kvm_main.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #define CREATE_TRACE_POINTS
  55. #include <trace/events/kvm.h>
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. /*
  59. * Ordering of locks:
  60. *
  61. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  62. */
  63. DEFINE_SPINLOCK(kvm_lock);
  64. LIST_HEAD(vm_list);
  65. static cpumask_var_t cpus_hardware_enabled;
  66. static int kvm_usage_count = 0;
  67. static atomic_t hardware_enable_failed;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static int hardware_enable_all(void);
  75. static void hardware_disable_all(void);
  76. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  77. static bool kvm_rebooting;
  78. static bool largepages_enabled = true;
  79. static struct page *hwpoison_page;
  80. static pfn_t hwpoison_pfn;
  81. static struct page *fault_page;
  82. static pfn_t fault_pfn;
  83. inline int kvm_is_mmio_pfn(pfn_t pfn)
  84. {
  85. if (pfn_valid(pfn)) {
  86. struct page *page = compound_head(pfn_to_page(pfn));
  87. return PageReserved(page);
  88. }
  89. return true;
  90. }
  91. /*
  92. * Switches to specified vcpu, until a matching vcpu_put()
  93. */
  94. void vcpu_load(struct kvm_vcpu *vcpu)
  95. {
  96. int cpu;
  97. mutex_lock(&vcpu->mutex);
  98. cpu = get_cpu();
  99. preempt_notifier_register(&vcpu->preempt_notifier);
  100. kvm_arch_vcpu_load(vcpu, cpu);
  101. put_cpu();
  102. }
  103. void vcpu_put(struct kvm_vcpu *vcpu)
  104. {
  105. preempt_disable();
  106. kvm_arch_vcpu_put(vcpu);
  107. preempt_notifier_unregister(&vcpu->preempt_notifier);
  108. preempt_enable();
  109. mutex_unlock(&vcpu->mutex);
  110. }
  111. static void ack_flush(void *_completed)
  112. {
  113. }
  114. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  115. {
  116. int i, cpu, me;
  117. cpumask_var_t cpus;
  118. bool called = true;
  119. struct kvm_vcpu *vcpu;
  120. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  121. raw_spin_lock(&kvm->requests_lock);
  122. me = smp_processor_id();
  123. kvm_for_each_vcpu(i, vcpu, kvm) {
  124. if (kvm_make_check_request(req, vcpu))
  125. continue;
  126. cpu = vcpu->cpu;
  127. if (cpus != NULL && cpu != -1 && cpu != me)
  128. cpumask_set_cpu(cpu, cpus);
  129. }
  130. if (unlikely(cpus == NULL))
  131. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  132. else if (!cpumask_empty(cpus))
  133. smp_call_function_many(cpus, ack_flush, NULL, 1);
  134. else
  135. called = false;
  136. raw_spin_unlock(&kvm->requests_lock);
  137. free_cpumask_var(cpus);
  138. return called;
  139. }
  140. void kvm_flush_remote_tlbs(struct kvm *kvm)
  141. {
  142. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  143. ++kvm->stat.remote_tlb_flush;
  144. }
  145. void kvm_reload_remote_mmus(struct kvm *kvm)
  146. {
  147. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  148. }
  149. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  150. {
  151. struct page *page;
  152. int r;
  153. mutex_init(&vcpu->mutex);
  154. vcpu->cpu = -1;
  155. vcpu->kvm = kvm;
  156. vcpu->vcpu_id = id;
  157. init_waitqueue_head(&vcpu->wq);
  158. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  159. if (!page) {
  160. r = -ENOMEM;
  161. goto fail;
  162. }
  163. vcpu->run = page_address(page);
  164. r = kvm_arch_vcpu_init(vcpu);
  165. if (r < 0)
  166. goto fail_free_run;
  167. return 0;
  168. fail_free_run:
  169. free_page((unsigned long)vcpu->run);
  170. fail:
  171. return r;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  174. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  175. {
  176. kvm_arch_vcpu_uninit(vcpu);
  177. free_page((unsigned long)vcpu->run);
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  180. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  181. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  182. {
  183. return container_of(mn, struct kvm, mmu_notifier);
  184. }
  185. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  186. struct mm_struct *mm,
  187. unsigned long address)
  188. {
  189. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  190. int need_tlb_flush, idx;
  191. /*
  192. * When ->invalidate_page runs, the linux pte has been zapped
  193. * already but the page is still allocated until
  194. * ->invalidate_page returns. So if we increase the sequence
  195. * here the kvm page fault will notice if the spte can't be
  196. * established because the page is going to be freed. If
  197. * instead the kvm page fault establishes the spte before
  198. * ->invalidate_page runs, kvm_unmap_hva will release it
  199. * before returning.
  200. *
  201. * The sequence increase only need to be seen at spin_unlock
  202. * time, and not at spin_lock time.
  203. *
  204. * Increasing the sequence after the spin_unlock would be
  205. * unsafe because the kvm page fault could then establish the
  206. * pte after kvm_unmap_hva returned, without noticing the page
  207. * is going to be freed.
  208. */
  209. idx = srcu_read_lock(&kvm->srcu);
  210. spin_lock(&kvm->mmu_lock);
  211. kvm->mmu_notifier_seq++;
  212. need_tlb_flush = kvm_unmap_hva(kvm, address);
  213. spin_unlock(&kvm->mmu_lock);
  214. srcu_read_unlock(&kvm->srcu, idx);
  215. /* we've to flush the tlb before the pages can be freed */
  216. if (need_tlb_flush)
  217. kvm_flush_remote_tlbs(kvm);
  218. }
  219. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  220. struct mm_struct *mm,
  221. unsigned long address,
  222. pte_t pte)
  223. {
  224. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  225. int idx;
  226. idx = srcu_read_lock(&kvm->srcu);
  227. spin_lock(&kvm->mmu_lock);
  228. kvm->mmu_notifier_seq++;
  229. kvm_set_spte_hva(kvm, address, pte);
  230. spin_unlock(&kvm->mmu_lock);
  231. srcu_read_unlock(&kvm->srcu, idx);
  232. }
  233. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  234. struct mm_struct *mm,
  235. unsigned long start,
  236. unsigned long end)
  237. {
  238. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  239. int need_tlb_flush = 0, idx;
  240. idx = srcu_read_lock(&kvm->srcu);
  241. spin_lock(&kvm->mmu_lock);
  242. /*
  243. * The count increase must become visible at unlock time as no
  244. * spte can be established without taking the mmu_lock and
  245. * count is also read inside the mmu_lock critical section.
  246. */
  247. kvm->mmu_notifier_count++;
  248. for (; start < end; start += PAGE_SIZE)
  249. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  250. spin_unlock(&kvm->mmu_lock);
  251. srcu_read_unlock(&kvm->srcu, idx);
  252. /* we've to flush the tlb before the pages can be freed */
  253. if (need_tlb_flush)
  254. kvm_flush_remote_tlbs(kvm);
  255. }
  256. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  257. struct mm_struct *mm,
  258. unsigned long start,
  259. unsigned long end)
  260. {
  261. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  262. spin_lock(&kvm->mmu_lock);
  263. /*
  264. * This sequence increase will notify the kvm page fault that
  265. * the page that is going to be mapped in the spte could have
  266. * been freed.
  267. */
  268. kvm->mmu_notifier_seq++;
  269. /*
  270. * The above sequence increase must be visible before the
  271. * below count decrease but both values are read by the kvm
  272. * page fault under mmu_lock spinlock so we don't need to add
  273. * a smb_wmb() here in between the two.
