cpuset.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/module.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Tracks how many cpusets are currently defined in system.
  62. * When there is only one cpuset (the root cpuset) we can
  63. * short circuit some hooks.
  64. */
  65. int number_of_cpusets __read_mostly;
  66. /* Forward declare cgroup structures */
  67. struct cgroup_subsys cpuset_subsys;
  68. struct cpuset;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. struct cpuset *parent; /* my parent */
  82. /*
  83. * Copy of global cpuset_mems_generation as of the most
  84. * recent time this cpuset changed its mems_allowed.
  85. */
  86. int mems_generation;
  87. struct fmeter fmeter; /* memory_pressure filter */
  88. /* partition number for rebuild_sched_domains() */
  89. int pn;
  90. /* for custom sched domain */
  91. int relax_domain_level;
  92. /* used for walking a cpuset heirarchy */
  93. struct list_head stack_list;
  94. };
  95. /* Retrieve the cpuset for a cgroup */
  96. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  97. {
  98. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  99. struct cpuset, css);
  100. }
  101. /* Retrieve the cpuset for a task */
  102. static inline struct cpuset *task_cs(struct task_struct *task)
  103. {
  104. return container_of(task_subsys_state(task, cpuset_subsys_id),
  105. struct cpuset, css);
  106. }
  107. struct cpuset_hotplug_scanner {
  108. struct cgroup_scanner scan;
  109. struct cgroup *to;
  110. };
  111. /* bits in struct cpuset flags field */
  112. typedef enum {
  113. CS_CPU_EXCLUSIVE,
  114. CS_MEM_EXCLUSIVE,
  115. CS_MEM_HARDWALL,
  116. CS_MEMORY_MIGRATE,
  117. CS_SCHED_LOAD_BALANCE,
  118. CS_SPREAD_PAGE,
  119. CS_SPREAD_SLAB,
  120. } cpuset_flagbits_t;
  121. /* convenient tests for these bits */
  122. static inline int is_cpu_exclusive(const struct cpuset *cs)
  123. {
  124. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  125. }
  126. static inline int is_mem_exclusive(const struct cpuset *cs)
  127. {
  128. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  129. }
  130. static inline int is_mem_hardwall(const struct cpuset *cs)
  131. {
  132. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  133. }
  134. static inline int is_sched_load_balance(const struct cpuset *cs)
  135. {
  136. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  137. }
  138. static inline int is_memory_migrate(const struct cpuset *cs)
  139. {
  140. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  141. }
  142. static inline int is_spread_page(const struct cpuset *cs)
  143. {
  144. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  145. }
  146. static inline int is_spread_slab(const struct cpuset *cs)
  147. {
  148. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  149. }
  150. /*
  151. * Increment this integer everytime any cpuset changes its
  152. * mems_allowed value. Users of cpusets can track this generation
  153. * number, and avoid having to lock and reload mems_allowed unless
  154. * the cpuset they're using changes generation.
  155. *
  156. * A single, global generation is needed because cpuset_attach_task() could
  157. * reattach a task to a different cpuset, which must not have its
  158. * generation numbers aliased with those of that tasks previous cpuset.
  159. *
  160. * Generations are needed for mems_allowed because one task cannot
  161. * modify another's memory placement. So we must enable every task,
  162. * on every visit to __alloc_pages(), to efficiently check whether
  163. * its current->cpuset->mems_allowed has changed, requiring an update
  164. * of its current->mems_allowed.
  165. *
  166. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  167. * there is no need to mark it atomic.
  168. */
  169. static int cpuset_mems_generation;
  170. static struct cpuset top_cpuset = {
  171. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  172. .cpus_allowed = CPU_MASK_ALL,
  173. .mems_allowed = NODE_MASK_ALL,
  174. };
  175. /*
  176. * There are two global mutexes guarding cpuset structures. The first
  177. * is the main control groups cgroup_mutex, accessed via
  178. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  179. * callback_mutex, below. They can nest. It is ok to first take
  180. * cgroup_mutex, then nest callback_mutex. We also require taking
  181. * task_lock() when dereferencing a task's cpuset pointer. See "The
  182. * task_lock() exception", at the end of this comment.
  183. *
  184. * A task must hold both mutexes to modify cpusets. If a task
  185. * holds cgroup_mutex, then it blocks others wanting that mutex,
  186. * ensuring that it is the only task able to also acquire callback_mutex
  187. * and be able to modify cpusets. It can perform various checks on
  188. * the cpuset structure first, knowing nothing will change. It can
  189. * also allocate memory while just holding cgroup_mutex. While it is
  190. * performing these checks, various callback routines can briefly
  191. * acquire callback_mutex to query cpusets. Once it is ready to make
  192. * the changes, it takes callback_mutex, blocking everyone else.
  193. *
  194. * Calls to the kernel memory allocator can not be made while holding
  195. * callback_mutex, as that would risk double tripping on callback_mutex
  196. * from one of the callbacks into the cpuset code from within
  197. * __alloc_pages().
  198. *
  199. * If a task is only holding callback_mutex, then it has read-only
  200. * access to cpusets.
  201. *
  202. * The task_struct fields mems_allowed and mems_generation may only
  203. * be accessed in the context of that task, so require no locks.
  204. *
  205. * The cpuset_common_file_read() handlers only hold callback_mutex across
  206. * small pieces of code, such as when reading out possibly multi-word
  207. * cpumasks and nodemasks.
  208. *
  209. * Accessing a task's cpuset should be done in accordance with the
  210. * guidelines for accessing subsystem state in kernel/cgroup.c
  211. */
  212. static DEFINE_MUTEX(callback_mutex);
  213. /*
  214. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  215. * buffers. They are statically allocated to prevent using excess stack
  216. * when calling cpuset_print_task_mems_allowed().
  217. */
  218. #define CPUSET_NAME_LEN (128)
  219. #define CPUSET_NODELIST_LEN (256)
  220. static char cpuset_name[CPUSET_NAME_LEN];
  221. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  222. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  223. /*
  224. * This is ugly, but preserves the userspace API for existing cpuset
  225. * users. If someone tries to mount the "cpuset" filesystem, we
  226. * silently switch it to mount "cgroup" instead
  227. */
  228. static int cpuset_get_sb(struct file_system_type *fs_type,
  229. int flags, const char *unused_dev_name,
  230. void *data, struct vfsmount *mnt)
  231. {
  232. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  233. int ret = -ENODEV;
  234. if (cgroup_fs) {
  235. char mountopts[] =
  236. "cpuset,noprefix,"
  237. "release_agent=/sbin/cpuset_release_agent";
  238. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  239. unused_dev_name, mountopts, mnt);
  240. put_filesystem(cgroup_fs);
  241. }
  242. return ret;
  243. }
  244. static struct file_system_type cpuset_fs_type = {
  245. .name = "cpuset",
  246. .get_sb = cpuset_get_sb,
  247. };
  248. /*
  249. * Return in *pmask the portion of a cpusets's cpus_allowed that
  250. * are online. If none are online, walk up the cpuset hierarchy
  251. * until we find one that does have some online cpus. If we get
  252. * all the way to the top and still haven't found any online cpus,
  253. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  254. * task, return cpu_online_map.
  255. *
  256. * One way or another, we guarantee to return some non-empty subset
  257. * of cpu_online_map.
  258. *
  259. * Call with callback_mutex held.
  260. */
  261. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  262. {
  263. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  264. cs = cs->parent;
  265. if (cs)
  266. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  267. else
  268. *pmask = cpu_online_map;
  269. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  270. }
  271. /*
  272. * Return in *pmask the portion of a cpusets's mems_allowed that
  273. * are online, with memory. If none are online with memory, walk
  274. * up the cpuset hierarchy until we find one that does have some
  275. * online mems. If we get all the way to the top and still haven't
  276. * found any online mems, return node_states[N_HIGH_MEMORY].
  277. *
  278. * One way or another, we guarantee to return some non-empty subset
  279. * of node_states[N_HIGH_MEMORY].
  280. *
  281. * Call with callback_mutex held.
  282. */
  283. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  284. {
  285. while (cs && !nodes_intersects(cs->mems_allowed,
  286. node_states[N_HIGH_MEMORY]))
  287. cs = cs->parent;
  288. if (cs)
  289. nodes_and(*pmask, cs->mems_allowed,
  290. node_states[N_HIGH_MEMORY]);
  291. else
  292. *pmask = node_states[N_HIGH_MEMORY];
  293. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  294. }
  295. /**
  296. * cpuset_update_task_memory_state - update task memory placement
  297. *
  298. * If the current tasks cpusets mems_allowed changed behind our
  299. * backs, update current->mems_allowed, mems_generation and task NUMA
  300. * mempolicy to the new value.
  301. *
  302. * Task mempolicy is updated by rebinding it relative to the
  303. * current->cpuset if a task has its memory placement changed.
  304. * Do not call this routine if in_interrupt().
  305. *
  306. * Call without callback_mutex or task_lock() held. May be
  307. * called with or without cgroup_mutex held. Thanks in part to
  308. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  309. * be NULL. This routine also might acquire callback_mutex during
  310. * call.
  311. *
  312. * Reading current->cpuset->mems_generation doesn't need task_lock
  313. * to guard the current->cpuset derefence, because it is guarded
  314. * from concurrent freeing of current->cpuset using RCU.
  315. *
  316. * The rcu_dereference() is technically probably not needed,
  317. * as I don't actually mind if I see a new cpuset pointer but
  318. * an old value of mems_generation. However this really only
  319. * matters on alpha systems using cpusets heavily. If I dropped
  320. * that rcu_dereference(), it would save them a memory barrier.
