dma.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528
  1. /*
  2. * EDMA3 support for DaVinci
  3. *
  4. * Copyright (C) 2006-2009 Texas Instruments.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/compiler.h>
  28. #include <linux/io.h>
  29. #include <mach/cputype.h>
  30. #include <mach/memory.h>
  31. #include <mach/hardware.h>
  32. #include <mach/irqs.h>
  33. #include <mach/edma.h>
  34. #include <mach/mux.h>
  35. /* Offsets matching "struct edmacc_param" */
  36. #define PARM_OPT 0x00
  37. #define PARM_SRC 0x04
  38. #define PARM_A_B_CNT 0x08
  39. #define PARM_DST 0x0c
  40. #define PARM_SRC_DST_BIDX 0x10
  41. #define PARM_LINK_BCNTRLD 0x14
  42. #define PARM_SRC_DST_CIDX 0x18
  43. #define PARM_CCNT 0x1c
  44. #define PARM_SIZE 0x20
  45. /* Offsets for EDMA CC global channel registers and their shadows */
  46. #define SH_ER 0x00 /* 64 bits */
  47. #define SH_ECR 0x08 /* 64 bits */
  48. #define SH_ESR 0x10 /* 64 bits */
  49. #define SH_CER 0x18 /* 64 bits */
  50. #define SH_EER 0x20 /* 64 bits */
  51. #define SH_EECR 0x28 /* 64 bits */
  52. #define SH_EESR 0x30 /* 64 bits */
  53. #define SH_SER 0x38 /* 64 bits */
  54. #define SH_SECR 0x40 /* 64 bits */
  55. #define SH_IER 0x50 /* 64 bits */
  56. #define SH_IECR 0x58 /* 64 bits */
  57. #define SH_IESR 0x60 /* 64 bits */
  58. #define SH_IPR 0x68 /* 64 bits */
  59. #define SH_ICR 0x70 /* 64 bits */
  60. #define SH_IEVAL 0x78
  61. #define SH_QER 0x80
  62. #define SH_QEER 0x84
  63. #define SH_QEECR 0x88
  64. #define SH_QEESR 0x8c
  65. #define SH_QSER 0x90
  66. #define SH_QSECR 0x94
  67. #define SH_SIZE 0x200
  68. /* Offsets for EDMA CC global registers */
  69. #define EDMA_REV 0x0000
  70. #define EDMA_CCCFG 0x0004
  71. #define EDMA_QCHMAP 0x0200 /* 8 registers */
  72. #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
  73. #define EDMA_QDMAQNUM 0x0260
  74. #define EDMA_QUETCMAP 0x0280
  75. #define EDMA_QUEPRI 0x0284
  76. #define EDMA_EMR 0x0300 /* 64 bits */
  77. #define EDMA_EMCR 0x0308 /* 64 bits */
  78. #define EDMA_QEMR 0x0310
  79. #define EDMA_QEMCR 0x0314
  80. #define EDMA_CCERR 0x0318
  81. #define EDMA_CCERRCLR 0x031c
  82. #define EDMA_EEVAL 0x0320
  83. #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
  84. #define EDMA_QRAE 0x0380 /* 4 registers */
  85. #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
  86. #define EDMA_QSTAT 0x0600 /* 2 registers */
  87. #define EDMA_QWMTHRA 0x0620
  88. #define EDMA_QWMTHRB 0x0624
  89. #define EDMA_CCSTAT 0x0640
  90. #define EDMA_M 0x1000 /* global channel registers */
  91. #define EDMA_ECR 0x1008
  92. #define EDMA_ECRH 0x100C
  93. #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
  94. #define EDMA_PARM 0x4000 /* 128 param entries */
  95. #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
  96. #define EDMA_DCHMAP 0x0100 /* 64 registers */
  97. #define CHMAP_EXIST BIT(24)
  98. #define EDMA_MAX_DMACH 64
  99. #define EDMA_MAX_PARAMENTRY 512
  100. #define EDMA_MAX_CC 2
  101. /*****************************************************************************/
  102. static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
  103. static inline unsigned int edma_read(unsigned ctlr, int offset)
  104. {
  105. return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
  106. }
  107. static inline void edma_write(unsigned ctlr, int offset, int val)
  108. {
  109. __raw_writel(val, edmacc_regs_base[ctlr] + offset);
  110. }
  111. static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
  112. unsigned or)
  113. {
  114. unsigned val = edma_read(ctlr, offset);
  115. val &= and;
  116. val |= or;
  117. edma_write(ctlr, offset, val);
  118. }
  119. static inline void edma_and(unsigned ctlr, int offset, unsigned and)
  120. {
  121. unsigned val = edma_read(ctlr, offset);
  122. val &= and;
  123. edma_write(ctlr, offset, val);
  124. }
  125. static inline void edma_or(unsigned ctlr, int offset, unsigned or)
  126. {
  127. unsigned val = edma_read(ctlr, offset);
  128. val |= or;
  129. edma_write(ctlr, offset, val);
  130. }
  131. static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
  132. {
  133. return edma_read(ctlr, offset + (i << 2));
  134. }
  135. static inline void edma_write_array(unsigned ctlr, int offset, int i,
  136. unsigned val)
  137. {
  138. edma_write(ctlr, offset + (i << 2), val);
  139. }
  140. static inline void edma_modify_array(unsigned ctlr, int offset, int i,
  141. unsigned and, unsigned or)
  142. {
  143. edma_modify(ctlr, offset + (i << 2), and, or);
  144. }
  145. static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
  146. {
  147. edma_or(ctlr, offset + (i << 2), or);
  148. }
  149. static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
  150. unsigned or)
  151. {
  152. edma_or(ctlr, offset + ((i*2 + j) << 2), or);
  153. }
  154. static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
  155. unsigned val)
  156. {
  157. edma_write(ctlr, offset + ((i*2 + j) << 2), val);
  158. }
  159. static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
  160. {
  161. return edma_read(ctlr, EDMA_SHADOW0 + offset);
  162. }
  163. static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
  164. int i)
  165. {
  166. return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
  167. }
  168. static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
  169. {
  170. edma_write(ctlr, EDMA_SHADOW0 + offset, val);
  171. }
  172. static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
  173. unsigned val)
  174. {
  175. edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
  176. }
  177. static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
  178. int param_no)
  179. {
  180. return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
  181. }
  182. static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
  183. unsigned val)
  184. {
  185. edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
  186. }
  187. static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
  188. unsigned and, unsigned or)
  189. {
  190. edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
  191. }
  192. static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
  193. unsigned and)
  194. {
  195. edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
  196. }
  197. static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
  198. unsigned or)
  199. {
  200. edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
  201. }
  202. /*****************************************************************************/
  203. /* actual number of DMA channels and slots on this silicon */
  204. struct edma {
  205. /* how many dma resources of each type */
  206. unsigned num_channels;
  207. unsigned num_region;
  208. unsigned num_slots;
  209. unsigned num_tc;
  210. unsigned num_cc;
  211. enum dma_event_q default_queue;
  212. /* list of channels with no even trigger; terminated by "-1" */
  213. const s8 *noevent;
  214. /* The edma_inuse bit for each PaRAM slot is clear unless the
  215. * channel is in use ... by ARM or DSP, for QDMA, or whatever.