  274. */
  275. kvm->mmu_notifier_count--;
  276. spin_unlock(&kvm->mmu_lock);
  277. BUG_ON(kvm->mmu_notifier_count < 0);
  278. }
  279. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  280. struct mm_struct *mm,
  281. unsigned long address)
  282. {
  283. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  284. int young, idx;
  285. idx = srcu_read_lock(&kvm->srcu);
  286. spin_lock(&kvm->mmu_lock);
  287. young = kvm_age_hva(kvm, address);
  288. spin_unlock(&kvm->mmu_lock);
  289. srcu_read_unlock(&kvm->srcu, idx);
  290. if (young)
  291. kvm_flush_remote_tlbs(kvm);
  292. return young;
  293. }
  294. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  295. struct mm_struct *mm)
  296. {
  297. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  298. int idx;
  299. idx = srcu_read_lock(&kvm->srcu);
  300. kvm_arch_flush_shadow(kvm);
  301. srcu_read_unlock(&kvm->srcu, idx);
  302. }
  303. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  304. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  305. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  306. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  307. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  308. .change_pte = kvm_mmu_notifier_change_pte,
  309. .release = kvm_mmu_notifier_release,
  310. };
  311. static int kvm_init_mmu_notifier(struct kvm *kvm)
  312. {
  313. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  314. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  315. }
  316. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  317. static int kvm_init_mmu_notifier(struct kvm *kvm)
  318. {
  319. return 0;
  320. }
  321. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  322. static struct kvm *kvm_create_vm(void)
  323. {
  324. int r = 0, i;
  325. struct kvm *kvm = kvm_arch_create_vm();
  326. if (IS_ERR(kvm))
  327. goto out;
  328. r = hardware_enable_all();
  329. if (r)
  330. goto out_err_nodisable;
  331. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  332. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  333. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  334. #endif
  335. r = -ENOMEM;
  336. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  337. if (!kvm->memslots)
  338. goto out_err;
  339. if (init_srcu_struct(&kvm->srcu))
  340. goto out_err;
  341. for (i = 0; i < KVM_NR_BUSES; i++) {
  342. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  343. GFP_KERNEL);
  344. if (!kvm->buses[i]) {
  345. cleanup_srcu_struct(&kvm->srcu);
  346. goto out_err;
  347. }
  348. }
  349. r = kvm_init_mmu_notifier(kvm);
  350. if (r) {
  351. cleanup_srcu_struct(&kvm->srcu);
  352. goto out_err;
  353. }
  354. kvm->mm = current->mm;
  355. atomic_inc(&kvm->mm->mm_count);
  356. spin_lock_init(&kvm->mmu_lock);
  357. raw_spin_lock_init(&kvm->requests_lock);
  358. kvm_eventfd_init(kvm);
  359. mutex_init(&kvm->lock);
  360. mutex_init(&kvm->irq_lock);
  361. mutex_init(&kvm->slots_lock);
  362. atomic_set(&kvm->users_count, 1);
  363. spin_lock(&kvm_lock);
  364. list_add(&kvm->vm_list, &vm_list);
  365. spin_unlock(&kvm_lock);
  366. out:
  367. return kvm;
  368. out_err:
  369. hardware_disable_all();
  370. out_err_nodisable:
  371. for (i = 0; i < KVM_NR_BUSES; i++)
  372. kfree(kvm->buses[i]);
  373. kfree(kvm->memslots);
  374. kfree(kvm);
  375. return ERR_PTR(r);
  376. }
  377. /*
  378. * Free any memory in @free but not in @dont.
  379. */
  380. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  381. struct kvm_memory_slot *dont)
  382. {
  383. int i;
  384. if (!dont || free->rmap != dont->rmap)
  385. vfree(free->rmap);
  386. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  387. vfree(free->dirty_bitmap);
  388. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  389. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  390. vfree(free->lpage_info[i]);
  391. free->lpage_info[i] = NULL;
  392. }
  393. }
  394. free->npages = 0;
  395. free->dirty_bitmap = NULL;
  396. free->rmap = NULL;
  397. }
  398. void kvm_free_physmem(struct kvm *kvm)
  399. {
  400. int i;
  401. struct kvm_memslots *slots = kvm->memslots;
  402. for (i = 0; i < slots->nmemslots; ++i)
  403. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  404. kfree(kvm->memslots);
  405. }
  406. static void kvm_destroy_vm(struct kvm *kvm)
  407. {
  408. int i;
  409. struct mm_struct *mm = kvm->mm;
  410. kvm_arch_sync_events(kvm);
  411. spin_lock(&kvm_lock);
  412. list_del(&kvm->vm_list);
  413. spin_unlock(&kvm_lock);
  414. kvm_free_irq_routing(kvm);
  415. for (i = 0; i < KVM_NR_BUSES; i++)
  416. kvm_io_bus_destroy(kvm->buses[i]);
  417. kvm_coalesced_mmio_free(kvm);
  418. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  419. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  420. #else
  421. kvm_arch_flush_shadow(kvm);
  422. #endif
  423. kvm_arch_destroy_vm(kvm);
  424. hardware_disable_all();
  425. mmdrop(mm);
  426. }
  427. void kvm_get_kvm(struct kvm *kvm)
  428. {
  429. atomic_inc(&kvm->users_count);
  430. }
  431. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  432. void kvm_put_kvm(struct kvm *kvm)
  433. {
  434. if (atomic_dec_and_test(&kvm->users_count))
  435. kvm_destroy_vm(kvm);
  436. }
  437. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  438. static int kvm_vm_release(struct inode *inode, struct file *filp)
  439. {
  440. struct kvm *kvm = filp->private_data;
  441. kvm_irqfd_release(kvm);
  442. kvm_put_kvm(kvm);
  443. return 0;
  444. }
  445. /*
  446. * Allocate some memory and give it an address in the guest physical address
  447. * space.
  448. *
  449. * Discontiguous memory is allowed, mostly for framebuffers.
  450. *
  451. * Must be called holding mmap_sem for write.
  452. */
  453. int __kvm_set_memory_region(struct kvm *kvm,
  454. struct kvm_userspace_memory_region *mem,
  455. int user_alloc)
  456. {
  457. int r, flush_shadow = 0;
  458. gfn_t base_gfn;
  459. unsigned long npages;
  460. unsigned long i;
  461. struct kvm_memory_slot *memslot;
  462. struct kvm_memory_slot old, new;
  463. struct kvm_memslots *slots, *old_memslots;
  464. r = -EINVAL;
  465. /* General sanity checks */
  466. if (mem->memory_size & (PAGE_SIZE - 1))
  467. goto out;
  468. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  469. goto out;
  470. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  471. goto out;
  472. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  473. goto out;
  474. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  475. goto out;
  476. memslot = &kvm->memslots->memslots[mem->slot];
  477. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  478. npages = mem->memory_size >> PAGE_SHIFT;
  479. r = -EINVAL;
  480. if (npages > KVM_MEM_MAX_NR_PAGES)
  481. goto out;
  482. if (!npages)
  483. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  484. new = old = *memslot;
  485. new.id = mem->slot;
  486. new.base_gfn = base_gfn;
  487. new.npages = npages;
  488. new.flags = mem->flags;
  489. /* Disallow changing a memory slot's size. */
  490. r = -EINVAL;
  491. if (npages && old.npages && npages != old.npages)
  492. goto out_free;
  493. /* Check for overlaps */
  494. r = -EEXIST;
  495. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  496. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  497. if (s == memslot || !s->npages)
  498. continue;
  499. if (!((base_gfn + npages <= s->base_gfn) ||
  500. (base_gfn >= s->base_gfn + s->npages)))
  501. goto out_free;
  502. }
  503. /* Free page dirty bitmap if unneeded */
  504. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  505. new.dirty_bitmap = NULL;
  506. r = -ENOMEM;
  507. /* Allocate if a slot is being created */
  508. #ifndef CONFIG_S390
  509. if (npages && !new.rmap) {
  510. new.rmap = vmalloc(npages * sizeof(*new.rmap));
  511. if (!new.rmap)
  512. goto out_free;
  513. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  514. new.user_alloc = user_alloc;
  515. new.userspace_addr = mem->userspace_addr;
  516. }
  517. if (!npages)
  518. goto skip_lpage;
  519. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  520. unsigned long ugfn;
  521. unsigned long j;
  522. int lpages;
  523. int level = i + 2;
  524. /* Avoid unused variable warning if no large pages */
  525. (void)level;
  526. if (new.lpage_info[i])
  527. continue;
  528. lpages = 1 + ((base_gfn + npages - 1)
  529. >> KVM_HPAGE_GFN_SHIFT(level));
  530. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  531. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  532. if (!new.lpage_info[i])
  533. goto out_free;
  534. memset(new.lpage_info[i], 0,
  535. lpages * sizeof(*new.lpage_info[i]));
  536. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  537. new.lpage_info[i][0].write_count = 1;
  538. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  539. new.lpage_info[i][lpages - 1].write_count = 1;
  540. ugfn = new.userspace_addr >> PAGE_SHIFT;
  541. /*
  542. * If the gfn and userspace address are not aligned wrt each
  543. * other, or if explicitly asked to, disable large page
  544. * support for this slot
  545. */
  546. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  547. !largepages_enabled)
  548. for (j = 0; j < lpages; ++j)
  549. new.lpage_info[i][j].write_count = 1;
  550. }
  551. skip_lpage:
  552. /* Allocate page dirty bitmap if needed */
  553. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  554. unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
  555. new.dirty_bitmap = vmalloc(dirty_bytes);
  556. if (!new.dirty_bitmap)
  557. goto out_free;
  558. memset(new.dirty_bitmap, 0, dirty_bytes);
  559. /* destroy any largepage mappings for dirty tracking */
  560. if (old.npages)
  561. flush_shadow = 1;
  562. }
  563. #else /* not defined CONFIG_S390 */
  564. new.user_alloc = user_alloc;
  565. if (user_alloc)
  566. new.userspace_addr = mem->userspace_addr;
  567. #endif /* not defined CONFIG_S390 */
  568. if (!npages) {
  569. r = -ENOMEM;
  570. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  571. if (!slots)
  572. goto out_free;
  573. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  574. if (mem->slot >= slots->nmemslots)
  575. slots->nmemslots = mem->slot + 1;
  576. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  577. old_memslots = kvm->memslots;
  578. rcu_assign_pointer(kvm->memslots, slots);
  579. synchronize_srcu_expedited(&kvm->srcu);
  580. /* From this point no new shadow pages pointing to a deleted
  581. * memslot will be created.
