kvm_main.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. static DEFINE_SPINLOCK(kvm_lock);
  40. static LIST_HEAD(vm_list);
  41. struct kvm_arch_ops *kvm_arch_ops;
  42. struct kvm_stat kvm_stat;
  43. EXPORT_SYMBOL_GPL(kvm_stat);
  44. static struct kvm_stats_debugfs_item {
  45. const char *name;
  46. u32 *data;
  47. struct dentry *dentry;
  48. } debugfs_entries[] = {
  49. { "pf_fixed", &kvm_stat.pf_fixed },
  50. { "pf_guest", &kvm_stat.pf_guest },
  51. { "tlb_flush", &kvm_stat.tlb_flush },
  52. { "invlpg", &kvm_stat.invlpg },
  53. { "exits", &kvm_stat.exits },
  54. { "io_exits", &kvm_stat.io_exits },
  55. { "mmio_exits", &kvm_stat.mmio_exits },
  56. { "signal_exits", &kvm_stat.signal_exits },
  57. { "irq_window", &kvm_stat.irq_window_exits },
  58. { "halt_exits", &kvm_stat.halt_exits },
  59. { "request_irq", &kvm_stat.request_irq_exits },
  60. { "irq_exits", &kvm_stat.irq_exits },
  61. { NULL, NULL }
  62. };
  63. static struct dentry *debugfs_dir;
  64. #define MAX_IO_MSRS 256
  65. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  66. #define LMSW_GUEST_MASK 0x0eULL
  67. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  68. #define CR8_RESEVED_BITS (~0x0fULL)
  69. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  70. #ifdef CONFIG_X86_64
  71. // LDT or TSS descriptor in the GDT. 16 bytes.
  72. struct segment_descriptor_64 {
  73. struct segment_descriptor s;
  74. u32 base_higher;
  75. u32 pad_zero;
  76. };
  77. #endif
  78. unsigned long segment_base(u16 selector)
  79. {
  80. struct descriptor_table gdt;
  81. struct segment_descriptor *d;
  82. unsigned long table_base;
  83. typedef unsigned long ul;
  84. unsigned long v;
  85. if (selector == 0)
  86. return 0;
  87. asm ("sgdt %0" : "=m"(gdt));
  88. table_base = gdt.base;
  89. if (selector & 4) { /* from ldt */
  90. u16 ldt_selector;
  91. asm ("sldt %0" : "=g"(ldt_selector));
  92. table_base = segment_base(ldt_selector);
  93. }
  94. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  95. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  96. #ifdef CONFIG_X86_64
  97. if (d->system == 0
  98. && (d->type == 2 || d->type == 9 || d->type == 11))
  99. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  100. #endif
  101. return v;
  102. }
  103. EXPORT_SYMBOL_GPL(segment_base);
  104. static inline int valid_vcpu(int n)
  105. {
  106. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  107. }
  108. int kvm_read_guest(struct kvm_vcpu *vcpu,
  109. gva_t addr,
  110. unsigned long size,
  111. void *dest)
  112. {
  113. unsigned char *host_buf = dest;
  114. unsigned long req_size = size;
  115. while (size) {
  116. hpa_t paddr;
  117. unsigned now;
  118. unsigned offset;
  119. hva_t guest_buf;
  120. paddr = gva_to_hpa(vcpu, addr);
  121. if (is_error_hpa(paddr))
  122. break;
  123. guest_buf = (hva_t)kmap_atomic(
  124. pfn_to_page(paddr >> PAGE_SHIFT),
  125. KM_USER0);
  126. offset = addr & ~PAGE_MASK;
  127. guest_buf |= offset;
  128. now = min(size, PAGE_SIZE - offset);
  129. memcpy(host_buf, (void*)guest_buf, now);
  130. host_buf += now;
  131. addr += now;
  132. size -= now;
  133. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  134. }
  135. return req_size - size;
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_read_guest);
  138. int kvm_write_guest(struct kvm_vcpu *vcpu,
  139. gva_t addr,
  140. unsigned long size,
  141. void *data)
  142. {
  143. unsigned char *host_buf = data;
  144. unsigned long req_size = size;
  145. while (size) {
  146. hpa_t paddr;
  147. unsigned now;
  148. unsigned offset;
  149. hva_t guest_buf;
  150. paddr = gva_to_hpa(vcpu, addr);
  151. if (is_error_hpa(paddr))
  152. break;
  153. guest_buf = (hva_t)kmap_atomic(
  154. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  155. offset = addr & ~PAGE_MASK;
  156. guest_buf |= offset;
  157. now = min(size, PAGE_SIZE - offset);
  158. memcpy((void*)guest_buf, host_buf, now);
  159. host_buf += now;
  160. addr += now;
  161. size -= now;
  162. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  163. }
  164. return req_size - size;
  165. }
  166. EXPORT_SYMBOL_GPL(kvm_write_guest);
  167. static int vcpu_slot(struct kvm_vcpu *vcpu)
  168. {
  169. return vcpu - vcpu->kvm->vcpus;
  170. }
  171. /*
  172. * Switches to specified vcpu, until a matching vcpu_put()
  173. */
  174. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  175. {
  176. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  177. mutex_lock(&vcpu->mutex);
  178. if (unlikely(!vcpu->vmcs)) {
  179. mutex_unlock(&vcpu->mutex);
  180. return NULL;
  181. }
  182. return kvm_arch_ops->vcpu_load(vcpu);
  183. }
  184. static void vcpu_put(struct kvm_vcpu *vcpu)
  185. {
  186. kvm_arch_ops->vcpu_put(vcpu);
  187. mutex_unlock(&vcpu->mutex);
  188. }
  189. static int kvm_dev_open(struct inode *inode, struct file *filp)
  190. {
  191. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  192. int i;
  193. if (!kvm)
  194. return -ENOMEM;
  195. spin_lock_init(&kvm->lock);
  196. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  197. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  198. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  199. mutex_init(&vcpu->mutex);
  200. vcpu->cpu = -1;
  201. vcpu->kvm = kvm;
  202. vcpu->mmu.root_hpa = INVALID_PAGE;
  203. INIT_LIST_HEAD(&vcpu->free_pages);
  204. spin_lock(&kvm_lock);
  205. list_add(&kvm->vm_list, &vm_list);
  206. spin_unlock(&kvm_lock);
  207. }
  208. filp->private_data = kvm;
  209. return 0;
  210. }
  211. /*
  212. * Free any memory in @free but not in @dont.