  216. */
  217. DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
  218. /* The edma_noevent bit for each channel is clear unless
  219. * it doesn't trigger DMA events on this platform. It uses a
  220. * bit of SOC-specific initialization code.
  221. */
  222. DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH);
  223. unsigned irq_res_start;
  224. unsigned irq_res_end;
  225. struct dma_interrupt_data {
  226. void (*callback)(unsigned channel, unsigned short ch_status,
  227. void *data);
  228. void *data;
  229. } intr_data[EDMA_MAX_DMACH];
  230. };
  231. static struct edma *edma_info[EDMA_MAX_CC];
  232. /* dummy param set used to (re)initialize parameter RAM slots */
  233. static const struct edmacc_param dummy_paramset = {
  234. .link_bcntrld = 0xffff,
  235. .ccnt = 1,
  236. };
  237. /*****************************************************************************/
  238. static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
  239. enum dma_event_q queue_no)
  240. {
  241. int bit = (ch_no & 0x7) * 4;
  242. /* default to low priority queue */
  243. if (queue_no == EVENTQ_DEFAULT)
  244. queue_no = edma_info[ctlr]->default_queue;
  245. queue_no &= 7;
  246. edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
  247. ~(0x7 << bit), queue_no << bit);
  248. }
  249. static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
  250. {
  251. int bit = queue_no * 4;
  252. edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
  253. }
  254. static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
  255. int priority)
  256. {
  257. int bit = queue_no * 4;
  258. edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
  259. ((priority & 0x7) << bit));
  260. }
  261. /**
  262. * map_dmach_param - Maps channel number to param entry number
  263. *
  264. * This maps the dma channel number to param entry numberter. In
  265. * other words using the DMA channel mapping registers a param entry
  266. * can be mapped to any channel
  267. *
  268. * Callers are responsible for ensuring the channel mapping logic is
  269. * included in that particular EDMA variant (Eg : dm646x)
  270. *
  271. */
  272. static void __init map_dmach_param(unsigned ctlr)
  273. {
  274. int i;
  275. for (i = 0; i < EDMA_MAX_DMACH; i++)
  276. edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
  277. }
  278. static inline void
  279. setup_dma_interrupt(unsigned lch,
  280. void (*callback)(unsigned channel, u16 ch_status, void *data),
  281. void *data)
  282. {
  283. unsigned ctlr;
  284. ctlr = EDMA_CTLR(lch);
  285. lch = EDMA_CHAN_SLOT(lch);
  286. if (!callback) {
  287. edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
  288. (1 << (lch & 0x1f)));
  289. }
  290. edma_info[ctlr]->intr_data[lch].callback = callback;
  291. edma_info[ctlr]->intr_data[lch].data = data;
  292. if (callback) {
  293. edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
  294. (1 << (lch & 0x1f)));
  295. edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
  296. (1 << (lch & 0x1f)));
  297. }
  298. }
  299. static int irq2ctlr(int irq)
  300. {
  301. if (irq >= edma_info[0]->irq_res_start &&
  302. irq <= edma_info[0]->irq_res_end)
  303. return 0;
  304. else if (irq >= edma_info[1]->irq_res_start &&
  305. irq <= edma_info[1]->irq_res_end)
  306. return 1;
  307. return -1;
  308. }
  309. /******************************************************************************
  310. *
  311. * DMA interrupt handler
  312. *
  313. *****************************************************************************/
  314. static irqreturn_t dma_irq_handler(int irq, void *data)
  315. {
  316. int i;
  317. unsigned ctlr;
  318. unsigned int cnt = 0;
  319. ctlr = irq2ctlr(irq);
  320. dev_dbg(data, "dma_irq_handler\n");
  321. if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
  322. && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
  323. return IRQ_NONE;
  324. while (1) {
  325. int j;
  326. if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
  327. j = 0;
  328. else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
  329. j = 1;
  330. else
  331. break;
  332. dev_dbg(data, "IPR%d %08x\n", j,
  333. edma_shadow0_read_array(ctlr, SH_IPR, j));
  334. for (i = 0; i < 32; i++) {
  335. int k = (j << 5) + i;
  336. if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
  337. (1 << i)) {
  338. /* Clear the corresponding IPR bits */
  339. edma_shadow0_write_array(ctlr, SH_ICR, j,
  340. (1 << i));
  341. if (edma_info[ctlr]->intr_data[k].callback) {
  342. edma_info[ctlr]->intr_data[k].callback(
  343. k, DMA_COMPLETE,
  344. edma_info[ctlr]->intr_data[k].
  345. data);
  346. }
  347. }
  348. }
  349. cnt++;
  350. if (cnt > 10)
  351. break;
  352. }
  353. edma_shadow0_write(ctlr, SH_IEVAL, 1);
  354. return IRQ_HANDLED;
  355. }
  356. /******************************************************************************
  357. *
  358. * DMA error interrupt handler
  359. *
  360. *****************************************************************************/
  361. static irqreturn_t dma_ccerr_handler(int irq, void *data)
  362. {
  363. int i;
  364. unsigned ctlr;
  365. unsigned int cnt = 0;
  366. ctlr = irq2ctlr(irq);
  367. dev_dbg(data, "dma_ccerr_handler\n");
  368. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  369. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  370. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  371. (edma_read(ctlr, EDMA_CCERR) == 0))
  372. return IRQ_NONE;
  373. while (1) {
  374. int j = -1;
  375. if (edma_read_array(ctlr, EDMA_EMR, 0))
  376. j = 0;
  377. else if (edma_read_array(ctlr, EDMA_EMR, 1))
  378. j = 1;
  379. if (j >= 0) {
  380. dev_dbg(data, "EMR%d %08x\n", j,
  381. edma_read_array(ctlr, EDMA_EMR, j));
  382. for (i = 0; i < 32; i++) {
  383. int k = (j << 5) + i;
  384. if (edma_read_array(ctlr, EDMA_EMR, j) &
  385. (1 << i)) {
  386. /* Clear the corresponding EMR bits */
  387. edma_write_array(ctlr, EDMA_EMCR, j,
  388. 1 << i);
  389. /* Clear any SER */
  390. edma_shadow0_write_array(ctlr, SH_SECR,
  391. j, (1 << i));
  392. if (edma_info[ctlr]->intr_data[k].