  582. *
  583. * validation of sp->gfn happens in:
  584. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  585. * - kvm_is_visible_gfn (mmu_check_roots)
  586. */
  587. kvm_arch_flush_shadow(kvm);
  588. kfree(old_memslots);
  589. }
  590. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  591. if (r)
  592. goto out_free;
  593. #ifdef CONFIG_DMAR
  594. /* map the pages in iommu page table */
  595. if (npages) {
  596. r = kvm_iommu_map_pages(kvm, &new);
  597. if (r)
  598. goto out_free;
  599. }
  600. #endif
  601. r = -ENOMEM;
  602. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  603. if (!slots)
  604. goto out_free;
  605. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  606. if (mem->slot >= slots->nmemslots)
  607. slots->nmemslots = mem->slot + 1;
  608. /* actual memory is freed via old in kvm_free_physmem_slot below */
  609. if (!npages) {
  610. new.rmap = NULL;
  611. new.dirty_bitmap = NULL;
  612. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  613. new.lpage_info[i] = NULL;
  614. }
  615. slots->memslots[mem->slot] = new;
  616. old_memslots = kvm->memslots;
  617. rcu_assign_pointer(kvm->memslots, slots);
  618. synchronize_srcu_expedited(&kvm->srcu);
  619. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  620. kvm_free_physmem_slot(&old, &new);
  621. kfree(old_memslots);
  622. if (flush_shadow)
  623. kvm_arch_flush_shadow(kvm);
  624. return 0;
  625. out_free:
  626. kvm_free_physmem_slot(&new, &old);
  627. out:
  628. return r;
  629. }
  630. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  631. int kvm_set_memory_region(struct kvm *kvm,
  632. struct kvm_userspace_memory_region *mem,
  633. int user_alloc)
  634. {
  635. int r;
  636. mutex_lock(&kvm->slots_lock);
  637. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  638. mutex_unlock(&kvm->slots_lock);
  639. return r;
  640. }
  641. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  642. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  643. struct
  644. kvm_userspace_memory_region *mem,
  645. int user_alloc)
  646. {
  647. if (mem->slot >= KVM_MEMORY_SLOTS)
  648. return -EINVAL;
  649. return kvm_set_memory_region(kvm, mem, user_alloc);
  650. }
  651. int kvm_get_dirty_log(struct kvm *kvm,
  652. struct kvm_dirty_log *log, int *is_dirty)
  653. {
  654. struct kvm_memory_slot *memslot;
  655. int r, i;
  656. unsigned long n;
  657. unsigned long any = 0;
  658. r = -EINVAL;
  659. if (log->slot >= KVM_MEMORY_SLOTS)
  660. goto out;
  661. memslot = &kvm->memslots->memslots[log->slot];
  662. r = -ENOENT;
  663. if (!memslot->dirty_bitmap)
  664. goto out;
  665. n = kvm_dirty_bitmap_bytes(memslot);
  666. for (i = 0; !any && i < n/sizeof(long); ++i)
  667. any = memslot->dirty_bitmap[i];
  668. r = -EFAULT;
  669. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  670. goto out;
  671. if (any)
  672. *is_dirty = 1;
  673. r = 0;
  674. out:
  675. return r;
  676. }
  677. void kvm_disable_largepages(void)
  678. {
  679. largepages_enabled = false;
  680. }
  681. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  682. int is_error_page(struct page *page)
  683. {
  684. return page == bad_page || page == hwpoison_page || page == fault_page;
  685. }
  686. EXPORT_SYMBOL_GPL(is_error_page);
  687. int is_error_pfn(pfn_t pfn)
  688. {
  689. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  690. }
  691. EXPORT_SYMBOL_GPL(is_error_pfn);
  692. int is_hwpoison_pfn(pfn_t pfn)
  693. {
  694. return pfn == hwpoison_pfn;
  695. }
  696. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  697. int is_fault_pfn(pfn_t pfn)
  698. {
  699. return pfn == fault_pfn;
  700. }
  701. EXPORT_SYMBOL_GPL(is_fault_pfn);
  702. static inline unsigned long bad_hva(void)
  703. {
  704. return PAGE_OFFSET;
  705. }
  706. int kvm_is_error_hva(unsigned long addr)
  707. {
  708. return addr == bad_hva();
  709. }
  710. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  711. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  712. {
  713. int i;
  714. struct kvm_memslots *slots = kvm_memslots(kvm);
  715. for (i = 0; i < slots->nmemslots; ++i) {
  716. struct kvm_memory_slot *memslot = &slots->memslots[i];
  717. if (gfn >= memslot->base_gfn
  718. && gfn < memslot->base_gfn + memslot->npages)
  719. return memslot;
  720. }
  721. return NULL;
  722. }
  723. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  724. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  725. {
  726. int i;
  727. struct kvm_memslots *slots = kvm_memslots(kvm);
  728. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  729. struct kvm_memory_slot *memslot = &slots->memslots[i];
  730. if (memslot->flags & KVM_MEMSLOT_INVALID)
  731. continue;
  732. if (gfn >= memslot->base_gfn
  733. && gfn < memslot->base_gfn + memslot->npages)
  734. return 1;
  735. }
  736. return 0;
  737. }
  738. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  739. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  740. {
  741. struct vm_area_struct *vma;
  742. unsigned long addr, size;
  743. size = PAGE_SIZE;
  744. addr = gfn_to_hva(kvm, gfn);
  745. if (kvm_is_error_hva(addr))
  746. return PAGE_SIZE;
  747. down_read(&current->mm->mmap_sem);
  748. vma = find_vma(current->mm, addr);
  749. if (!vma)
  750. goto out;
  751. size = vma_kernel_pagesize(vma);
  752. out:
  753. up_read(&current->mm->mmap_sem);
  754. return size;
  755. }
  756. int memslot_id(struct kvm *kvm, gfn_t gfn)
  757. {
  758. int i;
  759. struct kvm_memslots *slots = kvm_memslots(kvm);
  760. struct kvm_memory_slot *memslot = NULL;
  761. for (i = 0; i < slots->nmemslots; ++i) {
  762. memslot = &slots->memslots[i];
  763. if (gfn >= memslot->base_gfn
  764. && gfn < memslot->base_gfn + memslot->npages)
  765. break;
  766. }
  767. return memslot - slots->memslots;
  768. }
  769. static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  770. {
  771. return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
  772. }
  773. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  774. {
  775. struct kvm_memory_slot *slot;
  776. slot = gfn_to_memslot(kvm, gfn);
  777. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  778. return bad_hva();
  779. return gfn_to_hva_memslot(slot, gfn);
  780. }
  781. EXPORT_SYMBOL_GPL(gfn_to_hva);
  782. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
  783. {
  784. struct page *page[1];
  785. int npages;
  786. pfn_t pfn;
  787. might_sleep();
  788. npages = get_user_pages_fast(addr, 1, 1, page);
  789. if (unlikely(npages != 1)) {
  790. struct vm_area_struct *vma;
  791. down_read(&current->mm->mmap_sem);
  792. if (is_hwpoison_address(addr)) {
  793. up_read(&current->mm->mmap_sem);
  794. get_page(hwpoison_page);
  795. return page_to_pfn(hwpoison_page);
  796. }
  797. vma = find_vma(current->mm, addr);
  798. if (vma == NULL || addr < vma->vm_start ||
  799. !(vma->vm_flags & VM_PFNMAP)) {
  800. up_read(&current->mm->mmap_sem);
  801. get_page(fault_page);
  802. return page_to_pfn(fault_page);
  803. }
  804. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  805. up_read(&current->mm->mmap_sem);
  806. BUG_ON(!kvm_is_mmio_pfn(pfn));
  807. } else
  808. pfn = page_to_pfn(page[0]);
  809. return pfn;
  810. }
  811. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  812. {
  813. unsigned long addr;
  814. addr = gfn_to_hva(kvm, gfn);
  815. if (kvm_is_error_hva(addr)) {
  816. get_page(bad_page);
  817. return page_to_pfn(bad_page);
  818. }
  819. return hva_to_pfn(kvm, addr);
  820. }
  821. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  822. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  823. struct kvm_memory_slot *slot, gfn_t gfn)
  824. {
  825. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  826. return hva_to_pfn(kvm, addr);
  827. }
  828. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  829. {
