session.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include <sys/mman.h>
  7. #include "session.h"
  8. #include "sort.h"
  9. #include "util.h"
  10. static int perf_session__open(struct perf_session *self, bool force)
  11. {
  12. struct stat input_stat;
  13. if (!strcmp(self->filename, "-")) {
  14. self->fd_pipe = true;
  15. self->fd = STDIN_FILENO;
  16. if (perf_header__read(self, self->fd) < 0)
  17. pr_err("incompatible file format");
  18. return 0;
  19. }
  20. self->fd = open(self->filename, O_RDONLY);
  21. if (self->fd < 0) {
  22. int err = errno;
  23. pr_err("failed to open %s: %s", self->filename, strerror(err));
  24. if (err == ENOENT && !strcmp(self->filename, "perf.data"))
  25. pr_err(" (try 'perf record' first)");
  26. pr_err("\n");
  27. return -errno;
  28. }
  29. if (fstat(self->fd, &input_stat) < 0)
  30. goto out_close;
  31. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  32. pr_err("file %s not owned by current user or root\n",
  33. self->filename);
  34. goto out_close;
  35. }
  36. if (!input_stat.st_size) {
  37. pr_info("zero-sized file (%s), nothing to do!\n",
  38. self->filename);
  39. goto out_close;
  40. }
  41. if (perf_header__read(self, self->fd) < 0) {
  42. pr_err("incompatible file format");
  43. goto out_close;
  44. }
  45. self->size = input_stat.st_size;
  46. return 0;
  47. out_close:
  48. close(self->fd);
  49. self->fd = -1;
  50. return -1;
  51. }
  52. void perf_session__update_sample_type(struct perf_session *self)
  53. {
  54. self->sample_type = perf_header__sample_type(&self->header);
  55. }
  56. int perf_session__create_kernel_maps(struct perf_session *self)
  57. {
  58. int ret = machine__create_kernel_maps(&self->host_machine);
  59. if (ret >= 0)
  60. ret = machines__create_guest_kernel_maps(&self->machines);
  61. return ret;
  62. }
  63. static void perf_session__destroy_kernel_maps(struct perf_session *self)
  64. {
  65. machine__destroy_kernel_maps(&self->host_machine);
  66. machines__destroy_guest_kernel_maps(&self->machines);
  67. }
  68. struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
  69. {
  70. size_t len = filename ? strlen(filename) + 1 : 0;
  71. struct perf_session *self = zalloc(sizeof(*self) + len);
  72. if (self == NULL)
  73. goto out;
  74. if (perf_header__init(&self->header) < 0)
  75. goto out_free;
  76. memcpy(self->filename, filename, len);
  77. self->threads = RB_ROOT;
  78. INIT_LIST_HEAD(&self->dead_threads);
  79. self->hists_tree = RB_ROOT;
  80. self->last_match = NULL;
  81. self->mmap_window = 32;
  82. self->machines = RB_ROOT;
  83. self->repipe = repipe;
  84. INIT_LIST_HEAD(&self->ordered_samples.samples_head);
  85. machine__init(&self->host_machine, "", HOST_KERNEL_ID);
  86. if (mode == O_RDONLY) {
  87. if (perf_session__open(self, force) < 0)
  88. goto out_delete;
  89. } else if (mode == O_WRONLY) {
  90. /*
  91. * In O_RDONLY mode this will be performed when reading the
  92. * kernel MMAP event, in event__process_mmap().
  93. */
  94. if (perf_session__create_kernel_maps(self) < 0)
  95. goto out_delete;
  96. }
  97. perf_session__update_sample_type(self);
  98. out:
  99. return self;
  100. out_free:
  101. free(self);
  102. return NULL;
  103. out_delete:
  104. perf_session__delete(self);
  105. return NULL;
  106. }
  107. static void perf_session__delete_dead_threads(struct perf_session *self)
  108. {
  109. struct thread *n, *t;
  110. list_for_each_entry_safe(t, n, &self->dead_threads, node) {
  111. list_del(&t->node);
  112. thread__delete(t);
  113. }
  114. }
  115. static void perf_session__delete_threads(struct perf_session *self)
  116. {
  117. struct rb_node *nd = rb_first(&self->threads);
  118. while (nd) {
  119. struct thread *t = rb_entry(nd, struct thread, rb_node);
  120. rb_erase(&t->rb_node, &self->threads);
  121. nd = rb_next(nd);
  122. thread__delete(t);
  123. }
  124. }
  125. void perf_session__delete(struct perf_session *self)
  126. {
  127. perf_header__exit(&self->header);
  128. perf_session__destroy_kernel_maps(self);
  129. perf_session__delete_dead_threads(self);
  130. perf_session__delete_threads(self);
  131. machine__exit(&self->host_machine);
  132. close(self->fd);
  133. free(self);
  134. }
  135. void perf_session__remove_thread(struct perf_session *self, struct thread *th)
  136. {
  137. self->last_match = NULL;
  138. rb_erase(&th->rb_node, &self->threads);
  139. /*
  140. * We may have references to this thread, for instance in some hist_entry
  141. * instances, so just move them to a separate list.
