475. }
  1476. static struct file_system_type cgroup_fs_type = {
  1477. .name = "cgroup",
  1478. .mount = cgroup_mount,
  1479. .kill_sb = cgroup_kill_sb,
  1480. };
  1481. static struct kobject *cgroup_kobj;
  1482. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  1483. {
  1484. return dentry->d_fsdata;
  1485. }
  1486. static inline struct cftype *__d_cft(struct dentry *dentry)
  1487. {
  1488. return dentry->d_fsdata;
  1489. }
  1490. /**
  1491. * cgroup_path - generate the path of a cgroup
  1492. * @cgrp: the cgroup in question
  1493. * @buf: the buffer to write the path into
  1494. * @buflen: the length of the buffer
  1495. *
  1496. * Called with cgroup_mutex held or else with an RCU-protected cgroup
  1497. * reference. Writes path of cgroup into buf. Returns 0 on success,
  1498. * -errno on error.
  1499. */
  1500. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  1501. {
  1502. char *start;
  1503. struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
  1504. cgroup_lock_is_held());
  1505. if (!dentry || cgrp == dummytop) {
  1506. /*
  1507. * Inactive subsystems have no dentry for their root
  1508. * cgroup
  1509. */
  1510. strcpy(buf, "/");
  1511. return 0;
  1512. }
  1513. start = buf + buflen;
  1514. *--start = '\0';
  1515. for (;;) {
  1516. int len = dentry->d_name.len;
  1517. if ((start -= len) < buf)
  1518. return -ENAMETOOLONG;
  1519. memcpy(start, dentry->d_name.name, len);
  1520. cgrp = cgrp->parent;
  1521. if (!cgrp)
  1522. break;
  1523. dentry = rcu_dereference_check(cgrp->dentry,
  1524. cgroup_lock_is_held());
  1525. if (!cgrp->parent)
  1526. continue;
  1527. if (--start < buf)
  1528. return -ENAMETOOLONG;
  1529. *start = '/';
  1530. }
  1531. memmove(buf, start, buf + buflen - start);
  1532. return 0;
  1533. }
  1534. EXPORT_SYMBOL_GPL(cgroup_path);
  1535. struct task_and_cgroup {
  1536. struct task_struct *task;
  1537. struct cgroup *cgrp;
  1538. };
  1539. /*
  1540. * cgroup_task_migrate - move a task from one cgroup to another.
  1541. *
  1542. * 'guarantee' is set if the caller promises that a new css_set for the task
  1543. * will already exist. If not set, this function might sleep, and can fail with
  1544. * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
  1545. */
  1546. static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
  1547. struct task_struct *tsk, bool guarantee)
  1548. {
  1549. struct css_set *oldcg;
  1550. struct css_set *newcg;
  1551. /*
  1552. * get old css_set. we need to take task_lock and refcount it, because
  1553. * an exiting task can change its css_set to init_css_set and drop its
  1554. * old one without taking cgroup_mutex.
  1555. */
  1556. task_lock(tsk);
  1557. oldcg = tsk->cgroups;
  1558. get_css_set(oldcg);
  1559. task_unlock(tsk);
  1560. /* locate or allocate a new css_set for this task. */
  1561. if (guarantee) {
  1562. /* we know the css_set we want already exists. */
  1563. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  1564. read_lock(&css_set_lock);
  1565. newcg = find_existing_css_set(oldcg, cgrp, template);
  1566. BUG_ON(!newcg);
  1567. get_css_set(newcg);
  1568. read_unlock(&css_set_lock);
  1569. } else {
  1570. might_sleep();
  1571. /* find_css_set will give us newcg already referenced. */
  1572. newcg = find_css_set(oldcg, cgrp);
  1573. if (!newcg) {
  1574. put_css_set(oldcg);
  1575. return -ENOMEM;
  1576. }
  1577. }
  1578. put_css_set(oldcg);
  1579. /* @tsk can't exit as its threadgroup is locked */
  1580. task_lock(tsk);
  1581. WARN_ON_ONCE(tsk->flags & PF_EXITING);
  1582. rcu_assign_pointer(tsk->cgroups, newcg);
  1583. task_unlock(tsk);
  1584. /* Update the css_set linked lists if we're using them */
  1585. write_lock(&css_set_lock);
  1586. if (!list_empty(&tsk->cg_list))
  1587. list_move(&tsk->cg_list, &newcg->tasks);
  1588. write_unlock(&css_set_lock);
  1589. /*
  1590. * We just gained a reference on oldcg by taking it from the task. As
  1591. * trading it for newcg is protected by cgroup_mutex, we're safe to drop
  1592. * it here; it will be freed under RCU.
  1593. */
  1594. put_css_set(oldcg);
  1595. set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
  1596. return 0;
  1597. }
  1598. /**
  1599. * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
  1600. * @cgrp: the cgroup the task is attaching to
  1601. * @tsk: the task to be attached
  1602. *
  1603. * Call with cgroup_mutex and threadgroup locked. May take task_lock of
  1604. * @tsk during call.
  1605. */
  1606. int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  1607. {
  1608. int retval;
  1609. struct cgroup_subsys *ss, *failed_ss = NULL;
  1610. struct cgroup *oldcgrp;
  1611. struct cgroupfs_root *root = cgrp->root;
  1612. /* @tsk either already exited or can't exit until the end */
  1613. if (tsk->flags & PF_EXITING)
  1614. return -ESRCH;
  1615. /* Nothing to do if the task is already in that cgroup */
  1616. oldcgrp = task_cgroup_from_root(tsk, root);
  1617. if (cgrp == oldcgrp)
  1618. return 0;
  1619. for_each_subsys(root, ss) {
  1620. if (ss->can_attach) {
  1621. retval = ss->can_attach(ss, cgrp, tsk);
  1622. if (retval) {
  1623. /*
  1624. * Remember on which subsystem the can_attach()
  1625. * failed, so that we only call cancel_attach()
  1626. * against the subsystems whose can_attach()
  1627. * succeeded. (See below)
  1628. */
  1629. failed_ss = ss;
  1630. goto out;
  1631. }
  1632. }
  1633. if (ss->can_attach_task) {
  1634. retval = ss->can_attach_task(cgrp, tsk);
  1635. if (retval) {
  1636. failed_ss = ss;
  1637. goto out;
  1638. }
  1639. }
  1640. }
  1641. retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
  1642. if (retval)
  1643. goto out;
  1644. for_each_subsys(root, ss) {
  1645. if (ss->pre_attach)
  1646. ss->pre_attach(cgrp);
  1647. if (ss->attach_task)
  1648. ss->attach_task(cgrp, tsk);
  1649. if (ss->attach)
  1650. ss->attach(ss, cgrp, oldcgrp, tsk);
  1651. }
  1652. synchronize_rcu();
  1653. /*
  1654. * wake up rmdir() waiter. the rmdir should fail since the cgroup
  1655. * is no longer empty.
  1656. */
  1657. cgroup_wakeup_rmdir_waiter(cgrp);
  1658. out:
  1659. if (retval) {
  1660. for_each_subsys(root, ss) {
  1661. if (ss == failed_ss)
  1662. /*
  1663. * This subsystem was the one that failed the
  1664. * can_attach() check earlier, so we don't need
  1665. * to call cancel_attach() against it or any
  1666. * remaining subsystems.
  1667. */
  1668. break;
  1669. if (ss->cancel_attach)
  1670. ss->cancel_attach(ss, cgrp, tsk);
  1671. }
  1672. }
  1673. return retval;
  1674. }
  1675. /**
  1676. * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  1677. * @from: attach to all cgroups of a given task
  1678. * @tsk: the task to be attached
  1679. */
  1680. int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  1681. {
  1682. struct cgroupfs_root *root;
  1683. int retval = 0;
  1684. cgroup_lock();
  1685. for_each_active_root(root) {
  1686. struct cgroup *from_cg = task_cgroup_from_root(from, root);
  1687. retval = cgroup_attach_task(from_cg, tsk);
  1688. if (retval)
  1689. break;
  1690. }
  1691. cgroup_unlock();
  1692. return retval;
  1693. }
  1694. EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  1695. /*
  1696. * cgroup_attach_proc works in two stages, the first of which prefetches all
  1697. * new css_sets needed (to make sure we have enough memory before committing
  1698. * to the move) and stores them in a list of entries of the following type.
  1699. * TODO: possible optimization: use css_set->rcu_head for chaining instead
  1700. */
  1701. struct cg_list_entry {
  1702. struct css_set *cg;
  1703. struct list_head links;
  1704. };
  1705. static bool css_set_check_fetched(struct cgroup *cgrp,
  1706. struct task_struct *tsk, struct css_set *cg,
  1707. struct list_head *newcg_list)
  1708. {
  1709. struct css_set *newcg;
  1710. struct cg_list_entry *cg_entry;
  1711. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  1712. read_lock(&css_set_lock);
  1713. newcg = find_existing_css_set(cg, cgrp, template);
  1714. if (newcg)
  1715. get_css_set(newcg);
  1716. read_unlock(&css_set_lock);
  1717. /* doesn't exist at all? */
  1718. if (!newcg)
  1719. return false;
  1720. /* see if it's already in the list */
  1721. list_for_each_entry(cg_entry, newcg_list, links) {
  1722. if (cg_entry->cg == newcg) {
  1723. put_css_set(newcg);
  1724. return true;
  1725. }
  1726. }
  1727. /* not found */
  1728. put_css_set(newcg);
  1729. return false;
  1730. }
  1731. /*
  1732. * Find the new css_set and store it in the list in preparation for moving the
  1733. * given task to the given cgroup. Returns 0 or -ENOMEM.
  1734. */
  1735. static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
  1736. struct list_head *newcg_list)
  1737. {
  1738. struct css_set *newcg;
  1739. struct cg_list_entry *cg_entry;
  1740. /* ensure a new css_set will exist for this thread */
  1741. newcg = find_css_set(cg, cgrp);
  1742. if (!newcg)
  1743. return -ENOMEM;
  1744. /* add it to the list */
  1745. cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
  1746. if (!cg_entry) {
  1747. put_css_set(newcg);
  1748. return -ENOMEM;
  1749. }
  1750. cg_entry->cg = newcg;
  1751. list_add(&cg_entry->links, newcg_list);
  1752. return 0;
  1753. }
  1754. /**
  1755. * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
  1756. * @cgrp: the cgroup to attach to
  1757. * @leader: the threadgroup leader task_struct of the group to be attached
  1758. *
  1759. * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
  1760. * task_lock of each thread in leader's threadgroup individually in turn.
  1761. */
  1762. int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
  1763. {
  1764. int retval, i, group_size, nr_migrating_tasks;
  1765. struct cgroup_subsys *ss, *failed_ss = NULL;
  1766. bool cancel_failed_ss = false;
  1767. /* guaranteed to be initialized later, but the compiler needs this */
  1768. struct css_set *oldcg;
  1769. struct cgroupfs_root *root = cgrp->root;
  1770. /* threadgroup list cursor and array */
  1771. struct task_struct *tsk;
  1772. struct task_and_cgroup *tc;
  1773. struct flex_array *group;
  1774. /*
  1775. * we need to make sure we have css_sets for all the tasks we're
  1776. * going to move -before- we actually start moving them, so that in
  1777. * case we get an ENOMEM we can bail out before making any changes.
  1778. */
  1779. struct list_head newcg_list;
  1780. struct cg_list_entry *cg_entry, *temp_nobe;
  1781. /*
  1782. * step 0: in order to do expensive, possibly blocking operations for
  1783. * every thread, we cannot iterate the thread group list, since it needs
  1784. * rcu or tasklist locked. instead, build an array of all threads in the
  1785. * group - group_rwsem prevents new threads from appearing, and if
  1786. * threads exit, this will just be an over-estimate.
  1787. */
  1788. group_size = get_nr_threads(leader);
  1789. /* flex_array supports very large thread-groups better than kmalloc. */
  1790. group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
  1791. if (!group)
  1792. return -ENOMEM;
  1793. /* pre-allocate to guarantee space while iterating in rcu read-side. */
  1794. retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
  1795. if (retval)
  1796. goto out_free_group_list;
  1797. /* prevent changes to the threadgroup list while we take a snapshot. */
  1798. read_lock(&tasklist_lock);
  1799. if (!thread_group_leader(leader)) {
  1800. /*
  1801. * a race with de_thread from another thread's exec() may strip
  1802. * us of our leadership, making while_each_thread unsafe to use
  1803. * on this task. if this happens, there is no choice but to
  1804. * throw this task away and try again (from cgroup_procs_write);
  1805. * this is "double-double-toil-and-trouble-check locking".
  1806. */
  1807. read_unlock(&tasklist_lock);
  1808. retval = -EAGAIN;
  1809. goto out_free_group_list;
  1810. }
  1811. /* take a reference on each task in the group to go in the array. */
  1812. tsk = leader;
  1813. i = nr_migrating_tasks = 0;
  1814. do {
  1815. struct task_and_cgroup ent;
  1816. /* @tsk either already exited or can't exit until the end */
  1817. if (tsk->flags & PF_EXITING)
  1818. continue;
  1819. /* as per above, nr_threads may decrease, but not increase. */
  1820. BUG_ON(i >= group_size);
  1821. get_task_struct(tsk);
  1822. /*
  1823. * saying GFP_ATOMIC has no effect here because we did prealloc
  1824. * earlier, but it's good form to communicate our expectations.
  1825. */
  1826. ent.task = tsk;
  1827. ent.cgrp = task_cgroup_from_root(tsk, root);
  1828. retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
  1829. BUG_ON(retval != 0);
  1830. i++;
  1831. if (ent.cgrp != cgrp)
  1832. nr_migrating_tasks++;
  1833. } while_each_thread(leader, tsk);
  1834. /* remember the number of threads in the array for later. */
  1835. group_size = i;
  1836. read_unlock(&tasklist_lock);
  1837. /* methods shouldn't be called if no task is actually migrating */
  1838. retval = 0;
  1839. if (!nr_migrating_tasks)
  1840. goto out_put_tasks;
  1841. /*
  1842. * step 1: check that we can legitimately attach to the cgroup.
  1843. */
  1844. for_each_subsys(root, ss) {
  1845. if (ss->can_attach) {
  1846. retval = ss->can_attach(ss, cgrp, leader);
  1847. if (retval) {
  1848. failed_ss = ss;
  1849. goto out_cancel_attach;
  1850. }
  1851. }
  1852. /* a callback to be run on every thread in the threadgroup. */
  1853. if (ss->can_attach_task) {
  1854. /* run on each task in the threadgroup. */
  1855. for (i = 0; i < group_size; i++) {
  1856. tc = flex_array_get(group, i);
  1857. if (tc->cgrp == cgrp)
  1858. continue;
  1859. retval = ss->can_attach_task(cgrp, tc->task);
  1860. if (retval) {
  1861. failed_ss = ss;
  1862. cancel_failed_ss = true;
  1863. goto out_cancel_attach;
  1864. }
  1865. }
  1866. }
  1867. }
  1868. /*
  1869. * step 2: make sure css_sets exist for all threads to be migrated.