  830. pfn_t pfn;
  831. pfn = gfn_to_pfn(kvm, gfn);
  832. if (!kvm_is_mmio_pfn(pfn))
  833. return pfn_to_page(pfn);
  834. WARN_ON(kvm_is_mmio_pfn(pfn));
  835. get_page(bad_page);
  836. return bad_page;
  837. }
  838. EXPORT_SYMBOL_GPL(gfn_to_page);
  839. void kvm_release_page_clean(struct page *page)
  840. {
  841. kvm_release_pfn_clean(page_to_pfn(page));
  842. }
  843. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  844. void kvm_release_pfn_clean(pfn_t pfn)
  845. {
  846. if (!kvm_is_mmio_pfn(pfn))
  847. put_page(pfn_to_page(pfn));
  848. }
  849. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  850. void kvm_release_page_dirty(struct page *page)
  851. {
  852. kvm_release_pfn_dirty(page_to_pfn(page));
  853. }
  854. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  855. void kvm_release_pfn_dirty(pfn_t pfn)
  856. {
  857. kvm_set_pfn_dirty(pfn);
  858. kvm_release_pfn_clean(pfn);
  859. }
  860. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  861. void kvm_set_page_dirty(struct page *page)
  862. {
  863. kvm_set_pfn_dirty(page_to_pfn(page));
  864. }
  865. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  866. void kvm_set_pfn_dirty(pfn_t pfn)
  867. {
  868. if (!kvm_is_mmio_pfn(pfn)) {
  869. struct page *page = pfn_to_page(pfn);
  870. if (!PageReserved(page))
  871. SetPageDirty(page);
  872. }
  873. }
  874. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  875. void kvm_set_pfn_accessed(pfn_t pfn)
  876. {
  877. if (!kvm_is_mmio_pfn(pfn))
  878. mark_page_accessed(pfn_to_page(pfn));
  879. }
  880. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  881. void kvm_get_pfn(pfn_t pfn)
  882. {
  883. if (!kvm_is_mmio_pfn(pfn))
  884. get_page(pfn_to_page(pfn));
  885. }
  886. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  887. static int next_segment(unsigned long len, int offset)
  888. {
  889. if (len > PAGE_SIZE - offset)
  890. return PAGE_SIZE - offset;
  891. else
  892. return len;
  893. }
  894. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  895. int len)
  896. {
  897. int r;
  898. unsigned long addr;
  899. addr = gfn_to_hva(kvm, gfn);
  900. if (kvm_is_error_hva(addr))
  901. return -EFAULT;
  902. r = copy_from_user(data, (void __user *)addr + offset, len);
  903. if (r)
  904. return -EFAULT;
  905. return 0;
  906. }
  907. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  908. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  909. {
  910. gfn_t gfn = gpa >> PAGE_SHIFT;
  911. int seg;
  912. int offset = offset_in_page(gpa);
  913. int ret;
  914. while ((seg = next_segment(len, offset)) != 0) {
  915. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  916. if (ret < 0)
  917. return ret;
  918. offset = 0;
  919. len -= seg;
  920. data += seg;
  921. ++gfn;
  922. }
  923. return 0;
  924. }
  925. EXPORT_SYMBOL_GPL(kvm_read_guest);
  926. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  927. unsigned long len)
  928. {
  929. int r;
  930. unsigned long addr;
  931. gfn_t gfn = gpa >> PAGE_SHIFT;
  932. int offset = offset_in_page(gpa);
  933. addr = gfn_to_hva(kvm, gfn);
  934. if (kvm_is_error_hva(addr))
  935. return -EFAULT;
  936. pagefault_disable();
  937. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  938. pagefault_enable();
  939. if (r)
  940. return -EFAULT;
  941. return 0;
  942. }
  943. EXPORT_SYMBOL(kvm_read_guest_atomic);
  944. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  945. int offset, int len)
  946. {
  947. int r;
  948. unsigned long addr;
  949. addr = gfn_to_hva(kvm, gfn);
  950. if (kvm_is_error_hva(addr))
  951. return -EFAULT;
  952. r = copy_to_user((void __user *)addr + offset, data, len);
  953. if (r)
  954. return -EFAULT;
  955. mark_page_dirty(kvm, gfn);
  956. return 0;
  957. }
  958. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  959. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  960. unsigned long len)
  961. {
  962. gfn_t gfn = gpa >> PAGE_SHIFT;
  963. int seg;
  964. int offset = offset_in_page(gpa);
  965. int ret;
  966. while ((seg = next_segment(len, offset)) != 0) {
  967. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  968. if (ret < 0)
  969. return ret;
  970. offset = 0;
  971. len -= seg;
  972. data += seg;
  973. ++gfn;
  974. }
  975. return 0;
  976. }
  977. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  978. {
  979. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  980. }
  981. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  982. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  983. {
  984. gfn_t gfn = gpa >> PAGE_SHIFT;
  985. int seg;
  986. int offset = offset_in_page(gpa);
  987. int ret;
  988. while ((seg = next_segment(len, offset)) != 0) {
  989. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  990. if (ret < 0)
  991. return ret;
  992. offset = 0;
  993. len -= seg;
  994. ++gfn;
  995. }
  996. return 0;
  997. }
  998. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  999. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1000. {
  1001. struct kvm_memory_slot *memslot;
  1002. memslot = gfn_to_memslot(kvm, gfn);
  1003. if (memslot && memslot->dirty_bitmap) {
  1004. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1005. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1006. }
  1007. }
  1008. /*
  1009. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1010. */
  1011. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1012. {
  1013. DEFINE_WAIT(wait);
  1014. for (;;) {
  1015. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1016. if (kvm_arch_vcpu_runnable(vcpu)) {
  1017. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1018. break;
  1019. }
  1020. if (kvm_cpu_has_pending_timer(vcpu))
  1021. break;
  1022. if (signal_pending(current))
  1023. break;
  1024. schedule();
  1025. }
  1026. finish_wait(&vcpu->wq, &wait);
  1027. }
  1028. void kvm_resched(struct kvm_vcpu *vcpu)
  1029. {
  1030. if (!need_resched())
  1031. return;
  1032. cond_resched();
  1033. }
  1034. EXPORT_SYMBOL_GPL(kvm_resched);
  1035. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1036. {
  1037. ktime_t expires;
  1038. DEFINE_WAIT(wait);
  1039. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1040. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1041. expires = ktime_add_ns(ktime_get(), 100000UL);
  1042. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1043. finish_wait(&vcpu->wq, &wait);
  1044. }
  1045. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1046. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1047. {
  1048. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1049. struct page *page;
  1050. if (vmf->pgoff == 0)
  1051. page = virt_to_page(vcpu->run);
  1052. #ifdef CONFIG_X86
  1053. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1054. page = virt_to_page(vcpu->arch.pio_data);
  1055. #endif
  1056. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1057. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1058. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1059. #endif
  1060. else
  1061. return VM_FAULT_SIGBUS;
  1062. get_page(page);
  1063. vmf->page = page;
  1064. return 0;
  1065. }
  1066. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1067. .fault = kvm_vcpu_fault,
  1068. };
  1069. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1070. {
  1071. vma->vm_ops = &kvm_vcpu_vm_ops;
  1072. return 0;
  1073. }
  1074. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1075. {
  1076. struct kvm_vcpu *vcpu = filp->private_data;
  1077. kvm_put_kvm(vcpu->kvm);
  1078. return 0;
  1079. }
  1080. static struct file_operations kvm_vcpu_fops = {
  1081. .release = kvm_vcpu_release,
  1082. .unlocked_ioctl = kvm_vcpu_ioctl,
  1083. .compat_ioctl = kvm_vcpu_ioctl,
  1084. .mmap = kvm_vcpu_mmap,
  1085. };
  1086. /*
  1087. * Allocates an inode for the vcpu.