  393. callback) {
  394. edma_info[ctlr]->intr_data[k].
  395. callback(k,
  396. DMA_CC_ERROR,
  397. edma_info[ctlr]->intr_data
  398. [k].data);
  399. }
  400. }
  401. }
  402. } else if (edma_read(ctlr, EDMA_QEMR)) {
  403. dev_dbg(data, "QEMR %02x\n",
  404. edma_read(ctlr, EDMA_QEMR));
  405. for (i = 0; i < 8; i++) {
  406. if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
  407. /* Clear the corresponding IPR bits */
  408. edma_write(ctlr, EDMA_QEMCR, 1 << i);
  409. edma_shadow0_write(ctlr, SH_QSECR,
  410. (1 << i));
  411. /* NOTE: not reported!! */
  412. }
  413. }
  414. } else if (edma_read(ctlr, EDMA_CCERR)) {
  415. dev_dbg(data, "CCERR %08x\n",
  416. edma_read(ctlr, EDMA_CCERR));
  417. /* FIXME: CCERR.BIT(16) ignored! much better
  418. * to just write CCERRCLR with CCERR value...
  419. */
  420. for (i = 0; i < 8; i++) {
  421. if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
  422. /* Clear the corresponding IPR bits */
  423. edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
  424. /* NOTE: not reported!! */
  425. }
  426. }
  427. }
  428. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
  429. && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
  430. && (edma_read(ctlr, EDMA_QEMR) == 0)
  431. && (edma_read(ctlr, EDMA_CCERR) == 0)) {
  432. break;
  433. }
  434. cnt++;
  435. if (cnt > 10)
  436. break;
  437. }
  438. edma_write(ctlr, EDMA_EEVAL, 1);
  439. return IRQ_HANDLED;
  440. }
  441. /******************************************************************************
  442. *
  443. * Transfer controller error interrupt handlers
  444. *
  445. *****************************************************************************/
  446. #define tc_errs_handled false /* disabled as long as they're NOPs */
  447. static irqreturn_t dma_tc0err_handler(int irq, void *data)
  448. {
  449. dev_dbg(data, "dma_tc0err_handler\n");
  450. return IRQ_HANDLED;
  451. }
  452. static irqreturn_t dma_tc1err_handler(int irq, void *data)
  453. {
  454. dev_dbg(data, "dma_tc1err_handler\n");
  455. return IRQ_HANDLED;
  456. }
  457. static int reserve_contiguous_slots(int ctlr, unsigned int id,
  458. unsigned int num_slots,
  459. unsigned int start_slot)
  460. {
  461. int i, j;
  462. unsigned int count = num_slots;
  463. int stop_slot = start_slot;
  464. DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
  465. for (i = start_slot; i < edma_info[ctlr]->num_slots; ++i) {
  466. j = EDMA_CHAN_SLOT(i);
  467. if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse)) {
  468. /* Record our current beginning slot */
  469. if (count == num_slots)
  470. stop_slot = i;
  471. count--;
  472. set_bit(j, tmp_inuse);
  473. if (count == 0)
  474. break;
  475. } else {
  476. clear_bit(j, tmp_inuse);
  477. if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
  478. stop_slot = i;
  479. break;
  480. } else
  481. count = num_slots;
  482. }
  483. }
  484. /*
  485. * We have to clear any bits that we set
  486. * if we run out parameter RAM slots, i.e we do find a set
  487. * of contiguous parameter RAM slots but do not find the exact number
  488. * requested as we may reach the total number of parameter RAM slots
  489. */
  490. if (i == edma_info[ctlr]->num_slots)
  491. stop_slot = i;
  492. for (j = start_slot; j < stop_slot; j++)
  493. if (test_bit(j, tmp_inuse))
  494. clear_bit(j, edma_info[ctlr]->edma_inuse);
  495. if (count)
  496. return -EBUSY;
  497. for (j = i - num_slots + 1; j <= i; ++j)
  498. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
  499. &dummy_paramset, PARM_SIZE);
  500. return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
  501. }
  502. /*-----------------------------------------------------------------------*/
  503. /* Resource alloc/free: dma channels, parameter RAM slots */
  504. /**
  505. * edma_alloc_channel - allocate DMA channel and paired parameter RAM
  506. * @channel: specific channel to allocate; negative for "any unmapped channel"
  507. * @callback: optional; to be issued on DMA completion or errors
  508. * @data: passed to callback
  509. * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
  510. * Controller (TC) executes requests using this channel. Use
  511. * EVENTQ_DEFAULT unless you really need a high priority queue.
  512. *
  513. * This allocates a DMA channel and its associated parameter RAM slot.
  514. * The parameter RAM is initialized to hold a dummy transfer.
  515. *
  516. * Normal use is to pass a specific channel number as @channel, to make
  517. * use of hardware events mapped to that channel. When the channel will
  518. * be used only for software triggering or event chaining, channels not
  519. * mapped to hardware events (or mapped to unused events) are preferable.
  520. *
  521. * DMA transfers start from a channel using edma_start(), or by
  522. * chaining. When the transfer described in that channel's parameter RAM
  523. * slot completes, that slot's data may be reloaded through a link.
  524. *
  525. * DMA errors are only reported to the @callback associated with the
  526. * channel driving that transfer, but transfer completion callbacks can
  527. * be sent to another channel under control of the TCC field in
  528. * the option word of the transfer's parameter RAM set. Drivers must not
  529. * use DMA transfer completion callbacks for channels they did not allocate.
  530. * (The same applies to TCC codes used in transfer chaining.)
  531. *
  532. * Returns the number of the channel, else negative errno.