  1870. * we use find_css_set, which allocates a new one if necessary.
  1871. */
  1872. INIT_LIST_HEAD(&newcg_list);
  1873. for (i = 0; i < group_size; i++) {
  1874. tc = flex_array_get(group, i);
  1875. /* nothing to do if this task is already in the cgroup */
  1876. if (tc->cgrp == cgrp)
  1877. continue;
  1878. /* get old css_set pointer */
  1879. task_lock(tc->task);
  1880. oldcg = tc->task->cgroups;
  1881. get_css_set(oldcg);
  1882. task_unlock(tc->task);
  1883. /* see if the new one for us is already in the list? */
  1884. if (css_set_check_fetched(cgrp, tc->task, oldcg, &newcg_list)) {
  1885. /* was already there, nothing to do. */
  1886. put_css_set(oldcg);
  1887. } else {
  1888. /* we don't already have it. get new one. */
  1889. retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
  1890. put_css_set(oldcg);
  1891. if (retval)
  1892. goto out_list_teardown;
  1893. }
  1894. }
  1895. /*
  1896. * step 3: now that we're guaranteed success wrt the css_sets, proceed
  1897. * to move all tasks to the new cgroup, calling ss->attach_task for each
  1898. * one along the way. there are no failure cases after here, so this is
  1899. * the commit point.
  1900. */
  1901. for_each_subsys(root, ss) {
  1902. if (ss->pre_attach)
  1903. ss->pre_attach(cgrp);
  1904. }
  1905. for (i = 0; i < group_size; i++) {
  1906. tc = flex_array_get(group, i);
  1907. /* leave current thread as it is if it's already there */
  1908. if (tc->cgrp == cgrp)
  1909. continue;
  1910. retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true);
  1911. BUG_ON(retval);
  1912. /* attach each task to each subsystem */
  1913. for_each_subsys(root, ss) {
  1914. if (ss->attach_task)
  1915. ss->attach_task(cgrp, tc->task);
  1916. }
  1917. }
  1918. /* nothing is sensitive to fork() after this point. */
  1919. /*
  1920. * step 4: do expensive, non-thread-specific subsystem callbacks.
  1921. * TODO: if ever a subsystem needs to know the oldcgrp for each task
  1922. * being moved, this call will need to be reworked to communicate that.
  1923. */
  1924. for_each_subsys(root, ss) {
  1925. if (ss->attach) {
  1926. tc = flex_array_get(group, 0);
  1927. ss->attach(ss, cgrp, tc->cgrp, tc->task);
  1928. }
  1929. }
  1930. /*
  1931. * step 5: success! and cleanup
  1932. */
  1933. synchronize_rcu();
  1934. cgroup_wakeup_rmdir_waiter(cgrp);
  1935. retval = 0;
  1936. out_list_teardown:
  1937. /* clean up the list of prefetched css_sets. */
  1938. list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
  1939. list_del(&cg_entry->links);
  1940. put_css_set(cg_entry->cg);
  1941. kfree(cg_entry);
  1942. }
  1943. out_cancel_attach:
  1944. /* same deal as in cgroup_attach_task */
  1945. if (retval) {
  1946. for_each_subsys(root, ss) {
  1947. if (ss == failed_ss) {
  1948. if (cancel_failed_ss && ss->cancel_attach)
  1949. ss->cancel_attach(ss, cgrp, leader);
  1950. break;
  1951. }
  1952. if (ss->cancel_attach)
  1953. ss->cancel_attach(ss, cgrp, leader);
  1954. }
  1955. }
  1956. out_put_tasks:
  1957. /* clean up the array of referenced threads in the group. */
  1958. for (i = 0; i < group_size; i++) {
  1959. tc = flex_array_get(group, i);
  1960. put_task_struct(tc->task);
  1961. }
  1962. out_free_group_list:
  1963. flex_array_free(group);
  1964. return retval;
  1965. }
  1966. /*
  1967. * Find the task_struct of the task to attach by vpid and pass it along to the
  1968. * function to attach either it or all tasks in its threadgroup. Will lock
  1969. * cgroup_mutex and threadgroup; may take task_lock of task.
  1970. */
  1971. static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
  1972. {
  1973. struct task_struct *tsk;
  1974. const struct cred *cred = current_cred(), *tcred;
  1975. int ret;
  1976. if (!cgroup_lock_live_group(cgrp))
  1977. return -ENODEV;
  1978. if (pid) {
  1979. rcu_read_lock();
  1980. tsk = find_task_by_vpid(pid);
  1981. if (!tsk) {
  1982. rcu_read_unlock();
  1983. cgroup_unlock();
  1984. return -ESRCH;
  1985. }
  1986. if (threadgroup) {
  1987. /*
  1988. * RCU protects this access, since tsk was found in the
  1989. * tid map. a race with de_thread may cause group_leader
  1990. * to stop being the leader, but cgroup_attach_proc will
  1991. * detect it later.
  1992. */
  1993. tsk = tsk->group_leader;
  1994. }
  1995. /*
  1996. * even if we're attaching all tasks in the thread group, we
  1997. * only need to check permissions on one of them.
  1998. */
  1999. tcred = __task_cred(tsk);
  2000. if (cred->euid &&
  2001. cred->euid != tcred->uid &&
  2002. cred->euid != tcred->suid) {
  2003. rcu_read_unlock();
  2004. cgroup_unlock();
  2005. return -EACCES;
  2006. }
  2007. get_task_struct(tsk);
  2008. rcu_read_unlock();
  2009. } else {
  2010. if (threadgroup)
  2011. tsk = current->group_leader;
  2012. else
  2013. tsk = current;
  2014. get_task_struct(tsk);
  2015. }
  2016. threadgroup_lock(tsk);
  2017. if (threadgroup)
  2018. ret = cgroup_attach_proc(cgrp, tsk);
  2019. else
  2020. ret = cgroup_attach_task(cgrp, tsk);
  2021. threadgroup_unlock(tsk);
  2022. put_task_struct(tsk);
  2023. cgroup_unlock();
  2024. return ret;
  2025. }
  2026. static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
  2027. {
  2028. return attach_task_by_pid(cgrp, pid, false);
  2029. }
  2030. static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
  2031. {
  2032. int ret;
  2033. do {
  2034. /*
  2035. * attach_proc fails with -EAGAIN if threadgroup leadership
  2036. * changes in the middle of the operation, in which case we need
  2037. * to find the task_struct for the new leader and start over.
  2038. */
  2039. ret = attach_task_by_pid(cgrp, tgid, true);
  2040. } while (ret == -EAGAIN);
  2041. return ret;
  2042. }
  2043. /**
  2044. * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  2045. * @cgrp: the cgroup to be checked for liveness
  2046. *
  2047. * On success, returns true; the lock should be later released with
  2048. * cgroup_unlock(). On failure returns false with no lock held.
  2049. */
  2050. bool cgroup_lock_live_group(struct cgroup *cgrp)
  2051. {
  2052. mutex_lock(&cgroup_mutex);
  2053. if (cgroup_is_removed(cgrp)) {
  2054. mutex_unlock(&cgroup_mutex);
  2055. return false;
  2056. }
  2057. return true;
  2058. }
  2059. EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
  2060. static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
  2061. const char *buffer)
  2062. {
  2063. BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
  2064. if (strlen(buffer) >= PATH_MAX)
  2065. return -EINVAL;
  2066. if (!cgroup_lock_live_group(cgrp))
  2067. return -ENODEV;
  2068. mutex_lock(&cgroup_root_mutex);
  2069. strcpy(cgrp->root->release_agent_path, buffer);
  2070. mutex_unlock(&cgroup_root_mutex);
  2071. cgroup_unlock();
  2072. return 0;
  2073. }
  2074. static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
  2075. struct seq_file *seq)
  2076. {
  2077. if (!cgroup_lock_live_group(cgrp))
  2078. return -ENODEV;
  2079. seq_puts(seq, cgrp->root->release_agent_path);
  2080. seq_putc(seq, '\n');
  2081. cgroup_unlock();
  2082. return 0;
  2083. }
  2084. /* A buffer size big enough for numbers or short strings */
  2085. #define CGROUP_LOCAL_BUFFER_SIZE 64
  2086. static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
  2087. struct file *file,
  2088. const char __user *userbuf,
  2089. size_t nbytes, loff_t *unused_ppos)
  2090. {
  2091. char buffer[CGROUP_LOCAL_BUFFER_SIZE];
  2092. int retval = 0;
  2093. char *end;
  2094. if (!nbytes)
  2095. return -EINVAL;
  2096. if (nbytes >= sizeof(buffer))
  2097. return -E2BIG;
  2098. if (copy_from_user(buffer, userbuf, nbytes))
  2099. return -EFAULT;
  2100. buffer[nbytes] = 0; /* nul-terminate */
  2101. if (cft->write_u64) {
  2102. u64 val = simple_strtoull(strstrip(buffer), &end, 0);
  2103. if (*end)
  2104. return -EINVAL;
  2105. retval = cft->write_u64(cgrp, cft, val);
  2106. } else {
  2107. s64 val = simple_strtoll(strstrip(buffer), &end, 0);
  2108. if (*end)
  2109. return -EINVAL;
  2110. retval = cft->write_s64(cgrp, cft, val);
  2111. }
  2112. if (!retval)
  2113. retval = nbytes;
  2114. return retval;
  2115. }
  2116. static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
  2117. struct file *file,
  2118. const char __user *userbuf,
  2119. size_t nbytes, loff_t *unused_ppos)
  2120. {
  2121. char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
  2122. int retval = 0;
  2123. size_t max_bytes = cft->max_write_len;
  2124. char *buffer = local_buffer;
  2125. if (!max_bytes)
  2126. max_bytes = sizeof(local_buffer) - 1;
  2127. if (nbytes >= max_bytes)
  2128. return -E2BIG;
  2129. /* Allocate a dynamic buffer if we need one */
  2130. if (nbytes >= sizeof(local_buffer)) {
  2131. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  2132. if (buffer == NULL)
  2133. return -ENOMEM;
  2134. }
  2135. if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
  2136. retval = -EFAULT;
  2137. goto out;
  2138. }
  2139. buffer[nbytes] = 0; /* nul-terminate */
  2140. retval = cft->write_string(cgrp, cft, strstrip(buffer));
  2141. if (!retval)
  2142. retval = nbytes;
  2143. out:
  2144. if (buffer != local_buffer)
  2145. kfree(buffer);
  2146. return retval;
  2147. }
  2148. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  2149. size_t nbytes, loff_t *ppos)
  2150. {
  2151. struct cftype *cft = __d_cft(file->f_dentry);
  2152. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2153. if (cgroup_is_removed(cgrp))
  2154. return -ENODEV;
  2155. if (cft->write)
  2156. return cft->write(cgrp, cft, file, buf, nbytes, ppos);
  2157. if (cft->write_u64 || cft->write_s64)
  2158. return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
  2159. if (cft->write_string)
  2160. return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
  2161. if (cft->trigger) {
  2162. int ret = cft->trigger(cgrp, (unsigned int)cft->private);
  2163. return ret ? ret : nbytes;
  2164. }
  2165. return -EINVAL;
  2166. }
  2167. static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
  2168. struct file *file,
  2169. char __user *buf, size_t nbytes,
  2170. loff_t *ppos)
  2171. {
  2172. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2173. u64 val = cft->read_u64(cgrp, cft);
  2174. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  2175. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2176. }
  2177. static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
  2178. struct file *file,
  2179. char __user *buf, size_t nbytes,
  2180. loff_t *ppos)
  2181. {
  2182. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  2183. s64 val = cft->read_s64(cgrp, cft);
  2184. int len = sprintf(tmp, "%lld\n", (long long) val);
  2185. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  2186. }
  2187. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  2188. size_t nbytes, loff_t *ppos)
  2189. {
  2190. struct cftype *cft = __d_cft(file->f_dentry);
  2191. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2192. if (cgroup_is_removed(cgrp))
  2193. return -ENODEV;
  2194. if (cft->read)
  2195. return cft->read(cgrp, cft, file, buf, nbytes, ppos);
  2196. if (cft->read_u64)
  2197. return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
  2198. if (cft->read_s64)
  2199. return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
  2200. return -EINVAL;
  2201. }
  2202. /*
  2203. * seqfile ops/methods for returning structured data. Currently just
  2204. * supports string->u64 maps, but can be extended in future.
  2205. */
  2206. struct cgroup_seqfile_state {
  2207. struct cftype *cft;
  2208. struct cgroup *cgroup;
  2209. };
  2210. static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
  2211. {
  2212. struct seq_file *sf = cb->state;
  2213. return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
  2214. }
  2215. static int cgroup_seqfile_show(struct seq_file *m, void *arg)
  2216. {
  2217. struct cgroup_seqfile_state *state = m->private;
  2218. struct cftype *cft = state->cft;
  2219. if (cft->read_map) {
  2220. struct cgroup_map_cb cb = {
  2221. .fill = cgroup_map_add,
  2222. .state = m,
  2223. };
  2224. return cft->read_map(state->cgroup, cft, &cb);
  2225. }
  2226. return cft->read_seq_string(state->cgroup, cft, m);
  2227. }
  2228. static int cgroup_seqfile_release(struct inode *inode, struct file *file)
  2229. {
  2230. struct seq_file *seq = file->private_data;
  2231. kfree(seq->private);
  2232. return single_release(inode, file);
  2233. }
  2234. static const struct file_operations cgroup_seqfile_operations = {
  2235. .read = seq_read,
  2236. .write = cgroup_file_write,
  2237. .llseek = seq_lseek,
  2238. .release = cgroup_seqfile_release,
  2239. };
  2240. static int cgroup_file_open(struct inode *inode, struct file *file)
  2241. {
  2242. int err;
  2243. struct cftype *cft;
  2244. err = generic_file_open(inode, file);
  2245. if (err)
  2246. return err;
  2247. cft = __d_cft(file->f_dentry);
  2248. if (cft->read_map || cft->read_seq_string) {
  2249. struct cgroup_seqfile_state *state =
  2250. kzalloc(sizeof(*state), GFP_USER);
  2251. if (!state)
  2252. return -ENOMEM;
  2253. state->cft = cft;
  2254. state->cgroup = __d_cgrp(file->f_dentry->d_parent);
  2255. file->f_op = &cgroup_seqfile_operations;
  2256. err = single_open(file, cgroup_seqfile_show, state);
  2257. if (err < 0)
  2258. kfree(state);
  2259. } else if (cft->open)
  2260. err = cft->open(inode, file);
  2261. else
  2262. err = 0;
  2263. return err;
  2264. }
  2265. static int cgroup_file_release(struct inode *inode, struct file *file)
  2266. {
  2267. struct cftype *cft = __d_cft(file->f_dentry);
  2268. if (cft->release)
  2269. return cft->release(inode, file);
  2270. return 0;
  2271. }
  2272. /*
  2273. * cgroup_rename - Only allow simple rename of directories in place.