  1088. */
  1089. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1090. {
  1091. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1092. }
  1093. /*
  1094. * Creates some virtual cpus. Good luck creating more than one.
  1095. */
  1096. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1097. {
  1098. int r;
  1099. struct kvm_vcpu *vcpu, *v;
  1100. vcpu = kvm_arch_vcpu_create(kvm, id);
  1101. if (IS_ERR(vcpu))
  1102. return PTR_ERR(vcpu);
  1103. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1104. r = kvm_arch_vcpu_setup(vcpu);
  1105. if (r)
  1106. return r;
  1107. mutex_lock(&kvm->lock);
  1108. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1109. r = -EINVAL;
  1110. goto vcpu_destroy;
  1111. }
  1112. kvm_for_each_vcpu(r, v, kvm)
  1113. if (v->vcpu_id == id) {
  1114. r = -EEXIST;
  1115. goto vcpu_destroy;
  1116. }
  1117. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1118. /* Now it's all set up, let userspace reach it */
  1119. kvm_get_kvm(kvm);
  1120. r = create_vcpu_fd(vcpu);
  1121. if (r < 0) {
  1122. kvm_put_kvm(kvm);
  1123. goto vcpu_destroy;
  1124. }
  1125. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1126. smp_wmb();
  1127. atomic_inc(&kvm->online_vcpus);
  1128. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1129. if (kvm->bsp_vcpu_id == id)
  1130. kvm->bsp_vcpu = vcpu;
  1131. #endif
  1132. mutex_unlock(&kvm->lock);
  1133. return r;
  1134. vcpu_destroy:
  1135. mutex_unlock(&kvm->lock);
  1136. kvm_arch_vcpu_destroy(vcpu);
  1137. return r;
  1138. }
  1139. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1140. {
  1141. if (sigset) {
  1142. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1143. vcpu->sigset_active = 1;
  1144. vcpu->sigset = *sigset;
  1145. } else
  1146. vcpu->sigset_active = 0;
  1147. return 0;
  1148. }
  1149. static long kvm_vcpu_ioctl(struct file *filp,
  1150. unsigned int ioctl, unsigned long arg)
  1151. {
  1152. struct kvm_vcpu *vcpu = filp->private_data;
  1153. void __user *argp = (void __user *)arg;
  1154. int r;
  1155. struct kvm_fpu *fpu = NULL;
  1156. struct kvm_sregs *kvm_sregs = NULL;
  1157. if (vcpu->kvm->mm != current->mm)
  1158. return -EIO;
  1159. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1160. /*
  1161. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1162. * so vcpu_load() would break it.
  1163. */
  1164. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1165. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1166. #endif
  1167. vcpu_load(vcpu);
  1168. switch (ioctl) {
  1169. case KVM_RUN:
  1170. r = -EINVAL;
  1171. if (arg)
  1172. goto out;
  1173. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1174. break;
  1175. case KVM_GET_REGS: {
  1176. struct kvm_regs *kvm_regs;
  1177. r = -ENOMEM;
  1178. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1179. if (!kvm_regs)
  1180. goto out;
  1181. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1182. if (r)
  1183. goto out_free1;
  1184. r = -EFAULT;
  1185. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1186. goto out_free1;
  1187. r = 0;
  1188. out_free1:
  1189. kfree(kvm_regs);
  1190. break;
  1191. }
  1192. case KVM_SET_REGS: {
  1193. struct kvm_regs *kvm_regs;
  1194. r = -ENOMEM;
  1195. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1196. if (!kvm_regs)
  1197. goto out;
  1198. r = -EFAULT;
  1199. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1200. goto out_free2;
  1201. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1202. if (r)
  1203. goto out_free2;
  1204. r = 0;
  1205. out_free2:
  1206. kfree(kvm_regs);
  1207. break;
  1208. }
  1209. case KVM_GET_SREGS: {
  1210. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1211. r = -ENOMEM;
  1212. if (!kvm_sregs)
  1213. goto out;
  1214. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1215. if (r)
  1216. goto out;
  1217. r = -EFAULT;
  1218. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1219. goto out;
  1220. r = 0;
  1221. break;
  1222. }
  1223. case KVM_SET_SREGS: {
  1224. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1225. r = -ENOMEM;
  1226. if (!kvm_sregs)
  1227. goto out;
  1228. r = -EFAULT;
  1229. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1230. goto out;
  1231. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1232. if (r)
  1233. goto out;
  1234. r = 0;
  1235. break;
  1236. }
  1237. case KVM_GET_MP_STATE: {
  1238. struct kvm_mp_state mp_state;
  1239. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1240. if (r)
  1241. goto out;
  1242. r = -EFAULT;
  1243. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1244. goto out;
  1245. r = 0;
  1246. break;
  1247. }
  1248. case KVM_SET_MP_STATE: {
  1249. struct kvm_mp_state mp_state;
  1250. r = -EFAULT;
  1251. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1252. goto out;
  1253. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1254. if (r)
  1255. goto out;
  1256. r = 0;
  1257. break;
  1258. }
  1259. case KVM_TRANSLATE: {
  1260. struct kvm_translation tr;
  1261. r = -EFAULT;
  1262. if (copy_from_user(&tr, argp, sizeof tr))
  1263. goto out;
  1264. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1265. if (r)
  1266. goto out;
  1267. r = -EFAULT;
  1268. if (copy_to_user(argp, &tr, sizeof tr))
  1269. goto out;
  1270. r = 0;
  1271. break;
  1272. }
  1273. case KVM_SET_GUEST_DEBUG: {
  1274. struct kvm_guest_debug dbg;
  1275. r = -EFAULT;
  1276. if (copy_from_user(&dbg, argp, sizeof dbg))
  1277. goto out;
  1278. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1279. if (r)
  1280. goto out;
  1281. r = 0;
  1282. break;
  1283. }
  1284. case KVM_SET_SIGNAL_MASK: {
  1285. struct kvm_signal_mask __user *sigmask_arg = argp;
  1286. struct kvm_signal_mask kvm_sigmask;
  1287. sigset_t sigset, *p;