  142. */
  143. list_add_tail(&th->node, &self->dead_threads);
  144. }
  145. static bool symbol__match_parent_regex(struct symbol *sym)
  146. {
  147. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  148. return 1;
  149. return 0;
  150. }
  151. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  152. struct thread *thread,
  153. struct ip_callchain *chain,
  154. struct symbol **parent)
  155. {
  156. u8 cpumode = PERF_RECORD_MISC_USER;
  157. unsigned int i;
  158. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  159. if (!syms)
  160. return NULL;
  161. for (i = 0; i < chain->nr; i++) {
  162. u64 ip = chain->ips[i];
  163. struct addr_location al;
  164. if (ip >= PERF_CONTEXT_MAX) {
  165. switch (ip) {
  166. case PERF_CONTEXT_HV:
  167. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  168. case PERF_CONTEXT_KERNEL:
  169. cpumode = PERF_RECORD_MISC_KERNEL; break;
  170. case PERF_CONTEXT_USER:
  171. cpumode = PERF_RECORD_MISC_USER; break;
  172. default:
  173. break;
  174. }
  175. continue;
  176. }
  177. al.filtered = false;
  178. thread__find_addr_location(thread, self, cpumode,
  179. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  180. if (al.sym != NULL) {
  181. if (sort__has_parent && !*parent &&
  182. symbol__match_parent_regex(al.sym))
  183. *parent = al.sym;
  184. if (!symbol_conf.use_callchain)
  185. break;
  186. syms[i].map = al.map;
  187. syms[i].sym = al.sym;
  188. }
  189. }
  190. return syms;
  191. }
  192. static int process_event_stub(event_t *event __used,
  193. struct perf_session *session __used)
  194. {
  195. dump_printf(": unhandled!\n");
  196. return 0;
  197. }
  198. static int process_finished_round_stub(event_t *event __used,
  199. struct perf_session *session __used,
  200. struct perf_event_ops *ops __used)
  201. {
  202. dump_printf(": unhandled!\n");
  203. return 0;
  204. }
  205. static int process_finished_round(event_t *event,
  206. struct perf_session *session,
  207. struct perf_event_ops *ops);
  208. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  209. {
  210. if (handler->sample == NULL)
  211. handler->sample = process_event_stub;
  212. if (handler->mmap == NULL)
  213. handler->mmap = process_event_stub;
  214. if (handler->comm == NULL)
  215. handler->comm = process_event_stub;
  216. if (handler->fork == NULL)
  217. handler->fork = process_event_stub;
  218. if (handler->exit == NULL)
  219. handler->exit = process_event_stub;
  220. if (handler->lost == NULL)
  221. handler->lost = process_event_stub;
  222. if (handler->read == NULL)
  223. handler->read = process_event_stub;
  224. if (handler->throttle == NULL)
  225. handler->throttle = process_event_stub;
  226. if (handler->unthrottle == NULL)
  227. handler->unthrottle = process_event_stub;
  228. if (handler->attr == NULL)
  229. handler->attr = process_event_stub;
  230. if (handler->event_type == NULL)
  231. handler->event_type = process_event_stub;
  232. if (handler->tracing_data == NULL)
  233. handler->tracing_data = process_event_stub;
  234. if (handler->build_id == NULL)
  235. handler->build_id = process_event_stub;
  236. if (handler->finished_round == NULL) {
  237. if (handler->ordered_samples)
  238. handler->finished_round = process_finished_round;
  239. else
  240. handler->finished_round = process_finished_round_stub;
  241. }
  242. }
  243. void mem_bswap_64(void *src, int byte_size)
  244. {
  245. u64 *m = src;
  246. while (byte_size > 0) {
  247. *m = bswap_64(*m);
  248. byte_size -= sizeof(u64);
  249. ++m;
  250. }
  251. }
  252. static void event__all64_swap(event_t *self)
  253. {
  254. struct perf_event_header *hdr = &self->header;
  255. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  256. }
  257. static void event__comm_swap(event_t *self)
  258. {
  259. self->comm.pid = bswap_32(self->comm.pid);
  260. self->comm.tid = bswap_32(self->comm.tid);
  261. }
  262. static void event__mmap_swap(event_t *self)
  263. {
  264. self->mmap.pid = bswap_32(self->mmap.pid);