  2274. */
  2275. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  2276. struct inode *new_dir, struct dentry *new_dentry)
  2277. {
  2278. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  2279. return -ENOTDIR;
  2280. if (new_dentry->d_inode)
  2281. return -EEXIST;
  2282. if (old_dir != new_dir)
  2283. return -EIO;
  2284. return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  2285. }
  2286. static const struct file_operations cgroup_file_operations = {
  2287. .read = cgroup_file_read,
  2288. .write = cgroup_file_write,
  2289. .llseek = generic_file_llseek,
  2290. .open = cgroup_file_open,
  2291. .release = cgroup_file_release,
  2292. };
  2293. static const struct inode_operations cgroup_dir_inode_operations = {
  2294. .lookup = cgroup_lookup,
  2295. .mkdir = cgroup_mkdir,
  2296. .rmdir = cgroup_rmdir,
  2297. .rename = cgroup_rename,
  2298. };
  2299. static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  2300. {
  2301. if (dentry->d_name.len > NAME_MAX)
  2302. return ERR_PTR(-ENAMETOOLONG);
  2303. d_add(dentry, NULL);
  2304. return NULL;
  2305. }
  2306. /*
  2307. * Check if a file is a control file
  2308. */
  2309. static inline struct cftype *__file_cft(struct file *file)
  2310. {
  2311. if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
  2312. return ERR_PTR(-EINVAL);
  2313. return __d_cft(file->f_dentry);
  2314. }
  2315. static int cgroup_create_file(struct dentry *dentry, mode_t mode,
  2316. struct super_block *sb)
  2317. {
  2318. struct inode *inode;
  2319. if (!dentry)
  2320. return -ENOENT;
  2321. if (dentry->d_inode)
  2322. return -EEXIST;
  2323. inode = cgroup_new_inode(mode, sb);
  2324. if (!inode)
  2325. return -ENOMEM;
  2326. if (S_ISDIR(mode)) {
  2327. inode->i_op = &cgroup_dir_inode_operations;
  2328. inode->i_fop = &simple_dir_operations;
  2329. /* start off with i_nlink == 2 (for "." entry) */
  2330. inc_nlink(inode);
  2331. /* start with the directory inode held, so that we can
  2332. * populate it without racing with another mkdir */
  2333. mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
  2334. } else if (S_ISREG(mode)) {
  2335. inode->i_size = 0;
  2336. inode->i_fop = &cgroup_file_operations;
  2337. }
  2338. d_instantiate(dentry, inode);
  2339. dget(dentry); /* Extra count - pin the dentry in core */
  2340. return 0;
  2341. }
  2342. /*
  2343. * cgroup_create_dir - create a directory for an object.
  2344. * @cgrp: the cgroup we create the directory for. It must have a valid
  2345. * ->parent field. And we are going to fill its ->dentry field.
  2346. * @dentry: dentry of the new cgroup
  2347. * @mode: mode to set on new directory.
  2348. */
  2349. static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
  2350. mode_t mode)
  2351. {
  2352. struct dentry *parent;
  2353. int error = 0;
  2354. parent = cgrp->parent->dentry;
  2355. error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
  2356. if (!error) {
  2357. dentry->d_fsdata = cgrp;
  2358. inc_nlink(parent->d_inode);
  2359. rcu_assign_pointer(cgrp->dentry, dentry);
  2360. dget(dentry);
  2361. }
  2362. dput(dentry);
  2363. return error;
  2364. }
  2365. /**
  2366. * cgroup_file_mode - deduce file mode of a control file
  2367. * @cft: the control file in question
  2368. *
  2369. * returns cft->mode if ->mode is not 0
  2370. * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
  2371. * returns S_IRUGO if it has only a read handler
  2372. * returns S_IWUSR if it has only a write hander
  2373. */
  2374. static mode_t cgroup_file_mode(const struct cftype *cft)
  2375. {
  2376. mode_t mode = 0;
  2377. if (cft->mode)
  2378. return cft->mode;
  2379. if (cft->read || cft->read_u64 || cft->read_s64 ||
  2380. cft->read_map || cft->read_seq_string)
  2381. mode |= S_IRUGO;
  2382. if (cft->write || cft->write_u64 || cft->write_s64 ||
  2383. cft->write_string || cft->trigger)
  2384. mode |= S_IWUSR;
  2385. return mode;
  2386. }
  2387. int cgroup_add_file(struct cgroup *cgrp,
  2388. struct cgroup_subsys *subsys,
  2389. const struct cftype *cft)
  2390. {
  2391. struct dentry *dir = cgrp->dentry;
  2392. struct dentry *dentry;
  2393. int error;
  2394. mode_t mode;
  2395. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  2396. if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
  2397. strcpy(name, subsys->name);
  2398. strcat(name, ".");
  2399. }
  2400. strcat(name, cft->name);
  2401. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  2402. dentry = lookup_one_len(name, dir, strlen(name));
  2403. if (!IS_ERR(dentry)) {
  2404. mode = cgroup_file_mode(cft);
  2405. error = cgroup_create_file(dentry, mode | S_IFREG,
  2406. cgrp->root->sb);
  2407. if (!error)
  2408. dentry->d_fsdata = (void *)cft;
  2409. dput(dentry);
  2410. } else
  2411. error = PTR_ERR(dentry);
  2412. return error;
  2413. }
  2414. EXPORT_SYMBOL_GPL(cgroup_add_file);
  2415. int cgroup_add_files(struct cgroup *cgrp,
  2416. struct cgroup_subsys *subsys,
  2417. const struct cftype cft[],
  2418. int count)
  2419. {
  2420. int i, err;
  2421. for (i = 0; i < count; i++) {
  2422. err = cgroup_add_file(cgrp, subsys, &cft[i]);
  2423. if (err)
  2424. return err;
  2425. }
  2426. return 0;
  2427. }
  2428. EXPORT_SYMBOL_GPL(cgroup_add_files);
  2429. /**
  2430. * cgroup_task_count - count the number of tasks in a cgroup.
  2431. * @cgrp: the cgroup in question
  2432. *
  2433. * Return the number of tasks in the cgroup.
  2434. */
  2435. int cgroup_task_count(const struct cgroup *cgrp)
  2436. {
  2437. int count = 0;
  2438. struct cg_cgroup_link *link;
  2439. read_lock(&css_set_lock);
  2440. list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
  2441. count += atomic_read(&link->cg->refcount);
  2442. }
  2443. read_unlock(&css_set_lock);
  2444. return count;
  2445. }
  2446. /*
  2447. * Advance a list_head iterator. The iterator should be positioned at
  2448. * the start of a css_set
  2449. */
  2450. static void cgroup_advance_iter(struct cgroup *cgrp,
  2451. struct cgroup_iter *it)
  2452. {
  2453. struct list_head *l = it->cg_link;
  2454. struct cg_cgroup_link *link;
  2455. struct css_set *cg;
  2456. /* Advance to the next non-empty css_set */
  2457. do {
  2458. l = l->next;
  2459. if (l == &cgrp->css_sets) {
  2460. it->cg_link = NULL;
  2461. return;
  2462. }
  2463. link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
  2464. cg = link->cg;
  2465. } while (list_empty(&cg->tasks));
  2466. it->cg_link = l;
  2467. it->task = cg->tasks.next;
  2468. }
  2469. /*
  2470. * To reduce the fork() overhead for systems that are not actually
  2471. * using their cgroups capability, we don't maintain the lists running
  2472. * through each css_set to its tasks until we see the list actually
  2473. * used - in other words after the first call to cgroup_iter_start().
  2474. *
  2475. * The tasklist_lock is not held here, as do_each_thread() and
  2476. * while_each_thread() are protected by RCU.
  2477. */
  2478. static void cgroup_enable_task_cg_lists(void)
  2479. {
  2480. struct task_struct *p, *g;
  2481. write_lock(&css_set_lock);
  2482. use_task_css_set_links = 1;
  2483. do_each_thread(g, p) {
  2484. task_lock(p);
  2485. /*
  2486. * We should check if the process is exiting, otherwise
  2487. * it will race with cgroup_exit() in that the list
  2488. * entry won't be deleted though the process has exited.
  2489. */
  2490. if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
  2491. list_add(&p->cg_list, &p->cgroups->tasks);
  2492. task_unlock(p);
  2493. } while_each_thread(g, p);
  2494. write_unlock(&css_set_lock);
  2495. }
  2496. void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
  2497. {
  2498. /*
  2499. * The first time anyone tries to iterate across a cgroup,
  2500. * we need to enable the list linking each css_set to its
  2501. * tasks, and fix up all existing tasks.
  2502. */
  2503. if (!use_task_css_set_links)
  2504. cgroup_enable_task_cg_lists();
  2505. read_lock(&css_set_lock);
  2506. it->cg_link = &cgrp->css_sets;
  2507. cgroup_advance_iter(cgrp, it);
  2508. }
  2509. struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
  2510. struct cgroup_iter *it)
  2511. {
  2512. struct task_struct *res;
  2513. struct list_head *l = it->task;
  2514. struct cg_cgroup_link *link;
  2515. /* If the iterator cg is NULL, we have no tasks */
  2516. if (!it->cg_link)
  2517. return NULL;
  2518. res = list_entry(l, struct task_struct, cg_list);
  2519. /* Advance iterator to find next entry */
  2520. l = l->next;
  2521. link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
  2522. if (l == &link->cg->tasks) {
  2523. /* We reached the end of this task list - move on to
  2524. * the next cg_cgroup_link */
  2525. cgroup_advance_iter(cgrp, it);
  2526. } else {
  2527. it->task = l;
  2528. }
  2529. return res;
  2530. }
  2531. void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
  2532. {
  2533. read_unlock(&css_set_lock);
  2534. }
  2535. static inline int started_after_time(struct task_struct *t1,
  2536. struct timespec *time,
  2537. struct task_struct *t2)
  2538. {
  2539. int start_diff = timespec_compare(&t1->start_time, time);
  2540. if (start_diff > 0) {
  2541. return 1;
  2542. } else if (start_diff < 0) {
  2543. return 0;
  2544. } else {
  2545. /*
  2546. * Arbitrarily, if two processes started at the same
  2547. * time, we'll say that the lower pointer value
  2548. * started first. Note that t2 may have exited by now
  2549. * so this may not be a valid pointer any longer, but
  2550. * that's fine - it still serves to distinguish
  2551. * between two tasks started (effectively) simultaneously.
  2552. */
  2553. return t1 > t2;
  2554. }
  2555. }
  2556. /*
  2557. * This function is a callback from heap_insert() and is used to order
  2558. * the heap.
  2559. * In this case we order the heap in descending task start time.
  2560. */
  2561. static inline int started_after(void *p1, void *p2)
  2562. {
  2563. struct task_struct *t1 = p1;
  2564. struct task_struct *t2 = p2;
  2565. return started_after_time(t1, &t2->start_time, t2);
  2566. }
  2567. /**
  2568. * cgroup_scan_tasks - iterate though all the tasks in a cgroup
  2569. * @scan: struct cgroup_scanner containing arguments for the scan
  2570. *
  2571. * Arguments include pointers to callback functions test_task() and
  2572. * process_task().
  2573. * Iterate through all the tasks in a cgroup, calling test_task() for each,
  2574. * and if it returns true, call process_task() for it also.
  2575. * The test_task pointer may be NULL, meaning always true (select all tasks).
  2576. * Effectively duplicates cgroup_iter_{start,next,end}()
  2577. * but does not lock css_set_lock for the call to process_task().
  2578. * The struct cgroup_scanner may be embedded in any structure of the caller's
  2579. * creation.
  2580. * It is guaranteed that process_task() will act on every task that
  2581. * is a member of the cgroup for the duration of this call. This
  2582. * function may or may not call process_task() for tasks that exit
  2583. * or move to a different cgroup during the call, or are forked or
  2584. * move into the cgroup during the call.
  2585. *
  2586. * Note that test_task() may be called with locks held, and may in some
  2587. * situations be called multiple times for the same task, so it should
  2588. * be cheap.
  2589. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
  2590. * pre-allocated and will be used for heap operations (and its "gt" member will
  2591. * be overwritten), else a temporary heap will be used (allocation of which
  2592. * may cause this function to fail).
  2593. */
  2594. int cgroup_scan_tasks(struct cgroup_scanner *scan)
  2595. {
  2596. int retval, i;
  2597. struct cgroup_iter it;
  2598. struct task_struct *p, *dropped;
  2599. /* Never dereference latest_task, since it's not refcounted */
  2600. struct task_struct *latest_task = NULL;
  2601. struct ptr_heap tmp_heap;
  2602. struct ptr_heap *heap;
  2603. struct timespec latest_time = { 0, 0 };
  2604. if (scan->heap) {
  2605. /* The caller supplied our heap and pre-allocated its memory */
  2606. heap = scan->heap;
  2607. heap->gt = &started_after;
  2608. } else {
  2609. /* We need to allocate our own heap memory */
  2610. heap = &tmp_heap;
  2611. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  2612. if (retval)
  2613. /* cannot allocate the heap */
  2614. return retval;
  2615. }
  2616. again:
  2617. /*
  2618. * Scan tasks in the cgroup, using the scanner's "test_task" callback
  2619. * to determine which are of interest, and using the scanner's
  2620. * "process_task" callback to process any of them that need an update.
  2621. * Since we don't want to hold any locks during the task updates,
  2622. * gather tasks to be processed in a heap structure.
  2623. * The heap is sorted by descending task start time.
  2624. * If the statically-sized heap fills up, we overflow tasks that
  2625. * started later, and in future iterations only consider tasks that
  2626. * started after the latest task in the previous pass. This
  2627. * guarantees forward progress and that we don't miss any tasks.
  2628. */
  2629. heap->size = 0;
  2630. cgroup_iter_start(scan->cg, &it);
  2631. while ((p = cgroup_iter_next(scan->cg, &it))) {
  2632. /*
  2633. * Only affect tasks that qualify per the caller's callback,
  2634. * if he provided one
  2635. */
  2636. if (scan->test_task && !scan->test_task(p, scan))
  2637. continue;
  2638. /*
  2639. * Only process tasks that started after the last task
  2640. * we processed
  2641. */
  2642. if (!started_after_time(p, &latest_time, latest_task))
  2643. continue;
  2644. dropped = heap_insert(heap, p);
  2645. if (dropped == NULL) {
  2646. /*
  2647. * The new task was inserted; the heap wasn't
  2648. * previously full
  2649. */
  2650. get_task_struct(p);
  2651. } else if (dropped != p) {
  2652. /*
  2653. * The new task was inserted, and pushed out a
  2654. * different task
  2655. */
  2656. get_task_struct(p);
  2657. put_task_struct(dropped);
  2658. }
  2659. /*
  2660. * Else the new task was newer than anything already in
  2661. * the heap and wasn't inserted
  2662. */
  2663. }
  2664. cgroup_iter_end(scan->cg, &it);
  2665. if (heap->size) {
  2666. for (i = 0; i < heap->size; i++) {
  2667. struct task_struct *q = heap->ptrs[i];
  2668. if (i == 0) {
  2669. latest_time = q->start_time;
  2670. latest_task = q;
  2671. }
  2672. /* Process the task per the caller's callback */
  2673. scan->process_task(q, scan);
  2674. put_task_struct(q);
  2675. }
  2676. /*
  2677. * If we had to process any tasks at all, scan again
  2678. * in case some of them were in the middle of forking
  2679. * children that didn't get processed.