  1288. p = NULL;
  1289. if (argp) {
  1290. r = -EFAULT;
  1291. if (copy_from_user(&kvm_sigmask, argp,
  1292. sizeof kvm_sigmask))
  1293. goto out;
  1294. r = -EINVAL;
  1295. if (kvm_sigmask.len != sizeof sigset)
  1296. goto out;
  1297. r = -EFAULT;
  1298. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1299. sizeof sigset))
  1300. goto out;
  1301. p = &sigset;
  1302. }
  1303. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1304. break;
  1305. }
  1306. case KVM_GET_FPU: {
  1307. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1308. r = -ENOMEM;
  1309. if (!fpu)
  1310. goto out;
  1311. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1312. if (r)
  1313. goto out;
  1314. r = -EFAULT;
  1315. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1316. goto out;
  1317. r = 0;
  1318. break;
  1319. }
  1320. case KVM_SET_FPU: {
  1321. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1322. r = -ENOMEM;
  1323. if (!fpu)
  1324. goto out;
  1325. r = -EFAULT;
  1326. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1327. goto out;
  1328. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1329. if (r)
  1330. goto out;
  1331. r = 0;
  1332. break;
  1333. }
  1334. default:
  1335. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1336. }
  1337. out:
  1338. vcpu_put(vcpu);
  1339. kfree(fpu);
  1340. kfree(kvm_sregs);
  1341. return r;
  1342. }
  1343. static long kvm_vm_ioctl(struct file *filp,
  1344. unsigned int ioctl, unsigned long arg)
  1345. {
  1346. struct kvm *kvm = filp->private_data;
  1347. void __user *argp = (void __user *)arg;
  1348. int r;
  1349. if (kvm->mm != current->mm)
  1350. return -EIO;
  1351. switch (ioctl) {
  1352. case KVM_CREATE_VCPU:
  1353. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1354. if (r < 0)
  1355. goto out;
  1356. break;
  1357. case KVM_SET_USER_MEMORY_REGION: {
  1358. struct kvm_userspace_memory_region kvm_userspace_mem;
  1359. r = -EFAULT;
  1360. if (copy_from_user(&kvm_userspace_mem, argp,
  1361. sizeof kvm_userspace_mem))
  1362. goto out;
  1363. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1364. if (r)
  1365. goto out;
  1366. break;
  1367. }
  1368. case KVM_GET_DIRTY_LOG: {
  1369. struct kvm_dirty_log log;
  1370. r = -EFAULT;
  1371. if (copy_from_user(&log, argp, sizeof log))
  1372. goto out;
  1373. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1374. if (r)
  1375. goto out;
  1376. break;
  1377. }
  1378. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1379. case KVM_REGISTER_COALESCED_MMIO: {
  1380. struct kvm_coalesced_mmio_zone zone;
  1381. r = -EFAULT;
  1382. if (copy_from_user(&zone, argp, sizeof zone))
  1383. goto out;
  1384. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1385. if (r)
  1386. goto out;
  1387. r = 0;
  1388. break;
  1389. }
  1390. case KVM_UNREGISTER_COALESCED_MMIO: {
  1391. struct kvm_coalesced_mmio_zone zone;
  1392. r = -EFAULT;
  1393. if (copy_from_user(&zone, argp, sizeof zone))
  1394. goto out;
  1395. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1396. if (r)
  1397. goto out;
  1398. r = 0;
  1399. break;
  1400. }
  1401. #endif
  1402. case KVM_IRQFD: {
  1403. struct kvm_irqfd data;
  1404. r = -EFAULT;
  1405. if (copy_from_user(&data, argp, sizeof data))
  1406. goto out;
  1407. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1408. break;
  1409. }
  1410. case KVM_IOEVENTFD: {
  1411. struct kvm_ioeventfd data;
  1412. r = -EFAULT;
  1413. if (copy_from_user(&data, argp, sizeof data))
  1414. goto out;
  1415. r = kvm_ioeventfd(kvm, &data);
  1416. break;
  1417. }
  1418. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1419. case KVM_SET_BOOT_CPU_ID:
  1420. r = 0;
  1421. mutex_lock(&kvm->lock);
  1422. if (atomic_read(&kvm->online_vcpus) != 0)
  1423. r = -EBUSY;
  1424. else
  1425. kvm->bsp_vcpu_id = arg;
  1426. mutex_unlock(&kvm->lock);
  1427. break;
  1428. #endif
  1429. default:
  1430. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1431. if (r == -ENOTTY)
  1432. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1433. }
  1434. out:
  1435. return r;
  1436. }
  1437. #ifdef CONFIG_COMPAT
  1438. struct compat_kvm_dirty_log {
  1439. __u32 slot;
  1440. __u32 padding1;
  1441. union {
  1442. compat_uptr_t dirty_bitmap; /* one bit per page */
  1443. __u64 padding2;
  1444. };
  1445. };
  1446. static long kvm_vm_compat_ioctl(struct file *filp,
  1447. unsigned int ioctl, unsigned long arg)
  1448. {
  1449. struct kvm *kvm = filp->private_data;
  1450. int r;
  1451. if (kvm->mm != current->mm)
  1452. return -EIO;
  1453. switch (ioctl) {
  1454. case KVM_GET_DIRTY_LOG: {
  1455. struct compat_kvm_dirty_log compat_log;
  1456. struct kvm_dirty_log log;
  1457. r = -EFAULT;
  1458. if (copy_from_user(&compat_log, (void __user *)arg,
  1459. sizeof(compat_log)))
  1460. goto out;
  1461. log.slot = compat_log.slot;
  1462. log.padding1 = compat_log.padding1;
  1463. log.padding2 = compat_log.padding2;
  1464. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1465. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1466. if (r)
  1467. goto out;
  1468. break;
  1469. }
  1470. default:
  1471. r = kvm_vm_ioctl(filp, ioctl, arg);
  1472. }
  1473. out:
  1474. return r;
  1475. }
  1476. #endif
  1477. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1478. {
  1479. struct page *page[1];
  1480. unsigned long addr;
  1481. int npages;
  1482. gfn_t gfn = vmf->pgoff;
  1483. struct kvm *kvm = vma->vm_file->private_data;
  1484. addr = gfn_to_hva(kvm, gfn);
  1485. if (kvm_is_error_hva(addr))
  1486. return VM_FAULT_SIGBUS;
  1487. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1488. NULL);
  1489. if (unlikely(npages != 1))
  1490. return VM_FAULT_SIGBUS;
  1491. vmf->page = page[0];
  1492. return 0;
  1493. }