  533. */
  534. int edma_alloc_channel(int channel,
  535. void (*callback)(unsigned channel, u16 ch_status, void *data),
  536. void *data,
  537. enum dma_event_q eventq_no)
  538. {
  539. unsigned i, done, ctlr = 0;
  540. if (channel >= 0) {
  541. ctlr = EDMA_CTLR(channel);
  542. channel = EDMA_CHAN_SLOT(channel);
  543. }
  544. if (channel < 0) {
  545. for (i = 0; i < EDMA_MAX_CC; i++) {
  546. channel = 0;
  547. for (;;) {
  548. channel = find_next_bit(edma_info[i]->
  549. edma_noevent,
  550. edma_info[i]->num_channels,
  551. channel);
  552. if (channel == edma_info[i]->num_channels)
  553. return -ENOMEM;
  554. if (!test_and_set_bit(channel,
  555. edma_info[i]->edma_inuse)) {
  556. done = 1;
  557. ctlr = i;
  558. break;
  559. }
  560. channel++;
  561. }
  562. if (done)
  563. break;
  564. }
  565. } else if (channel >= edma_info[ctlr]->num_channels) {
  566. return -EINVAL;
  567. } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
  568. return -EBUSY;
  569. }
  570. /* ensure access through shadow region 0 */
  571. edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
  572. /* ensure no events are pending */
  573. edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
  574. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  575. &dummy_paramset, PARM_SIZE);
  576. if (callback)
  577. setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
  578. callback, data);
  579. map_dmach_queue(ctlr, channel, eventq_no);
  580. return channel;
  581. }
  582. EXPORT_SYMBOL(edma_alloc_channel);
  583. /**
  584. * edma_free_channel - deallocate DMA channel
  585. * @channel: dma channel returned from edma_alloc_channel()
  586. *
  587. * This deallocates the DMA channel and associated parameter RAM slot
  588. * allocated by edma_alloc_channel().
  589. *
  590. * Callers are responsible for ensuring the channel is inactive, and
  591. * will not be reactivated by linking, chaining, or software calls to
  592. * edma_start().
  593. */
  594. void edma_free_channel(unsigned channel)
  595. {
  596. unsigned ctlr;
  597. ctlr = EDMA_CTLR(channel);
  598. channel = EDMA_CHAN_SLOT(channel);
  599. if (channel >= edma_info[ctlr]->num_channels)
  600. return;
  601. setup_dma_interrupt(channel, NULL, NULL);
  602. /* REVISIT should probably take out of shadow region 0 */
  603. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  604. &dummy_paramset, PARM_SIZE);
  605. clear_bit(channel, edma_info[ctlr]->edma_inuse);
  606. }
  607. EXPORT_SYMBOL(edma_free_channel);
  608. /**
  609. * edma_alloc_slot - allocate DMA parameter RAM
  610. * @slot: specific slot to allocate; negative for "any unused slot"
  611. *
  612. * This allocates a parameter RAM slot, initializing it to hold a
  613. * dummy transfer. Slots allocated using this routine have not been
  614. * mapped to a hardware DMA channel, and will normally be used by
  615. * linking to them from a slot associated with a DMA channel.
  616. *
  617. * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
  618. * slots may be allocated on behalf of DSP firmware.
  619. *
  620. * Returns the number of the slot, else negative errno.
  621. */
  622. int edma_alloc_slot(unsigned ctlr, int slot)
  623. {
  624. if (slot >= 0)
  625. slot = EDMA_CHAN_SLOT(slot);
  626. if (slot < 0) {
  627. slot = edma_info[ctlr]->num_channels;
  628. for (;;) {
  629. slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
  630. edma_info[ctlr]->num_slots, slot);
  631. if (slot == edma_info[ctlr]->num_slots)
  632. return -ENOMEM;
  633. if (!test_and_set_bit(slot,
  634. edma_info[ctlr]->edma_inuse))
  635. break;
  636. }
  637. } else if (slot < edma_info[ctlr]->num_channels ||
  638. slot >= edma_info[ctlr]->num_slots) {
  639. return -EINVAL;
  640. } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
  641. return -EBUSY;
  642. }
  643. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  644. &dummy_paramset, PARM_SIZE);
  645. return EDMA_CTLR_CHAN(ctlr, slot);
  646. }
  647. EXPORT_SYMBOL(edma_alloc_slot);
  648. /**
  649. * edma_free_slot - deallocate DMA parameter RAM
  650. * @slot: parameter RAM slot returned from edma_alloc_slot()
  651. *
  652. * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
  653. * Callers are responsible for ensuring the slot is inactive, and will
  654. * not be activated.
  655. */
  656. void edma_free_slot(unsigned slot)
  657. {
  658. unsigned ctlr;
  659. ctlr = EDMA_CTLR(slot);
  660. slot = EDMA_CHAN_SLOT(slot);
  661. if (slot < edma_info[ctlr]->num_channels ||
  662. slot >= edma_info[ctlr]->num_slots)
  663. return;
  664. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  665. &dummy_paramset, PARM_SIZE);
  666. clear_bit(slot, edma_info[ctlr]->edma_inuse);
  667. }
  668. EXPORT_SYMBOL(edma_free_slot);
  669. /**
  670. * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
  671. * The API will return the starting point of a set of
  672. * contiguous parameter RAM slots that have been requested
  673. *
  674. * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
  675. * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  676. * @count: number of contiguous Paramter RAM slots
  677. * @slot - the start value of Parameter RAM slot that should be passed if id
  678. * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  679. *
  680. * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
  681. * contiguous Parameter RAM slots from parameter RAM 64 in the case of
  682. * DaVinci SOCs and 32 in the case of DA8xx SOCs.
  683. *
  684. * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
  685. * set of contiguous parameter RAM slots from the "slot" that is passed as an
  686. * argument to the API.