  2680. * Not the most efficient way to do it, but it avoids
  2681. * having to take callback_mutex in the fork path
  2682. */
  2683. goto again;
  2684. }
  2685. if (heap == &tmp_heap)
  2686. heap_free(&tmp_heap);
  2687. return 0;
  2688. }
  2689. /*
  2690. * Stuff for reading the 'tasks'/'procs' files.
  2691. *
  2692. * Reading this file can return large amounts of data if a cgroup has
  2693. * *lots* of attached tasks. So it may need several calls to read(),
  2694. * but we cannot guarantee that the information we produce is correct
  2695. * unless we produce it entirely atomically.
  2696. *
  2697. */
  2698. /*
  2699. * The following two functions "fix" the issue where there are more pids
  2700. * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
  2701. * TODO: replace with a kernel-wide solution to this problem
  2702. */
  2703. #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
  2704. static void *pidlist_allocate(int count)
  2705. {
  2706. if (PIDLIST_TOO_LARGE(count))
  2707. return vmalloc(count * sizeof(pid_t));
  2708. else
  2709. return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
  2710. }
  2711. static void pidlist_free(void *p)
  2712. {
  2713. if (is_vmalloc_addr(p))
  2714. vfree(p);
  2715. else
  2716. kfree(p);
  2717. }
  2718. static void *pidlist_resize(void *p, int newcount)
  2719. {
  2720. void *newlist;
  2721. /* note: if new alloc fails, old p will still be valid either way */
  2722. if (is_vmalloc_addr(p)) {
  2723. newlist = vmalloc(newcount * sizeof(pid_t));
  2724. if (!newlist)
  2725. return NULL;
  2726. memcpy(newlist, p, newcount * sizeof(pid_t));
  2727. vfree(p);
  2728. } else {
  2729. newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
  2730. }
  2731. return newlist;
  2732. }
  2733. /*
  2734. * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
  2735. * If the new stripped list is sufficiently smaller and there's enough memory
  2736. * to allocate a new buffer, will let go of the unneeded memory. Returns the
  2737. * number of unique elements.
  2738. */
  2739. /* is the size difference enough that we should re-allocate the array? */
  2740. #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
  2741. static int pidlist_uniq(pid_t **p, int length)
  2742. {
  2743. int src, dest = 1;
  2744. pid_t *list = *p;
  2745. pid_t *newlist;
  2746. /*
  2747. * we presume the 0th element is unique, so i starts at 1. trivial
  2748. * edge cases first; no work needs to be done for either
  2749. */
  2750. if (length == 0 || length == 1)
  2751. return length;
  2752. /* src and dest walk down the list; dest counts unique elements */
  2753. for (src = 1; src < length; src++) {
  2754. /* find next unique element */
  2755. while (list[src] == list[src-1]) {
  2756. src++;
  2757. if (src == length)
  2758. goto after;
  2759. }
  2760. /* dest always points to where the next unique element goes */
  2761. list[dest] = list[src];
  2762. dest++;
  2763. }
  2764. after:
  2765. /*
  2766. * if the length difference is large enough, we want to allocate a
  2767. * smaller buffer to save memory. if this fails due to out of memory,
  2768. * we'll just stay with what we've got.
  2769. */
  2770. if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
  2771. newlist = pidlist_resize(list, dest);
  2772. if (newlist)
  2773. *p = newlist;
  2774. }
  2775. return dest;
  2776. }
  2777. static int cmppid(const void *a, const void *b)
  2778. {
  2779. return *(pid_t *)a - *(pid_t *)b;
  2780. }
  2781. /*
  2782. * find the appropriate pidlist for our purpose (given procs vs tasks)
  2783. * returns with the lock on that pidlist already held, and takes care
  2784. * of the use count, or returns NULL with no locks held if we're out of
  2785. * memory.
  2786. */
  2787. static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
  2788. enum cgroup_filetype type)
  2789. {
  2790. struct cgroup_pidlist *l;
  2791. /* don't need task_nsproxy() if we're looking at ourself */
  2792. struct pid_namespace *ns = current->nsproxy->pid_ns;
  2793. /*
  2794. * We can't drop the pidlist_mutex before taking the l->mutex in case
  2795. * the last ref-holder is trying to remove l from the list at the same
  2796. * time. Holding the pidlist_mutex precludes somebody taking whichever
  2797. * list we find out from under us - compare release_pid_array().
  2798. */
  2799. mutex_lock(&cgrp->pidlist_mutex);
  2800. list_for_each_entry(l, &cgrp->pidlists, links) {
  2801. if (l->key.type == type && l->key.ns == ns) {
  2802. /* make sure l doesn't vanish out from under us */
  2803. down_write(&l->mutex);
  2804. mutex_unlock(&cgrp->pidlist_mutex);
  2805. return l;
  2806. }
  2807. }
  2808. /* entry not found; create a new one */
  2809. l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
  2810. if (!l) {
  2811. mutex_unlock(&cgrp->pidlist_mutex);
  2812. return l;
  2813. }
  2814. init_rwsem(&l->mutex);
  2815. down_write(&l->mutex);
  2816. l->key.type = type;
  2817. l->key.ns = get_pid_ns(ns);
  2818. l->use_count = 0; /* don't increment here */
  2819. l->list = NULL;
  2820. l->owner = cgrp;
  2821. list_add(&l->links, &cgrp->pidlists);
  2822. mutex_unlock(&cgrp->pidlist_mutex);
  2823. return l;
  2824. }
  2825. /*
  2826. * Load a cgroup's pidarray with either procs' tgids or tasks' pids
  2827. */
  2828. static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
  2829. struct cgroup_pidlist **lp)
  2830. {
  2831. pid_t *array;
  2832. int length;
  2833. int pid, n = 0; /* used for populating the array */
  2834. struct cgroup_iter it;
  2835. struct task_struct *tsk;
  2836. struct cgroup_pidlist *l;
  2837. /*
  2838. * If cgroup gets more users after we read count, we won't have
  2839. * enough space - tough. This race is indistinguishable to the
  2840. * caller from the case that the additional cgroup users didn't
  2841. * show up until sometime later on.
  2842. */
  2843. length = cgroup_task_count(cgrp);
  2844. array = pidlist_allocate(length);
  2845. if (!array)
  2846. return -ENOMEM;
  2847. /* now, populate the array */
  2848. cgroup_iter_start(cgrp, &it);
  2849. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  2850. if (unlikely(n == length))
  2851. break;
  2852. /* get tgid or pid for procs or tasks file respectively */
  2853. if (type == CGROUP_FILE_PROCS)
  2854. pid = task_tgid_vnr(tsk);
  2855. else
  2856. pid = task_pid_vnr(tsk);
  2857. if (pid > 0) /* make sure to only use valid results */
  2858. array[n++] = pid;
  2859. }
  2860. cgroup_iter_end(cgrp, &it);
  2861. length = n;
  2862. /* now sort & (if procs) strip out duplicates */
  2863. sort(array, length, sizeof(pid_t), cmppid, NULL);
  2864. if (type == CGROUP_FILE_PROCS)
  2865. length = pidlist_uniq(&array, length);
  2866. l = cgroup_pidlist_find(cgrp, type);
  2867. if (!l) {
  2868. pidlist_free(array);
  2869. return -ENOMEM;
  2870. }
  2871. /* store array, freeing old if necessary - lock already held */
  2872. pidlist_free(l->list);
  2873. l->list = array;
  2874. l->length = length;
  2875. l->use_count++;
  2876. up_write(&l->mutex);
  2877. *lp = l;
  2878. return 0;
  2879. }
  2880. /**
  2881. * cgroupstats_build - build and fill cgroupstats
  2882. * @stats: cgroupstats to fill information into
  2883. * @dentry: A dentry entry belonging to the cgroup for which stats have
  2884. * been requested.
  2885. *
  2886. * Build and fill cgroupstats so that taskstats can export it to user
  2887. * space.
  2888. */
  2889. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  2890. {
  2891. int ret = -EINVAL;
  2892. struct cgroup *cgrp;
  2893. struct cgroup_iter it;
  2894. struct task_struct *tsk;
  2895. /*
  2896. * Validate dentry by checking the superblock operations,
  2897. * and make sure it's a directory.
  2898. */
  2899. if (dentry->d_sb->s_op != &cgroup_ops ||
  2900. !S_ISDIR(dentry->d_inode->i_mode))
  2901. goto err;
  2902. ret = 0;
  2903. cgrp = dentry->d_fsdata;
  2904. cgroup_iter_start(cgrp, &it);
  2905. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  2906. switch (tsk->state) {
  2907. case TASK_RUNNING:
  2908. stats->nr_running++;
  2909. break;
  2910. case TASK_INTERRUPTIBLE:
  2911. stats->nr_sleeping++;
  2912. break;
  2913. case TASK_UNINTERRUPTIBLE:
  2914. stats->nr_uninterruptible++;
  2915. break;
  2916. case TASK_STOPPED:
  2917. stats->nr_stopped++;
  2918. break;
  2919. default:
  2920. if (delayacct_is_task_waiting_on_io(tsk))
  2921. stats->nr_io_wait++;
  2922. break;
  2923. }
  2924. }
  2925. cgroup_iter_end(cgrp, &it);
  2926. err:
  2927. return ret;
  2928. }
  2929. /*
  2930. * seq_file methods for the tasks/procs files. The seq_file position is the
  2931. * next pid to display; the seq_file iterator is a pointer to the pid
  2932. * in the cgroup->l->list array.
  2933. */
  2934. static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
  2935. {
  2936. /*
  2937. * Initially we receive a position value that corresponds to
  2938. * one more than the last pid shown (or 0 on the first call or
  2939. * after a seek to the start). Use a binary-search to find the
  2940. * next pid to display, if any
  2941. */
  2942. struct cgroup_pidlist *l = s->private;
  2943. int index = 0, pid = *pos;
  2944. int *iter;
  2945. down_read(&l->mutex);
  2946. if (pid) {
  2947. int end = l->length;
  2948. while (index < end) {
  2949. int mid = (index + end) / 2;
  2950. if (l->list[mid] == pid) {
  2951. index = mid;
  2952. break;
  2953. } else if (l->list[mid] <= pid)
  2954. index = mid + 1;
  2955. else
  2956. end = mid;
  2957. }
  2958. }
  2959. /* If we're off the end of the array, we're done */
  2960. if (index >= l->length)
  2961. return NULL;
  2962. /* Update the abstract position to be the actual pid that we found */
  2963. iter = l->list + index;
  2964. *pos = *iter;
  2965. return iter;
  2966. }
  2967. static void cgroup_pidlist_stop(struct seq_file *s, void *v)
  2968. {
  2969. struct cgroup_pidlist *l = s->private;
  2970. up_read(&l->mutex);
  2971. }
  2972. static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
  2973. {
  2974. struct cgroup_pidlist *l = s->private;
  2975. pid_t *p = v;
  2976. pid_t *end = l->list + l->length;
  2977. /*
  2978. * Advance to the next pid in the array. If this goes off the
  2979. * end, we're done
  2980. */
  2981. p++;
  2982. if (p >= end) {
  2983. return NULL;
  2984. } else {
  2985. *pos = *p;
  2986. return p;
  2987. }
  2988. }
  2989. static int cgroup_pidlist_show(struct seq_file *s, void *v)
  2990. {
  2991. return seq_printf(s, "%d\n", *(int *)v);
  2992. }
  2993. /*
  2994. * seq_operations functions for iterating on pidlists through seq_file -
  2995. * independent of whether it's tasks or procs
  2996. */
  2997. static const struct seq_operations cgroup_pidlist_seq_operations = {
  2998. .start = cgroup_pidlist_start,
  2999. .stop = cgroup_pidlist_stop,
  3000. .next = cgroup_pidlist_next,
  3001. .show = cgroup_pidlist_show,
  3002. };
  3003. static void cgroup_release_pid_array(struct cgroup_pidlist *l)
  3004. {
  3005. /*
  3006. * the case where we're the last user of this particular pidlist will
  3007. * have us remove it from the cgroup's list, which entails taking the
  3008. * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
  3009. * pidlist_mutex, we have to take pidlist_mutex first.
  3010. */
  3011. mutex_lock(&l->owner->pidlist_mutex);
  3012. down_write(&l->mutex);
  3013. BUG_ON(!l->use_count);
  3014. if (!--l->use_count) {
  3015. /* we're the last user if refcount is 0; remove and free */
  3016. list_del(&l->links);
  3017. mutex_unlock(&l->owner->pidlist_mutex);
  3018. pidlist_free(l->list);
  3019. put_pid_ns(l->key.ns);
  3020. up_write(&l->mutex);
  3021. kfree(l);
  3022. return;
  3023. }
  3024. mutex_unlock(&l->owner->pidlist_mutex);
  3025. up_write(&l->mutex);
  3026. }
  3027. static int cgroup_pidlist_release(struct inode *inode, struct file *file)
  3028. {
  3029. struct cgroup_pidlist *l;
  3030. if (!(file->f_mode & FMODE_READ))
  3031. return 0;
  3032. /*
  3033. * the seq_file will only be initialized if the file was opened for
  3034. * reading; hence we check if it's not null only in that case.
  3035. */
  3036. l = ((struct seq_file *)file->private_data)->private;
  3037. cgroup_release_pid_array(l);
  3038. return seq_release(inode, file);
  3039. }
  3040. static const struct file_operations cgroup_pidlist_operations = {
  3041. .read = seq_read,
  3042. .llseek = seq_lseek,
  3043. .write = cgroup_file_write,
  3044. .release = cgroup_pidlist_release,
  3045. };
  3046. /*
  3047. * The following functions handle opens on a file that displays a pidlist
  3048. * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
  3049. * in the cgroup.
  3050. */
  3051. /* helper function for the two below it */
  3052. static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
  3053. {
  3054. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  3055. struct cgroup_pidlist *l;
  3056. int retval;
  3057. /* Nothing to do for write-only files */
  3058. if (!(file->f_mode & FMODE_READ))
  3059. return 0;
  3060. /* have the array populated */
  3061. retval = pidlist_array_load(cgrp, type, &l);
  3062. if (retval)
  3063. return retval;
  3064. /* configure file information */
  3065. file->f_op = &cgroup_pidlist_operations;
  3066. retval = seq_open(file, &cgroup_pidlist_seq_operations);
  3067. if (retval) {
  3068. cgroup_release_pid_array(l);
  3069. return retval;
  3070. }
  3071. ((struct seq_file *)file->private_data)->private = l;
  3072. return 0;
  3073. }
  3074. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  3075. {
  3076. return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
  3077. }
  3078. static int cgroup_procs_open(struct inode *unused, struct file *file)
  3079. {
  3080. return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
  3081. }
  3082. static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
  3083. struct cftype *cft)
  3084. {
  3085. return notify_on_release(cgrp);
  3086. }
  3087. static int cgroup_write_notify_on_release(struct cgroup *cgrp,
  3088. struct cftype *cft,
  3089. u64 val)
  3090. {
  3091. clear_bit(CGRP_RELEASABLE, &cgrp->flags);
  3092. if (val)
  3093. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3094. else
  3095. clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3096. return 0;
  3097. }
  3098. /*
  3099. * Unregister event and free resources.