  321. * For all other arch's, rcu_dereference is a no-op anyway, and for
  322. * alpha systems not using cpusets, another planned optimization,
  323. * avoiding the rcu critical section for tasks in the root cpuset
  324. * which is statically allocated, so can't vanish, will make this
  325. * irrelevant. Better to use RCU as intended, than to engage in
  326. * some cute trick to save a memory barrier that is impossible to
  327. * test, for alpha systems using cpusets heavily, which might not
  328. * even exist.
  329. *
  330. * This routine is needed to update the per-task mems_allowed data,
  331. * within the tasks context, when it is trying to allocate memory
  332. * (in various mm/mempolicy.c routines) and notices that some other
  333. * task has been modifying its cpuset.
  334. */
  335. void cpuset_update_task_memory_state(void)
  336. {
  337. int my_cpusets_mem_gen;
  338. struct task_struct *tsk = current;
  339. struct cpuset *cs;
  340. rcu_read_lock();
  341. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  342. rcu_read_unlock();
  343. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  344. mutex_lock(&callback_mutex);
  345. task_lock(tsk);
  346. cs = task_cs(tsk); /* Maybe changed when task not locked */
  347. guarantee_online_mems(cs, &tsk->mems_allowed);
  348. tsk->cpuset_mems_generation = cs->mems_generation;
  349. if (is_spread_page(cs))
  350. tsk->flags |= PF_SPREAD_PAGE;
  351. else
  352. tsk->flags &= ~PF_SPREAD_PAGE;
  353. if (is_spread_slab(cs))
  354. tsk->flags |= PF_SPREAD_SLAB;
  355. else
  356. tsk->flags &= ~PF_SPREAD_SLAB;
  357. task_unlock(tsk);
  358. mutex_unlock(&callback_mutex);
  359. mpol_rebind_task(tsk, &tsk->mems_allowed);
  360. }
  361. }
  362. /*
  363. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  364. *
  365. * One cpuset is a subset of another if all its allowed CPUs and
  366. * Memory Nodes are a subset of the other, and its exclusive flags
  367. * are only set if the other's are set. Call holding cgroup_mutex.
  368. */
  369. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  370. {
  371. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  372. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  373. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  374. is_mem_exclusive(p) <= is_mem_exclusive(q);
  375. }
  376. /*
  377. * validate_change() - Used to validate that any proposed cpuset change
  378. * follows the structural rules for cpusets.
  379. *
  380. * If we replaced the flag and mask values of the current cpuset
  381. * (cur) with those values in the trial cpuset (trial), would
  382. * our various subset and exclusive rules still be valid? Presumes
  383. * cgroup_mutex held.
  384. *
  385. * 'cur' is the address of an actual, in-use cpuset. Operations
  386. * such as list traversal that depend on the actual address of the
  387. * cpuset in the list must use cur below, not trial.
  388. *
  389. * 'trial' is the address of bulk structure copy of cur, with
  390. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  391. * or flags changed to new, trial values.
  392. *
  393. * Return 0 if valid, -errno if not.
  394. */
  395. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  396. {
  397. struct cgroup *cont;
  398. struct cpuset *c, *par;
  399. /* Each of our child cpusets must be a subset of us */
  400. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  401. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  402. return -EBUSY;
  403. }
  404. /* Remaining checks don't apply to root cpuset */
  405. if (cur == &top_cpuset)
  406. return 0;
  407. par = cur->parent;
  408. /* We must be a subset of our parent cpuset */
  409. if (!is_cpuset_subset(trial, par))
  410. return -EACCES;
  411. /*
  412. * If either I or some sibling (!= me) is exclusive, we can't
  413. * overlap
  414. */
  415. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  416. c = cgroup_cs(cont);
  417. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  418. c != cur &&
  419. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  420. return -EINVAL;
  421. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  422. c != cur &&
  423. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  424. return -EINVAL;
  425. }
  426. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  427. if (cgroup_task_count(cur->css.cgroup)) {
  428. if (cpus_empty(trial->cpus_allowed) ||
  429. nodes_empty(trial->mems_allowed)) {
  430. return -ENOSPC;
  431. }
  432. }
  433. return 0;
  434. }
  435. /*
  436. * Helper routine for generate_sched_domains().
  437. * Do cpusets a, b have overlapping cpus_allowed masks?
  438. */
  439. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  440. {
  441. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  442. }
  443. static void
  444. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  445. {
  446. if (dattr->relax_domain_level < c->relax_domain_level)
  447. dattr->relax_domain_level = c->relax_domain_level;
  448. return;
  449. }
  450. static void
  451. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  452. {
  453. LIST_HEAD(q);
  454. list_add(&c->stack_list, &q);
  455. while (!list_empty(&q)) {
  456. struct cpuset *cp;
  457. struct cgroup *cont;
  458. struct cpuset *child;
  459. cp = list_first_entry(&q, struct cpuset, stack_list);
  460. list_del(q.next);
  461. if (cpus_empty(cp->cpus_allowed))
  462. continue;
  463. if (is_sched_load_balance(cp))
  464. update_domain_attr(dattr, cp);
  465. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  466. child = cgroup_cs(cont);
  467. list_add_tail(&child->stack_list, &q);
  468. }
  469. }
  470. }
  471. /*
  472. * generate_sched_domains()
  473. *
  474. * This function builds a partial partition of the systems CPUs
  475. * A 'partial partition' is a set of non-overlapping subsets whose
  476. * union is a subset of that set.
  477. * The output of this function needs to be passed to kernel/sched.c
  478. * partition_sched_domains() routine, which will rebuild the scheduler's
  479. * load balancing domains (sched domains) as specified by that partial
  480. * partition.
  481. *
  482. * See "What is sched_load_balance" in Documentation/cpusets.txt
  483. * for a background explanation of this.
  484. *
  485. * Does not return errors, on the theory that the callers of this
  486. * routine would rather not worry about failures to rebuild sched
  487. * domains when operating in the severe memory shortage situations
  488. * that could cause allocation failures below.
  489. *
  490. * Must be called with cgroup_lock held.
  491. *
  492. * The three key local variables below are:
  493. * q - a linked-list queue of cpuset pointers, used to implement a
  494. * top-down scan of all cpusets. This scan loads a pointer
  495. * to each cpuset marked is_sched_load_balance into the
  496. * array 'csa'. For our purposes, rebuilding the schedulers
  497. * sched domains, we can ignore !is_sched_load_balance cpusets.
  498. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  499. * that need to be load balanced, for convenient iterative
  500. * access by the subsequent code that finds the best partition,
  501. * i.e the set of domains (subsets) of CPUs such that the
  502. * cpus_allowed of every cpuset marked is_sched_load_balance
  503. * is a subset of one of these domains, while there are as
  504. * many such domains as possible, each as small as possible.
  505. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  506. * the kernel/sched.c routine partition_sched_domains() in a
  507. * convenient format, that can be easily compared to the prior
  508. * value to determine what partition elements (sched domains)
  509. * were changed (added or removed.)
  510. *
  511. * Finding the best partition (set of domains):
  512. * The triple nested loops below over i, j, k scan over the
  513. * load balanced cpusets (using the array of cpuset pointers in
  514. * csa[]) looking for pairs of cpusets that have overlapping
  515. * cpus_allowed, but which don't have the same 'pn' partition
  516. * number and gives them in the same partition number. It keeps
  517. * looping on the 'restart' label until it can no longer find
  518. * any such pairs.
  519. *
  520. * The union of the cpus_allowed masks from the set of
  521. * all cpusets having the same 'pn' value then form the one
  522. * element of the partition (one sched domain) to be passed to
  523. * partition_sched_domains().
  524. */
  525. static int generate_sched_domains(cpumask_t **domains,
  526. struct sched_domain_attr **attributes)
  527. {
  528. LIST_HEAD(q); /* queue of cpusets to be scanned */
  529. struct cpuset *cp; /* scans q */
  530. struct cpuset **csa; /* array of all cpuset ptrs */
  531. int csn; /* how many cpuset ptrs in csa so far */
  532. int i, j, k; /* indices for partition finding loops */
  533. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  534. struct sched_domain_attr *dattr; /* attributes for custom domains */
  535. int ndoms = 0; /* number of sched domains in result */
  536. int nslot; /* next empty doms[] cpumask_t slot */
  537. doms = NULL;
  538. dattr = NULL;
  539. csa = NULL;
  540. /* Special case for the 99% of systems with one, full, sched domain */
  541. if (is_sched_load_balance(&top_cpuset)) {
  542. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  543. if (!doms)
  544. goto done;
  545. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  546. if (dattr) {
  547. *dattr = SD_ATTR_INIT;
  548. update_domain_attr_tree(dattr, &top_cpuset);
  549. }
  550. *doms = top_cpuset.cpus_allowed;
  551. ndoms = 1;
  552. goto done;
  553. }
  554. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  555. if (!csa)
  556. goto done;
  557. csn = 0;
  558. list_add(&top_cpuset.stack_list, &q);
  559. while (!list_empty(&q)) {
  560. struct cgroup *cont;
  561. struct cpuset *child; /* scans child cpusets of cp */
  562. cp = list_first_entry(&q, struct cpuset, stack_list);
  563. list_del(q.next);
  564. if (cpus_empty(cp->cpus_allowed))
  565. continue;
  566. /*
  567. * All child cpusets contain a subset of the parent's cpus, so
  568. * just skip them, and then we call update_domain_attr_tree()
  569. * to calc relax_domain_level of the corresponding sched
  570. * domain.