  687. *
  688. * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
  689. * starts looking for a set of contiguous parameter RAMs from the "slot"
  690. * that is passed as an argument to the API. On failure the API will try to
  691. * find a set of contiguous Parameter RAM slots from the remaining Parameter
  692. * RAM slots
  693. */
  694. int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
  695. {
  696. /*
  697. * The start slot requested should be greater than
  698. * the number of channels and lesser than the total number
  699. * of slots
  700. */
  701. if ((id != EDMA_CONT_PARAMS_ANY) &&
  702. (slot < edma_info[ctlr]->num_channels ||
  703. slot >= edma_info[ctlr]->num_slots))
  704. return -EINVAL;
  705. /*
  706. * The number of parameter RAM slots requested cannot be less than 1
  707. * and cannot be more than the number of slots minus the number of
  708. * channels
  709. */
  710. if (count < 1 || count >
  711. (edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
  712. return -EINVAL;
  713. switch (id) {
  714. case EDMA_CONT_PARAMS_ANY:
  715. return reserve_contiguous_slots(ctlr, id, count,
  716. edma_info[ctlr]->num_channels);
  717. case EDMA_CONT_PARAMS_FIXED_EXACT:
  718. case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
  719. return reserve_contiguous_slots(ctlr, id, count, slot);
  720. default:
  721. return -EINVAL;
  722. }
  723. }
  724. EXPORT_SYMBOL(edma_alloc_cont_slots);
  725. /**
  726. * edma_free_cont_slots - deallocate DMA parameter RAM slots
  727. * @slot: first parameter RAM of a set of parameter RAM slots to be freed
  728. * @count: the number of contiguous parameter RAM slots to be freed
  729. *
  730. * This deallocates the parameter RAM slots allocated by
  731. * edma_alloc_cont_slots.
  732. * Callers/applications need to keep track of sets of contiguous
  733. * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
  734. * API.
  735. * Callers are responsible for ensuring the slots are inactive, and will
  736. * not be activated.
  737. */
  738. int edma_free_cont_slots(unsigned slot, int count)
  739. {
  740. unsigned ctlr, slot_to_free;
  741. int i;
  742. ctlr = EDMA_CTLR(slot);
  743. slot = EDMA_CHAN_SLOT(slot);
  744. if (slot < edma_info[ctlr]->num_channels ||
  745. slot >= edma_info[ctlr]->num_slots ||
  746. count < 1)
  747. return -EINVAL;
  748. for (i = slot; i < slot + count; ++i) {
  749. ctlr = EDMA_CTLR(i);
  750. slot_to_free = EDMA_CHAN_SLOT(i);
  751. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
  752. &dummy_paramset, PARM_SIZE);
  753. clear_bit(slot_to_free, edma_info[ctlr]->edma_inuse);
  754. }
  755. return 0;
  756. }
  757. EXPORT_SYMBOL(edma_free_cont_slots);
  758. /*-----------------------------------------------------------------------*/
  759. /* Parameter RAM operations (i) -- read/write partial slots */
  760. /**
  761. * edma_set_src - set initial DMA source address in parameter RAM slot
  762. * @slot: parameter RAM slot being configured
  763. * @src_port: physical address of source (memory, controller FIFO, etc)
  764. * @addressMode: INCR, except in very rare cases
  765. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  766. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  767. *
  768. * Note that the source address is modified during the DMA transfer
  769. * according to edma_set_src_index().
  770. */
  771. void edma_set_src(unsigned slot, dma_addr_t src_port,
  772. enum address_mode mode, enum fifo_width width)
  773. {
  774. unsigned ctlr;
  775. ctlr = EDMA_CTLR(slot);
  776. slot = EDMA_CHAN_SLOT(slot);
  777. if (slot < edma_info[ctlr]->num_slots) {
  778. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  779. if (mode) {
  780. /* set SAM and program FWID */
  781. i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
  782. } else {
  783. /* clear SAM */
  784. i &= ~SAM;
  785. }
  786. edma_parm_write(ctlr, PARM_OPT, slot, i);
  787. /* set the source port address
  788. in source register of param structure */
  789. edma_parm_write(ctlr, PARM_SRC, slot, src_port);
  790. }
  791. }
  792. EXPORT_SYMBOL(edma_set_src);
  793. /**
  794. * edma_set_dest - set initial DMA destination address in parameter RAM slot
  795. * @slot: parameter RAM slot being configured
  796. * @dest_port: physical address of destination (memory, controller FIFO, etc)
  797. * @addressMode: INCR, except in very rare cases
  798. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  799. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  800. *
  801. * Note that the destination address is modified during the DMA transfer
  802. * according to edma_set_dest_index().
  803. */
  804. void edma_set_dest(unsigned slot, dma_addr_t dest_port,
  805. enum address_mode mode, enum fifo_width width)
  806. {
  807. unsigned ctlr;
  808. ctlr = EDMA_CTLR(slot);
  809. slot = EDMA_CHAN_SLOT(slot);
  810. if (slot < edma_info[ctlr]->num_slots) {
  811. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  812. if (mode) {
  813. /* set DAM and program FWID */
  814. i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
  815. } else {
  816. /* clear DAM */
  817. i &= ~DAM;
  818. }
  819. edma_parm_write(ctlr, PARM_OPT, slot, i);
  820. /* set the destination port address
  821. in dest register of param structure */
  822. edma_parm_write(ctlr, PARM_DST, slot, dest_port);
  823. }
  824. }
  825. EXPORT_SYMBOL(edma_set_dest);
  826. /**
  827. * edma_get_position - returns the current transfer points
  828. * @slot: parameter RAM slot being examined
  829. * @src: pointer to source port position
  830. * @dst: pointer to destination port position
  831. *
  832. * Returns current source and destination addresses for a particular
  833. * parameter RAM slot. Its channel should not be active when this is called.
  834. */
  835. void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
  836. {
  837. struct edmacc_param temp;
  838. unsigned ctlr;
  839. ctlr = EDMA_CTLR(slot);
  840. slot = EDMA_CHAN_SLOT(slot);
  841. edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
  842. if (src != NULL)
  843. *src = temp.src;
  844. if (dst != NULL)
  845. *dst = temp.dst;
  846. }
  847. EXPORT_SYMBOL(edma_get_position);
  848. /**
  849. * edma_set_src_index - configure DMA source address indexing
  850. * @slot: parameter RAM slot being configured
  851. * @src_bidx: byte offset between source arrays in a frame
  852. * @src_cidx: byte offset between source frames in a block
  853. *
  854. * Offsets are specified to support either contiguous or discontiguous
  855. * memory transfers, or repeated access to a hardware register, as needed.
  856. * When accessing hardware registers, both offsets are normally zero.