  3100. *
  3101. * Gets called from workqueue.
  3102. */
  3103. static void cgroup_event_remove(struct work_struct *work)
  3104. {
  3105. struct cgroup_event *event = container_of(work, struct cgroup_event,
  3106. remove);
  3107. struct cgroup *cgrp = event->cgrp;
  3108. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  3109. eventfd_ctx_put(event->eventfd);
  3110. kfree(event);
  3111. dput(cgrp->dentry);
  3112. }
  3113. /*
  3114. * Gets called on POLLHUP on eventfd when user closes it.
  3115. *
  3116. * Called with wqh->lock held and interrupts disabled.
  3117. */
  3118. static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
  3119. int sync, void *key)
  3120. {
  3121. struct cgroup_event *event = container_of(wait,
  3122. struct cgroup_event, wait);
  3123. struct cgroup *cgrp = event->cgrp;
  3124. unsigned long flags = (unsigned long)key;
  3125. if (flags & POLLHUP) {
  3126. __remove_wait_queue(event->wqh, &event->wait);
  3127. spin_lock(&cgrp->event_list_lock);
  3128. list_del(&event->list);
  3129. spin_unlock(&cgrp->event_list_lock);
  3130. /*
  3131. * We are in atomic context, but cgroup_event_remove() may
  3132. * sleep, so we have to call it in workqueue.
  3133. */
  3134. schedule_work(&event->remove);
  3135. }
  3136. return 0;
  3137. }
  3138. static void cgroup_event_ptable_queue_proc(struct file *file,
  3139. wait_queue_head_t *wqh, poll_table *pt)
  3140. {
  3141. struct cgroup_event *event = container_of(pt,
  3142. struct cgroup_event, pt);
  3143. event->wqh = wqh;
  3144. add_wait_queue(wqh, &event->wait);
  3145. }
  3146. /*
  3147. * Parse input and register new cgroup event handler.
  3148. *
  3149. * Input must be in format '<event_fd> <control_fd> <args>'.
  3150. * Interpretation of args is defined by control file implementation.
  3151. */
  3152. static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
  3153. const char *buffer)
  3154. {
  3155. struct cgroup_event *event = NULL;
  3156. unsigned int efd, cfd;
  3157. struct file *efile = NULL;
  3158. struct file *cfile = NULL;
  3159. char *endp;
  3160. int ret;
  3161. efd = simple_strtoul(buffer, &endp, 10);
  3162. if (*endp != ' ')
  3163. return -EINVAL;
  3164. buffer = endp + 1;
  3165. cfd = simple_strtoul(buffer, &endp, 10);
  3166. if ((*endp != ' ') && (*endp != '\0'))
  3167. return -EINVAL;
  3168. buffer = endp + 1;
  3169. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3170. if (!event)
  3171. return -ENOMEM;
  3172. event->cgrp = cgrp;
  3173. INIT_LIST_HEAD(&event->list);
  3174. init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
  3175. init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
  3176. INIT_WORK(&event->remove, cgroup_event_remove);
  3177. efile = eventfd_fget(efd);
  3178. if (IS_ERR(efile)) {
  3179. ret = PTR_ERR(efile);
  3180. goto fail;
  3181. }
  3182. event->eventfd = eventfd_ctx_fileget(efile);
  3183. if (IS_ERR(event->eventfd)) {
  3184. ret = PTR_ERR(event->eventfd);
  3185. goto fail;
  3186. }
  3187. cfile = fget(cfd);
  3188. if (!cfile) {
  3189. ret = -EBADF;
  3190. goto fail;
  3191. }
  3192. /* the process need read permission on control file */
  3193. /* AV: shouldn't we check that it's been opened for read instead? */
  3194. ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
  3195. if (ret < 0)
  3196. goto fail;
  3197. event->cft = __file_cft(cfile);
  3198. if (IS_ERR(event->cft)) {
  3199. ret = PTR_ERR(event->cft);
  3200. goto fail;
  3201. }
  3202. if (!event->cft->register_event || !event->cft->unregister_event) {
  3203. ret = -EINVAL;
  3204. goto fail;
  3205. }
  3206. ret = event->cft->register_event(cgrp, event->cft,
  3207. event->eventfd, buffer);
  3208. if (ret)
  3209. goto fail;
  3210. if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
  3211. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  3212. ret = 0;
  3213. goto fail;
  3214. }
  3215. /*
  3216. * Events should be removed after rmdir of cgroup directory, but before
  3217. * destroying subsystem state objects. Let's take reference to cgroup
  3218. * directory dentry to do that.
  3219. */
  3220. dget(cgrp->dentry);
  3221. spin_lock(&cgrp->event_list_lock);
  3222. list_add(&event->list, &cgrp->event_list);
  3223. spin_unlock(&cgrp->event_list_lock);
  3224. fput(cfile);
  3225. fput(efile);
  3226. return 0;
  3227. fail:
  3228. if (cfile)
  3229. fput(cfile);
  3230. if (event && event->eventfd && !IS_ERR(event->eventfd))
  3231. eventfd_ctx_put(event->eventfd);
  3232. if (!IS_ERR_OR_NULL(efile))
  3233. fput(efile);
  3234. kfree(event);
  3235. return ret;
  3236. }
  3237. static u64 cgroup_clone_children_read(struct cgroup *cgrp,
  3238. struct cftype *cft)
  3239. {
  3240. return clone_children(cgrp);
  3241. }
  3242. static int cgroup_clone_children_write(struct cgroup *cgrp,
  3243. struct cftype *cft,
  3244. u64 val)
  3245. {
  3246. if (val)
  3247. set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  3248. else
  3249. clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  3250. return 0;
  3251. }
  3252. /*
  3253. * for the common functions, 'private' gives the type of file
  3254. */
  3255. /* for hysterical raisins, we can't put this on the older files */
  3256. #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
  3257. static struct cftype files[] = {
  3258. {
  3259. .name = "tasks",
  3260. .open = cgroup_tasks_open,
  3261. .write_u64 = cgroup_tasks_write,
  3262. .release = cgroup_pidlist_release,
  3263. .mode = S_IRUGO | S_IWUSR,
  3264. },
  3265. {
  3266. .name = CGROUP_FILE_GENERIC_PREFIX "procs",
  3267. .open = cgroup_procs_open,
  3268. .write_u64 = cgroup_procs_write,
  3269. .release = cgroup_pidlist_release,
  3270. .mode = S_IRUGO | S_IWUSR,
  3271. },
  3272. {
  3273. .name = "notify_on_release",
  3274. .read_u64 = cgroup_read_notify_on_release,
  3275. .write_u64 = cgroup_write_notify_on_release,
  3276. },
  3277. {
  3278. .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
  3279. .write_string = cgroup_write_event_control,
  3280. .mode = S_IWUGO,
  3281. },
  3282. {
  3283. .name = "cgroup.clone_children",
  3284. .read_u64 = cgroup_clone_children_read,
  3285. .write_u64 = cgroup_clone_children_write,
  3286. },
  3287. };
  3288. static struct cftype cft_release_agent = {
  3289. .name = "release_agent",
  3290. .read_seq_string = cgroup_release_agent_show,
  3291. .write_string = cgroup_release_agent_write,
  3292. .max_write_len = PATH_MAX,
  3293. };
  3294. static int cgroup_populate_dir(struct cgroup *cgrp)
  3295. {
  3296. int err;
  3297. struct cgroup_subsys *ss;
  3298. /* First clear out any existing files */
  3299. cgroup_clear_directory(cgrp->dentry);
  3300. err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
  3301. if (err < 0)
  3302. return err;
  3303. if (cgrp == cgrp->top_cgroup) {
  3304. if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
  3305. return err;
  3306. }
  3307. for_each_subsys(cgrp->root, ss) {
  3308. if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
  3309. return err;
  3310. }
  3311. /* This cgroup is ready now */
  3312. for_each_subsys(cgrp->root, ss) {
  3313. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3314. /*
  3315. * Update id->css pointer and make this css visible from
  3316. * CSS ID functions. This pointer will be dereferened
  3317. * from RCU-read-side without locks.
  3318. */
  3319. if (css->id)
  3320. rcu_assign_pointer(css->id->css, css);
  3321. }
  3322. return 0;
  3323. }
  3324. static void init_cgroup_css(struct cgroup_subsys_state *css,
  3325. struct cgroup_subsys *ss,
  3326. struct cgroup *cgrp)
  3327. {
  3328. css->cgroup = cgrp;
  3329. atomic_set(&css->refcnt, 1);
  3330. css->flags = 0;
  3331. css->id = NULL;
  3332. if (cgrp == dummytop)
  3333. set_bit(CSS_ROOT, &css->flags);
  3334. BUG_ON(cgrp->subsys[ss->subsys_id]);
  3335. cgrp->subsys[ss->subsys_id] = css;
  3336. }
  3337. static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
  3338. {
  3339. /* We need to take each hierarchy_mutex in a consistent order */
  3340. int i;
  3341. /*
  3342. * No worry about a race with rebind_subsystems that might mess up the
  3343. * locking order, since both parties are under cgroup_mutex.
  3344. */
  3345. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3346. struct cgroup_subsys *ss = subsys[i];
  3347. if (ss == NULL)
  3348. continue;
  3349. if (ss->root == root)
  3350. mutex_lock(&ss->hierarchy_mutex);
  3351. }
  3352. }
  3353. static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
  3354. {
  3355. int i;
  3356. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3357. struct cgroup_subsys *ss = subsys[i];
  3358. if (ss == NULL)
  3359. continue;
  3360. if (ss->root == root)
  3361. mutex_unlock(&ss->hierarchy_mutex);
  3362. }
  3363. }
  3364. /*
  3365. * cgroup_create - create a cgroup
  3366. * @parent: cgroup that will be parent of the new cgroup
  3367. * @dentry: dentry of the new cgroup
  3368. * @mode: mode to set on new inode
  3369. *
  3370. * Must be called with the mutex on the parent inode held
  3371. */
  3372. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  3373. mode_t mode)
  3374. {
  3375. struct cgroup *cgrp;
  3376. struct cgroupfs_root *root = parent->root;
  3377. int err = 0;
  3378. struct cgroup_subsys *ss;
  3379. struct super_block *sb = root->sb;
  3380. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  3381. if (!cgrp)
  3382. return -ENOMEM;
  3383. /* Grab a reference on the superblock so the hierarchy doesn't
  3384. * get deleted on unmount if there are child cgroups. This
  3385. * can be done outside cgroup_mutex, since the sb can't
  3386. * disappear while someone has an open control file on the
  3387. * fs */
  3388. atomic_inc(&sb->s_active);
  3389. mutex_lock(&cgroup_mutex);
  3390. init_cgroup_housekeeping(cgrp);
  3391. cgrp->parent = parent;
  3392. cgrp->root = parent->root;
  3393. cgrp->top_cgroup = parent->top_cgroup;
  3394. if (notify_on_release(parent))
  3395. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3396. if (clone_children(parent))
  3397. set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  3398. for_each_subsys(root, ss) {
  3399. struct cgroup_subsys_state *css = ss->create(ss, cgrp);
  3400. if (IS_ERR(css)) {
  3401. err = PTR_ERR(css);
  3402. goto err_destroy;
  3403. }
  3404. init_cgroup_css(css, ss, cgrp);
  3405. if (ss->use_id) {
  3406. err = alloc_css_id(ss, parent, cgrp);
  3407. if (err)
  3408. goto err_destroy;
  3409. }
  3410. /* At error, ->destroy() callback has to free assigned ID. */
  3411. if (clone_children(parent) && ss->post_clone)
  3412. ss->post_clone(ss, cgrp);
  3413. }
  3414. cgroup_lock_hierarchy(root);
  3415. list_add(&cgrp->sibling, &cgrp->parent->children);
  3416. cgroup_unlock_hierarchy(root);
  3417. root->number_of_cgroups++;
  3418. err = cgroup_create_dir(cgrp, dentry, mode);
  3419. if (err < 0)
  3420. goto err_remove;
  3421. /* The cgroup directory was pre-locked for us */
  3422. BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
  3423. err = cgroup_populate_dir(cgrp);
  3424. /* If err < 0, we have a half-filled directory - oh well ;) */
  3425. mutex_unlock(&cgroup_mutex);
  3426. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  3427. return 0;
  3428. err_remove:
  3429. cgroup_lock_hierarchy(root);
  3430. list_del(&cgrp->sibling);
  3431. cgroup_unlock_hierarchy(root);
  3432. root->number_of_cgroups--;
  3433. err_destroy:
  3434. for_each_subsys(root, ss) {
  3435. if (cgrp->subsys[ss->subsys_id])
  3436. ss->destroy(ss, cgrp);
  3437. }
  3438. mutex_unlock(&cgroup_mutex);
  3439. /* Release the reference count that we took on the superblock */
  3440. deactivate_super(sb);
  3441. kfree(cgrp);
  3442. return err;
  3443. }
  3444. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  3445. {
  3446. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  3447. /* the vfs holds inode->i_mutex already */
  3448. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  3449. }
  3450. static int cgroup_has_css_refs(struct cgroup *cgrp)
  3451. {
  3452. /* Check the reference count on each subsystem. Since we
  3453. * already established that there are no tasks in the
  3454. * cgroup, if the css refcount is also 1, then there should
  3455. * be no outstanding references, so the subsystem is safe to
  3456. * destroy. We scan across all subsystems rather than using
  3457. * the per-hierarchy linked list of mounted subsystems since
  3458. * we can be called via check_for_release() with no
  3459. * synchronization other than RCU, and the subsystem linked
  3460. * list isn't RCU-safe */
  3461. int i;
  3462. /*
  3463. * We won't need to lock the subsys array, because the subsystems
  3464. * we're concerned about aren't going anywhere since our cgroup root
  3465. * has a reference on them.