  571. */
  572. if (is_sched_load_balance(cp)) {
  573. csa[csn++] = cp;
  574. continue;
  575. }
  576. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  577. child = cgroup_cs(cont);
  578. list_add_tail(&child->stack_list, &q);
  579. }
  580. }
  581. for (i = 0; i < csn; i++)
  582. csa[i]->pn = i;
  583. ndoms = csn;
  584. restart:
  585. /* Find the best partition (set of sched domains) */
  586. for (i = 0; i < csn; i++) {
  587. struct cpuset *a = csa[i];
  588. int apn = a->pn;
  589. for (j = 0; j < csn; j++) {
  590. struct cpuset *b = csa[j];
  591. int bpn = b->pn;
  592. if (apn != bpn && cpusets_overlap(a, b)) {
  593. for (k = 0; k < csn; k++) {
  594. struct cpuset *c = csa[k];
  595. if (c->pn == bpn)
  596. c->pn = apn;
  597. }
  598. ndoms--; /* one less element */
  599. goto restart;
  600. }
  601. }
  602. }
  603. /*
  604. * Now we know how many domains to create.
  605. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  606. */
  607. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  608. if (!doms)
  609. goto done;
  610. /*
  611. * The rest of the code, including the scheduler, can deal with
  612. * dattr==NULL case. No need to abort if alloc fails.
  613. */
  614. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  615. for (nslot = 0, i = 0; i < csn; i++) {
  616. struct cpuset *a = csa[i];
  617. cpumask_t *dp;
  618. int apn = a->pn;
  619. if (apn < 0) {
  620. /* Skip completed partitions */
  621. continue;
  622. }
  623. dp = doms + nslot;
  624. if (nslot == ndoms) {
  625. static int warnings = 10;
  626. if (warnings) {
  627. printk(KERN_WARNING
  628. "rebuild_sched_domains confused:"
  629. " nslot %d, ndoms %d, csn %d, i %d,"
  630. " apn %d\n",
  631. nslot, ndoms, csn, i, apn);
  632. warnings--;
  633. }
  634. continue;
  635. }
  636. cpus_clear(*dp);
  637. if (dattr)
  638. *(dattr + nslot) = SD_ATTR_INIT;
  639. for (j = i; j < csn; j++) {
  640. struct cpuset *b = csa[j];
  641. if (apn == b->pn) {
  642. cpus_or(*dp, *dp, b->cpus_allowed);
  643. if (dattr)
  644. update_domain_attr_tree(dattr + nslot, b);
  645. /* Done with this partition */
  646. b->pn = -1;
  647. }
  648. }
  649. nslot++;
  650. }
  651. BUG_ON(nslot != ndoms);
  652. done:
  653. kfree(csa);
  654. /*
  655. * Fallback to the default domain if kmalloc() failed.
  656. * See comments in partition_sched_domains().
  657. */
  658. if (doms == NULL)
  659. ndoms = 1;
  660. *domains = doms;
  661. *attributes = dattr;
  662. return ndoms;
  663. }
  664. /*
  665. * Rebuild scheduler domains.
  666. *
  667. * Call with neither cgroup_mutex held nor within get_online_cpus().
  668. * Takes both cgroup_mutex and get_online_cpus().
  669. *
  670. * Cannot be directly called from cpuset code handling changes
  671. * to the cpuset pseudo-filesystem, because it cannot be called
  672. * from code that already holds cgroup_mutex.
  673. */
  674. static void do_rebuild_sched_domains(struct work_struct *unused)
  675. {
  676. struct sched_domain_attr *attr;
  677. cpumask_t *doms;
  678. int ndoms;
  679. get_online_cpus();
  680. /* Generate domain masks and attrs */
  681. cgroup_lock();
  682. ndoms = generate_sched_domains(&doms, &attr);
  683. cgroup_unlock();
  684. /* Have scheduler rebuild the domains */
  685. partition_sched_domains(ndoms, doms, attr);
  686. put_online_cpus();
  687. }
  688. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  689. /*
  690. * Rebuild scheduler domains, asynchronously via workqueue.
  691. *
  692. * If the flag 'sched_load_balance' of any cpuset with non-empty
  693. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  694. * which has that flag enabled, or if any cpuset with a non-empty
  695. * 'cpus' is removed, then call this routine to rebuild the
  696. * scheduler's dynamic sched domains.
  697. *
  698. * The rebuild_sched_domains() and partition_sched_domains()
  699. * routines must nest cgroup_lock() inside get_online_cpus(),
  700. * but such cpuset changes as these must nest that locking the
  701. * other way, holding cgroup_lock() for much of the code.
  702. *
  703. * So in order to avoid an ABBA deadlock, the cpuset code handling
  704. * these user changes delegates the actual sched domain rebuilding
  705. * to a separate workqueue thread, which ends up processing the
  706. * above do_rebuild_sched_domains() function.
  707. */
  708. static void async_rebuild_sched_domains(void)
  709. {
  710. schedule_work(&rebuild_sched_domains_work);
  711. }
  712. /*
  713. * Accomplishes the same scheduler domain rebuild as the above
  714. * async_rebuild_sched_domains(), however it directly calls the
  715. * rebuild routine synchronously rather than calling it via an
  716. * asynchronous work thread.
  717. *
  718. * This can only be called from code that is not holding
  719. * cgroup_mutex (not nested in a cgroup_lock() call.)
  720. */
  721. void rebuild_sched_domains(void)
  722. {
  723. do_rebuild_sched_domains(NULL);
  724. }
  725. /**
  726. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  727. * @tsk: task to test
  728. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  729. *
  730. * Call with cgroup_mutex held. May take callback_mutex during call.
  731. * Called for each task in a cgroup by cgroup_scan_tasks().
  732. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  733. * words, if its mask is not equal to its cpuset's mask).
  734. */
  735. static int cpuset_test_cpumask(struct task_struct *tsk,
  736. struct cgroup_scanner *scan)
  737. {
  738. return !cpus_equal(tsk->cpus_allowed,
  739. (cgroup_cs(scan->cg))->cpus_allowed);
  740. }
  741. /**
  742. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  743. * @tsk: task to test
  744. * @scan: struct cgroup_scanner containing the cgroup of the task
  745. *
  746. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  747. * cpus_allowed mask needs to be changed.
  748. *
  749. * We don't need to re-check for the cgroup/cpuset membership, since we're
  750. * holding cgroup_lock() at this point.
  751. */
  752. static void cpuset_change_cpumask(struct task_struct *tsk,
  753. struct cgroup_scanner *scan)
  754. {
  755. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  756. }
  757. /**
  758. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  759. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  760. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  761. *
  762. * Called with cgroup_mutex held
  763. *
  764. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  765. * calling callback functions for each.
  766. *
  767. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  768. * if @heap != NULL.
  769. */
  770. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  771. {
  772. struct cgroup_scanner scan;
  773. scan.cg = cs->css.cgroup;
  774. scan.test_task = cpuset_test_cpumask;
  775. scan.process_task = cpuset_change_cpumask;
  776. scan.heap = heap;
  777. cgroup_scan_tasks(&scan);
  778. }
  779. /**
  780. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  781. * @cs: the cpuset to consider
  782. * @buf: buffer of cpu numbers written to this cpuset
  783. */
  784. static int update_cpumask(struct cpuset *cs, const char *buf)
  785. {
  786. struct ptr_heap heap;
  787. struct cpuset trialcs;
  788. int retval;
  789. int is_load_balanced;
  790. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  791. if (cs == &top_cpuset)
  792. return -EACCES;
  793. trialcs = *cs;
  794. /*
  795. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  796. * Since cpulist_parse() fails on an empty mask, we special case
  797. * that parsing. The validate_change() call ensures that cpusets
  798. * with tasks have cpus.
  799. */
  800. if (!*buf) {
  801. cpus_clear(trialcs.cpus_allowed);
  802. } else {
  803. retval = cpulist_parse(buf, &trialcs.cpus_allowed);
  804. if (retval < 0)
  805. return retval;
  806. if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
  807. return -EINVAL;
  808. }
  809. retval = validate_change(cs, &trialcs);
  810. if (retval < 0)
  811. return retval;
  812. /* Nothing to do if the cpus didn't change */
  813. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  814. return 0;
  815. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  816. if (retval)
  817. return retval;
  818. is_load_balanced = is_sched_load_balance(&trialcs);
  819. mutex_lock(&callback_mutex);
  820. cs->cpus_allowed = trialcs.cpus_allowed;
  821. mutex_unlock(&callback_mutex);
  822. /*
  823. * Scan tasks in the cpuset, and update the cpumasks of any
  824. * that need an update.
  825. */
  826. update_tasks_cpumask(cs, &heap);
  827. heap_free(&heap);
  828. if (is_load_balanced)
  829. async_rebuild_sched_domains();
  830. return 0;
  831. }
  832. /*
  833. * cpuset_migrate_mm
  834. *
  835. * Migrate memory region from one set of nodes to another.
  836. *
  837. * Temporarilly set tasks mems_allowed to target nodes of migration,
  838. * so that the migration code can allocate pages on these nodes.
  839. *
  840. * Call holding cgroup_mutex, so current's cpuset won't change
  841. * during this call, as manage_mutex holds off any cpuset_attach()
  842. * calls. Therefore we don't need to take task_lock around the
  843. * call to guarantee_online_mems(), as we know no one is changing
  844. * our task's cpuset.
  845. *
  846. * Hold callback_mutex around the two modifications of our tasks
  847. * mems_allowed to synchronize with cpuset_mems_allowed().
  848. *
  849. * While the mm_struct we are migrating is typically from some
  850. * other task, the task_struct mems_allowed that we are hacking
  851. * is for our current task, which must allocate new pages for that
  852. * migrating memory region.
  853. *
  854. * We call cpuset_update_task_memory_state() before hacking
  855. * our tasks mems_allowed, so that we are assured of being in
  856. * sync with our tasks cpuset, and in particular, callbacks to
  857. * cpuset_update_task_memory_state() from nested page allocations
  858. * won't see any mismatch of our cpuset and task mems_generation
  859. * values, so won't overwrite our hacked tasks mems_allowed
  860. * nodemask.