  1494. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1495. .fault = kvm_vm_fault,
  1496. };
  1497. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1498. {
  1499. vma->vm_ops = &kvm_vm_vm_ops;
  1500. return 0;
  1501. }
  1502. static struct file_operations kvm_vm_fops = {
  1503. .release = kvm_vm_release,
  1504. .unlocked_ioctl = kvm_vm_ioctl,
  1505. #ifdef CONFIG_COMPAT
  1506. .compat_ioctl = kvm_vm_compat_ioctl,
  1507. #endif
  1508. .mmap = kvm_vm_mmap,
  1509. };
  1510. static int kvm_dev_ioctl_create_vm(void)
  1511. {
  1512. int fd, r;
  1513. struct kvm *kvm;
  1514. kvm = kvm_create_vm();
  1515. if (IS_ERR(kvm))
  1516. return PTR_ERR(kvm);
  1517. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1518. r = kvm_coalesced_mmio_init(kvm);
  1519. if (r < 0) {
  1520. kvm_put_kvm(kvm);
  1521. return r;
  1522. }
  1523. #endif
  1524. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1525. if (fd < 0)
  1526. kvm_put_kvm(kvm);
  1527. return fd;
  1528. }
  1529. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1530. {
  1531. switch (arg) {
  1532. case KVM_CAP_USER_MEMORY:
  1533. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1534. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1535. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1536. case KVM_CAP_SET_BOOT_CPU_ID:
  1537. #endif
  1538. case KVM_CAP_INTERNAL_ERROR_DATA:
  1539. return 1;
  1540. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1541. case KVM_CAP_IRQ_ROUTING:
  1542. return KVM_MAX_IRQ_ROUTES;
  1543. #endif
  1544. default:
  1545. break;
  1546. }
  1547. return kvm_dev_ioctl_check_extension(arg);
  1548. }
  1549. static long kvm_dev_ioctl(struct file *filp,
  1550. unsigned int ioctl, unsigned long arg)
  1551. {
  1552. long r = -EINVAL;
  1553. switch (ioctl) {
  1554. case KVM_GET_API_VERSION:
  1555. r = -EINVAL;
  1556. if (arg)
  1557. goto out;
  1558. r = KVM_API_VERSION;
  1559. break;
  1560. case KVM_CREATE_VM:
  1561. r = -EINVAL;
  1562. if (arg)
  1563. goto out;
  1564. r = kvm_dev_ioctl_create_vm();
  1565. break;
  1566. case KVM_CHECK_EXTENSION:
  1567. r = kvm_dev_ioctl_check_extension_generic(arg);
  1568. break;
  1569. case KVM_GET_VCPU_MMAP_SIZE:
  1570. r = -EINVAL;
  1571. if (arg)
  1572. goto out;
  1573. r = PAGE_SIZE; /* struct kvm_run */
  1574. #ifdef CONFIG_X86
  1575. r += PAGE_SIZE; /* pio data page */
  1576. #endif
  1577. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1578. r += PAGE_SIZE; /* coalesced mmio ring page */
  1579. #endif
  1580. break;
  1581. case KVM_TRACE_ENABLE:
  1582. case KVM_TRACE_PAUSE:
  1583. case KVM_TRACE_DISABLE:
  1584. r = -EOPNOTSUPP;
  1585. break;
  1586. default:
  1587. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1588. }
  1589. out:
  1590. return r;
  1591. }
  1592. static struct file_operations kvm_chardev_ops = {
  1593. .unlocked_ioctl = kvm_dev_ioctl,
  1594. .compat_ioctl = kvm_dev_ioctl,
  1595. };
  1596. static struct miscdevice kvm_dev = {
  1597. KVM_MINOR,
  1598. "kvm",
  1599. &kvm_chardev_ops,
  1600. };
  1601. static void hardware_enable(void *junk)
  1602. {
  1603. int cpu = raw_smp_processor_id();
  1604. int r;
  1605. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1606. return;
  1607. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1608. r = kvm_arch_hardware_enable(NULL);
  1609. if (r) {
  1610. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1611. atomic_inc(&hardware_enable_failed);
  1612. printk(KERN_INFO "kvm: enabling virtualization on "
  1613. "CPU%d failed\n", cpu);
  1614. }
  1615. }
  1616. static void hardware_disable(void *junk)
  1617. {
  1618. int cpu = raw_smp_processor_id();
  1619. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1620. return;
  1621. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1622. kvm_arch_hardware_disable(NULL);
  1623. }
  1624. static void hardware_disable_all_nolock(void)
  1625. {
  1626. BUG_ON(!kvm_usage_count);
  1627. kvm_usage_count--;
  1628. if (!kvm_usage_count)
  1629. on_each_cpu(hardware_disable, NULL, 1);
  1630. }
  1631. static void hardware_disable_all(void)
  1632. {
  1633. spin_lock(&kvm_lock);
  1634. hardware_disable_all_nolock();
  1635. spin_unlock(&kvm_lock);
  1636. }
  1637. static int hardware_enable_all(void)
  1638. {
  1639. int r = 0;
  1640. spin_lock(&kvm_lock);
  1641. kvm_usage_count++;
  1642. if (kvm_usage_count == 1) {
  1643. atomic_set(&hardware_enable_failed, 0);
  1644. on_each_cpu(hardware_enable, NULL, 1);
  1645. if (atomic_read(&hardware_enable_failed)) {
  1646. hardware_disable_all_nolock();
  1647. r = -EBUSY;
  1648. }
  1649. }
  1650. spin_unlock(&kvm_lock);
  1651. return r;
  1652. }
  1653. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1654. void *v)
  1655. {
  1656. int cpu = (long)v;
  1657. if (!kvm_usage_count)
  1658. return NOTIFY_OK;
  1659. val &= ~CPU_TASKS_FROZEN;
  1660. switch (val) {
  1661. case CPU_DYING:
  1662. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1663. cpu);
  1664. hardware_disable(NULL);
  1665. break;
  1666. case CPU_STARTING:
  1667. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1668. cpu);
  1669. hardware_enable(NULL);
  1670. break;
  1671. }
  1672. return NOTIFY_OK;
  1673. }
  1674. asmlinkage void kvm_handle_fault_on_reboot(void)
  1675. {
  1676. if (kvm_rebooting)
  1677. /* spin while reset goes on */
  1678. while (true)
  1679. ;
  1680. /* Fault while not rebooting. We want the trace. */
  1681. BUG();
  1682. }
  1683. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1684. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1685. void *v)
  1686. {
  1687. /*
  1688. * Some (well, at least mine) BIOSes hang on reboot if
  1689. * in vmx root mode.
  1690. *
  1691. * And Intel TXT required VMX off for all cpu when system shutdown.