  213. */
  214. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  215. struct kvm_memory_slot *dont)
  216. {
  217. int i;
  218. if (!dont || free->phys_mem != dont->phys_mem)
  219. if (free->phys_mem) {
  220. for (i = 0; i < free->npages; ++i)
  221. if (free->phys_mem[i])
  222. __free_page(free->phys_mem[i]);
  223. vfree(free->phys_mem);
  224. }
  225. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  226. vfree(free->dirty_bitmap);
  227. free->phys_mem = NULL;
  228. free->npages = 0;
  229. free->dirty_bitmap = NULL;
  230. }
  231. static void kvm_free_physmem(struct kvm *kvm)
  232. {
  233. int i;
  234. for (i = 0; i < kvm->nmemslots; ++i)
  235. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  236. }
  237. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  238. {
  239. if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
  240. return;
  241. kvm_mmu_destroy(vcpu);
  242. vcpu_put(vcpu);
  243. kvm_arch_ops->vcpu_free(vcpu);
  244. }
  245. static void kvm_free_vcpus(struct kvm *kvm)
  246. {
  247. unsigned int i;
  248. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  249. kvm_free_vcpu(&kvm->vcpus[i]);
  250. }
  251. static int kvm_dev_release(struct inode *inode, struct file *filp)
  252. {
  253. struct kvm *kvm = filp->private_data;
  254. spin_lock(&kvm_lock);
  255. list_del(&kvm->vm_list);
  256. spin_unlock(&kvm_lock);
  257. kvm_free_vcpus(kvm);
  258. kvm_free_physmem(kvm);
  259. kfree(kvm);
  260. return 0;
  261. }
  262. static void inject_gp(struct kvm_vcpu *vcpu)
  263. {
  264. kvm_arch_ops->inject_gp(vcpu, 0);
  265. }
  266. /*
  267. * Load the pae pdptrs. Return true is they are all valid.
  268. */
  269. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  270. {
  271. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  272. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  273. int i;
  274. u64 pdpte;
  275. u64 *pdpt;
  276. int ret;
  277. struct kvm_memory_slot *memslot;
  278. spin_lock(&vcpu->kvm->lock);
  279. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  280. /* FIXME: !memslot - emulate? 0xff? */
  281. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  282. ret = 1;
  283. for (i = 0; i < 4; ++i) {
  284. pdpte = pdpt[offset + i];
  285. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  286. ret = 0;
  287. goto out;
  288. }
  289. }
  290. for (i = 0; i < 4; ++i)
  291. vcpu->pdptrs[i] = pdpt[offset + i];
  292. out:
  293. kunmap_atomic(pdpt, KM_USER0);
  294. spin_unlock(&vcpu->kvm->lock);
  295. return ret;
  296. }
  297. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  298. {
  299. if (cr0 & CR0_RESEVED_BITS) {
  300. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  301. cr0, vcpu->cr0);
  302. inject_gp(vcpu);
  303. return;
  304. }
  305. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  306. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  307. inject_gp(vcpu);
  308. return;
  309. }
  310. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  311. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  312. "and a clear PE flag\n");
  313. inject_gp(vcpu);
  314. return;
  315. }
  316. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  317. #ifdef CONFIG_X86_64
  318. if ((vcpu->shadow_efer & EFER_LME)) {
  319. int cs_db, cs_l;
  320. if (!is_pae(vcpu)) {
  321. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  322. "in long mode while PAE is disabled\n");
  323. inject_gp(vcpu);
  324. return;
  325. }
  326. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  327. if (cs_l) {
  328. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  329. "in long mode while CS.L == 1\n");
  330. inject_gp(vcpu);
  331. return;
  332. }
  333. } else
  334. #endif
  335. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  336. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  337. "reserved bits\n");
  338. inject_gp(vcpu);
  339. return;
  340. }
  341. }
  342. kvm_arch_ops->set_cr0(vcpu, cr0);
  343. vcpu->cr0 = cr0;
  344. spin_lock(&vcpu->kvm->lock);
  345. kvm_mmu_reset_context(vcpu);
  346. spin_unlock(&vcpu->kvm->lock);
  347. return;
  348. }
  349. EXPORT_SYMBOL_GPL(set_cr0);
  350. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  351. {
  352. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  353. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  354. }
  355. EXPORT_SYMBOL_GPL(lmsw);
  356. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  357. {
  358. if (cr4 & CR4_RESEVED_BITS) {
  359. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  360. inject_gp(vcpu);
  361. return;
  362. }
  363. if (is_long_mode(vcpu)) {
  364. if (!(cr4 & CR4_PAE_MASK)) {
  365. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  366. "in long mode\n");
  367. inject_gp(vcpu);
  368. return;
  369. }
  370. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  371. && !load_pdptrs(vcpu, vcpu->cr3)) {
  372. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  373. inject_gp(vcpu);
  374. }
  375. if (cr4 & CR4_VMXE_MASK) {
  376. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  377. inject_gp(vcpu);
  378. return;
  379. }
  380. kvm_arch_ops->set_cr4(vcpu, cr4);
  381. spin_lock(&vcpu->kvm->lock);
  382. kvm_mmu_reset_context(vcpu);
  383. spin_unlock(&vcpu->kvm->lock);
  384. }
  385. EXPORT_SYMBOL_GPL(set_cr4);
  386. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  387. {
  388. if (is_long_mode(vcpu)) {
  389. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  390. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  391. inject_gp(vcpu);
  392. return;
  393. }
  394. } else {
  395. if (cr3 & CR3_RESEVED_BITS) {
  396. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  397. inject_gp(vcpu);
  398. return;
  399. }
  400. if (is_paging(vcpu) && is_pae(vcpu) &&
  401. !load_pdptrs(vcpu, cr3)) {
  402. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  403. "reserved bits\n");
  404. inject_gp(vcpu);
  405. return;
  406. }
  407. }
  408. vcpu->cr3 = cr3;
  409. spin_lock(&vcpu->kvm->lock);
  410. /*
  411. * Does the new cr3 value map to physical memory? (Note, we
  412. * catch an invalid cr3 even in real-mode, because it would
  413. * cause trouble later on when we turn on paging anyway.)
  414. *
  415. * A real CPU would silently accept an invalid cr3 and would
  416. * attempt to use it - with largely undefined (and often hard
  417. * to debug) behavior on the guest side.
  418. */
  419. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  420. inject_gp(vcpu);
  421. else
  422. vcpu->mmu.new_cr3(vcpu);
  423. spin_unlock(&vcpu->kvm->lock);
  424. }
  425. EXPORT_SYMBOL_GPL(set_cr3);
  426. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  427. {
  428. if ( cr8 & CR8_RESEVED_BITS) {
  429. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  430. inject_gp(vcpu);
  431. return;
  432. }
  433. vcpu->cr8 = cr8;
  434. }
  435. EXPORT_SYMBOL_GPL(set_cr8);
  436. void fx_init(struct kvm_vcpu *vcpu)
  437. {
  438. struct __attribute__ ((__packed__)) fx_image_s {
  439. u16 control; //fcw
  440. u16 status; //fsw
  441. u16 tag; // ftw
  442. u16 opcode; //fop
  443. u64 ip; // fpu ip
  444. u64 operand;// fpu dp
  445. u32 mxcsr;
  446. u32 mxcsr_mask;
  447. } *fx_image;
  448. fx_save(vcpu->host_fx_image);
  449. fpu_init();
  450. fx_save(vcpu->guest_fx_image);
  451. fx_restore(vcpu->host_fx_image);
  452. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  453. fx_image->mxcsr = 0x1f80;
  454. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  455. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  456. }
  457. EXPORT_SYMBOL_GPL(fx_init);
  458. /*
  459. * Creates some virtual cpus. Good luck creating more than one.