  861. */
  862. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  863. const nodemask_t *to)
  864. {
  865. struct task_struct *tsk = current;
  866. cpuset_update_task_memory_state();
  867. mutex_lock(&callback_mutex);
  868. tsk->mems_allowed = *to;
  869. mutex_unlock(&callback_mutex);
  870. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  871. mutex_lock(&callback_mutex);
  872. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  873. mutex_unlock(&callback_mutex);
  874. }
  875. static void *cpuset_being_rebound;
  876. /**
  877. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  878. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  879. * @oldmem: old mems_allowed of cpuset cs
  880. *
  881. * Called with cgroup_mutex held
  882. * Return 0 if successful, -errno if not.
  883. */
  884. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  885. {
  886. struct task_struct *p;
  887. struct mm_struct **mmarray;
  888. int i, n, ntasks;
  889. int migrate;
  890. int fudge;
  891. struct cgroup_iter it;
  892. int retval;
  893. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  894. fudge = 10; /* spare mmarray[] slots */
  895. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  896. retval = -ENOMEM;
  897. /*
  898. * Allocate mmarray[] to hold mm reference for each task
  899. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  900. * tasklist_lock. We could use GFP_ATOMIC, but with a
  901. * few more lines of code, we can retry until we get a big
  902. * enough mmarray[] w/o using GFP_ATOMIC.
  903. */
  904. while (1) {
  905. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  906. ntasks += fudge;
  907. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  908. if (!mmarray)
  909. goto done;
  910. read_lock(&tasklist_lock); /* block fork */
  911. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  912. break; /* got enough */
  913. read_unlock(&tasklist_lock); /* try again */
  914. kfree(mmarray);
  915. }
  916. n = 0;
  917. /* Load up mmarray[] with mm reference for each task in cpuset. */
  918. cgroup_iter_start(cs->css.cgroup, &it);
  919. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  920. struct mm_struct *mm;
  921. if (n >= ntasks) {
  922. printk(KERN_WARNING
  923. "Cpuset mempolicy rebind incomplete.\n");
  924. break;
  925. }
  926. mm = get_task_mm(p);
  927. if (!mm)
  928. continue;
  929. mmarray[n++] = mm;
  930. }
  931. cgroup_iter_end(cs->css.cgroup, &it);
  932. read_unlock(&tasklist_lock);
  933. /*
  934. * Now that we've dropped the tasklist spinlock, we can
  935. * rebind the vma mempolicies of each mm in mmarray[] to their
  936. * new cpuset, and release that mm. The mpol_rebind_mm()
  937. * call takes mmap_sem, which we couldn't take while holding
  938. * tasklist_lock. Forks can happen again now - the mpol_dup()
  939. * cpuset_being_rebound check will catch such forks, and rebind
  940. * their vma mempolicies too. Because we still hold the global
  941. * cgroup_mutex, we know that no other rebind effort will
  942. * be contending for the global variable cpuset_being_rebound.
  943. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  944. * is idempotent. Also migrate pages in each mm to new nodes.
  945. */
  946. migrate = is_memory_migrate(cs);
  947. for (i = 0; i < n; i++) {
  948. struct mm_struct *mm = mmarray[i];
  949. mpol_rebind_mm(mm, &cs->mems_allowed);
  950. if (migrate)
  951. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  952. mmput(mm);
  953. }
  954. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  955. kfree(mmarray);
  956. cpuset_being_rebound = NULL;
  957. retval = 0;
  958. done:
  959. return retval;
  960. }
  961. /*
  962. * Handle user request to change the 'mems' memory placement
  963. * of a cpuset. Needs to validate the request, update the
  964. * cpusets mems_allowed and mems_generation, and for each
  965. * task in the cpuset, rebind any vma mempolicies and if
  966. * the cpuset is marked 'memory_migrate', migrate the tasks
  967. * pages to the new memory.
  968. *
  969. * Call with cgroup_mutex held. May take callback_mutex during call.
  970. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  971. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  972. * their mempolicies to the cpusets new mems_allowed.
  973. */
  974. static int update_nodemask(struct cpuset *cs, const char *buf)
  975. {
  976. struct cpuset trialcs;
  977. nodemask_t oldmem;
  978. int retval;
  979. /*
  980. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  981. * it's read-only
  982. */
  983. if (cs == &top_cpuset)
  984. return -EACCES;
  985. trialcs = *cs;
  986. /*
  987. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  988. * Since nodelist_parse() fails on an empty mask, we special case
  989. * that parsing. The validate_change() call ensures that cpusets
  990. * with tasks have memory.
  991. */
  992. if (!*buf) {
  993. nodes_clear(trialcs.mems_allowed);
  994. } else {
  995. retval = nodelist_parse(buf, trialcs.mems_allowed);
  996. if (retval < 0)
  997. goto done;
  998. if (!nodes_subset(trialcs.mems_allowed,
  999. node_states[N_HIGH_MEMORY]))
  1000. return -EINVAL;
  1001. }
  1002. oldmem = cs->mems_allowed;
  1003. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  1004. retval = 0; /* Too easy - nothing to do */
  1005. goto done;
  1006. }
  1007. retval = validate_change(cs, &trialcs);
  1008. if (retval < 0)
  1009. goto done;
  1010. mutex_lock(&callback_mutex);
  1011. cs->mems_allowed = trialcs.mems_allowed;
  1012. cs->mems_generation = cpuset_mems_generation++;
  1013. mutex_unlock(&callback_mutex);
  1014. retval = update_tasks_nodemask(cs, &oldmem);
  1015. done:
  1016. return retval;
  1017. }
  1018. int current_cpuset_is_being_rebound(void)
  1019. {
  1020. return task_cs(current) == cpuset_being_rebound;
  1021. }
  1022. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1023. {
  1024. if (val < -1 || val >= SD_LV_MAX)
  1025. return -EINVAL;
  1026. if (val != cs->relax_domain_level) {
  1027. cs->relax_domain_level = val;
  1028. if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
  1029. async_rebuild_sched_domains();
  1030. }
  1031. return 0;
  1032. }
  1033. /*
  1034. * update_flag - read a 0 or a 1 in a file and update associated flag
  1035. * bit: the bit to update (see cpuset_flagbits_t)
  1036. * cs: the cpuset to update
  1037. * turning_on: whether the flag is being set or cleared
  1038. *
  1039. * Call with cgroup_mutex held.
  1040. */
  1041. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1042. int turning_on)
  1043. {
  1044. struct cpuset trialcs;
  1045. int err;
  1046. int balance_flag_changed;
  1047. trialcs = *cs;
  1048. if (turning_on)
  1049. set_bit(bit, &trialcs.flags);
  1050. else
  1051. clear_bit(bit, &trialcs.flags);
  1052. err = validate_change(cs, &trialcs);
  1053. if (err < 0)
  1054. return err;
  1055. balance_flag_changed = (is_sched_load_balance(cs) !=
  1056. is_sched_load_balance(&trialcs));
  1057. mutex_lock(&callback_mutex);
  1058. cs->flags = trialcs.flags;
  1059. mutex_unlock(&callback_mutex);
  1060. if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
  1061. async_rebuild_sched_domains();
  1062. return 0;
  1063. }
  1064. /*
  1065. * Frequency meter - How fast is some event occurring?
  1066. *
  1067. * These routines manage a digitally filtered, constant time based,
  1068. * event frequency meter. There are four routines:
  1069. * fmeter_init() - initialize a frequency meter.
  1070. * fmeter_markevent() - called each time the event happens.
  1071. * fmeter_getrate() - returns the recent rate of such events.
  1072. * fmeter_update() - internal routine used to update fmeter.
  1073. *
  1074. * A common data structure is passed to each of these routines,
  1075. * which is used to keep track of the state required to manage the
  1076. * frequency meter and its digital filter.
  1077. *
  1078. * The filter works on the number of events marked per unit time.
  1079. * The filter is single-pole low-pass recursive (IIR). The time unit
  1080. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1081. * simulate 3 decimal digits of precision (multiplied by 1000).
  1082. *
  1083. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1084. * has a half-life of 10 seconds, meaning that if the events quit
  1085. * happening, then the rate returned from the fmeter_getrate()
  1086. * will be cut in half each 10 seconds, until it converges to zero.
  1087. *
  1088. * It is not worth doing a real infinitely recursive filter. If more
  1089. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1090. * just compute FM_MAXTICKS ticks worth, by which point the level
  1091. * will be stable.
  1092. *
  1093. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1094. * arithmetic overflow in the fmeter_update() routine.
  1095. *
  1096. * Given the simple 32 bit integer arithmetic used, this meter works
  1097. * best for reporting rates between one per millisecond (msec) and
  1098. * one per 32 (approx) seconds. At constant rates faster than one
  1099. * per msec it maxes out at values just under 1,000,000. At constant
  1100. * rates between one per msec, and one per second it will stabilize
  1101. * to a value N*1000, where N is the rate of events per second.
  1102. * At constant rates between one per second and one per 32 seconds,
  1103. * it will be choppy, moving up on the seconds that have an event,
  1104. * and then decaying until the next event. At rates slower than
  1105. * about one in 32 seconds, it decays all the way back to zero between
  1106. * each event.