  265. self->mmap.tid = bswap_32(self->mmap.tid);
  266. self->mmap.start = bswap_64(self->mmap.start);
  267. self->mmap.len = bswap_64(self->mmap.len);
  268. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  269. }
  270. static void event__task_swap(event_t *self)
  271. {
  272. self->fork.pid = bswap_32(self->fork.pid);
  273. self->fork.tid = bswap_32(self->fork.tid);
  274. self->fork.ppid = bswap_32(self->fork.ppid);
  275. self->fork.ptid = bswap_32(self->fork.ptid);
  276. self->fork.time = bswap_64(self->fork.time);
  277. }
  278. static void event__read_swap(event_t *self)
  279. {
  280. self->read.pid = bswap_32(self->read.pid);
  281. self->read.tid = bswap_32(self->read.tid);
  282. self->read.value = bswap_64(self->read.value);
  283. self->read.time_enabled = bswap_64(self->read.time_enabled);
  284. self->read.time_running = bswap_64(self->read.time_running);
  285. self->read.id = bswap_64(self->read.id);
  286. }
  287. static void event__attr_swap(event_t *self)
  288. {
  289. size_t size;
  290. self->attr.attr.type = bswap_32(self->attr.attr.type);
  291. self->attr.attr.size = bswap_32(self->attr.attr.size);
  292. self->attr.attr.config = bswap_64(self->attr.attr.config);
  293. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  294. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  295. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  296. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  297. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  298. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  299. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  300. size = self->header.size;
  301. size -= (void *)&self->attr.id - (void *)self;
  302. mem_bswap_64(self->attr.id, size);
  303. }
  304. static void event__event_type_swap(event_t *self)
  305. {
  306. self->event_type.event_type.event_id =
  307. bswap_64(self->event_type.event_type.event_id);
  308. }
  309. static void event__tracing_data_swap(event_t *self)
  310. {
  311. self->tracing_data.size = bswap_32(self->tracing_data.size);
  312. }
  313. typedef void (*event__swap_op)(event_t *self);
  314. static event__swap_op event__swap_ops[] = {
  315. [PERF_RECORD_MMAP] = event__mmap_swap,
  316. [PERF_RECORD_COMM] = event__comm_swap,
  317. [PERF_RECORD_FORK] = event__task_swap,
  318. [PERF_RECORD_EXIT] = event__task_swap,
  319. [PERF_RECORD_LOST] = event__all64_swap,
  320. [PERF_RECORD_READ] = event__read_swap,
  321. [PERF_RECORD_SAMPLE] = event__all64_swap,
  322. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  323. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  324. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  325. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  326. [PERF_RECORD_HEADER_MAX] = NULL,
  327. };
  328. struct sample_queue {
  329. u64 timestamp;
  330. struct sample_event *event;
  331. struct list_head list;
  332. };
  333. static void flush_sample_queue(struct perf_session *s,
  334. struct perf_event_ops *ops)
  335. {
  336. struct list_head *head = &s->ordered_samples.samples_head;
  337. u64 limit = s->ordered_samples.next_flush;
  338. struct sample_queue *tmp, *iter;
  339. if (!ops->ordered_samples || !limit)
  340. return;
  341. list_for_each_entry_safe(iter, tmp, head, list) {
  342. if (iter->timestamp > limit)
  343. return;
  344. if (iter == s->ordered_samples.last_inserted)
  345. s->ordered_samples.last_inserted = NULL;
  346. ops->sample((event_t *)iter->event, s);
  347. s->ordered_samples.last_flush = iter->timestamp;
  348. list_del(&iter->list);
  349. free(iter->event);
  350. free(iter);
  351. }
  352. }
  353. /*
  354. * When perf record finishes a pass on every buffers, it records this pseudo
  355. * event.
  356. * We record the max timestamp t found in the pass n.
  357. * Assuming these timestamps are monotonic across cpus, we know that if
  358. * a buffer still has events with timestamps below t, they will be all
  359. * available and then read in the pass n + 1.