  857. */
  858. void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
  859. {
  860. unsigned ctlr;
  861. ctlr = EDMA_CTLR(slot);
  862. slot = EDMA_CHAN_SLOT(slot);
  863. if (slot < edma_info[ctlr]->num_slots) {
  864. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  865. 0xffff0000, src_bidx);
  866. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  867. 0xffff0000, src_cidx);
  868. }
  869. }
  870. EXPORT_SYMBOL(edma_set_src_index);
  871. /**
  872. * edma_set_dest_index - configure DMA destination address indexing
  873. * @slot: parameter RAM slot being configured
  874. * @dest_bidx: byte offset between destination arrays in a frame
  875. * @dest_cidx: byte offset between destination frames in a block
  876. *
  877. * Offsets are specified to support either contiguous or discontiguous
  878. * memory transfers, or repeated access to a hardware register, as needed.
  879. * When accessing hardware registers, both offsets are normally zero.
  880. */
  881. void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
  882. {
  883. unsigned ctlr;
  884. ctlr = EDMA_CTLR(slot);
  885. slot = EDMA_CHAN_SLOT(slot);
  886. if (slot < edma_info[ctlr]->num_slots) {
  887. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  888. 0x0000ffff, dest_bidx << 16);
  889. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  890. 0x0000ffff, dest_cidx << 16);
  891. }
  892. }
  893. EXPORT_SYMBOL(edma_set_dest_index);
  894. /**
  895. * edma_set_transfer_params - configure DMA transfer parameters
  896. * @slot: parameter RAM slot being configured
  897. * @acnt: how many bytes per array (at least one)
  898. * @bcnt: how many arrays per frame (at least one)
  899. * @ccnt: how many frames per block (at least one)
  900. * @bcnt_rld: used only for A-Synchronized transfers; this specifies
  901. * the value to reload into bcnt when it decrements to zero
  902. * @sync_mode: ASYNC or ABSYNC
  903. *
  904. * See the EDMA3 documentation to understand how to configure and link
  905. * transfers using the fields in PaRAM slots. If you are not doing it
  906. * all at once with edma_write_slot(), you will use this routine
  907. * plus two calls each for source and destination, setting the initial
  908. * address and saying how to index that address.
  909. *
  910. * An example of an A-Synchronized transfer is a serial link using a
  911. * single word shift register. In that case, @acnt would be equal to
  912. * that word size; the serial controller issues a DMA synchronization
  913. * event to transfer each word, and memory access by the DMA transfer
  914. * controller will be word-at-a-time.
  915. *
  916. * An example of an AB-Synchronized transfer is a device using a FIFO.
  917. * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
  918. * The controller with the FIFO issues DMA synchronization events when
  919. * the FIFO threshold is reached, and the DMA transfer controller will
  920. * transfer one frame to (or from) the FIFO. It will probably use
  921. * efficient burst modes to access memory.
  922. */
  923. void edma_set_transfer_params(unsigned slot,
  924. u16 acnt, u16 bcnt, u16 ccnt,
  925. u16 bcnt_rld, enum sync_dimension sync_mode)
  926. {
  927. unsigned ctlr;
  928. ctlr = EDMA_CTLR(slot);
  929. slot = EDMA_CHAN_SLOT(slot);
  930. if (slot < edma_info[ctlr]->num_slots) {
  931. edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
  932. 0x0000ffff, bcnt_rld << 16);
  933. if (sync_mode == ASYNC)
  934. edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
  935. else
  936. edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
  937. /* Set the acount, bcount, ccount registers */
  938. edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
  939. edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
  940. }
  941. }
  942. EXPORT_SYMBOL(edma_set_transfer_params);
  943. /**
  944. * edma_link - link one parameter RAM slot to another
  945. * @from: parameter RAM slot originating the link
  946. * @to: parameter RAM slot which is the link target
  947. *
  948. * The originating slot should not be part of any active DMA transfer.
  949. */
  950. void edma_link(unsigned from, unsigned to)
  951. {
  952. unsigned ctlr_from, ctlr_to;
  953. ctlr_from = EDMA_CTLR(from);
  954. from = EDMA_CHAN_SLOT(from);
  955. ctlr_to = EDMA_CTLR(to);
  956. to = EDMA_CHAN_SLOT(to);
  957. if (from >= edma_info[ctlr_from]->num_slots)
  958. return;
  959. if (to >= edma_info[ctlr_to]->num_slots)
  960. return;
  961. edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
  962. PARM_OFFSET(to));
  963. }
  964. EXPORT_SYMBOL(edma_link);
  965. /**
  966. * edma_unlink - cut link from one parameter RAM slot
  967. * @from: parameter RAM slot originating the link
  968. *
  969. * The originating slot should not be part of any active DMA transfer.
  970. * Its link is set to 0xffff.
  971. */
  972. void edma_unlink(unsigned from)
  973. {
  974. unsigned ctlr;
  975. ctlr = EDMA_CTLR(from);
  976. from = EDMA_CHAN_SLOT(from);
  977. if (from >= edma_info[ctlr]->num_slots)
  978. return;
  979. edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
  980. }
  981. EXPORT_SYMBOL(edma_unlink);
  982. /*-----------------------------------------------------------------------*/
  983. /* Parameter RAM operations (ii) -- read/write whole parameter sets */
  984. /**
  985. * edma_write_slot - write parameter RAM data for slot
  986. * @slot: number of parameter RAM slot being modified
  987. * @param: data to be written into parameter RAM slot
  988. *
  989. * Use this to assign all parameters of a transfer at once. This
  990. * allows more efficient setup of transfers than issuing multiple
  991. * calls to set up those parameters in small pieces, and provides
  992. * complete control over all transfer options.
  993. */
  994. void edma_write_slot(unsigned slot, const struct edmacc_param *param)
  995. {
  996. unsigned ctlr;
  997. ctlr = EDMA_CTLR(slot);
  998. slot = EDMA_CHAN_SLOT(slot);
  999. if (slot >= edma_info[ctlr]->num_slots)
  1000. return;
  1001. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
  1002. PARM_SIZE);
  1003. }
  1004. EXPORT_SYMBOL(edma_write_slot);
  1005. /**
  1006. * edma_read_slot - read parameter RAM data from slot
  1007. * @slot: number of parameter RAM slot being copied
  1008. * @param: where to store copy of parameter RAM data
  1009. *
  1010. * Use this to read data from a parameter RAM slot, perhaps to
  1011. * save them as a template for later reuse.