  460. */
  461. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  462. {
  463. int r;
  464. struct kvm_vcpu *vcpu;
  465. r = -EINVAL;
  466. if (!valid_vcpu(n))
  467. goto out;
  468. vcpu = &kvm->vcpus[n];
  469. mutex_lock(&vcpu->mutex);
  470. if (vcpu->vmcs) {
  471. mutex_unlock(&vcpu->mutex);
  472. return -EEXIST;
  473. }
  474. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  475. FX_IMAGE_ALIGN);
  476. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  477. r = kvm_arch_ops->vcpu_create(vcpu);
  478. if (r < 0)
  479. goto out_free_vcpus;
  480. r = kvm_mmu_create(vcpu);
  481. if (r < 0)
  482. goto out_free_vcpus;
  483. kvm_arch_ops->vcpu_load(vcpu);
  484. r = kvm_mmu_setup(vcpu);
  485. if (r >= 0)
  486. r = kvm_arch_ops->vcpu_setup(vcpu);
  487. vcpu_put(vcpu);
  488. if (r < 0)
  489. goto out_free_vcpus;
  490. return 0;
  491. out_free_vcpus:
  492. kvm_free_vcpu(vcpu);
  493. mutex_unlock(&vcpu->mutex);
  494. out:
  495. return r;
  496. }
  497. /*
  498. * Allocate some memory and give it an address in the guest physical address
  499. * space.
  500. *
  501. * Discontiguous memory is allowed, mostly for framebuffers.
  502. */
  503. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  504. struct kvm_memory_region *mem)
  505. {
  506. int r;
  507. gfn_t base_gfn;
  508. unsigned long npages;
  509. unsigned long i;
  510. struct kvm_memory_slot *memslot;
  511. struct kvm_memory_slot old, new;
  512. int memory_config_version;
  513. r = -EINVAL;
  514. /* General sanity checks */
  515. if (mem->memory_size & (PAGE_SIZE - 1))
  516. goto out;
  517. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  518. goto out;
  519. if (mem->slot >= KVM_MEMORY_SLOTS)
  520. goto out;
  521. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  522. goto out;
  523. memslot = &kvm->memslots[mem->slot];
  524. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  525. npages = mem->memory_size >> PAGE_SHIFT;
  526. if (!npages)
  527. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  528. raced:
  529. spin_lock(&kvm->lock);
  530. memory_config_version = kvm->memory_config_version;
  531. new = old = *memslot;
  532. new.base_gfn = base_gfn;
  533. new.npages = npages;
  534. new.flags = mem->flags;
  535. /* Disallow changing a memory slot's size. */
  536. r = -EINVAL;
  537. if (npages && old.npages && npages != old.npages)
  538. goto out_unlock;
  539. /* Check for overlaps */
  540. r = -EEXIST;
  541. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  542. struct kvm_memory_slot *s = &kvm->memslots[i];
  543. if (s == memslot)
  544. continue;
  545. if (!((base_gfn + npages <= s->base_gfn) ||
  546. (base_gfn >= s->base_gfn + s->npages)))
  547. goto out_unlock;
  548. }
  549. /*
  550. * Do memory allocations outside lock. memory_config_version will
  551. * detect any races.
  552. */
  553. spin_unlock(&kvm->lock);
  554. /* Deallocate if slot is being removed */
  555. if (!npages)
  556. new.phys_mem = NULL;
  557. /* Free page dirty bitmap if unneeded */
  558. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  559. new.dirty_bitmap = NULL;
  560. r = -ENOMEM;
  561. /* Allocate if a slot is being created */
  562. if (npages && !new.phys_mem) {
  563. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  564. if (!new.phys_mem)
  565. goto out_free;
  566. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  567. for (i = 0; i < npages; ++i) {
  568. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  569. | __GFP_ZERO);
  570. if (!new.phys_mem[i])
  571. goto out_free;
  572. new.phys_mem[i]->private = 0;
  573. }
  574. }
  575. /* Allocate page dirty bitmap if needed */
  576. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  577. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  578. new.dirty_bitmap = vmalloc(dirty_bytes);
  579. if (!new.dirty_bitmap)
  580. goto out_free;
  581. memset(new.dirty_bitmap, 0, dirty_bytes);
  582. }
  583. spin_lock(&kvm->lock);
  584. if (memory_config_version != kvm->memory_config_version) {
  585. spin_unlock(&kvm->lock);
  586. kvm_free_physmem_slot(&new, &old);
  587. goto raced;
  588. }
  589. r = -EAGAIN;
  590. if (kvm->busy)
  591. goto out_unlock;
  592. if (mem->slot >= kvm->nmemslots)
  593. kvm->nmemslots = mem->slot + 1;
  594. *memslot = new;
  595. ++kvm->memory_config_version;
  596. spin_unlock(&kvm->lock);
  597. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  598. struct kvm_vcpu *vcpu;
  599. vcpu = vcpu_load(kvm, i);
  600. if (!vcpu)
  601. continue;
  602. kvm_mmu_reset_context(vcpu);
  603. vcpu_put(vcpu);
  604. }
  605. kvm_free_physmem_slot(&old, &new);
  606. return 0;
  607. out_unlock:
  608. spin_unlock(&kvm->lock);
  609. out_free:
  610. kvm_free_physmem_slot(&new, &old);
  611. out:
  612. return r;
  613. }
  614. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  615. {
  616. spin_lock(&vcpu->kvm->lock);
  617. kvm_mmu_slot_remove_write_access(vcpu, slot);
  618. spin_unlock(&vcpu->kvm->lock);
  619. }
  620. /*
  621. * Get (and clear) the dirty memory log for a memory slot.
  622. */
  623. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  624. struct kvm_dirty_log *log)
  625. {
  626. struct kvm_memory_slot *memslot;
  627. int r, i;
  628. int n;
  629. int cleared;
  630. unsigned long any = 0;
  631. spin_lock(&kvm->lock);
  632. /*
  633. * Prevent changes to guest memory configuration even while the lock
  634. * is not taken.