  1107. */
  1108. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1109. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1110. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1111. #define FM_SCALE 1000 /* faux fixed point scale */
  1112. /* Initialize a frequency meter */
  1113. static void fmeter_init(struct fmeter *fmp)
  1114. {
  1115. fmp->cnt = 0;
  1116. fmp->val = 0;
  1117. fmp->time = 0;
  1118. spin_lock_init(&fmp->lock);
  1119. }
  1120. /* Internal meter update - process cnt events and update value */
  1121. static void fmeter_update(struct fmeter *fmp)
  1122. {
  1123. time_t now = get_seconds();
  1124. time_t ticks = now - fmp->time;
  1125. if (ticks == 0)
  1126. return;
  1127. ticks = min(FM_MAXTICKS, ticks);
  1128. while (ticks-- > 0)
  1129. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1130. fmp->time = now;
  1131. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1132. fmp->cnt = 0;
  1133. }
  1134. /* Process any previous ticks, then bump cnt by one (times scale). */
  1135. static void fmeter_markevent(struct fmeter *fmp)
  1136. {
  1137. spin_lock(&fmp->lock);
  1138. fmeter_update(fmp);
  1139. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1140. spin_unlock(&fmp->lock);
  1141. }
  1142. /* Process any previous ticks, then return current value. */
  1143. static int fmeter_getrate(struct fmeter *fmp)
  1144. {
  1145. int val;
  1146. spin_lock(&fmp->lock);
  1147. fmeter_update(fmp);
  1148. val = fmp->val;
  1149. spin_unlock(&fmp->lock);
  1150. return val;
  1151. }
  1152. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1153. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1154. struct cgroup *cont, struct task_struct *tsk)
  1155. {
  1156. struct cpuset *cs = cgroup_cs(cont);
  1157. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1158. return -ENOSPC;
  1159. if (tsk->flags & PF_THREAD_BOUND) {
  1160. cpumask_t mask;
  1161. mutex_lock(&callback_mutex);
  1162. mask = cs->cpus_allowed;
  1163. mutex_unlock(&callback_mutex);
  1164. if (!cpus_equal(tsk->cpus_allowed, mask))
  1165. return -EINVAL;
  1166. }
  1167. return security_task_setscheduler(tsk, 0, NULL);
  1168. }
  1169. static void cpuset_attach(struct cgroup_subsys *ss,
  1170. struct cgroup *cont, struct cgroup *oldcont,
  1171. struct task_struct *tsk)
  1172. {
  1173. cpumask_t cpus;
  1174. nodemask_t from, to;
  1175. struct mm_struct *mm;
  1176. struct cpuset *cs = cgroup_cs(cont);
  1177. struct cpuset *oldcs = cgroup_cs(oldcont);
  1178. int err;
  1179. mutex_lock(&callback_mutex);
  1180. guarantee_online_cpus(cs, &cpus);
  1181. err = set_cpus_allowed_ptr(tsk, &cpus);
  1182. mutex_unlock(&callback_mutex);
  1183. if (err)
  1184. return;
  1185. from = oldcs->mems_allowed;
  1186. to = cs->mems_allowed;
  1187. mm = get_task_mm(tsk);
  1188. if (mm) {
  1189. mpol_rebind_mm(mm, &to);
  1190. if (is_memory_migrate(cs))
  1191. cpuset_migrate_mm(mm, &from, &to);
  1192. mmput(mm);
  1193. }
  1194. }
  1195. /* The various types of files and directories in a cpuset file system */
  1196. typedef enum {
  1197. FILE_MEMORY_MIGRATE,
  1198. FILE_CPULIST,
  1199. FILE_MEMLIST,
  1200. FILE_CPU_EXCLUSIVE,
  1201. FILE_MEM_EXCLUSIVE,
  1202. FILE_MEM_HARDWALL,
  1203. FILE_SCHED_LOAD_BALANCE,
  1204. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1205. FILE_MEMORY_PRESSURE_ENABLED,
  1206. FILE_MEMORY_PRESSURE,
  1207. FILE_SPREAD_PAGE,
  1208. FILE_SPREAD_SLAB,
  1209. } cpuset_filetype_t;
  1210. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1211. {
  1212. int retval = 0;
  1213. struct cpuset *cs = cgroup_cs(cgrp);
  1214. cpuset_filetype_t type = cft->private;
  1215. if (!cgroup_lock_live_group(cgrp))
  1216. return -ENODEV;
  1217. switch (type) {
  1218. case FILE_CPU_EXCLUSIVE:
  1219. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1220. break;
  1221. case FILE_MEM_EXCLUSIVE:
  1222. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1223. break;
  1224. case FILE_MEM_HARDWALL:
  1225. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1226. break;
  1227. case FILE_SCHED_LOAD_BALANCE:
  1228. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1229. break;
  1230. case FILE_MEMORY_MIGRATE:
  1231. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1232. break;
  1233. case FILE_MEMORY_PRESSURE_ENABLED:
  1234. cpuset_memory_pressure_enabled = !!val;
  1235. break;
  1236. case FILE_MEMORY_PRESSURE:
  1237. retval = -EACCES;
  1238. break;
  1239. case FILE_SPREAD_PAGE:
  1240. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1241. cs->mems_generation = cpuset_mems_generation++;
  1242. break;
  1243. case FILE_SPREAD_SLAB:
  1244. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1245. cs->mems_generation = cpuset_mems_generation++;
  1246. break;
  1247. default:
  1248. retval = -EINVAL;
  1249. break;
  1250. }
  1251. cgroup_unlock();
  1252. return retval;
  1253. }
  1254. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1255. {
  1256. int retval = 0;
  1257. struct cpuset *cs = cgroup_cs(cgrp);
  1258. cpuset_filetype_t type = cft->private;
  1259. if (!cgroup_lock_live_group(cgrp))
  1260. return -ENODEV;
  1261. switch (type) {
  1262. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1263. retval = update_relax_domain_level(cs, val);
  1264. break;
  1265. default:
  1266. retval = -EINVAL;
  1267. break;
  1268. }
  1269. cgroup_unlock();
  1270. return retval;
  1271. }
  1272. /*
  1273. * Common handling for a write to a "cpus" or "mems" file.
  1274. */
  1275. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1276. const char *buf)
  1277. {
  1278. int retval = 0;
  1279. if (!cgroup_lock_live_group(cgrp))
  1280. return -ENODEV;
  1281. switch (cft->private) {
  1282. case FILE_CPULIST:
  1283. retval = update_cpumask(cgroup_cs(cgrp), buf);
  1284. break;
  1285. case FILE_MEMLIST:
  1286. retval = update_nodemask(cgroup_cs(cgrp), buf);
  1287. break;
  1288. default:
  1289. retval = -EINVAL;
  1290. break;
  1291. }
  1292. cgroup_unlock();
  1293. return retval;
  1294. }
  1295. /*
  1296. * These ascii lists should be read in a single call, by using a user
  1297. * buffer large enough to hold the entire map. If read in smaller
  1298. * chunks, there is no guarantee of atomicity. Since the display format
  1299. * used, list of ranges of sequential numbers, is variable length,
  1300. * and since these maps can change value dynamically, one could read
  1301. * gibberish by doing partial reads while a list was changing.
  1302. * A single large read to a buffer that crosses a page boundary is
  1303. * ok, because the result being copied to user land is not recomputed
  1304. * across a page fault.