  1012. */
  1013. void edma_read_slot(unsigned slot, struct edmacc_param *param)
  1014. {
  1015. unsigned ctlr;
  1016. ctlr = EDMA_CTLR(slot);
  1017. slot = EDMA_CHAN_SLOT(slot);
  1018. if (slot >= edma_info[ctlr]->num_slots)
  1019. return;
  1020. memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  1021. PARM_SIZE);
  1022. }
  1023. EXPORT_SYMBOL(edma_read_slot);
  1024. /*-----------------------------------------------------------------------*/
  1025. /* Various EDMA channel control operations */
  1026. /**
  1027. * edma_pause - pause dma on a channel
  1028. * @channel: on which edma_start() has been called
  1029. *
  1030. * This temporarily disables EDMA hardware events on the specified channel,
  1031. * preventing them from triggering new transfers on its behalf
  1032. */
  1033. void edma_pause(unsigned channel)
  1034. {
  1035. unsigned ctlr;
  1036. ctlr = EDMA_CTLR(channel);
  1037. channel = EDMA_CHAN_SLOT(channel);
  1038. if (channel < edma_info[ctlr]->num_channels) {
  1039. unsigned int mask = (1 << (channel & 0x1f));
  1040. edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
  1041. }
  1042. }
  1043. EXPORT_SYMBOL(edma_pause);
  1044. /**
  1045. * edma_resume - resumes dma on a paused channel
  1046. * @channel: on which edma_pause() has been called
  1047. *
  1048. * This re-enables EDMA hardware events on the specified channel.
  1049. */
  1050. void edma_resume(unsigned channel)
  1051. {
  1052. unsigned ctlr;
  1053. ctlr = EDMA_CTLR(channel);
  1054. channel = EDMA_CHAN_SLOT(channel);
  1055. if (channel < edma_info[ctlr]->num_channels) {
  1056. unsigned int mask = (1 << (channel & 0x1f));
  1057. edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
  1058. }
  1059. }
  1060. EXPORT_SYMBOL(edma_resume);
  1061. /**
  1062. * edma_start - start dma on a channel
  1063. * @channel: channel being activated
  1064. *
  1065. * Channels with event associations will be triggered by their hardware
  1066. * events, and channels without such associations will be triggered by
  1067. * software. (At this writing there is no interface for using software
  1068. * triggers except with channels that don't support hardware triggers.)
  1069. *
  1070. * Returns zero on success, else negative errno.
  1071. */
  1072. int edma_start(unsigned channel)
  1073. {
  1074. unsigned ctlr;
  1075. ctlr = EDMA_CTLR(channel);
  1076. channel = EDMA_CHAN_SLOT(channel);
  1077. if (channel < edma_info[ctlr]->num_channels) {
  1078. int j = channel >> 5;
  1079. unsigned int mask = (1 << (channel & 0x1f));
  1080. /* EDMA channels without event association */
  1081. if (test_bit(channel, edma_info[ctlr]->edma_noevent)) {
  1082. pr_debug("EDMA: ESR%d %08x\n", j,
  1083. edma_shadow0_read_array(ctlr, SH_ESR, j));
  1084. edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
  1085. return 0;
  1086. }
  1087. /* EDMA channel with event association */
  1088. pr_debug("EDMA: ER%d %08x\n", j,
  1089. edma_shadow0_read_array(ctlr, SH_ER, j));
  1090. /* Clear any pending error */
  1091. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1092. /* Clear any SER */
  1093. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1094. edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
  1095. pr_debug("EDMA: EER%d %08x\n", j,
  1096. edma_shadow0_read_array(ctlr, SH_EER, j));
  1097. return 0;
  1098. }
  1099. return -EINVAL;
  1100. }
  1101. EXPORT_SYMBOL(edma_start);
  1102. /**
  1103. * edma_stop - stops dma on the channel passed
  1104. * @channel: channel being deactivated
  1105. *
  1106. * When @lch is a channel, any active transfer is paused and
  1107. * all pending hardware events are cleared. The current transfer
  1108. * may not be resumed, and the channel's Parameter RAM should be
  1109. * reinitialized before being reused.
  1110. */
  1111. void edma_stop(unsigned channel)
  1112. {
  1113. unsigned ctlr;
  1114. ctlr = EDMA_CTLR(channel);
  1115. channel = EDMA_CHAN_SLOT(channel);
  1116. if (channel < edma_info[ctlr]->num_channels) {
  1117. int j = channel >> 5;
  1118. unsigned int mask = (1 << (channel & 0x1f));
  1119. edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
  1120. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1121. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1122. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1123. pr_debug("EDMA: EER%d %08x\n", j,
  1124. edma_shadow0_read_array(ctlr, SH_EER, j));
  1125. /* REVISIT: consider guarding against inappropriate event
  1126. * chaining by overwriting with dummy_paramset.
  1127. */
  1128. }
  1129. }
  1130. EXPORT_SYMBOL(edma_stop);
  1131. /******************************************************************************
  1132. *
  1133. * It cleans ParamEntry qand bring back EDMA to initial state if media has
  1134. * been removed before EDMA has finished.It is usedful for removable media.
  1135. * Arguments:
  1136. * ch_no - channel no
  1137. *
  1138. * Return: zero on success, or corresponding error no on failure
  1139. *
  1140. * FIXME this should not be needed ... edma_stop() should suffice.