  3466. */
  3467. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3468. struct cgroup_subsys *ss = subsys[i];
  3469. struct cgroup_subsys_state *css;
  3470. /* Skip subsystems not present or not in this hierarchy */
  3471. if (ss == NULL || ss->root != cgrp->root)
  3472. continue;
  3473. css = cgrp->subsys[ss->subsys_id];
  3474. /* When called from check_for_release() it's possible
  3475. * that by this point the cgroup has been removed
  3476. * and the css deleted. But a false-positive doesn't
  3477. * matter, since it can only happen if the cgroup
  3478. * has been deleted and hence no longer needs the
  3479. * release agent to be called anyway. */
  3480. if (css && (atomic_read(&css->refcnt) > 1))
  3481. return 1;
  3482. }
  3483. return 0;
  3484. }
  3485. /*
  3486. * Atomically mark all (or else none) of the cgroup's CSS objects as
  3487. * CSS_REMOVED. Return true on success, or false if the cgroup has
  3488. * busy subsystems. Call with cgroup_mutex held
  3489. */
  3490. static int cgroup_clear_css_refs(struct cgroup *cgrp)
  3491. {
  3492. struct cgroup_subsys *ss;
  3493. unsigned long flags;
  3494. bool failed = false;
  3495. local_irq_save(flags);
  3496. for_each_subsys(cgrp->root, ss) {
  3497. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3498. int refcnt;
  3499. while (1) {
  3500. /* We can only remove a CSS with a refcnt==1 */
  3501. refcnt = atomic_read(&css->refcnt);
  3502. if (refcnt > 1) {
  3503. failed = true;
  3504. goto done;
  3505. }
  3506. BUG_ON(!refcnt);
  3507. /*
  3508. * Drop the refcnt to 0 while we check other
  3509. * subsystems. This will cause any racing
  3510. * css_tryget() to spin until we set the
  3511. * CSS_REMOVED bits or abort
  3512. */
  3513. if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
  3514. break;
  3515. cpu_relax();
  3516. }
  3517. }
  3518. done:
  3519. for_each_subsys(cgrp->root, ss) {
  3520. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3521. if (failed) {
  3522. /*
  3523. * Restore old refcnt if we previously managed
  3524. * to clear it from 1 to 0
  3525. */
  3526. if (!atomic_read(&css->refcnt))
  3527. atomic_set(&css->refcnt, 1);
  3528. } else {
  3529. /* Commit the fact that the CSS is removed */
  3530. set_bit(CSS_REMOVED, &css->flags);
  3531. }
  3532. }
  3533. local_irq_restore(flags);
  3534. return !failed;
  3535. }
  3536. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  3537. {
  3538. struct cgroup *cgrp = dentry->d_fsdata;
  3539. struct dentry *d;
  3540. struct cgroup *parent;
  3541. DEFINE_WAIT(wait);
  3542. struct cgroup_event *event, *tmp;
  3543. int ret;
  3544. /* the vfs holds both inode->i_mutex already */
  3545. again:
  3546. mutex_lock(&cgroup_mutex);
  3547. if (atomic_read(&cgrp->count) != 0) {
  3548. mutex_unlock(&cgroup_mutex);
  3549. return -EBUSY;
  3550. }
  3551. if (!list_empty(&cgrp->children)) {
  3552. mutex_unlock(&cgroup_mutex);
  3553. return -EBUSY;
  3554. }
  3555. mutex_unlock(&cgroup_mutex);
  3556. /*
  3557. * In general, subsystem has no css->refcnt after pre_destroy(). But
  3558. * in racy cases, subsystem may have to get css->refcnt after
  3559. * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
  3560. * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
  3561. * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
  3562. * and subsystem's reference count handling. Please see css_get/put
  3563. * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
  3564. */
  3565. set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3566. /*
  3567. * Call pre_destroy handlers of subsys. Notify subsystems
  3568. * that rmdir() request comes.
  3569. */
  3570. ret = cgroup_call_pre_destroy(cgrp);
  3571. if (ret) {
  3572. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3573. return ret;
  3574. }
  3575. mutex_lock(&cgroup_mutex);
  3576. parent = cgrp->parent;
  3577. if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
  3578. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3579. mutex_unlock(&cgroup_mutex);
  3580. return -EBUSY;
  3581. }
  3582. prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
  3583. if (!cgroup_clear_css_refs(cgrp)) {
  3584. mutex_unlock(&cgroup_mutex);
  3585. /*
  3586. * Because someone may call cgroup_wakeup_rmdir_waiter() before
  3587. * prepare_to_wait(), we need to check this flag.
  3588. */
  3589. if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
  3590. schedule();
  3591. finish_wait(&cgroup_rmdir_waitq, &wait);
  3592. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3593. if (signal_pending(current))
  3594. return -EINTR;
  3595. goto again;
  3596. }
  3597. /* NO css_tryget() can success after here. */
  3598. finish_wait(&cgroup_rmdir_waitq, &wait);
  3599. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3600. raw_spin_lock(&release_list_lock);
  3601. set_bit(CGRP_REMOVED, &cgrp->flags);
  3602. if (!list_empty(&cgrp->release_list))
  3603. list_del_init(&cgrp->release_list);
  3604. raw_spin_unlock(&release_list_lock);
  3605. cgroup_lock_hierarchy(cgrp->root);
  3606. /* delete this cgroup from parent->children */
  3607. list_del_init(&cgrp->sibling);
  3608. cgroup_unlock_hierarchy(cgrp->root);
  3609. d = dget(cgrp->dentry);
  3610. cgroup_d_remove_dir(d);
  3611. dput(d);
  3612. set_bit(CGRP_RELEASABLE, &parent->flags);
  3613. check_for_release(parent);
  3614. /*
  3615. * Unregister events and notify userspace.
  3616. * Notify userspace about cgroup removing only after rmdir of cgroup
  3617. * directory to avoid race between userspace and kernelspace
  3618. */
  3619. spin_lock(&cgrp->event_list_lock);
  3620. list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
  3621. list_del(&event->list);
  3622. remove_wait_queue(event->wqh, &event->wait);
  3623. eventfd_signal(event->eventfd, 1);
  3624. schedule_work(&event->remove);
  3625. }
  3626. spin_unlock(&cgrp->event_list_lock);
  3627. mutex_unlock(&cgroup_mutex);
  3628. return 0;
  3629. }
  3630. static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
  3631. {
  3632. struct cgroup_subsys_state *css;
  3633. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  3634. /* Create the top cgroup state for this subsystem */
  3635. list_add(&ss->sibling, &rootnode.subsys_list);
  3636. ss->root = &rootnode;
  3637. css = ss->create(ss, dummytop);
  3638. /* We don't handle early failures gracefully */
  3639. BUG_ON(IS_ERR(css));
  3640. init_cgroup_css(css, ss, dummytop);
  3641. /* Update the init_css_set to contain a subsys
  3642. * pointer to this state - since the subsystem is
  3643. * newly registered, all tasks and hence the
  3644. * init_css_set is in the subsystem's top cgroup. */
  3645. init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
  3646. need_forkexit_callback |= ss->fork || ss->exit;
  3647. /* At system boot, before all subsystems have been
  3648. * registered, no tasks have been forked, so we don't
  3649. * need to invoke fork callbacks here. */
  3650. BUG_ON(!list_empty(&init_task.tasks));
  3651. mutex_init(&ss->hierarchy_mutex);
  3652. lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
  3653. ss->active = 1;
  3654. /* this function shouldn't be used with modular subsystems, since they
  3655. * need to register a subsys_id, among other things */
  3656. BUG_ON(ss->module);
  3657. }
  3658. /**
  3659. * cgroup_load_subsys: load and register a modular subsystem at runtime
  3660. * @ss: the subsystem to load
  3661. *
  3662. * This function should be called in a modular subsystem's initcall. If the
  3663. * subsystem is built as a module, it will be assigned a new subsys_id and set
  3664. * up for use. If the subsystem is built-in anyway, work is delegated to the
  3665. * simpler cgroup_init_subsys.
  3666. */
  3667. int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
  3668. {
  3669. int i;
  3670. struct cgroup_subsys_state *css;
  3671. /* check name and function validity */
  3672. if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
  3673. ss->create == NULL || ss->destroy == NULL)
  3674. return -EINVAL;
  3675. /*
  3676. * we don't support callbacks in modular subsystems. this check is
  3677. * before the ss->module check for consistency; a subsystem that could
  3678. * be a module should still have no callbacks even if the user isn't
  3679. * compiling it as one.
  3680. */
  3681. if (ss->fork || ss->exit)
  3682. return -EINVAL;
  3683. /*
  3684. * an optionally modular subsystem is built-in: we want to do nothing,
  3685. * since cgroup_init_subsys will have already taken care of it.
  3686. */
  3687. if (ss->module == NULL) {
  3688. /* a few sanity checks */
  3689. BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
  3690. BUG_ON(subsys[ss->subsys_id] != ss);
  3691. return 0;
  3692. }
  3693. /*
  3694. * need to register a subsys id before anything else - for example,
  3695. * init_cgroup_css needs it.
  3696. */
  3697. mutex_lock(&cgroup_mutex);
  3698. /* find the first empty slot in the array */
  3699. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  3700. if (subsys[i] == NULL)
  3701. break;
  3702. }
  3703. if (i == CGROUP_SUBSYS_COUNT) {
  3704. /* maximum number of subsystems already registered! */
  3705. mutex_unlock(&cgroup_mutex);
  3706. return -EBUSY;
  3707. }
  3708. /* assign ourselves the subsys_id */
  3709. ss->subsys_id = i;
  3710. subsys[i] = ss;
  3711. /*
  3712. * no ss->create seems to need anything important in the ss struct, so
  3713. * this can happen first (i.e. before the rootnode attachment).
  3714. */
  3715. css = ss->create(ss, dummytop);
  3716. if (IS_ERR(css)) {
  3717. /* failure case - need to deassign the subsys[] slot. */
  3718. subsys[i] = NULL;
  3719. mutex_unlock(&cgroup_mutex);
  3720. return PTR_ERR(css);
  3721. }
  3722. list_add(&ss->sibling, &rootnode.subsys_list);
  3723. ss->root = &rootnode;
  3724. /* our new subsystem will be attached to the dummy hierarchy. */
  3725. init_cgroup_css(css, ss, dummytop);
  3726. /* init_idr must be after init_cgroup_css because it sets css->id. */
  3727. if (ss->use_id) {
  3728. int ret = cgroup_init_idr(ss, css);
  3729. if (ret) {
  3730. dummytop->subsys[ss->subsys_id] = NULL;
  3731. ss->destroy(ss, dummytop);
  3732. subsys[i] = NULL;
  3733. mutex_unlock(&cgroup_mutex);
  3734. return ret;
  3735. }
  3736. }
  3737. /*
  3738. * Now we need to entangle the css into the existing css_sets. unlike
  3739. * in cgroup_init_subsys, there are now multiple css_sets, so each one
  3740. * will need a new pointer to it; done by iterating the css_set_table.
  3741. * furthermore, modifying the existing css_sets will corrupt the hash
  3742. * table state, so each changed css_set will need its hash recomputed.
  3743. * this is all done under the css_set_lock.
  3744. */
  3745. write_lock(&css_set_lock);
  3746. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  3747. struct css_set *cg;
  3748. struct hlist_node *node, *tmp;
  3749. struct hlist_head *bucket = &css_set_table[i], *new_bucket;
  3750. hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
  3751. /* skip entries that we already rehashed */
  3752. if (cg->subsys[ss->subsys_id])
  3753. continue;
  3754. /* remove existing entry */
  3755. hlist_del(&cg->hlist);
  3756. /* set new value */
  3757. cg->subsys[ss->subsys_id] = css;
  3758. /* recompute hash and restore entry */
  3759. new_bucket = css_set_hash(cg->subsys);
  3760. hlist_add_head(&cg->hlist, new_bucket);
  3761. }
  3762. }
  3763. write_unlock(&css_set_lock);
  3764. mutex_init(&ss->hierarchy_mutex);
  3765. lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
  3766. ss->active = 1;
  3767. /* success! */
  3768. mutex_unlock(&cgroup_mutex);
  3769. return 0;
  3770. }
  3771. EXPORT_SYMBOL_GPL(cgroup_load_subsys);
  3772. /**
  3773. * cgroup_unload_subsys: unload a modular subsystem
  3774. * @ss: the subsystem to unload
  3775. *
  3776. * This function should be called in a modular subsystem's exitcall. When this
  3777. * function is invoked, the refcount on the subsystem's module will be 0, so
  3778. * the subsystem will not be attached to any hierarchy.
  3779. */
  3780. void cgroup_unload_subsys(struct cgroup_subsys *ss)
  3781. {
  3782. struct cg_cgroup_link *link;
  3783. struct hlist_head *hhead;
  3784. BUG_ON(ss->module == NULL);
  3785. /*
  3786. * we shouldn't be called if the subsystem is in use, and the use of
  3787. * try_module_get in parse_cgroupfs_options should ensure that it
  3788. * doesn't start being used while we're killing it off.
  3789. */
  3790. BUG_ON(ss->root != &rootnode);
  3791. mutex_lock(&cgroup_mutex);
  3792. /* deassign the subsys_id */
  3793. BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
  3794. subsys[ss->subsys_id] = NULL;
  3795. /* remove subsystem from rootnode's list of subsystems */
  3796. list_del_init(&ss->sibling);
  3797. /*
  3798. * disentangle the css from all css_sets attached to the dummytop. as
  3799. * in loading, we need to pay our respects to the hashtable gods.
  3800. */
  3801. write_lock(&css_set_lock);
  3802. list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
  3803. struct css_set *cg = link->cg;
  3804. hlist_del(&cg->hlist);
  3805. BUG_ON(!cg->subsys[ss->subsys_id]);
  3806. cg->subsys[ss->subsys_id] = NULL;
  3807. hhead = css_set_hash(cg->subsys);
  3808. hlist_add_head(&cg->hlist, hhead);
  3809. }
  3810. write_unlock(&css_set_lock);
  3811. /*
  3812. * remove subsystem's css from the dummytop and free it - need to free
  3813. * before marking as null because ss->destroy needs the cgrp->subsys
  3814. * pointer to find their state. note that this also takes care of
  3815. * freeing the css_id.
  3816. */
  3817. ss->destroy(ss, dummytop);
  3818. dummytop->subsys[ss->subsys_id] = NULL;
  3819. mutex_unlock(&cgroup_mutex);
  3820. }
  3821. EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
  3822. /**
  3823. * cgroup_init_early - cgroup initialization at system boot
  3824. *
  3825. * Initialize cgroups at system boot, and initialize any
  3826. * subsystems that request early init.
  3827. */
  3828. int __init cgroup_init_early(void)
  3829. {
  3830. int i;
  3831. atomic_set(&init_css_set.refcount, 1);
  3832. INIT_LIST_HEAD(&init_css_set.cg_links);
  3833. INIT_LIST_HEAD(&init_css_set.tasks);
  3834. INIT_HLIST_NODE(&init_css_set.hlist);
  3835. css_set_count = 1;
  3836. init_cgroup_root(&rootnode);
  3837. root_count = 1;
  3838. init_task.cgroups = &init_css_set;
  3839. init_css_set_link.cg = &init_css_set;
  3840. init_css_set_link.cgrp = dummytop;
  3841. list_add(&init_css_set_link.cgrp_link_list,
  3842. &rootnode.top_cgroup.css_sets);
  3843. list_add(&init_css_set_link.cg_link_list,
  3844. &init_css_set.cg_links);
  3845. for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
  3846. INIT_HLIST_HEAD(&css_set_table[i]);
  3847. /* at bootup time, we don't worry about modular subsystems */
  3848. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3849. struct cgroup_subsys *ss = subsys[i];
  3850. BUG_ON(!ss->name);
  3851. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  3852. BUG_ON(!ss->create);
  3853. BUG_ON(!ss->destroy);
  3854. if (ss->subsys_id != i) {
  3855. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  3856. ss->name, ss->subsys_id);
  3857. BUG();
  3858. }
  3859. if (ss->early_init)
  3860. cgroup_init_subsys(ss);
  3861. }
  3862. return 0;
  3863. }
  3864. /**
  3865. * cgroup_init - cgroup initialization
  3866. *
  3867. * Register cgroup filesystem and /proc file, and initialize
  3868. * any subsystems that didn't request early init.