  635. */
  636. ++kvm->busy;
  637. spin_unlock(&kvm->lock);
  638. r = -EINVAL;
  639. if (log->slot >= KVM_MEMORY_SLOTS)
  640. goto out;
  641. memslot = &kvm->memslots[log->slot];
  642. r = -ENOENT;
  643. if (!memslot->dirty_bitmap)
  644. goto out;
  645. n = ALIGN(memslot->npages, 8) / 8;
  646. for (i = 0; !any && i < n; ++i)
  647. any = memslot->dirty_bitmap[i];
  648. r = -EFAULT;
  649. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  650. goto out;
  651. if (any) {
  652. cleared = 0;
  653. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  654. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  655. if (!vcpu)
  656. continue;
  657. if (!cleared) {
  658. do_remove_write_access(vcpu, log->slot);
  659. memset(memslot->dirty_bitmap, 0, n);
  660. cleared = 1;
  661. }
  662. kvm_arch_ops->tlb_flush(vcpu);
  663. vcpu_put(vcpu);
  664. }
  665. }
  666. r = 0;
  667. out:
  668. spin_lock(&kvm->lock);
  669. --kvm->busy;
  670. spin_unlock(&kvm->lock);
  671. return r;
  672. }
  673. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  674. {
  675. int i;
  676. for (i = 0; i < kvm->nmemslots; ++i) {
  677. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  678. if (gfn >= memslot->base_gfn
  679. && gfn < memslot->base_gfn + memslot->npages)
  680. return memslot;
  681. }
  682. return NULL;
  683. }
  684. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  685. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  686. {
  687. int i;
  688. struct kvm_memory_slot *memslot = NULL;
  689. unsigned long rel_gfn;
  690. for (i = 0; i < kvm->nmemslots; ++i) {
  691. memslot = &kvm->memslots[i];
  692. if (gfn >= memslot->base_gfn
  693. && gfn < memslot->base_gfn + memslot->npages) {
  694. if (!memslot || !memslot->dirty_bitmap)
  695. return;
  696. rel_gfn = gfn - memslot->base_gfn;
  697. /* avoid RMW */
  698. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  699. set_bit(rel_gfn, memslot->dirty_bitmap);
  700. return;
  701. }
  702. }
  703. }
  704. static int emulator_read_std(unsigned long addr,
  705. unsigned long *val,
  706. unsigned int bytes,
  707. struct x86_emulate_ctxt *ctxt)
  708. {
  709. struct kvm_vcpu *vcpu = ctxt->vcpu;
  710. void *data = val;
  711. while (bytes) {
  712. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  713. unsigned offset = addr & (PAGE_SIZE-1);
  714. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  715. unsigned long pfn;
  716. struct kvm_memory_slot *memslot;
  717. void *page;
  718. if (gpa == UNMAPPED_GVA)
  719. return X86EMUL_PROPAGATE_FAULT;
  720. pfn = gpa >> PAGE_SHIFT;
  721. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  722. if (!memslot)
  723. return X86EMUL_UNHANDLEABLE;
  724. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  725. memcpy(data, page + offset, tocopy);
  726. kunmap_atomic(page, KM_USER0);
  727. bytes -= tocopy;
  728. data += tocopy;
  729. addr += tocopy;
  730. }
  731. return X86EMUL_CONTINUE;
  732. }
  733. static int emulator_write_std(unsigned long addr,
  734. unsigned long val,
  735. unsigned int bytes,
  736. struct x86_emulate_ctxt *ctxt)
  737. {
  738. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  739. addr, bytes);
  740. return X86EMUL_UNHANDLEABLE;
  741. }
  742. static int emulator_read_emulated(unsigned long addr,
  743. unsigned long *val,
  744. unsigned int bytes,
  745. struct x86_emulate_ctxt *ctxt)
  746. {
  747. struct kvm_vcpu *vcpu = ctxt->vcpu;
  748. if (vcpu->mmio_read_completed) {
  749. memcpy(val, vcpu->mmio_data, bytes);
  750. vcpu->mmio_read_completed = 0;
  751. return X86EMUL_CONTINUE;
  752. } else if (emulator_read_std(addr, val, bytes, ctxt)
  753. == X86EMUL_CONTINUE)
  754. return X86EMUL_CONTINUE;
  755. else {
  756. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  757. if (gpa == UNMAPPED_GVA)
  758. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  759. vcpu->mmio_needed = 1;
  760. vcpu->mmio_phys_addr = gpa;
  761. vcpu->mmio_size = bytes;
  762. vcpu->mmio_is_write = 0;
  763. return X86EMUL_UNHANDLEABLE;
  764. }
  765. }
  766. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  767. unsigned long val, int bytes)
  768. {
  769. struct kvm_memory_slot *m;
  770. struct page *page;
  771. void *virt;
  772. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  773. return 0;
  774. m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  775. if (!m)
  776. return 0;
  777. page = gfn_to_page(m, gpa >> PAGE_SHIFT);
  778. kvm_mmu_pre_write(vcpu, gpa, bytes);
  779. virt = kmap_atomic(page, KM_USER0);
  780. memcpy(virt + offset_in_page(gpa), &val, bytes);
  781. kunmap_atomic(virt, KM_USER0);
  782. kvm_mmu_post_write(vcpu, gpa, bytes);
  783. return 1;
  784. }
  785. static int emulator_write_emulated(unsigned long addr,
  786. unsigned long val,
  787. unsigned int bytes,
  788. struct x86_emulate_ctxt *ctxt)
  789. {
  790. struct kvm_vcpu *vcpu = ctxt->vcpu;
  791. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  792. if (gpa == UNMAPPED_GVA)
  793. return X86EMUL_PROPAGATE_FAULT;
  794. if (emulator_write_phys(vcpu, gpa, val, bytes))
  795. return X86EMUL_CONTINUE;
  796. vcpu->mmio_needed = 1;
  797. vcpu->mmio_phys_addr = gpa;
  798. vcpu->mmio_size = bytes;
  799. vcpu->mmio_is_write = 1;
  800. memcpy(vcpu->mmio_data, &val, bytes);
  801. return X86EMUL_CONTINUE;
  802. }
  803. static int emulator_cmpxchg_emulated(unsigned long addr,
  804. unsigned long old,
  805. unsigned long new,
  806. unsigned int bytes,
  807. struct x86_emulate_ctxt *ctxt)
  808. {
  809. static int reported;
  810. if (!reported) {
  811. reported = 1;
  812. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  813. }
  814. return emulator_write_emulated(addr, new, bytes, ctxt);
  815. }
  816. #ifdef CONFIG_X86_32
  817. static int emulator_cmpxchg8b_emulated(unsigned long addr,
  818. unsigned long old_lo,
  819. unsigned long old_hi,
  820. unsigned long new_lo,
  821. unsigned long new_hi,
  822. struct x86_emulate_ctxt *ctxt)
  823. {
  824. static int reported;
  825. int r;
  826. if (!reported) {
  827. reported = 1;
  828. printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
  829. }
  830. r = emulator_write_emulated(addr, new_lo, 4, ctxt);
  831. if (r != X86EMUL_CONTINUE)
  832. return r;
  833. return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
  834. }
  835. #endif
  836. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  837. {
  838. return kvm_arch_ops->get_segment_base(vcpu, seg);
  839. }
  840. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  841. {
  842. return X86EMUL_CONTINUE;
  843. }
  844. int emulate_clts(struct kvm_vcpu *vcpu)
  845. {
  846. unsigned long cr0;
  847. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  848. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  849. kvm_arch_ops->set_cr0(vcpu, cr0);
  850. return X86EMUL_CONTINUE;
  851. }
  852. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  853. {
  854. struct kvm_vcpu *vcpu = ctxt->vcpu;
  855. switch (dr) {
  856. case 0 ... 3:
  857. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  858. return X86EMUL_CONTINUE;
  859. default:
  860. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  861. __FUNCTION__, dr);
  862. return X86EMUL_UNHANDLEABLE;
  863. }
  864. }
  865. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  866. {
  867. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  868. int exception;
  869. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  870. if (exception) {
  871. /* FIXME: better handling */
  872. return X86EMUL_UNHANDLEABLE;
  873. }
  874. return X86EMUL_CONTINUE;
  875. }
  876. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  877. {
  878. static int reported;
  879. u8 opcodes[4];
  880. unsigned long rip = ctxt->vcpu->rip;
  881. unsigned long rip_linear;
  882. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  883. if (reported)
  884. return;
  885. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  886. printk(KERN_ERR "emulation failed but !mmio_needed?"