  360. * Hence when we start to read the pass n + 2, we can safely flush every
  361. * events with timestamps below t.
  362. *
  363. * ============ PASS n =================
  364. * CPU 0 | CPU 1
  365. * |
  366. * cnt1 timestamps | cnt2 timestamps
  367. * 1 | 2
  368. * 2 | 3
  369. * - | 4 <--- max recorded
  370. *
  371. * ============ PASS n + 1 ==============
  372. * CPU 0 | CPU 1
  373. * |
  374. * cnt1 timestamps | cnt2 timestamps
  375. * 3 | 5
  376. * 4 | 6
  377. * 5 | 7 <---- max recorded
  378. *
  379. * Flush every events below timestamp 4
  380. *
  381. * ============ PASS n + 2 ==============
  382. * CPU 0 | CPU 1
  383. * |
  384. * cnt1 timestamps | cnt2 timestamps
  385. * 6 | 8
  386. * 7 | 9
  387. * - | 10
  388. *
  389. * Flush every events below timestamp 7
  390. * etc...
  391. */
  392. static int process_finished_round(event_t *event __used,
  393. struct perf_session *session,
  394. struct perf_event_ops *ops)
  395. {
  396. flush_sample_queue(session, ops);
  397. session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
  398. return 0;
  399. }
  400. static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
  401. {
  402. struct sample_queue *iter;
  403. list_for_each_entry_reverse(iter, head, list) {
  404. if (iter->timestamp < new->timestamp) {
  405. list_add(&new->list, &iter->list);
  406. return;
  407. }
  408. }
  409. list_add(&new->list, head);
  410. }
  411. static void __queue_sample_before(struct sample_queue *new,
  412. struct sample_queue *iter,
  413. struct list_head *head)
  414. {
  415. list_for_each_entry_continue_reverse(iter, head, list) {
  416. if (iter->timestamp < new->timestamp) {
  417. list_add(&new->list, &iter->list);
  418. return;
  419. }
  420. }
  421. list_add(&new->list, head);
  422. }
  423. static void __queue_sample_after(struct sample_queue *new,
  424. struct sample_queue *iter,
  425. struct list_head *head)
  426. {
  427. list_for_each_entry_continue(iter, head, list) {
  428. if (iter->timestamp > new->timestamp) {
  429. list_add_tail(&new->list, &iter->list);
  430. return;
  431. }
  432. }
  433. list_add_tail(&new->list, head);
  434. }
  435. /* The queue is ordered by time */
  436. static void __queue_sample_event(struct sample_queue *new,
  437. struct perf_session *s)
  438. {
  439. struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
  440. struct list_head *head = &s->ordered_samples.samples_head;
  441. if (!last_inserted) {
  442. __queue_sample_end(new, head);
  443. return;
  444. }
  445. /*
  446. * Most of the time the current event has a timestamp
  447. * very close to the last event inserted, unless we just switched
  448. * to another event buffer. Having a sorting based on a list and
  449. * on the last inserted event that is close to the current one is
  450. * probably more efficient than an rbtree based sorting.
  451. */
  452. if (last_inserted->timestamp >= new->timestamp)
  453. __queue_sample_before(new, last_inserted, head);
  454. else
  455. __queue_sample_after(new, last_inserted, head);
  456. }
  457. static int queue_sample_event(event_t *event, struct sample_data *data,
  458. struct perf_session *s)
  459. {
  460. u64 timestamp = data->time;
  461. struct sample_queue *new;
  462. if (timestamp < s->ordered_samples.last_flush) {
  463. printf("Warning: Timestamp below last timeslice flush\n");
  464. return -EINVAL;
  465. }
  466. new = malloc(sizeof(*new));
  467. if (!new)
  468. return -ENOMEM;
  469. new->timestamp = timestamp;
  470. new->event = malloc(event->header.size);
  471. if (!new->event) {
  472. free(new);
  473. return -ENOMEM;
  474. }
  475. memcpy(new->event, event, event->header.size);
  476. __queue_sample_event(new, s);
  477. s->ordered_samples.last_inserted = new;
  478. if (new->timestamp > s->ordered_samples.max_timestamp)
  479. s->ordered_samples.max_timestamp = new->timestamp;
  480. return 0;
  481. }
  482. static int perf_session__process_sample(event_t *event, struct perf_session *s,
  483. struct perf_event_ops *ops)
  484. {
  485. struct sample_data data;