  1692. */
  1693. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1694. kvm_rebooting = true;
  1695. on_each_cpu(hardware_disable, NULL, 1);
  1696. return NOTIFY_OK;
  1697. }
  1698. static struct notifier_block kvm_reboot_notifier = {
  1699. .notifier_call = kvm_reboot,
  1700. .priority = 0,
  1701. };
  1702. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1703. {
  1704. int i;
  1705. for (i = 0; i < bus->dev_count; i++) {
  1706. struct kvm_io_device *pos = bus->devs[i];
  1707. kvm_iodevice_destructor(pos);
  1708. }
  1709. kfree(bus);
  1710. }
  1711. /* kvm_io_bus_write - called under kvm->slots_lock */
  1712. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1713. int len, const void *val)
  1714. {
  1715. int i;
  1716. struct kvm_io_bus *bus;
  1717. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1718. for (i = 0; i < bus->dev_count; i++)
  1719. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1720. return 0;
  1721. return -EOPNOTSUPP;
  1722. }
  1723. /* kvm_io_bus_read - called under kvm->slots_lock */
  1724. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1725. int len, void *val)
  1726. {
  1727. int i;
  1728. struct kvm_io_bus *bus;
  1729. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1730. for (i = 0; i < bus->dev_count; i++)
  1731. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1732. return 0;
  1733. return -EOPNOTSUPP;
  1734. }
  1735. /* Caller must hold slots_lock. */
  1736. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1737. struct kvm_io_device *dev)
  1738. {
  1739. struct kvm_io_bus *new_bus, *bus;
  1740. bus = kvm->buses[bus_idx];
  1741. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1742. return -ENOSPC;
  1743. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1744. if (!new_bus)
  1745. return -ENOMEM;
  1746. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1747. new_bus->devs[new_bus->dev_count++] = dev;
  1748. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1749. synchronize_srcu_expedited(&kvm->srcu);
  1750. kfree(bus);
  1751. return 0;
  1752. }
  1753. /* Caller must hold slots_lock. */
  1754. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1755. struct kvm_io_device *dev)
  1756. {
  1757. int i, r;
  1758. struct kvm_io_bus *new_bus, *bus;
  1759. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1760. if (!new_bus)
  1761. return -ENOMEM;
  1762. bus = kvm->buses[bus_idx];
  1763. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1764. r = -ENOENT;
  1765. for (i = 0; i < new_bus->dev_count; i++)
  1766. if (new_bus->devs[i] == dev) {
  1767. r = 0;
  1768. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1769. break;
  1770. }
  1771. if (r) {
  1772. kfree(new_bus);
  1773. return r;
  1774. }
  1775. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1776. synchronize_srcu_expedited(&kvm->srcu);
  1777. kfree(bus);
  1778. return r;
  1779. }
  1780. static struct notifier_block kvm_cpu_notifier = {
  1781. .notifier_call = kvm_cpu_hotplug,
  1782. };
  1783. static int vm_stat_get(void *_offset, u64 *val)
  1784. {
  1785. unsigned offset = (long)_offset;
  1786. struct kvm *kvm;
  1787. *val = 0;
  1788. spin_lock(&kvm_lock);
  1789. list_for_each_entry(kvm, &vm_list, vm_list)
  1790. *val += *(u32 *)((void *)kvm + offset);
  1791. spin_unlock(&kvm_lock);
  1792. return 0;
  1793. }
  1794. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1795. static int vcpu_stat_get(void *_offset, u64 *val)
  1796. {
  1797. unsigned offset = (long)_offset;
  1798. struct kvm *kvm;
  1799. struct kvm_vcpu *vcpu;
  1800. int i;
  1801. *val = 0;
  1802. spin_lock(&kvm_lock);
  1803. list_for_each_entry(kvm, &vm_list, vm_list)
  1804. kvm_for_each_vcpu(i, vcpu, kvm)
  1805. *val += *(u32 *)((void *)vcpu + offset);
  1806. spin_unlock(&kvm_lock);
  1807. return 0;
  1808. }
  1809. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1810. static const struct file_operations *stat_fops[] = {
  1811. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1812. [KVM_STAT_VM] = &vm_stat_fops,
  1813. };
  1814. static void kvm_init_debug(void)
  1815. {
  1816. struct kvm_stats_debugfs_item *p;
  1817. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1818. for (p = debugfs_entries; p->name; ++p)
  1819. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1820. (void *)(long)p->offset,
  1821. stat_fops[p->kind]);
  1822. }
  1823. static void kvm_exit_debug(void)
  1824. {
  1825. struct kvm_stats_debugfs_item *p;
  1826. for (p = debugfs_entries; p->name; ++p)
  1827. debugfs_remove(p->dentry);
  1828. debugfs_remove(kvm_debugfs_dir);
  1829. }
  1830. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1831. {
  1832. if (kvm_usage_count)
  1833. hardware_disable(NULL);
  1834. return 0;
  1835. }
  1836. static int kvm_resume(struct sys_device *dev)
  1837. {
  1838. if (kvm_usage_count)
  1839. hardware_enable(NULL);
  1840. return 0;
  1841. }
  1842. static struct sysdev_class kvm_sysdev_class = {
  1843. .name = "kvm",
  1844. .suspend = kvm_suspend,
  1845. .resume = kvm_resume,
  1846. };
  1847. static struct sys_device kvm_sysdev = {
  1848. .id = 0,
  1849. .cls = &kvm_sysdev_class,
  1850. };
  1851. struct page *bad_page;
  1852. pfn_t bad_pfn;
  1853. static inline
  1854. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1855. {
  1856. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1857. }
  1858. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1859. {
  1860. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1861. kvm_arch_vcpu_load(vcpu, cpu);
  1862. }
  1863. static void kvm_sched_out(struct preempt_notifier *pn,
  1864. struct task_struct *next)
  1865. {
  1866. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1867. kvm_arch_vcpu_put(vcpu);
  1868. }
  1869. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  1870. struct module *module)
  1871. {
  1872. int r;
  1873. int cpu;
  1874. r = kvm_arch_init(opaque);
  1875. if (r)
  1876. goto out_fail;
  1877. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1878. if (bad_page == NULL) {
  1879. r = -ENOMEM;
  1880. goto out;
  1881. }
  1882. bad_pfn = page_to_pfn(bad_page);
  1883. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1884. if (hwpoison_page == NULL) {
  1885. r = -ENOMEM;
  1886. goto out_free_0;
  1887. }
  1888. hwpoison_pfn = page_to_pfn(hwpoison_page);
  1889. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1890. if (fault_page == NULL) {
  1891. r = -ENOMEM;
  1892. goto out_free_0;
  1893. }
  1894. fault_pfn = page_to_pfn(fault_page);
  1895. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  1896. r = -ENOMEM;
  1897. goto out_free_0;
  1898. }
  1899. r = kvm_arch_hardware_setup();
  1900. if (r < 0)
  1901. goto out_free_0a;
  1902. for_each_online_cpu(cpu) {
  1903. smp_call_function_single(cpu,
  1904. kvm_arch_check_processor_compat,
  1905. &r, 1);
  1906. if (r < 0)
  1907. goto out_free_1;
  1908. }
  1909. r = register_cpu_notifier(&kvm_cpu_notifier);
  1910. if (r)
  1911. goto out_free_2;
  1912. register_reboot_notifier(&kvm_reboot_notifier);
  1913. r = sysdev_class_register(&kvm_sysdev_class);
  1914. if (r)
  1915. goto out_free_3;
  1916. r = sysdev_register(&kvm_sysdev);
  1917. if (r)
  1918. goto out_free_4;
  1919. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1920. if (!vcpu_align)
  1921. vcpu_align = __alignof__(struct kvm_vcpu);
  1922. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  1923. 0, NULL);
  1924. if (!kvm_vcpu_cache) {
  1925. r = -ENOMEM;
  1926. goto out_free_5;
  1927. }
  1928. kvm_chardev_ops.owner = module;
  1929. kvm_vm_fops.owner = module;
  1930. kvm_vcpu_fops.owner = module;
  1931. r = misc_register(&kvm_dev);
  1932. if (r) {
  1933. printk(KERN_ERR "kvm: misc device register failed\n");
  1934. goto out_free;
  1935. }
  1936. kvm_preempt_ops.sched_in = kvm_sched_in;
  1937. kvm_preempt_ops.sched_out = kvm_sched_out;
  1938. kvm_init_debug();
  1939. return 0;
  1940. out_free:
  1941. kmem_cache_destroy(kvm_vcpu_cache);
  1942. out_free_5:
  1943. sysdev_unregister(&kvm_sysdev);
  1944. out_free_4:
  1945. sysdev_class_unregister(&kvm_sysdev_class);
  1946. out_free_3:
  1947. unregister_reboot_notifier(&kvm_reboot_notifier);
  1948. unregister_cpu_notifier(&kvm_cpu_notifier);
  1949. out_free_2:
  1950. out_free_1:
  1951. kvm_arch_hardware_unsetup();
  1952. out_free_0a:
  1953. free_cpumask_var(cpus_hardware_enabled);
  1954. out_free_0:
  1955. if (fault_page)
  1956. __free_page(fault_page);
  1957. if (hwpoison_page)
  1958. __free_page(hwpoison_page);
  1959. __free_page(bad_page);
  1960. out:
  1961. kvm_arch_exit();
  1962. out_fail:
  1963. return r;
  1964. }
  1965. EXPORT_SYMBOL_GPL(kvm_init);
  1966. void kvm_exit(void)
  1967. {
  1968. kvm_exit_debug();
  1969. misc_deregister(&kvm_dev);
  1970. kmem_cache_destroy(kvm_vcpu_cache);
  1971. sysdev_unregister(&kvm_sysdev);
  1972. sysdev_class_unregister(&kvm_sysdev_class);
  1973. unregister_reboot_notifier(&kvm_reboot_notifier);
  1974. unregister_cpu_notifier(&kvm_cpu_notifier);
  1975. on_each_cpu(hardware_disable, NULL, 1);
  1976. kvm_arch_hardware_unsetup();
  1977. kvm_arch_exit();
  1978. free_cpumask_var(cpus_hardware_enabled);
  1979. __free_page(hwpoison_page);
  1980. __free_page(bad_page);
  1981. }
  1982. EXPORT_SYMBOL_GPL(kvm_exit);