  887. " rip %lx %02x %02x %02x %02x\n",
  888. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  889. reported = 1;
  890. }
  891. struct x86_emulate_ops emulate_ops = {
  892. .read_std = emulator_read_std,
  893. .write_std = emulator_write_std,
  894. .read_emulated = emulator_read_emulated,
  895. .write_emulated = emulator_write_emulated,
  896. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  897. #ifdef CONFIG_X86_32
  898. .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
  899. #endif
  900. };
  901. int emulate_instruction(struct kvm_vcpu *vcpu,
  902. struct kvm_run *run,
  903. unsigned long cr2,
  904. u16 error_code)
  905. {
  906. struct x86_emulate_ctxt emulate_ctxt;
  907. int r;
  908. int cs_db, cs_l;
  909. kvm_arch_ops->cache_regs(vcpu);
  910. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  911. emulate_ctxt.vcpu = vcpu;
  912. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  913. emulate_ctxt.cr2 = cr2;
  914. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  915. ? X86EMUL_MODE_REAL : cs_l
  916. ? X86EMUL_MODE_PROT64 : cs_db
  917. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  918. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  919. emulate_ctxt.cs_base = 0;
  920. emulate_ctxt.ds_base = 0;
  921. emulate_ctxt.es_base = 0;
  922. emulate_ctxt.ss_base = 0;
  923. } else {
  924. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  925. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  926. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  927. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  928. }
  929. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  930. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  931. vcpu->mmio_is_write = 0;
  932. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  933. if ((r || vcpu->mmio_is_write) && run) {
  934. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  935. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  936. run->mmio.len = vcpu->mmio_size;
  937. run->mmio.is_write = vcpu->mmio_is_write;
  938. }
  939. if (r) {
  940. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  941. return EMULATE_DONE;
  942. if (!vcpu->mmio_needed) {
  943. report_emulation_failure(&emulate_ctxt);
  944. return EMULATE_FAIL;
  945. }
  946. return EMULATE_DO_MMIO;
  947. }
  948. kvm_arch_ops->decache_regs(vcpu);
  949. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  950. if (vcpu->mmio_is_write)
  951. return EMULATE_DO_MMIO;
  952. return EMULATE_DONE;
  953. }
  954. EXPORT_SYMBOL_GPL(emulate_instruction);
  955. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  956. {
  957. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  958. }
  959. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  960. {
  961. struct descriptor_table dt = { limit, base };
  962. kvm_arch_ops->set_gdt(vcpu, &dt);
  963. }
  964. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  965. {
  966. struct descriptor_table dt = { limit, base };
  967. kvm_arch_ops->set_idt(vcpu, &dt);
  968. }
  969. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  970. unsigned long *rflags)
  971. {
  972. lmsw(vcpu, msw);
  973. *rflags = kvm_arch_ops->get_rflags(vcpu);
  974. }
  975. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  976. {
  977. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  978. switch (cr) {
  979. case 0:
  980. return vcpu->cr0;
  981. case 2:
  982. return vcpu->cr2;
  983. case 3:
  984. return vcpu->cr3;
  985. case 4:
  986. return vcpu->cr4;
  987. default:
  988. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  989. return 0;
  990. }
  991. }
  992. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  993. unsigned long *rflags)
  994. {
  995. switch (cr) {
  996. case 0:
  997. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  998. *rflags = kvm_arch_ops->get_rflags(vcpu);
  999. break;
  1000. case 2:
  1001. vcpu->cr2 = val;
  1002. break;
  1003. case 3:
  1004. set_cr3(vcpu, val);
  1005. break;
  1006. case 4:
  1007. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1008. break;
  1009. default:
  1010. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1011. }
  1012. }
  1013. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1014. {
  1015. u64 data;
  1016. switch (msr) {
  1017. case 0xc0010010: /* SYSCFG */
  1018. case 0xc0010015: /* HWCR */
  1019. case MSR_IA32_PLATFORM_ID:
  1020. case MSR_IA32_P5_MC_ADDR:
  1021. case MSR_IA32_P5_MC_TYPE:
  1022. case MSR_IA32_MC0_CTL:
  1023. case MSR_IA32_MCG_STATUS:
  1024. case MSR_IA32_MCG_CAP:
  1025. case MSR_IA32_MC0_MISC:
  1026. case MSR_IA32_MC0_MISC+4:
  1027. case MSR_IA32_MC0_MISC+8:
  1028. case MSR_IA32_MC0_MISC+12:
  1029. case MSR_IA32_MC0_MISC+16:
  1030. case MSR_IA32_UCODE_REV:
  1031. case MSR_IA32_PERF_STATUS:
  1032. /* MTRR registers */
  1033. case 0xfe:
  1034. case 0x200 ... 0x2ff:
  1035. data = 0;
  1036. break;
  1037. case 0xcd: /* fsb frequency */
  1038. data = 3;
  1039. break;
  1040. case MSR_IA32_APICBASE:
  1041. data = vcpu->apic_base;
  1042. break;
  1043. case MSR_IA32_MISC_ENABLE:
  1044. data = vcpu->ia32_misc_enable_msr;
  1045. break;
  1046. #ifdef CONFIG_X86_64
  1047. case MSR_EFER:
  1048. data = vcpu->shadow_efer;
  1049. break;
  1050. #endif
  1051. default:
  1052. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1053. return 1;
  1054. }
  1055. *pdata = data;
  1056. return 0;
  1057. }
  1058. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1059. /*
  1060. * Reads an msr value (of 'msr_index') into 'pdata'.
  1061. * Returns 0 on success, non-0 otherwise.
  1062. * Assumes vcpu_load() was already called.
  1063. */
  1064. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1065. {
  1066. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1067. }
  1068. #ifdef CONFIG_X86_64
  1069. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1070. {
  1071. if (efer & EFER_RESERVED_BITS) {
  1072. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1073. efer);
  1074. inject_gp(vcpu);
  1075. return;
  1076. }
  1077. if (is_paging(vcpu)
  1078. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1079. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1080. inject_gp(vcpu);
  1081. return;
  1082. }
  1083. kvm_arch_ops->set_efer(vcpu, efer);
  1084. efer &= ~EFER_LMA;
  1085. efer |= vcpu->shadow_efer & EFER_LMA;
  1086. vcpu->shadow_efer = efer;
  1087. }
  1088. #endif
  1089. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1090. {
  1091. switch (msr) {
  1092. #ifdef CONFIG_X86_64
  1093. case MSR_EFER:
  1094. set_efer(vcpu, data);
  1095. break;
  1096. #endif
  1097. case MSR_IA32_MC0_STATUS:
  1098. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1099. __FUNCTION__, data);
  1100. break;
  1101. case MSR_IA32_UCODE_REV:
  1102. case MSR_IA32_UCODE_WRITE:
  1103. case 0x200 ... 0x2ff: /* MTRRs */
  1104. break;
  1105. case MSR_IA32_APICBASE:
  1106. vcpu->apic_base = data;
  1107. break;
  1108. case MSR_IA32_MISC_ENABLE:
  1109. vcpu->ia32_misc_enable_msr = data;
  1110. break;
  1111. default:
  1112. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1113. return 1;
  1114. }
  1115. return 0;
  1116. }
  1117. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1118. /*
  1119. * Writes msr value into into the appropriate "register".
  1120. * Returns 0 on success, non-0 otherwise.
  1121. * Assumes vcpu_load() was already called.