  1305. */
  1306. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1307. {
  1308. cpumask_t mask;
  1309. mutex_lock(&callback_mutex);
  1310. mask = cs->cpus_allowed;
  1311. mutex_unlock(&callback_mutex);
  1312. return cpulist_scnprintf(page, PAGE_SIZE, &mask);
  1313. }
  1314. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1315. {
  1316. nodemask_t mask;
  1317. mutex_lock(&callback_mutex);
  1318. mask = cs->mems_allowed;
  1319. mutex_unlock(&callback_mutex);
  1320. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1321. }
  1322. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1323. struct cftype *cft,
  1324. struct file *file,
  1325. char __user *buf,
  1326. size_t nbytes, loff_t *ppos)
  1327. {
  1328. struct cpuset *cs = cgroup_cs(cont);
  1329. cpuset_filetype_t type = cft->private;
  1330. char *page;
  1331. ssize_t retval = 0;
  1332. char *s;
  1333. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1334. return -ENOMEM;
  1335. s = page;
  1336. switch (type) {
  1337. case FILE_CPULIST:
  1338. s += cpuset_sprintf_cpulist(s, cs);
  1339. break;
  1340. case FILE_MEMLIST:
  1341. s += cpuset_sprintf_memlist(s, cs);
  1342. break;
  1343. default:
  1344. retval = -EINVAL;
  1345. goto out;
  1346. }
  1347. *s++ = '\n';
  1348. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1349. out:
  1350. free_page((unsigned long)page);
  1351. return retval;
  1352. }
  1353. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1354. {
  1355. struct cpuset *cs = cgroup_cs(cont);
  1356. cpuset_filetype_t type = cft->private;
  1357. switch (type) {
  1358. case FILE_CPU_EXCLUSIVE:
  1359. return is_cpu_exclusive(cs);
  1360. case FILE_MEM_EXCLUSIVE:
  1361. return is_mem_exclusive(cs);
  1362. case FILE_MEM_HARDWALL:
  1363. return is_mem_hardwall(cs);
  1364. case FILE_SCHED_LOAD_BALANCE:
  1365. return is_sched_load_balance(cs);
  1366. case FILE_MEMORY_MIGRATE:
  1367. return is_memory_migrate(cs);
  1368. case FILE_MEMORY_PRESSURE_ENABLED:
  1369. return cpuset_memory_pressure_enabled;
  1370. case FILE_MEMORY_PRESSURE:
  1371. return fmeter_getrate(&cs->fmeter);
  1372. case FILE_SPREAD_PAGE:
  1373. return is_spread_page(cs);
  1374. case FILE_SPREAD_SLAB:
  1375. return is_spread_slab(cs);
  1376. default:
  1377. BUG();
  1378. }
  1379. /* Unreachable but makes gcc happy */
  1380. return 0;
  1381. }
  1382. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1383. {
  1384. struct cpuset *cs = cgroup_cs(cont);
  1385. cpuset_filetype_t type = cft->private;
  1386. switch (type) {
  1387. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1388. return cs->relax_domain_level;
  1389. default:
  1390. BUG();
  1391. }
  1392. /* Unrechable but makes gcc happy */
  1393. return 0;
  1394. }
  1395. /*
  1396. * for the common functions, 'private' gives the type of file
  1397. */
  1398. static struct cftype files[] = {
  1399. {
  1400. .name = "cpus",
  1401. .read = cpuset_common_file_read,
  1402. .write_string = cpuset_write_resmask,
  1403. .max_write_len = (100U + 6 * NR_CPUS),
  1404. .private = FILE_CPULIST,
  1405. },
  1406. {
  1407. .name = "mems",
  1408. .read = cpuset_common_file_read,
  1409. .write_string = cpuset_write_resmask,
  1410. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1411. .private = FILE_MEMLIST,
  1412. },
  1413. {
  1414. .name = "cpu_exclusive",
  1415. .read_u64 = cpuset_read_u64,
  1416. .write_u64 = cpuset_write_u64,
  1417. .private = FILE_CPU_EXCLUSIVE,
  1418. },
  1419. {
  1420. .name = "mem_exclusive",
  1421. .read_u64 = cpuset_read_u64,
  1422. .write_u64 = cpuset_write_u64,
  1423. .private = FILE_MEM_EXCLUSIVE,
  1424. },
  1425. {
  1426. .name = "mem_hardwall",
  1427. .read_u64 = cpuset_read_u64,
  1428. .write_u64 = cpuset_write_u64,
  1429. .private = FILE_MEM_HARDWALL,
  1430. },
  1431. {
  1432. .name = "sched_load_balance",
  1433. .read_u64 = cpuset_read_u64,
  1434. .write_u64 = cpuset_write_u64,
  1435. .private = FILE_SCHED_LOAD_BALANCE,
  1436. },
  1437. {
  1438. .name = "sched_relax_domain_level",
  1439. .read_s64 = cpuset_read_s64,
  1440. .write_s64 = cpuset_write_s64,
  1441. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1442. },
  1443. {
  1444. .name = "memory_migrate",
  1445. .read_u64 = cpuset_read_u64,
  1446. .write_u64 = cpuset_write_u64,
  1447. .private = FILE_MEMORY_MIGRATE,
  1448. },
  1449. {
  1450. .name = "memory_pressure",
  1451. .read_u64 = cpuset_read_u64,
  1452. .write_u64 = cpuset_write_u64,
  1453. .private = FILE_MEMORY_PRESSURE,
  1454. },
  1455. {
  1456. .name = "memory_spread_page",
  1457. .read_u64 = cpuset_read_u64,
  1458. .write_u64 = cpuset_write_u64,
  1459. .private = FILE_SPREAD_PAGE,
  1460. },
  1461. {
  1462. .name = "memory_spread_slab",
  1463. .read_u64 = cpuset_read_u64,
  1464. .write_u64 = cpuset_write_u64,
  1465. .private = FILE_SPREAD_SLAB,
  1466. },
  1467. };
  1468. static struct cftype cft_memory_pressure_enabled = {
  1469. .name = "memory_pressure_enabled",
  1470. .read_u64 = cpuset_read_u64,
  1471. .write_u64 = cpuset_write_u64,
  1472. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1473. };
  1474. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1475. {
  1476. int err;
  1477. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1478. if (err)
  1479. return err;
  1480. /* memory_pressure_enabled is in root cpuset only */
  1481. if (!cont->parent)
  1482. err = cgroup_add_file(cont, ss,
  1483. &cft_memory_pressure_enabled);
  1484. return err;
  1485. }
  1486. /*
  1487. * post_clone() is called at the end of cgroup_clone().
  1488. * 'cgroup' was just created automatically as a result of
  1489. * a cgroup_clone(), and the current task is about to
  1490. * be moved into 'cgroup'.
  1491. *
  1492. * Currently we refuse to set up the cgroup - thereby
  1493. * refusing the task to be entered, and as a result refusing
  1494. * the sys_unshare() or clone() which initiated it - if any
  1495. * sibling cpusets have exclusive cpus or mem.
  1496. *
  1497. * If this becomes a problem for some users who wish to
  1498. * allow that scenario, then cpuset_post_clone() could be
  1499. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1500. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1501. * held.
  1502. */
  1503. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1504. struct cgroup *cgroup)
  1505. {
  1506. struct cgroup *parent, *child;
  1507. struct cpuset *cs, *parent_cs;
  1508. parent = cgroup->parent;
  1509. list_for_each_entry(child, &parent->children, sibling) {
  1510. cs = cgroup_cs(child);
  1511. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1512. return;
  1513. }
  1514. cs = cgroup_cs(cgroup);
  1515. parent_cs = cgroup_cs(parent);
  1516. cs->mems_allowed = parent_cs->mems_allowed;
  1517. cs->cpus_allowed = parent_cs->cpus_allowed;
  1518. return;
  1519. }
  1520. /*
  1521. * cpuset_create - create a cpuset
  1522. * ss: cpuset cgroup subsystem
  1523. * cont: control group that the new cpuset will be part of
  1524. */
  1525. static struct cgroup_subsys_state *cpuset_create(
  1526. struct cgroup_subsys *ss,
  1527. struct cgroup *cont)
  1528. {
  1529. struct cpuset *cs;
  1530. struct cpuset *parent;
  1531. if (!cont->parent) {
  1532. /* This is early initialization for the top cgroup */
  1533. top_cpuset.mems_generation = cpuset_mems_generation++;
  1534. return &top_cpuset.css;
  1535. }
  1536. parent = cgroup_cs(cont->parent);
  1537. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1538. if (!cs)
  1539. return ERR_PTR(-ENOMEM);
  1540. cpuset_update_task_memory_state();
  1541. cs->flags = 0;
  1542. if (is_spread_page(parent))
  1543. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1544. if (is_spread_slab(parent))
  1545. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1546. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1547. cpus_clear(cs->cpus_allowed);
  1548. nodes_clear(cs->mems_allowed);
  1549. cs->mems_generation = cpuset_mems_generation++;
  1550. fmeter_init(&cs->fmeter);
  1551. cs->relax_domain_level = -1;
  1552. cs->parent = parent;
  1553. number_of_cpusets++;
  1554. return &cs->css ;
  1555. }
  1556. /*
  1557. * If the cpuset being removed has its flag 'sched_load_balance'
  1558. * enabled, then simulate turning sched_load_balance off, which
  1559. * will call async_rebuild_sched_domains().
  1560. */
  1561. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1562. {
  1563. struct cpuset *cs = cgroup_cs(cont);
  1564. cpuset_update_task_memory_state();
  1565. if (is_sched_load_balance(cs))
  1566. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1567. number_of_cpusets--;
  1568. kfree(cs);
  1569. }
  1570. struct cgroup_subsys cpuset_subsys = {
  1571. .name = "cpuset",
  1572. .create = cpuset_create,
  1573. .destroy = cpuset_destroy,
  1574. .can_attach = cpuset_can_attach,
  1575. .attach = cpuset_attach,
  1576. .populate = cpuset_populate,
  1577. .post_clone = cpuset_post_clone,
  1578. .subsys_id = cpuset_subsys_id,
  1579. .early_init = 1,
  1580. };
  1581. /*
  1582. * cpuset_init_early - just enough so that the calls to
  1583. * cpuset_update_task_memory_state() in early init code
  1584. * are harmless.
  1585. */
  1586. int __init cpuset_init_early(void)
  1587. {
  1588. top_cpuset.mems_generation = cpuset_mems_generation++;
  1589. return 0;
  1590. }
  1591. /**
  1592. * cpuset_init - initialize cpusets at system boot
  1593. *
  1594. * Description: Initialize top_cpuset and the cpuset internal file system,
  1595. **/
  1596. int __init cpuset_init(void)
  1597. {
  1598. int err = 0;
  1599. cpus_setall(top_cpuset.cpus_allowed);
  1600. nodes_setall(top_cpuset.mems_allowed);
  1601. fmeter_init(&top_cpuset.fmeter);
  1602. top_cpuset.mems_generation = cpuset_mems_generation++;
  1603. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1604. top_cpuset.relax_domain_level = -1;
  1605. err = register_filesystem(&cpuset_fs_type);
  1606. if (err < 0)
  1607. return err;
  1608. number_of_cpusets = 1;
  1609. return 0;
  1610. }
  1611. /**
  1612. * cpuset_do_move_task - move a given task to another cpuset
  1613. * @tsk: pointer to task_struct the task to move
  1614. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1615. *
  1616. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1617. * Return nonzero to stop the walk through the tasks.
  1618. */
  1619. static void cpuset_do_move_task(struct task_struct *tsk,
  1620. struct cgroup_scanner *scan)
  1621. {
  1622. struct cpuset_hotplug_scanner *chsp;
  1623. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1624. cgroup_attach_task(chsp->to, tsk);
  1625. }
  1626. /**
  1627. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1628. * @from: cpuset in which the tasks currently reside
  1629. * @to: cpuset to which the tasks will be moved
  1630. *
  1631. * Called with cgroup_mutex held
  1632. * callback_mutex must not be held, as cpuset_attach() will take it.
  1633. *
  1634. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1635. * calling callback functions for each.
  1636. */
  1637. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1638. {
  1639. struct cpuset_hotplug_scanner scan;
  1640. scan.scan.cg = from->css.cgroup;
  1641. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1642. scan.scan.process_task = cpuset_do_move_task;
  1643. scan.scan.heap = NULL;
  1644. scan.to = to->css.cgroup;
  1645. if (cgroup_scan_tasks(&scan.scan))
  1646. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1647. "cgroup_scan_tasks failed\n");
  1648. }
  1649. /*
  1650. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1651. * or memory nodes, we need to walk over the cpuset hierarchy,
  1652. * removing that CPU or node from all cpusets. If this removes the
  1653. * last CPU or node from a cpuset, then move the tasks in the empty
  1654. * cpuset to its next-highest non-empty parent.