  3869. */
  3870. int __init cgroup_init(void)
  3871. {
  3872. int err;
  3873. int i;
  3874. struct hlist_head *hhead;
  3875. err = bdi_init(&cgroup_backing_dev_info);
  3876. if (err)
  3877. return err;
  3878. /* at bootup time, we don't worry about modular subsystems */
  3879. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3880. struct cgroup_subsys *ss = subsys[i];
  3881. if (!ss->early_init)
  3882. cgroup_init_subsys(ss);
  3883. if (ss->use_id)
  3884. cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
  3885. }
  3886. /* Add init_css_set to the hash table */
  3887. hhead = css_set_hash(init_css_set.subsys);
  3888. hlist_add_head(&init_css_set.hlist, hhead);
  3889. BUG_ON(!init_root_id(&rootnode));
  3890. cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
  3891. if (!cgroup_kobj) {
  3892. err = -ENOMEM;
  3893. goto out;
  3894. }
  3895. err = register_filesystem(&cgroup_fs_type);
  3896. if (err < 0) {
  3897. kobject_put(cgroup_kobj);
  3898. goto out;
  3899. }
  3900. proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
  3901. out:
  3902. if (err)
  3903. bdi_destroy(&cgroup_backing_dev_info);
  3904. return err;
  3905. }
  3906. /*
  3907. * proc_cgroup_show()
  3908. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  3909. * - Used for /proc/<pid>/cgroup.
  3910. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  3911. * doesn't really matter if tsk->cgroup changes after we read it,
  3912. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  3913. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  3914. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  3915. * cgroup to top_cgroup.
  3916. */
  3917. /* TODO: Use a proper seq_file iterator */
  3918. static int proc_cgroup_show(struct seq_file *m, void *v)
  3919. {
  3920. struct pid *pid;
  3921. struct task_struct *tsk;
  3922. char *buf;
  3923. int retval;
  3924. struct cgroupfs_root *root;
  3925. retval = -ENOMEM;
  3926. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3927. if (!buf)
  3928. goto out;
  3929. retval = -ESRCH;
  3930. pid = m->private;
  3931. tsk = get_pid_task(pid, PIDTYPE_PID);
  3932. if (!tsk)
  3933. goto out_free;
  3934. retval = 0;
  3935. mutex_lock(&cgroup_mutex);
  3936. for_each_active_root(root) {
  3937. struct cgroup_subsys *ss;
  3938. struct cgroup *cgrp;
  3939. int count = 0;
  3940. seq_printf(m, "%d:", root->hierarchy_id);
  3941. for_each_subsys(root, ss)
  3942. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  3943. if (strlen(root->name))
  3944. seq_printf(m, "%sname=%s", count ? "," : "",
  3945. root->name);
  3946. seq_putc(m, ':');
  3947. cgrp = task_cgroup_from_root(tsk, root);
  3948. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  3949. if (retval < 0)
  3950. goto out_unlock;
  3951. seq_puts(m, buf);
  3952. seq_putc(m, '\n');
  3953. }
  3954. out_unlock:
  3955. mutex_unlock(&cgroup_mutex);
  3956. put_task_struct(tsk);
  3957. out_free:
  3958. kfree(buf);
  3959. out:
  3960. return retval;
  3961. }
  3962. static int cgroup_open(struct inode *inode, struct file *file)
  3963. {
  3964. struct pid *pid = PROC_I(inode)->pid;
  3965. return single_open(file, proc_cgroup_show, pid);
  3966. }
  3967. const struct file_operations proc_cgroup_operations = {
  3968. .open = cgroup_open,
  3969. .read = seq_read,
  3970. .llseek = seq_lseek,
  3971. .release = single_release,
  3972. };
  3973. /* Display information about each subsystem and each hierarchy */
  3974. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  3975. {
  3976. int i;
  3977. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  3978. /*
  3979. * ideally we don't want subsystems moving around while we do this.
  3980. * cgroup_mutex is also necessary to guarantee an atomic snapshot of
  3981. * subsys/hierarchy state.
  3982. */
  3983. mutex_lock(&cgroup_mutex);
  3984. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3985. struct cgroup_subsys *ss = subsys[i];
  3986. if (ss == NULL)
  3987. continue;
  3988. seq_printf(m, "%s\t%d\t%d\t%d\n",
  3989. ss->name, ss->root->hierarchy_id,
  3990. ss->root->number_of_cgroups, !ss->disabled);
  3991. }
  3992. mutex_unlock(&cgroup_mutex);
  3993. return 0;
  3994. }
  3995. static int cgroupstats_open(struct inode *inode, struct file *file)
  3996. {
  3997. return single_open(file, proc_cgroupstats_show, NULL);
  3998. }
  3999. static const struct file_operations proc_cgroupstats_operations = {
  4000. .open = cgroupstats_open,
  4001. .read = seq_read,
  4002. .llseek = seq_lseek,
  4003. .release = single_release,
  4004. };
  4005. /**
  4006. * cgroup_fork - attach newly forked task to its parents cgroup.
  4007. * @child: pointer to task_struct of forking parent process.
  4008. *
  4009. * Description: A task inherits its parent's cgroup at fork().
  4010. *
  4011. * A pointer to the shared css_set was automatically copied in
  4012. * fork.c by dup_task_struct(). However, we ignore that copy, since
  4013. * it was not made under the protection of RCU or cgroup_mutex, so
  4014. * might no longer be a valid cgroup pointer. cgroup_attach_task() might
  4015. * have already changed current->cgroups, allowing the previously
  4016. * referenced cgroup group to be removed and freed.
  4017. *
  4018. * At the point that cgroup_fork() is called, 'current' is the parent
  4019. * task, and the passed argument 'child' points to the child task.
  4020. */
  4021. void cgroup_fork(struct task_struct *child)
  4022. {
  4023. task_lock(current);
  4024. child->cgroups = current->cgroups;
  4025. get_css_set(child->cgroups);
  4026. task_unlock(current);
  4027. INIT_LIST_HEAD(&child->cg_list);
  4028. }
  4029. /**
  4030. * cgroup_fork_callbacks - run fork callbacks
  4031. * @child: the new task
  4032. *
  4033. * Called on a new task very soon before adding it to the
  4034. * tasklist. No need to take any locks since no-one can
  4035. * be operating on this task.
  4036. */
  4037. void cgroup_fork_callbacks(struct task_struct *child)
  4038. {
  4039. if (need_forkexit_callback) {
  4040. int i;
  4041. /*
  4042. * forkexit callbacks are only supported for builtin
  4043. * subsystems, and the builtin section of the subsys array is
  4044. * immutable, so we don't need to lock the subsys array here.
  4045. */
  4046. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4047. struct cgroup_subsys *ss = subsys[i];
  4048. if (ss->fork)
  4049. ss->fork(ss, child);
  4050. }
  4051. }
  4052. }
  4053. /**
  4054. * cgroup_post_fork - called on a new task after adding it to the task list
  4055. * @child: the task in question
  4056. *
  4057. * Adds the task to the list running through its css_set if necessary.
  4058. * Has to be after the task is visible on the task list in case we race
  4059. * with the first call to cgroup_iter_start() - to guarantee that the
  4060. * new task ends up on its list.
  4061. */
  4062. void cgroup_post_fork(struct task_struct *child)
  4063. {
  4064. if (use_task_css_set_links) {
  4065. write_lock(&css_set_lock);
  4066. task_lock(child);
  4067. if (list_empty(&child->cg_list))
  4068. list_add(&child->cg_list, &child->cgroups->tasks);
  4069. task_unlock(child);
  4070. write_unlock(&css_set_lock);
  4071. }
  4072. }
  4073. /**
  4074. * cgroup_exit - detach cgroup from exiting task
  4075. * @tsk: pointer to task_struct of exiting process
  4076. * @run_callback: run exit callbacks?
  4077. *
  4078. * Description: Detach cgroup from @tsk and release it.
  4079. *
  4080. * Note that cgroups marked notify_on_release force every task in
  4081. * them to take the global cgroup_mutex mutex when exiting.
  4082. * This could impact scaling on very large systems. Be reluctant to
  4083. * use notify_on_release cgroups where very high task exit scaling
  4084. * is required on large systems.
  4085. *
  4086. * the_top_cgroup_hack:
  4087. *
  4088. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  4089. *
  4090. * We call cgroup_exit() while the task is still competent to
  4091. * handle notify_on_release(), then leave the task attached to the
  4092. * root cgroup in each hierarchy for the remainder of its exit.
  4093. *
  4094. * To do this properly, we would increment the reference count on
  4095. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  4096. * code we would add a second cgroup function call, to drop that
  4097. * reference. This would just create an unnecessary hot spot on
  4098. * the top_cgroup reference count, to no avail.
  4099. *
  4100. * Normally, holding a reference to a cgroup without bumping its
  4101. * count is unsafe. The cgroup could go away, or someone could
  4102. * attach us to a different cgroup, decrementing the count on
  4103. * the first cgroup that we never incremented. But in this case,
  4104. * top_cgroup isn't going away, and either task has PF_EXITING set,
  4105. * which wards off any cgroup_attach_task() attempts, or task is a failed
  4106. * fork, never visible to cgroup_attach_task.
  4107. */
  4108. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  4109. {
  4110. struct css_set *cg;
  4111. int i;
  4112. /*
  4113. * Unlink from the css_set task list if necessary.
  4114. * Optimistically check cg_list before taking
  4115. * css_set_lock
  4116. */
  4117. if (!list_empty(&tsk->cg_list)) {
  4118. write_lock(&css_set_lock);
  4119. if (!list_empty(&tsk->cg_list))
  4120. list_del_init(&tsk->cg_list);
  4121. write_unlock(&css_set_lock);
  4122. }
  4123. /* Reassign the task to the init_css_set. */
  4124. task_lock(tsk);
  4125. cg = tsk->cgroups;
  4126. tsk->cgroups = &init_css_set;
  4127. if (run_callbacks && need_forkexit_callback) {
  4128. /*
  4129. * modular subsystems can't use callbacks, so no need to lock
  4130. * the subsys array
  4131. */
  4132. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4133. struct cgroup_subsys *ss = subsys[i];
  4134. if (ss->exit) {
  4135. struct cgroup *old_cgrp =
  4136. rcu_dereference_raw(cg->subsys[i])->cgroup;
  4137. struct cgroup *cgrp = task_cgroup(tsk, i);
  4138. ss->exit(ss, cgrp, old_cgrp, tsk);
  4139. }
  4140. }
  4141. }
  4142. task_unlock(tsk);
  4143. if (cg)
  4144. put_css_set_taskexit(cg);
  4145. }
  4146. /**
  4147. * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
  4148. * @cgrp: the cgroup in question
  4149. * @task: the task in question
  4150. *
  4151. * See if @cgrp is a descendant of @task's cgroup in the appropriate
  4152. * hierarchy.
  4153. *
  4154. * If we are sending in dummytop, then presumably we are creating
  4155. * the top cgroup in the subsystem.
  4156. *
  4157. * Called only by the ns (nsproxy) cgroup.
  4158. */
  4159. int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
  4160. {
  4161. int ret;
  4162. struct cgroup *target;
  4163. if (cgrp == dummytop)
  4164. return 1;
  4165. target = task_cgroup_from_root(task, cgrp->root);
  4166. while (cgrp != target && cgrp!= cgrp->top_cgroup)
  4167. cgrp = cgrp->parent;
  4168. ret = (cgrp == target);
  4169. return ret;
  4170. }
  4171. static void check_for_release(struct cgroup *cgrp)
  4172. {
  4173. /* All of these checks rely on RCU to keep the cgroup
  4174. * structure alive */
  4175. if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
  4176. && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
  4177. /* Control Group is currently removeable. If it's not
  4178. * already queued for a userspace notification, queue
  4179. * it now */
  4180. int need_schedule_work = 0;
  4181. raw_spin_lock(&release_list_lock);
  4182. if (!cgroup_is_removed(cgrp) &&
  4183. list_empty(&cgrp->release_list)) {
  4184. list_add(&cgrp->release_list, &release_list);
  4185. need_schedule_work = 1;
  4186. }
  4187. raw_spin_unlock(&release_list_lock);
  4188. if (need_schedule_work)
  4189. schedule_work(&release_agent_work);
  4190. }
  4191. }
  4192. /* Caller must verify that the css is not for root cgroup */
  4193. void __css_put(struct cgroup_subsys_state *css, int count)
  4194. {
  4195. struct cgroup *cgrp = css->cgroup;
  4196. int val;
  4197. rcu_read_lock();
  4198. val = atomic_sub_return(count, &css->refcnt);
  4199. if (val == 1) {
  4200. if (notify_on_release(cgrp)) {
  4201. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  4202. check_for_release(cgrp);
  4203. }
  4204. cgroup_wakeup_rmdir_waiter(cgrp);
  4205. }
  4206. rcu_read_unlock();
  4207. WARN_ON_ONCE(val < 1);
  4208. }
  4209. EXPORT_SYMBOL_GPL(__css_put);
  4210. /*
  4211. * Notify userspace when a cgroup is released, by running the
  4212. * configured release agent with the name of the cgroup (path
  4213. * relative to the root of cgroup file system) as the argument.
  4214. *
  4215. * Most likely, this user command will try to rmdir this cgroup.
  4216. *
  4217. * This races with the possibility that some other task will be
  4218. * attached to this cgroup before it is removed, or that some other
  4219. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  4220. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  4221. * unused, and this cgroup will be reprieved from its death sentence,
  4222. * to continue to serve a useful existence. Next time it's released,
  4223. * we will get notified again, if it still has 'notify_on_release' set.
  4224. *
  4225. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  4226. * means only wait until the task is successfully execve()'d. The
  4227. * separate release agent task is forked by call_usermodehelper(),
  4228. * then control in this thread returns here, without waiting for the
  4229. * release agent task. We don't bother to wait because the caller of
  4230. * this routine has no use for the exit status of the release agent
  4231. * task, so no sense holding our caller up for that.