  1122. */
  1123. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1124. {
  1125. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1126. }
  1127. void kvm_resched(struct kvm_vcpu *vcpu)
  1128. {
  1129. vcpu_put(vcpu);
  1130. cond_resched();
  1131. /* Cannot fail - no vcpu unplug yet. */
  1132. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1133. }
  1134. EXPORT_SYMBOL_GPL(kvm_resched);
  1135. void load_msrs(struct vmx_msr_entry *e, int n)
  1136. {
  1137. int i;
  1138. for (i = 0; i < n; ++i)
  1139. wrmsrl(e[i].index, e[i].data);
  1140. }
  1141. EXPORT_SYMBOL_GPL(load_msrs);
  1142. void save_msrs(struct vmx_msr_entry *e, int n)
  1143. {
  1144. int i;
  1145. for (i = 0; i < n; ++i)
  1146. rdmsrl(e[i].index, e[i].data);
  1147. }
  1148. EXPORT_SYMBOL_GPL(save_msrs);
  1149. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1150. {
  1151. struct kvm_vcpu *vcpu;
  1152. int r;
  1153. if (!valid_vcpu(kvm_run->vcpu))
  1154. return -EINVAL;
  1155. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1156. if (!vcpu)
  1157. return -ENOENT;
  1158. /* re-sync apic's tpr */
  1159. vcpu->cr8 = kvm_run->cr8;
  1160. if (kvm_run->emulated) {
  1161. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1162. kvm_run->emulated = 0;
  1163. }
  1164. if (kvm_run->mmio_completed) {
  1165. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1166. vcpu->mmio_read_completed = 1;
  1167. }
  1168. vcpu->mmio_needed = 0;
  1169. r = kvm_arch_ops->run(vcpu, kvm_run);
  1170. vcpu_put(vcpu);
  1171. return r;
  1172. }
  1173. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1174. {
  1175. struct kvm_vcpu *vcpu;
  1176. if (!valid_vcpu(regs->vcpu))
  1177. return -EINVAL;
  1178. vcpu = vcpu_load(kvm, regs->vcpu);
  1179. if (!vcpu)
  1180. return -ENOENT;
  1181. kvm_arch_ops->cache_regs(vcpu);
  1182. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1183. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1184. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1185. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1186. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1187. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1188. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1189. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1190. #ifdef CONFIG_X86_64
  1191. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1192. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1193. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1194. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1195. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1196. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1197. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1198. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1199. #endif
  1200. regs->rip = vcpu->rip;
  1201. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1202. /*
  1203. * Don't leak debug flags in case they were set for guest debugging
  1204. */
  1205. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1206. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1207. vcpu_put(vcpu);
  1208. return 0;
  1209. }
  1210. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1211. {
  1212. struct kvm_vcpu *vcpu;
  1213. if (!valid_vcpu(regs->vcpu))
  1214. return -EINVAL;
  1215. vcpu = vcpu_load(kvm, regs->vcpu);
  1216. if (!vcpu)
  1217. return -ENOENT;
  1218. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1219. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1220. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1221. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1222. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1223. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1224. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1225. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1226. #ifdef CONFIG_X86_64
  1227. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1228. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1229. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1230. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1231. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1232. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1233. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1234. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1235. #endif
  1236. vcpu->rip = regs->rip;
  1237. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1238. kvm_arch_ops->decache_regs(vcpu);
  1239. vcpu_put(vcpu);
  1240. return 0;
  1241. }
  1242. static void get_segment(struct kvm_vcpu *vcpu,
  1243. struct kvm_segment *var, int seg)
  1244. {
  1245. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1246. }
  1247. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1248. {
  1249. struct kvm_vcpu *vcpu;
  1250. struct descriptor_table dt;
  1251. if (!valid_vcpu(sregs->vcpu))
  1252. return -EINVAL;
  1253. vcpu = vcpu_load(kvm, sregs->vcpu);
  1254. if (!vcpu)
  1255. return -ENOENT;
  1256. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1257. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1258. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1259. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1260. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1261. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1262. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1263. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1264. kvm_arch_ops->get_idt(vcpu, &dt);
  1265. sregs->idt.limit = dt.limit;
  1266. sregs->idt.base = dt.base;
  1267. kvm_arch_ops->get_gdt(vcpu, &dt);
  1268. sregs->gdt.limit = dt.limit;
  1269. sregs->gdt.base = dt.base;
  1270. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1271. sregs->cr0 = vcpu->cr0;
  1272. sregs->cr2 = vcpu->cr2;
  1273. sregs->cr3 = vcpu->cr3;
  1274. sregs->cr4 = vcpu->cr4;
  1275. sregs->cr8 = vcpu->cr8;
  1276. sregs->efer = vcpu->shadow_efer;
  1277. sregs->apic_base = vcpu->apic_base;
  1278. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1279. sizeof sregs->interrupt_bitmap);
  1280. vcpu_put(vcpu);
  1281. return 0;
  1282. }
  1283. static void set_segment(struct kvm_vcpu *vcpu,
  1284. struct kvm_segment *var, int seg)
  1285. {
  1286. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1287. }
  1288. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1289. {
  1290. struct kvm_vcpu *vcpu;
  1291. int mmu_reset_needed = 0;
  1292. int i;
  1293. struct descriptor_table dt;
  1294. if (!valid_vcpu(sregs->vcpu))
  1295. return -EINVAL;
  1296. vcpu = vcpu_load(kvm, sregs->vcpu);
  1297. if (!vcpu)
  1298. return -ENOENT;
  1299. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1300. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1301. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1302. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1303. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1304. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1305. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1306. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1307. dt.limit = sregs->idt.limit;
  1308. dt.base = sregs->idt.base;
  1309. kvm_arch_ops->set_idt(vcpu, &dt);
  1310. dt.limit = sregs->gdt.limit;
  1311. dt.base = sregs->gdt.base;
  1312. kvm_arch_ops->set_gdt(vcpu, &dt);
  1313. vcpu->cr2 = sregs->cr2;
  1314. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1315. vcpu->cr3 = sregs->cr3;
  1316. vcpu->cr8 = sregs->cr8;
  1317. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1318. #ifdef CONFIG_X86_64
  1319. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1320. #endif
  1321. vcpu->apic_base = sregs->apic_base;
  1322. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1323. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1324. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1325. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1326. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1327. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1328. load_pdptrs(vcpu, vcpu->cr3);
  1329. if (mmu_reset_needed)
  1330. kvm_mmu_reset_context(vcpu);
  1331. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1332. sizeof vcpu->irq_pending);
  1333. vcpu->irq_summary = 0;
  1334. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1335. if (vcpu->irq_pending[i])
  1336. __set_bit(i, &vcpu->irq_summary);
  1337. vcpu_put(vcpu);
  1338. return 0;
  1339. }
  1340. /*
  1341. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1342. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1343. *
  1344. * This list is modified at module load time to reflect the
  1345. * capabilities of the host cpu.