  1655. *
  1656. * Called with cgroup_mutex held
  1657. * callback_mutex must not be held, as cpuset_attach() will take it.
  1658. */
  1659. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1660. {
  1661. struct cpuset *parent;
  1662. /*
  1663. * The cgroup's css_sets list is in use if there are tasks
  1664. * in the cpuset; the list is empty if there are none;
  1665. * the cs->css.refcnt seems always 0.
  1666. */
  1667. if (list_empty(&cs->css.cgroup->css_sets))
  1668. return;
  1669. /*
  1670. * Find its next-highest non-empty parent, (top cpuset
  1671. * has online cpus, so can't be empty).
  1672. */
  1673. parent = cs->parent;
  1674. while (cpus_empty(parent->cpus_allowed) ||
  1675. nodes_empty(parent->mems_allowed))
  1676. parent = parent->parent;
  1677. move_member_tasks_to_cpuset(cs, parent);
  1678. }
  1679. /*
  1680. * Walk the specified cpuset subtree and look for empty cpusets.
  1681. * The tasks of such cpuset must be moved to a parent cpuset.
  1682. *
  1683. * Called with cgroup_mutex held. We take callback_mutex to modify
  1684. * cpus_allowed and mems_allowed.
  1685. *
  1686. * This walk processes the tree from top to bottom, completing one layer
  1687. * before dropping down to the next. It always processes a node before
  1688. * any of its children.
  1689. *
  1690. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1691. * that has tasks along with an empty 'mems'. But if we did see such
  1692. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1693. */
  1694. static void scan_for_empty_cpusets(struct cpuset *root)
  1695. {
  1696. LIST_HEAD(queue);
  1697. struct cpuset *cp; /* scans cpusets being updated */
  1698. struct cpuset *child; /* scans child cpusets of cp */
  1699. struct cgroup *cont;
  1700. nodemask_t oldmems;
  1701. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1702. while (!list_empty(&queue)) {
  1703. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1704. list_del(queue.next);
  1705. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1706. child = cgroup_cs(cont);
  1707. list_add_tail(&child->stack_list, &queue);
  1708. }
  1709. /* Continue past cpusets with all cpus, mems online */
  1710. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1711. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1712. continue;
  1713. oldmems = cp->mems_allowed;
  1714. /* Remove offline cpus and mems from this cpuset. */
  1715. mutex_lock(&callback_mutex);
  1716. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1717. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1718. node_states[N_HIGH_MEMORY]);
  1719. mutex_unlock(&callback_mutex);
  1720. /* Move tasks from the empty cpuset to a parent */
  1721. if (cpus_empty(cp->cpus_allowed) ||
  1722. nodes_empty(cp->mems_allowed))
  1723. remove_tasks_in_empty_cpuset(cp);
  1724. else {
  1725. update_tasks_cpumask(cp, NULL);
  1726. update_tasks_nodemask(cp, &oldmems);
  1727. }
  1728. }
  1729. }
  1730. /*
  1731. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1732. * period. This is necessary in order to make cpusets transparent
  1733. * (of no affect) on systems that are actively using CPU hotplug
  1734. * but making no active use of cpusets.
  1735. *
  1736. * This routine ensures that top_cpuset.cpus_allowed tracks
  1737. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1738. *
  1739. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1740. * before calling generate_sched_domains().
  1741. */
  1742. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1743. unsigned long phase, void *unused_cpu)
  1744. {
  1745. struct sched_domain_attr *attr;
  1746. cpumask_t *doms;
  1747. int ndoms;
  1748. switch (phase) {
  1749. case CPU_ONLINE:
  1750. case CPU_ONLINE_FROZEN:
  1751. case CPU_DEAD:
  1752. case CPU_DEAD_FROZEN:
  1753. break;
  1754. default:
  1755. return NOTIFY_DONE;
  1756. }
  1757. cgroup_lock();
  1758. top_cpuset.cpus_allowed = cpu_online_map;
  1759. scan_for_empty_cpusets(&top_cpuset);
  1760. ndoms = generate_sched_domains(&doms, &attr);
  1761. cgroup_unlock();
  1762. /* Have scheduler rebuild the domains */
  1763. partition_sched_domains(ndoms, doms, attr);
  1764. return NOTIFY_OK;
  1765. }
  1766. #ifdef CONFIG_MEMORY_HOTPLUG
  1767. /*
  1768. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1769. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1770. * See also the previous routine cpuset_track_online_cpus().
  1771. */
  1772. static int cpuset_track_online_nodes(struct notifier_block *self,
  1773. unsigned long action, void *arg)
  1774. {
  1775. cgroup_lock();
  1776. switch (action) {
  1777. case MEM_ONLINE:
  1778. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1779. break;
  1780. case MEM_OFFLINE:
  1781. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1782. scan_for_empty_cpusets(&top_cpuset);
  1783. break;
  1784. default:
  1785. break;
  1786. }
  1787. cgroup_unlock();
  1788. return NOTIFY_OK;
  1789. }
  1790. #endif
  1791. /**
  1792. * cpuset_init_smp - initialize cpus_allowed
  1793. *
  1794. * Description: Finish top cpuset after cpu, node maps are initialized
  1795. **/
  1796. void __init cpuset_init_smp(void)
  1797. {
  1798. top_cpuset.cpus_allowed = cpu_online_map;
  1799. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1800. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1801. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1802. }
  1803. /**
  1804. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1805. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1806. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1807. *
  1808. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1809. * attached to the specified @tsk. Guaranteed to return some non-empty
  1810. * subset of cpu_online_map, even if this means going outside the
  1811. * tasks cpuset.
  1812. **/
  1813. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1814. {
  1815. mutex_lock(&callback_mutex);
  1816. cpuset_cpus_allowed_locked(tsk, pmask);
  1817. mutex_unlock(&callback_mutex);
  1818. }
  1819. /**
  1820. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1821. * Must be called with callback_mutex held.
  1822. **/
  1823. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1824. {
  1825. task_lock(tsk);
  1826. guarantee_online_cpus(task_cs(tsk), pmask);
  1827. task_unlock(tsk);
  1828. }
  1829. void cpuset_init_current_mems_allowed(void)
  1830. {
  1831. nodes_setall(current->mems_allowed);
  1832. }
  1833. /**
  1834. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1835. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1836. *
  1837. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1838. * attached to the specified @tsk. Guaranteed to return some non-empty
  1839. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1840. * tasks cpuset.
  1841. **/
  1842. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1843. {
  1844. nodemask_t mask;
  1845. mutex_lock(&callback_mutex);
  1846. task_lock(tsk);
  1847. guarantee_online_mems(task_cs(tsk), &mask);
  1848. task_unlock(tsk);
  1849. mutex_unlock(&callback_mutex);
  1850. return mask;
  1851. }
  1852. /**
  1853. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1854. * @nodemask: the nodemask to be checked
  1855. *
  1856. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1857. */
  1858. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1859. {
  1860. return nodes_intersects(*nodemask, current->mems_allowed);
  1861. }
  1862. /*
  1863. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1864. * mem_hardwall ancestor to the specified cpuset. Call holding
  1865. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1866. * (an unusual configuration), then returns the root cpuset.
  1867. */
  1868. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1869. {
  1870. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1871. cs = cs->parent;
  1872. return cs;
  1873. }
  1874. /**
  1875. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1876. * @z: is this zone on an allowed node?
  1877. * @gfp_mask: memory allocation flags
  1878. *
  1879. * If we're in interrupt, yes, we can always allocate. If
  1880. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1881. * z's node is in our tasks mems_allowed, yes. If it's not a
  1882. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1883. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1884. * If the task has been OOM killed and has access to memory reserves
  1885. * as specified by the TIF_MEMDIE flag, yes.
  1886. * Otherwise, no.
  1887. *
  1888. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1889. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1890. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1891. * from an enclosing cpuset.
  1892. *
  1893. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1894. * hardwall cpusets, and never sleeps.
  1895. *
  1896. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1897. * by forcibly using a zonelist starting at a specified node, and by
  1898. * (in get_page_from_freelist()) refusing to consider the zones for
  1899. * any node on the zonelist except the first. By the time any such
  1900. * calls get to this routine, we should just shut up and say 'yes'.
  1901. *
  1902. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1903. * and do not allow allocations outside the current tasks cpuset
  1904. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1905. * GFP_KERNEL allocations are not so marked, so can escape to the
  1906. * nearest enclosing hardwalled ancestor cpuset.
  1907. *
  1908. * Scanning up parent cpusets requires callback_mutex. The
  1909. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1910. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1911. * current tasks mems_allowed came up empty on the first pass over
  1912. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1913. * cpuset are short of memory, might require taking the callback_mutex
  1914. * mutex.
  1915. *
  1916. * The first call here from mm/page_alloc:get_page_from_freelist()
  1917. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1918. * so no allocation on a node outside the cpuset is allowed (unless
  1919. * in interrupt, of course).
  1920. *
  1921. * The second pass through get_page_from_freelist() doesn't even call
  1922. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1923. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1924. * in alloc_flags. That logic and the checks below have the combined
  1925. * affect that:
  1926. * in_interrupt - any node ok (current task context irrelevant)
  1927. * GFP_ATOMIC - any node ok
  1928. * TIF_MEMDIE - any node ok
  1929. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1930. * GFP_USER - only nodes in current tasks mems allowed ok.