  1141. *
  1142. *****************************************************************************/
  1143. void edma_clean_channel(unsigned channel)
  1144. {
  1145. unsigned ctlr;
  1146. ctlr = EDMA_CTLR(channel);
  1147. channel = EDMA_CHAN_SLOT(channel);
  1148. if (channel < edma_info[ctlr]->num_channels) {
  1149. int j = (channel >> 5);
  1150. unsigned int mask = 1 << (channel & 0x1f);
  1151. pr_debug("EDMA: EMR%d %08x\n", j,
  1152. edma_read_array(ctlr, EDMA_EMR, j));
  1153. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1154. /* Clear the corresponding EMR bits */
  1155. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1156. /* Clear any SER */
  1157. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1158. edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
  1159. }
  1160. }
  1161. EXPORT_SYMBOL(edma_clean_channel);
  1162. /*
  1163. * edma_clear_event - clear an outstanding event on the DMA channel
  1164. * Arguments:
  1165. * channel - channel number
  1166. */
  1167. void edma_clear_event(unsigned channel)
  1168. {
  1169. unsigned ctlr;
  1170. ctlr = EDMA_CTLR(channel);
  1171. channel = EDMA_CHAN_SLOT(channel);
  1172. if (channel >= edma_info[ctlr]->num_channels)
  1173. return;
  1174. if (channel < 32)
  1175. edma_write(ctlr, EDMA_ECR, 1 << channel);
  1176. else
  1177. edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
  1178. }
  1179. EXPORT_SYMBOL(edma_clear_event);
  1180. /*-----------------------------------------------------------------------*/
  1181. static int __init edma_probe(struct platform_device *pdev)
  1182. {
  1183. struct edma_soc_info *info = pdev->dev.platform_data;
  1184. const s8 (*queue_priority_mapping)[2];
  1185. const s8 (*queue_tc_mapping)[2];
  1186. int i, j, found = 0;
  1187. int status = -1;
  1188. const s8 *noevent;
  1189. int irq[EDMA_MAX_CC] = {0, 0};
  1190. int err_irq[EDMA_MAX_CC] = {0, 0};
  1191. struct resource *r[EDMA_MAX_CC] = {NULL};
  1192. resource_size_t len[EDMA_MAX_CC];
  1193. char res_name[10];
  1194. char irq_name[10];
  1195. if (!info)
  1196. return -ENODEV;
  1197. for (j = 0; j < EDMA_MAX_CC; j++) {
  1198. sprintf(res_name, "edma_cc%d", j);
  1199. r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1200. res_name);
  1201. if (!r[j]) {
  1202. if (found)
  1203. break;
  1204. else
  1205. return -ENODEV;
  1206. } else
  1207. found = 1;
  1208. len[j] = resource_size(r[j]);
  1209. r[j] = request_mem_region(r[j]->start, len[j],
  1210. dev_name(&pdev->dev));
  1211. if (!r[j]) {
  1212. status = -EBUSY;
  1213. goto fail1;
  1214. }
  1215. edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
  1216. if (!edmacc_regs_base[j]) {
  1217. status = -EBUSY;
  1218. goto fail1;
  1219. }
  1220. edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
  1221. if (!edma_info[j]) {
  1222. status = -ENOMEM;
  1223. goto fail1;
  1224. }
  1225. memset(edma_info[j], 0, sizeof(struct edma));
  1226. edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
  1227. EDMA_MAX_DMACH);
  1228. edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
  1229. EDMA_MAX_PARAMENTRY);
  1230. edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
  1231. EDMA_MAX_CC);
  1232. edma_info[j]->default_queue = info[j].default_queue;
  1233. if (!edma_info[j]->default_queue)
  1234. edma_info[j]->default_queue = EVENTQ_1;
  1235. dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
  1236. edmacc_regs_base[j]);
  1237. for (i = 0; i < edma_info[j]->num_slots; i++)
  1238. memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
  1239. &dummy_paramset, PARM_SIZE);
  1240. noevent = info[j].noevent;
  1241. if (noevent) {
  1242. while (*noevent != -1)
  1243. set_bit(*noevent++, edma_info[j]->edma_noevent);
  1244. }
  1245. sprintf(irq_name, "edma%d", j);
  1246. irq[j] = platform_get_irq_byname(pdev, irq_name);
  1247. edma_info[j]->irq_res_start = irq[j];
  1248. status = request_irq(irq[j], dma_irq_handler, 0, "edma",
  1249. &pdev->dev);
  1250. if (status < 0) {
  1251. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1252. irq[j], status);
  1253. goto fail;
  1254. }
  1255. sprintf(irq_name, "edma%d_err", j);
  1256. err_irq[j] = platform_get_irq_byname(pdev, irq_name);
  1257. edma_info[j]->irq_res_end = err_irq[j];
  1258. status = request_irq(err_irq[j], dma_ccerr_handler, 0,
  1259. "edma_error", &pdev->dev);
  1260. if (status < 0) {
  1261. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1262. err_irq[j], status);
  1263. goto fail;
  1264. }
  1265. /* Everything lives on transfer controller 1 until otherwise
  1266. * specified. This way, long transfers on the low priority queue
  1267. * started by the codec engine will not cause audio defects.
  1268. */
  1269. for (i = 0; i < edma_info[j]->num_channels; i++)
  1270. map_dmach_queue(j, i, EVENTQ_1);
  1271. queue_tc_mapping = info[j].queue_tc_mapping;
  1272. queue_priority_mapping = info[j].queue_priority_mapping;
  1273. /* Event queue to TC mapping */
  1274. for (i = 0; queue_tc_mapping[i][0] != -1; i++)
  1275. map_queue_tc(j, queue_tc_mapping[i][0],
  1276. queue_tc_mapping[i][1]);
  1277. /* Event queue priority mapping */
  1278. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  1279. assign_priority_to_queue(j,
  1280. queue_priority_mapping[i][0],
  1281. queue_priority_mapping[i][1]);
  1282. /* Map the channel to param entry if channel mapping logic
  1283. * exist
  1284. */
  1285. if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
  1286. map_dmach_param(j);
  1287. for (i = 0; i < info[j].n_region; i++) {
  1288. edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
  1289. edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
  1290. edma_write_array(j, EDMA_QRAE, i, 0x0);
  1291. }
  1292. }
  1293. if (tc_errs_handled) {
  1294. status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
  1295. "edma_tc0", &pdev->dev);
  1296. if (status < 0) {
  1297. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1298. IRQ_TCERRINT0, status);
  1299. return status;
  1300. }
  1301. status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
  1302. "edma_tc1", &pdev->dev);
  1303. if (status < 0) {
  1304. dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
  1305. IRQ_TCERRINT, status);
  1306. return status;
  1307. }
  1308. }
  1309. return 0;
  1310. fail:
  1311. for (i = 0; i < EDMA_MAX_CC; i++) {
  1312. if (err_irq[i])
  1313. free_irq(err_irq[i], &pdev->dev);
  1314. if (irq[i])
  1315. free_irq(irq[i], &pdev->dev);
  1316. }
  1317. fail1:
  1318. for (i = 0; i < EDMA_MAX_CC; i++) {
  1319. if (r[i])
  1320. release_mem_region(r[i]->start, len[i]);
  1321. if (edmacc_regs_base[i])
  1322. iounmap(edmacc_regs_base[i]);
  1323. kfree(edma_info[i]);
  1324. }
  1325. return status;
  1326. }
  1327. static struct platform_driver edma_driver = {
  1328. .driver.name = "edma",
  1329. };
  1330. static int __init edma_init(void)
  1331. {
  1332. return platform_driver_probe(&edma_driver, edma_probe);
  1333. }
  1334. arch_initcall(edma_init);