  1346. */
  1347. static u32 msrs_to_save[] = {
  1348. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1349. MSR_K6_STAR,
  1350. #ifdef CONFIG_X86_64
  1351. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1352. #endif
  1353. MSR_IA32_TIME_STAMP_COUNTER,
  1354. };
  1355. static unsigned num_msrs_to_save;
  1356. static u32 emulated_msrs[] = {
  1357. MSR_IA32_MISC_ENABLE,
  1358. };
  1359. static __init void kvm_init_msr_list(void)
  1360. {
  1361. u32 dummy[2];
  1362. unsigned i, j;
  1363. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1364. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1365. continue;
  1366. if (j < i)
  1367. msrs_to_save[j] = msrs_to_save[i];
  1368. j++;
  1369. }
  1370. num_msrs_to_save = j;
  1371. }
  1372. /*
  1373. * Adapt set_msr() to msr_io()'s calling convention
  1374. */
  1375. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1376. {
  1377. return set_msr(vcpu, index, *data);
  1378. }
  1379. /*
  1380. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1381. *
  1382. * @return number of msrs set successfully.
  1383. */
  1384. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1385. struct kvm_msr_entry *entries,
  1386. int (*do_msr)(struct kvm_vcpu *vcpu,
  1387. unsigned index, u64 *data))
  1388. {
  1389. struct kvm_vcpu *vcpu;
  1390. int i;
  1391. if (!valid_vcpu(msrs->vcpu))
  1392. return -EINVAL;
  1393. vcpu = vcpu_load(kvm, msrs->vcpu);
  1394. if (!vcpu)
  1395. return -ENOENT;
  1396. for (i = 0; i < msrs->nmsrs; ++i)
  1397. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1398. break;
  1399. vcpu_put(vcpu);
  1400. return i;
  1401. }
  1402. /*
  1403. * Read or write a bunch of msrs. Parameters are user addresses.
  1404. *
  1405. * @return number of msrs set successfully.
  1406. */
  1407. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1408. int (*do_msr)(struct kvm_vcpu *vcpu,
  1409. unsigned index, u64 *data),
  1410. int writeback)
  1411. {
  1412. struct kvm_msrs msrs;
  1413. struct kvm_msr_entry *entries;
  1414. int r, n;
  1415. unsigned size;
  1416. r = -EFAULT;
  1417. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1418. goto out;
  1419. r = -E2BIG;
  1420. if (msrs.nmsrs >= MAX_IO_MSRS)
  1421. goto out;
  1422. r = -ENOMEM;
  1423. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1424. entries = vmalloc(size);
  1425. if (!entries)
  1426. goto out;
  1427. r = -EFAULT;
  1428. if (copy_from_user(entries, user_msrs->entries, size))
  1429. goto out_free;
  1430. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1431. if (r < 0)
  1432. goto out_free;
  1433. r = -EFAULT;
  1434. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1435. goto out_free;
  1436. r = n;
  1437. out_free:
  1438. vfree(entries);
  1439. out:
  1440. return r;
  1441. }
  1442. /*
  1443. * Translate a guest virtual address to a guest physical address.
  1444. */
  1445. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1446. {
  1447. unsigned long vaddr = tr->linear_address;
  1448. struct kvm_vcpu *vcpu;
  1449. gpa_t gpa;
  1450. vcpu = vcpu_load(kvm, tr->vcpu);
  1451. if (!vcpu)
  1452. return -ENOENT;
  1453. spin_lock(&kvm->lock);
  1454. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1455. tr->physical_address = gpa;
  1456. tr->valid = gpa != UNMAPPED_GVA;
  1457. tr->writeable = 1;
  1458. tr->usermode = 0;
  1459. spin_unlock(&kvm->lock);
  1460. vcpu_put(vcpu);
  1461. return 0;
  1462. }
  1463. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1464. {
  1465. struct kvm_vcpu *vcpu;
  1466. if (!valid_vcpu(irq->vcpu))
  1467. return -EINVAL;
  1468. if (irq->irq < 0 || irq->irq >= 256)
  1469. return -EINVAL;
  1470. vcpu = vcpu_load(kvm, irq->vcpu);
  1471. if (!vcpu)
  1472. return -ENOENT;
  1473. set_bit(irq->irq, vcpu->irq_pending);
  1474. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1475. vcpu_put(vcpu);
  1476. return 0;
  1477. }
  1478. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1479. struct kvm_debug_guest *dbg)
  1480. {
  1481. struct kvm_vcpu *vcpu;
  1482. int r;
  1483. if (!valid_vcpu(dbg->vcpu))
  1484. return -EINVAL;
  1485. vcpu = vcpu_load(kvm, dbg->vcpu);
  1486. if (!vcpu)
  1487. return -ENOENT;
  1488. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1489. vcpu_put(vcpu);
  1490. return r;
  1491. }
  1492. static long kvm_dev_ioctl(struct file *filp,
  1493. unsigned int ioctl, unsigned long arg)
  1494. {
  1495. struct kvm *kvm = filp->private_data;
  1496. void __user *argp = (void __user *)arg;
  1497. int r = -EINVAL;
  1498. switch (ioctl) {
  1499. case KVM_GET_API_VERSION:
  1500. r = KVM_API_VERSION;
  1501. break;
  1502. case KVM_CREATE_VCPU: {
  1503. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1504. if (r)
  1505. goto out;
  1506. break;
  1507. }
  1508. case KVM_RUN: {
  1509. struct kvm_run kvm_run;
  1510. r = -EFAULT;
  1511. if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
  1512. goto out;
  1513. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1514. if (r < 0 && r != -EINTR)
  1515. goto out;
  1516. if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
  1517. r = -EFAULT;
  1518. goto out;
  1519. }
  1520. break;
  1521. }
  1522. case KVM_GET_REGS: {
  1523. struct kvm_regs kvm_regs;
  1524. r = -EFAULT;
  1525. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1526. goto out;
  1527. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1528. if (r)
  1529. goto out;
  1530. r = -EFAULT;
  1531. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  1532. goto out;
  1533. r = 0;
  1534. break;
  1535. }
  1536. case KVM_SET_REGS: {
  1537. struct kvm_regs kvm_regs;
  1538. r = -EFAULT;
  1539. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1540. goto out;
  1541. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1542. if (r)
  1543. goto out;
  1544. r = 0;
  1545. break;
  1546. }
  1547. case KVM_GET_SREGS: {
  1548. struct kvm_sregs kvm_sregs;
  1549. r = -EFAULT;
  1550. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1551. goto out;
  1552. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1553. if (r)
  1554. goto out;
  1555. r = -EFAULT;
  1556. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  1557. goto out;
  1558. r = 0;
  1559. break;
  1560. }
  1561. case KVM_SET_SREGS: {
  1562. struct kvm_sregs kvm_sregs;
  1563. r = -EFAULT;
  1564. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1565. goto out;
  1566. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1567. if (r)
  1568. goto out;
  1569. r = 0;
  1570. break;
  1571. }
  1572. case KVM_TRANSLATE: {
  1573. struct kvm_translation tr;
  1574. r = -EFAULT;
  1575. if (copy_from_user(&tr, argp, sizeof tr))
  1576. goto out;
  1577. r = kvm_dev_ioctl_translate(kvm, &tr);
  1578. if (r)
  1579. goto out;