  4232. */
  4233. static void cgroup_release_agent(struct work_struct *work)
  4234. {
  4235. BUG_ON(work != &release_agent_work);
  4236. mutex_lock(&cgroup_mutex);
  4237. raw_spin_lock(&release_list_lock);
  4238. while (!list_empty(&release_list)) {
  4239. char *argv[3], *envp[3];
  4240. int i;
  4241. char *pathbuf = NULL, *agentbuf = NULL;
  4242. struct cgroup *cgrp = list_entry(release_list.next,
  4243. struct cgroup,
  4244. release_list);
  4245. list_del_init(&cgrp->release_list);
  4246. raw_spin_unlock(&release_list_lock);
  4247. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4248. if (!pathbuf)
  4249. goto continue_free;
  4250. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
  4251. goto continue_free;
  4252. agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
  4253. if (!agentbuf)
  4254. goto continue_free;
  4255. i = 0;
  4256. argv[i++] = agentbuf;
  4257. argv[i++] = pathbuf;
  4258. argv[i] = NULL;
  4259. i = 0;
  4260. /* minimal command environment */
  4261. envp[i++] = "HOME=/";
  4262. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  4263. envp[i] = NULL;
  4264. /* Drop the lock while we invoke the usermode helper,
  4265. * since the exec could involve hitting disk and hence
  4266. * be a slow process */
  4267. mutex_unlock(&cgroup_mutex);
  4268. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  4269. mutex_lock(&cgroup_mutex);
  4270. continue_free:
  4271. kfree(pathbuf);
  4272. kfree(agentbuf);
  4273. raw_spin_lock(&release_list_lock);
  4274. }
  4275. raw_spin_unlock(&release_list_lock);
  4276. mutex_unlock(&cgroup_mutex);
  4277. }
  4278. static int __init cgroup_disable(char *str)
  4279. {
  4280. int i;
  4281. char *token;
  4282. while ((token = strsep(&str, ",")) != NULL) {
  4283. if (!*token)
  4284. continue;
  4285. /*
  4286. * cgroup_disable, being at boot time, can't know about module
  4287. * subsystems, so we don't worry about them.
  4288. */
  4289. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4290. struct cgroup_subsys *ss = subsys[i];
  4291. if (!strcmp(token, ss->name)) {
  4292. ss->disabled = 1;
  4293. printk(KERN_INFO "Disabling %s control group"
  4294. " subsystem\n", ss->name);
  4295. break;
  4296. }
  4297. }
  4298. }
  4299. return 1;
  4300. }
  4301. __setup("cgroup_disable=", cgroup_disable);
  4302. /*
  4303. * Functons for CSS ID.
  4304. */
  4305. /*
  4306. *To get ID other than 0, this should be called when !cgroup_is_removed().
  4307. */
  4308. unsigned short css_id(struct cgroup_subsys_state *css)
  4309. {
  4310. struct css_id *cssid;
  4311. /*
  4312. * This css_id() can return correct value when somone has refcnt
  4313. * on this or this is under rcu_read_lock(). Once css->id is allocated,
  4314. * it's unchanged until freed.
  4315. */
  4316. cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
  4317. if (cssid)
  4318. return cssid->id;
  4319. return 0;
  4320. }
  4321. EXPORT_SYMBOL_GPL(css_id);
  4322. unsigned short css_depth(struct cgroup_subsys_state *css)
  4323. {
  4324. struct css_id *cssid;
  4325. cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
  4326. if (cssid)
  4327. return cssid->depth;
  4328. return 0;
  4329. }
  4330. EXPORT_SYMBOL_GPL(css_depth);
  4331. /**
  4332. * css_is_ancestor - test "root" css is an ancestor of "child"
  4333. * @child: the css to be tested.
  4334. * @root: the css supporsed to be an ancestor of the child.
  4335. *
  4336. * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
  4337. * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
  4338. * But, considering usual usage, the csses should be valid objects after test.
  4339. * Assuming that the caller will do some action to the child if this returns
  4340. * returns true, the caller must take "child";s reference count.
  4341. * If "child" is valid object and this returns true, "root" is valid, too.
  4342. */
  4343. bool css_is_ancestor(struct cgroup_subsys_state *child,
  4344. const struct cgroup_subsys_state *root)
  4345. {
  4346. struct css_id *child_id;
  4347. struct css_id *root_id;
  4348. bool ret = true;
  4349. rcu_read_lock();
  4350. child_id = rcu_dereference(child->id);
  4351. root_id = rcu_dereference(root->id);
  4352. if (!child_id
  4353. || !root_id
  4354. || (child_id->depth < root_id->depth)
  4355. || (child_id->stack[root_id->depth] != root_id->id))
  4356. ret = false;
  4357. rcu_read_unlock();
  4358. return ret;
  4359. }
  4360. void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
  4361. {
  4362. struct css_id *id = css->id;
  4363. /* When this is called before css_id initialization, id can be NULL */
  4364. if (!id)
  4365. return;
  4366. BUG_ON(!ss->use_id);
  4367. rcu_assign_pointer(id->css, NULL);
  4368. rcu_assign_pointer(css->id, NULL);
  4369. write_lock(&ss->id_lock);
  4370. idr_remove(&ss->idr, id->id);
  4371. write_unlock(&ss->id_lock);
  4372. kfree_rcu(id, rcu_head);
  4373. }
  4374. EXPORT_SYMBOL_GPL(free_css_id);
  4375. /*
  4376. * This is called by init or create(). Then, calls to this function are
  4377. * always serialized (By cgroup_mutex() at create()).
  4378. */
  4379. static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
  4380. {
  4381. struct css_id *newid;
  4382. int myid, error, size;
  4383. BUG_ON(!ss->use_id);
  4384. size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
  4385. newid = kzalloc(size, GFP_KERNEL);
  4386. if (!newid)
  4387. return ERR_PTR(-ENOMEM);
  4388. /* get id */
  4389. if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
  4390. error = -ENOMEM;
  4391. goto err_out;
  4392. }
  4393. write_lock(&ss->id_lock);
  4394. /* Don't use 0. allocates an ID of 1-65535 */
  4395. error = idr_get_new_above(&ss->idr, newid, 1, &myid);
  4396. write_unlock(&ss->id_lock);
  4397. /* Returns error when there are no free spaces for new ID.*/
  4398. if (error) {
  4399. error = -ENOSPC;
  4400. goto err_out;
  4401. }
  4402. if (myid > CSS_ID_MAX)
  4403. goto remove_idr;
  4404. newid->id = myid;
  4405. newid->depth = depth;
  4406. return newid;
  4407. remove_idr:
  4408. error = -ENOSPC;
  4409. write_lock(&ss->id_lock);
  4410. idr_remove(&ss->idr, myid);
  4411. write_unlock(&ss->id_lock);
  4412. err_out:
  4413. kfree(newid);
  4414. return ERR_PTR(error);
  4415. }
  4416. static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
  4417. struct cgroup_subsys_state *rootcss)
  4418. {
  4419. struct css_id *newid;
  4420. rwlock_init(&ss->id_lock);
  4421. idr_init(&ss->idr);
  4422. newid = get_new_cssid(ss, 0);
  4423. if (IS_ERR(newid))
  4424. return PTR_ERR(newid);
  4425. newid->stack[0] = newid->id;
  4426. newid->css = rootcss;
  4427. rootcss->id = newid;
  4428. return 0;
  4429. }
  4430. static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
  4431. struct cgroup *child)
  4432. {
  4433. int subsys_id, i, depth = 0;
  4434. struct cgroup_subsys_state *parent_css, *child_css;
  4435. struct css_id *child_id, *parent_id;
  4436. subsys_id = ss->subsys_id;
  4437. parent_css = parent->subsys[subsys_id];
  4438. child_css = child->subsys[subsys_id];
  4439. parent_id = parent_css->id;
  4440. depth = parent_id->depth + 1;
  4441. child_id = get_new_cssid(ss, depth);
  4442. if (IS_ERR(child_id))
  4443. return PTR_ERR(child_id);
  4444. for (i = 0; i < depth; i++)
  4445. child_id->stack[i] = parent_id->stack[i];
  4446. child_id->stack[depth] = child_id->id;
  4447. /*
  4448. * child_id->css pointer will be set after this cgroup is available
  4449. * see cgroup_populate_dir()
  4450. */
  4451. rcu_assign_pointer(child_css->id, child_id);
  4452. return 0;
  4453. }
  4454. /**
  4455. * css_lookup - lookup css by id
  4456. * @ss: cgroup subsys to be looked into.
  4457. * @id: the id
  4458. *
  4459. * Returns pointer to cgroup_subsys_state if there is valid one with id.
  4460. * NULL if not. Should be called under rcu_read_lock()
  4461. */
  4462. struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
  4463. {
  4464. struct css_id *cssid = NULL;
  4465. BUG_ON(!ss->use_id);
  4466. cssid = idr_find(&ss->idr, id);
  4467. if (unlikely(!cssid))
  4468. return NULL;
  4469. return rcu_dereference(cssid->css);
  4470. }
  4471. EXPORT_SYMBOL_GPL(css_lookup);
  4472. /**
  4473. * css_get_next - lookup next cgroup under specified hierarchy.
  4474. * @ss: pointer to subsystem
  4475. * @id: current position of iteration.
  4476. * @root: pointer to css. search tree under this.
  4477. * @foundid: position of found object.
  4478. *
  4479. * Search next css under the specified hierarchy of rootid. Calling under
  4480. * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
  4481. */
  4482. struct cgroup_subsys_state *
  4483. css_get_next(struct cgroup_subsys *ss, int id,
  4484. struct cgroup_subsys_state *root, int *foundid)
  4485. {
  4486. struct cgroup_subsys_state *ret = NULL;
  4487. struct css_id *tmp;
  4488. int tmpid;
  4489. int rootid = css_id(root);
  4490. int depth = css_depth(root);
  4491. if (!rootid)
  4492. return NULL;
  4493. BUG_ON(!ss->use_id);
  4494. /* fill start point for scan */
  4495. tmpid = id;
  4496. while (1) {
  4497. /*
  4498. * scan next entry from bitmap(tree), tmpid is updated after
  4499. * idr_get_next().
  4500. */
  4501. read_lock(&ss->id_lock);
  4502. tmp = idr_get_next(&ss->idr, &tmpid);
  4503. read_unlock(&ss->id_lock);
  4504. if (!tmp)
  4505. break;
  4506. if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
  4507. ret = rcu_dereference(tmp->css);
  4508. if (ret) {
  4509. *foundid = tmpid;
  4510. break;
  4511. }
  4512. }
  4513. /* continue to scan from next id */
  4514. tmpid = tmpid + 1;
  4515. }
  4516. return ret;
  4517. }
  4518. /*
  4519. * get corresponding css from file open on cgroupfs directory
  4520. */
  4521. struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
  4522. {
  4523. struct cgroup *cgrp;
  4524. struct inode *inode;
  4525. struct cgroup_subsys_state *css;
  4526. inode = f->f_dentry->d_inode;
  4527. /* check in cgroup filesystem dir */
  4528. if (inode->i_op != &cgroup_dir_inode_operations)
  4529. return ERR_PTR(-EBADF);
  4530. if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
  4531. return ERR_PTR(-EINVAL);
  4532. /* get cgroup */
  4533. cgrp = __d_cgrp(f->f_dentry);
  4534. css = cgrp->subsys[id];
  4535. return css ? css : ERR_PTR(-ENOENT);
  4536. }
  4537. #ifdef CONFIG_CGROUP_DEBUG
  4538. static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
  4539. struct cgroup *cont)
  4540. {
  4541. struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
  4542. if (!css)
  4543. return ERR_PTR(-ENOMEM);
  4544. return css;
  4545. }
  4546. static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  4547. {
  4548. kfree(cont->subsys[debug_subsys_id]);
  4549. }
  4550. static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
  4551. {
  4552. return atomic_read(&cont->count);
  4553. }
  4554. static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
  4555. {
  4556. return cgroup_task_count(cont);
  4557. }
  4558. static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
  4559. {
  4560. return (u64)(unsigned long)current->cgroups;
  4561. }
  4562. static u64 current_css_set_refcount_read(struct cgroup *cont,
  4563. struct cftype *cft)
  4564. {
  4565. u64 count;
  4566. rcu_read_lock();
  4567. count = atomic_read(&current->cgroups->refcount);
  4568. rcu_read_unlock();
  4569. return count;
  4570. }
  4571. static int current_css_set_cg_links_read(struct cgroup *cont,
  4572. struct cftype *cft,
  4573. struct seq_file *seq)
  4574. {
  4575. struct cg_cgroup_link *link;
  4576. struct css_set *cg;
  4577. read_lock(&css_set_lock);
  4578. rcu_read_lock();
  4579. cg = rcu_dereference(current->cgroups);
  4580. list_for_each_entry(link, &cg->cg_links, cg_link_list) {
  4581. struct cgroup *c = link->cgrp;
  4582. const char *name;
  4583. if (c->dentry)
  4584. name = c->dentry->d_name.name;
  4585. else
  4586. name = "?";
  4587. seq_printf(seq, "Root %d group %s\n",
  4588. c->root->hierarchy_id, name);
  4589. }
  4590. rcu_read_unlock();
  4591. read_unlock(&css_set_lock);
  4592. return 0;
  4593. }
  4594. #define MAX_TASKS_SHOWN_PER_CSS 25
  4595. static int cgroup_css_links_read(struct cgroup *cont,
  4596. struct cftype *cft,
  4597. struct seq_file *seq)
  4598. {
  4599. struct cg_cgroup_link *link;
  4600. read_lock(&css_set_lock);
  4601. list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
  4602. struct css_set *cg = link->cg;
  4603. struct task_struct *task;
  4604. int count = 0;
  4605. seq_printf(seq, "css_set %p\n", cg);
  4606. list_for_each_entry(task, &cg->tasks, cg_list) {
  4607. if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
  4608. seq_puts(seq, " ...\n");
  4609. break;
  4610. } else {
  4611. seq_printf(seq, " task %d\n",
  4612. task_pid_vnr(task));
  4613. }
  4614. }
  4615. }
  4616. read_unlock(&css_set_lock);
  4617. return 0;
  4618. }
  4619. static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
  4620. {
  4621. return test_bit(CGRP_RELEASABLE, &cgrp->flags);
  4622. }
  4623. static struct cftype debug_files[] = {
  4624. {
  4625. .name = "cgroup_refcount",
  4626. .read_u64 = cgroup_refcount_read,
  4627. },
  4628. {
  4629. .name = "taskcount",
  4630. .read_u64 = debug_taskcount_read,
  4631. },
  4632. {
  4633. .name = "current_css_set",
  4634. .read_u64 = current_css_set_read,
  4635. },
  4636. {
  4637. .name = "current_css_set_refcount",
  4638. .read_u64 = current_css_set_refcount_read,
  4639. },
  4640. {
  4641. .name = "current_css_set_cg_links",
  4642. .read_seq_string = current_css_set_cg_links_read,
  4643. },
  4644. {
  4645. .name = "cgroup_css_links",
  4646. .read_seq_string = cgroup_css_links_read,
  4647. },
  4648. {
  4649. .name = "releasable",
  4650. .read_u64 = releasable_read,
  4651. },
  4652. };
  4653. static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  4654. {
  4655. return cgroup_add_files(cont, ss, debug_files,
  4656. ARRAY_SIZE(debug_files));
  4657. }
  4658. struct cgroup_subsys debug_subsys = {
  4659. .name = "debug",
  4660. .create = debug_create,
  4661. .destroy = debug_destroy,
  4662. .populate = debug_populate,
  4663. .subsys_id = debug_subsys_id,
  4664. };
  4665. #endif /* CONFIG_CGROUP_DEBUG */