  1931. *
  1932. * Rule:
  1933. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1934. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1935. * the code that might scan up ancestor cpusets and sleep.
  1936. */
  1937. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1938. {
  1939. int node; /* node that zone z is on */
  1940. const struct cpuset *cs; /* current cpuset ancestors */
  1941. int allowed; /* is allocation in zone z allowed? */
  1942. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1943. return 1;
  1944. node = zone_to_nid(z);
  1945. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1946. if (node_isset(node, current->mems_allowed))
  1947. return 1;
  1948. /*
  1949. * Allow tasks that have access to memory reserves because they have
  1950. * been OOM killed to get memory anywhere.
  1951. */
  1952. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1953. return 1;
  1954. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1955. return 0;
  1956. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1957. return 1;
  1958. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1959. mutex_lock(&callback_mutex);
  1960. task_lock(current);
  1961. cs = nearest_hardwall_ancestor(task_cs(current));
  1962. task_unlock(current);
  1963. allowed = node_isset(node, cs->mems_allowed);
  1964. mutex_unlock(&callback_mutex);
  1965. return allowed;
  1966. }
  1967. /*
  1968. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1969. * @z: is this zone on an allowed node?
  1970. * @gfp_mask: memory allocation flags
  1971. *
  1972. * If we're in interrupt, yes, we can always allocate.
  1973. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1974. * z's node is in our tasks mems_allowed, yes. If the task has been
  1975. * OOM killed and has access to memory reserves as specified by the
  1976. * TIF_MEMDIE flag, yes. Otherwise, no.
  1977. *
  1978. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1979. * by forcibly using a zonelist starting at a specified node, and by
  1980. * (in get_page_from_freelist()) refusing to consider the zones for
  1981. * any node on the zonelist except the first. By the time any such
  1982. * calls get to this routine, we should just shut up and say 'yes'.
  1983. *
  1984. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1985. * this variant requires that the zone be in the current tasks
  1986. * mems_allowed or that we're in interrupt. It does not scan up the
  1987. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1988. * It never sleeps.
  1989. */
  1990. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1991. {
  1992. int node; /* node that zone z is on */
  1993. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1994. return 1;
  1995. node = zone_to_nid(z);
  1996. if (node_isset(node, current->mems_allowed))
  1997. return 1;
  1998. /*
  1999. * Allow tasks that have access to memory reserves because they have
  2000. * been OOM killed to get memory anywhere.
  2001. */
  2002. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2003. return 1;
  2004. return 0;
  2005. }
  2006. /**
  2007. * cpuset_lock - lock out any changes to cpuset structures
  2008. *
  2009. * The out of memory (oom) code needs to mutex_lock cpusets
  2010. * from being changed while it scans the tasklist looking for a
  2011. * task in an overlapping cpuset. Expose callback_mutex via this
  2012. * cpuset_lock() routine, so the oom code can lock it, before
  2013. * locking the task list. The tasklist_lock is a spinlock, so
  2014. * must be taken inside callback_mutex.
  2015. */
  2016. void cpuset_lock(void)
  2017. {
  2018. mutex_lock(&callback_mutex);
  2019. }
  2020. /**
  2021. * cpuset_unlock - release lock on cpuset changes
  2022. *
  2023. * Undo the lock taken in a previous cpuset_lock() call.
  2024. */
  2025. void cpuset_unlock(void)
  2026. {
  2027. mutex_unlock(&callback_mutex);
  2028. }
  2029. /**
  2030. * cpuset_mem_spread_node() - On which node to begin search for a page
  2031. *
  2032. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2033. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2034. * and if the memory allocation used cpuset_mem_spread_node()
  2035. * to determine on which node to start looking, as it will for
  2036. * certain page cache or slab cache pages such as used for file
  2037. * system buffers and inode caches, then instead of starting on the
  2038. * local node to look for a free page, rather spread the starting
  2039. * node around the tasks mems_allowed nodes.
  2040. *
  2041. * We don't have to worry about the returned node being offline
  2042. * because "it can't happen", and even if it did, it would be ok.
  2043. *
  2044. * The routines calling guarantee_online_mems() are careful to
  2045. * only set nodes in task->mems_allowed that are online. So it
  2046. * should not be possible for the following code to return an
  2047. * offline node. But if it did, that would be ok, as this routine
  2048. * is not returning the node where the allocation must be, only
  2049. * the node where the search should start. The zonelist passed to
  2050. * __alloc_pages() will include all nodes. If the slab allocator
  2051. * is passed an offline node, it will fall back to the local node.
  2052. * See kmem_cache_alloc_node().
  2053. */
  2054. int cpuset_mem_spread_node(void)
  2055. {
  2056. int node;
  2057. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2058. if (node == MAX_NUMNODES)
  2059. node = first_node(current->mems_allowed);
  2060. current->cpuset_mem_spread_rotor = node;
  2061. return node;
  2062. }
  2063. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2064. /**
  2065. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2066. * @tsk1: pointer to task_struct of some task.
  2067. * @tsk2: pointer to task_struct of some other task.
  2068. *
  2069. * Description: Return true if @tsk1's mems_allowed intersects the
  2070. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2071. * one of the task's memory usage might impact the memory available
  2072. * to the other.
  2073. **/
  2074. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2075. const struct task_struct *tsk2)
  2076. {
  2077. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2078. }
  2079. /**
  2080. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2081. * @task: pointer to task_struct of some task.
  2082. *
  2083. * Description: Prints @task's name, cpuset name, and cached copy of its
  2084. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2085. * dereferencing task_cs(task).
  2086. */
  2087. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2088. {
  2089. struct dentry *dentry;
  2090. dentry = task_cs(tsk)->css.cgroup->dentry;
  2091. spin_lock(&cpuset_buffer_lock);
  2092. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2093. dentry ? (const char *)dentry->d_name.name : "/");
  2094. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2095. tsk->mems_allowed);
  2096. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2097. tsk->comm, cpuset_name, cpuset_nodelist);
  2098. spin_unlock(&cpuset_buffer_lock);
  2099. }
  2100. /*
  2101. * Collection of memory_pressure is suppressed unless
  2102. * this flag is enabled by writing "1" to the special
  2103. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2104. */
  2105. int cpuset_memory_pressure_enabled __read_mostly;
  2106. /**
  2107. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2108. *
  2109. * Keep a running average of the rate of synchronous (direct)
  2110. * page reclaim efforts initiated by tasks in each cpuset.
  2111. *
  2112. * This represents the rate at which some task in the cpuset
  2113. * ran low on memory on all nodes it was allowed to use, and
  2114. * had to enter the kernels page reclaim code in an effort to
  2115. * create more free memory by tossing clean pages or swapping
  2116. * or writing dirty pages.
  2117. *
  2118. * Display to user space in the per-cpuset read-only file
  2119. * "memory_pressure". Value displayed is an integer
  2120. * representing the recent rate of entry into the synchronous
  2121. * (direct) page reclaim by any task attached to the cpuset.
  2122. **/
  2123. void __cpuset_memory_pressure_bump(void)
  2124. {
  2125. task_lock(current);
  2126. fmeter_markevent(&task_cs(current)->fmeter);
  2127. task_unlock(current);
  2128. }
  2129. #ifdef CONFIG_PROC_PID_CPUSET
  2130. /*
  2131. * proc_cpuset_show()
  2132. * - Print tasks cpuset path into seq_file.
  2133. * - Used for /proc/<pid>/cpuset.
  2134. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2135. * doesn't really matter if tsk->cpuset changes after we read it,
  2136. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2137. * anyway.
  2138. */
  2139. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2140. {
  2141. struct pid *pid;
  2142. struct task_struct *tsk;
  2143. char *buf;
  2144. struct cgroup_subsys_state *css;
  2145. int retval;
  2146. retval = -ENOMEM;
  2147. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2148. if (!buf)
  2149. goto out;
  2150. retval = -ESRCH;
  2151. pid = m->private;
  2152. tsk = get_pid_task(pid, PIDTYPE_PID);
  2153. if (!tsk)
  2154. goto out_free;
  2155. retval = -EINVAL;
  2156. cgroup_lock();
  2157. css = task_subsys_state(tsk, cpuset_subsys_id);
  2158. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2159. if (retval < 0)
  2160. goto out_unlock;
  2161. seq_puts(m, buf);
  2162. seq_putc(m, '\n');
  2163. out_unlock:
  2164. cgroup_unlock();
  2165. put_task_struct(tsk);
  2166. out_free:
  2167. kfree(buf);
  2168. out:
  2169. return retval;
  2170. }
  2171. static int cpuset_open(struct inode *inode, struct file *file)
  2172. {
  2173. struct pid *pid = PROC_I(inode)->pid;
  2174. return single_open(file, proc_cpuset_show, pid);
  2175. }
  2176. const struct file_operations proc_cpuset_operations = {
  2177. .open = cpuset_open,
  2178. .read = seq_read,
  2179. .llseek = seq_lseek,
  2180. .release = single_release,
  2181. };
  2182. #endif /* CONFIG_PROC_PID_CPUSET */
  2183. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2184. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2185. {
  2186. seq_printf(m, "Cpus_allowed:\t");
  2187. seq_cpumask(m, &task->cpus_allowed);
  2188. seq_printf(m, "\n");
  2189. seq_printf(m, "Cpus_allowed_list:\t");
  2190. seq_cpumask_list(m, &task->cpus_allowed);
  2191. seq_printf(m, "\n");
  2192. seq_printf(m, "Mems_allowed:\t");
  2193. seq_nodemask(m, &task->mems_allowed);
  2194. seq_printf(m, "\n");
  2195. seq_printf(m, "Mems_allowed_list:\t");
  2196. seq_nodemask_list(m, &task->mems_allowed);
  2197. seq_printf(m, "\n");
  2198. }