  1580. r = -EFAULT;
  1581. if (copy_to_user(argp, &tr, sizeof tr))
  1582. goto out;
  1583. r = 0;
  1584. break;
  1585. }
  1586. case KVM_INTERRUPT: {
  1587. struct kvm_interrupt irq;
  1588. r = -EFAULT;
  1589. if (copy_from_user(&irq, argp, sizeof irq))
  1590. goto out;
  1591. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1592. if (r)
  1593. goto out;
  1594. r = 0;
  1595. break;
  1596. }
  1597. case KVM_DEBUG_GUEST: {
  1598. struct kvm_debug_guest dbg;
  1599. r = -EFAULT;
  1600. if (copy_from_user(&dbg, argp, sizeof dbg))
  1601. goto out;
  1602. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1603. if (r)
  1604. goto out;
  1605. r = 0;
  1606. break;
  1607. }
  1608. case KVM_SET_MEMORY_REGION: {
  1609. struct kvm_memory_region kvm_mem;
  1610. r = -EFAULT;
  1611. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1612. goto out;
  1613. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1614. if (r)
  1615. goto out;
  1616. break;
  1617. }
  1618. case KVM_GET_DIRTY_LOG: {
  1619. struct kvm_dirty_log log;
  1620. r = -EFAULT;
  1621. if (copy_from_user(&log, argp, sizeof log))
  1622. goto out;
  1623. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1624. if (r)
  1625. goto out;
  1626. break;
  1627. }
  1628. case KVM_GET_MSRS:
  1629. r = msr_io(kvm, argp, get_msr, 1);
  1630. break;
  1631. case KVM_SET_MSRS:
  1632. r = msr_io(kvm, argp, do_set_msr, 0);
  1633. break;
  1634. case KVM_GET_MSR_INDEX_LIST: {
  1635. struct kvm_msr_list __user *user_msr_list = argp;
  1636. struct kvm_msr_list msr_list;
  1637. unsigned n;
  1638. r = -EFAULT;
  1639. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1640. goto out;
  1641. n = msr_list.nmsrs;
  1642. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1643. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1644. goto out;
  1645. r = -E2BIG;
  1646. if (n < num_msrs_to_save)
  1647. goto out;
  1648. r = -EFAULT;
  1649. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1650. num_msrs_to_save * sizeof(u32)))
  1651. goto out;
  1652. if (copy_to_user(user_msr_list->indices
  1653. + num_msrs_to_save * sizeof(u32),
  1654. &emulated_msrs,
  1655. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1656. goto out;
  1657. r = 0;
  1658. break;
  1659. }
  1660. default:
  1661. ;
  1662. }
  1663. out:
  1664. return r;
  1665. }
  1666. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1667. unsigned long address,
  1668. int *type)
  1669. {
  1670. struct kvm *kvm = vma->vm_file->private_data;
  1671. unsigned long pgoff;
  1672. struct kvm_memory_slot *slot;
  1673. struct page *page;
  1674. *type = VM_FAULT_MINOR;
  1675. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1676. slot = gfn_to_memslot(kvm, pgoff);
  1677. if (!slot)
  1678. return NOPAGE_SIGBUS;
  1679. page = gfn_to_page(slot, pgoff);
  1680. if (!page)
  1681. return NOPAGE_SIGBUS;
  1682. get_page(page);
  1683. return page;
  1684. }
  1685. static struct vm_operations_struct kvm_dev_vm_ops = {
  1686. .nopage = kvm_dev_nopage,
  1687. };
  1688. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1689. {
  1690. vma->vm_ops = &kvm_dev_vm_ops;
  1691. return 0;
  1692. }
  1693. static struct file_operations kvm_chardev_ops = {
  1694. .open = kvm_dev_open,
  1695. .release = kvm_dev_release,
  1696. .unlocked_ioctl = kvm_dev_ioctl,
  1697. .compat_ioctl = kvm_dev_ioctl,
  1698. .mmap = kvm_dev_mmap,
  1699. };
  1700. static struct miscdevice kvm_dev = {
  1701. MISC_DYNAMIC_MINOR,
  1702. "kvm",
  1703. &kvm_chardev_ops,
  1704. };
  1705. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1706. void *v)
  1707. {
  1708. if (val == SYS_RESTART) {
  1709. /*
  1710. * Some (well, at least mine) BIOSes hang on reboot if
  1711. * in vmx root mode.
  1712. */
  1713. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1714. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  1715. }
  1716. return NOTIFY_OK;
  1717. }
  1718. static struct notifier_block kvm_reboot_notifier = {
  1719. .notifier_call = kvm_reboot,
  1720. .priority = 0,
  1721. };
  1722. static __init void kvm_init_debug(void)
  1723. {
  1724. struct kvm_stats_debugfs_item *p;
  1725. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1726. for (p = debugfs_entries; p->name; ++p)
  1727. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1728. p->data);
  1729. }
  1730. static void kvm_exit_debug(void)
  1731. {
  1732. struct kvm_stats_debugfs_item *p;
  1733. for (p = debugfs_entries; p->name; ++p)
  1734. debugfs_remove(p->dentry);
  1735. debugfs_remove(debugfs_dir);
  1736. }
  1737. hpa_t bad_page_address;
  1738. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1739. {
  1740. int r;
  1741. if (kvm_arch_ops) {
  1742. printk(KERN_ERR "kvm: already loaded the other module\n");
  1743. return -EEXIST;
  1744. }
  1745. if (!ops->cpu_has_kvm_support()) {
  1746. printk(KERN_ERR "kvm: no hardware support\n");
  1747. return -EOPNOTSUPP;
  1748. }
  1749. if (ops->disabled_by_bios()) {
  1750. printk(KERN_ERR "kvm: disabled by bios\n");
  1751. return -EOPNOTSUPP;
  1752. }
  1753. kvm_arch_ops = ops;
  1754. r = kvm_arch_ops->hardware_setup();
  1755. if (r < 0)
  1756. return r;
  1757. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  1758. register_reboot_notifier(&kvm_reboot_notifier);
  1759. kvm_chardev_ops.owner = module;
  1760. r = misc_register(&kvm_dev);
  1761. if (r) {
  1762. printk (KERN_ERR "kvm: misc device register failed\n");
  1763. goto out_free;
  1764. }
  1765. return r;
  1766. out_free:
  1767. unregister_reboot_notifier(&kvm_reboot_notifier);
  1768. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  1769. kvm_arch_ops->hardware_unsetup();
  1770. return r;
  1771. }
  1772. void kvm_exit_arch(void)
  1773. {
  1774. misc_deregister(&kvm_dev);
  1775. unregister_reboot_notifier(&kvm_reboot_notifier);
  1776. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  1777. kvm_arch_ops->hardware_unsetup();
  1778. kvm_arch_ops = NULL;
  1779. }
  1780. static __init int kvm_init(void)
  1781. {
  1782. static struct page *bad_page;
  1783. int r = 0;
  1784. kvm_init_debug();
  1785. kvm_init_msr_list();
  1786. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1787. r = -ENOMEM;
  1788. goto out;
  1789. }
  1790. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1791. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1792. return r;
  1793. out:
  1794. kvm_exit_debug();
  1795. return r;
  1796. }
  1797. static __exit void kvm_exit(void)
  1798. {
  1799. kvm_exit_debug();
  1800. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1801. }
  1802. module_init(kvm_init)
  1803. module_exit(kvm_exit)
  1804. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1805. EXPORT_SYMBOL_GPL(kvm_exit_arch);