  486. if (!ops->ordered_samples)
  487. return ops->sample(event, s);
  488. bzero(&data, sizeof(struct sample_data));
  489. event__parse_sample(event, s->sample_type, &data);
  490. queue_sample_event(event, &data, s);
  491. return 0;
  492. }
  493. static int perf_session__process_event(struct perf_session *self,
  494. event_t *event,
  495. struct perf_event_ops *ops,
  496. u64 offset, u64 head)
  497. {
  498. trace_event(event);
  499. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  500. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  501. offset + head, event->header.size,
  502. event__name[event->header.type]);
  503. hists__inc_nr_events(&self->hists, event->header.type);
  504. }
  505. if (self->header.needs_swap && event__swap_ops[event->header.type])
  506. event__swap_ops[event->header.type](event);
  507. switch (event->header.type) {
  508. case PERF_RECORD_SAMPLE:
  509. return perf_session__process_sample(event, self, ops);
  510. case PERF_RECORD_MMAP:
  511. return ops->mmap(event, self);
  512. case PERF_RECORD_COMM:
  513. return ops->comm(event, self);
  514. case PERF_RECORD_FORK:
  515. return ops->fork(event, self);
  516. case PERF_RECORD_EXIT:
  517. return ops->exit(event, self);
  518. case PERF_RECORD_LOST:
  519. return ops->lost(event, self);
  520. case PERF_RECORD_READ:
  521. return ops->read(event, self);
  522. case PERF_RECORD_THROTTLE:
  523. return ops->throttle(event, self);
  524. case PERF_RECORD_UNTHROTTLE:
  525. return ops->unthrottle(event, self);
  526. case PERF_RECORD_HEADER_ATTR:
  527. return ops->attr(event, self);
  528. case PERF_RECORD_HEADER_EVENT_TYPE:
  529. return ops->event_type(event, self);
  530. case PERF_RECORD_HEADER_TRACING_DATA:
  531. /* setup for reading amidst mmap */
  532. lseek(self->fd, offset + head, SEEK_SET);
  533. return ops->tracing_data(event, self);
  534. case PERF_RECORD_HEADER_BUILD_ID:
  535. return ops->build_id(event, self);
  536. case PERF_RECORD_FINISHED_ROUND:
  537. return ops->finished_round(event, self, ops);
  538. default:
  539. ++self->hists.stats.nr_unknown_events;
  540. return -1;
  541. }
  542. }
  543. void perf_event_header__bswap(struct perf_event_header *self)
  544. {
  545. self->type = bswap_32(self->type);
  546. self->misc = bswap_16(self->misc);
  547. self->size = bswap_16(self->size);
  548. }
  549. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  550. {
  551. struct thread *thread = perf_session__findnew(self, 0);
  552. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  553. pr_err("problem inserting idle task.\n");
  554. thread = NULL;
  555. }
  556. return thread;
  557. }
  558. int do_read(int fd, void *buf, size_t size)
  559. {
  560. void *buf_start = buf;
  561. while (size) {
  562. int ret = read(fd, buf, size);
  563. if (ret <= 0)
  564. return ret;
  565. size -= ret;
  566. buf += ret;
  567. }
  568. return buf - buf_start;
  569. }
  570. #define session_done() (*(volatile int *)(&session_done))
  571. volatile int session_done;
  572. static int __perf_session__process_pipe_events(struct perf_session *self,
  573. struct perf_event_ops *ops)
  574. {
  575. event_t event;
  576. uint32_t size;
  577. int skip = 0;
  578. u64 head;
  579. int err;
  580. void *p;
  581. perf_event_ops__fill_defaults(ops);
  582. head = 0;
  583. more:
  584. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  585. if (err <= 0) {
  586. if (err == 0)
  587. goto done;
  588. pr_err("failed to read event header\n");
  589. goto out_err;
  590. }
  591. if (self->header.needs_swap)
  592. perf_event_header__bswap(&event.header);
  593. size = event.header.size;
  594. if (size == 0)
  595. size = 8;
  596. p = &event;
  597. p += sizeof(struct perf_event_header);
  598. if (size - sizeof(struct perf_event_header)) {
  599. err = do_read(self->fd, p,
  600. size - sizeof(struct perf_event_header));
  601. if (err <= 0) {
  602. if (err == 0) {
  603. pr_err("unexpected end of event stream\n");
  604. goto done;
  605. }
  606. pr_err("failed to read event data\n");
  607. goto out_err;
  608. }
  609. }
  610. if (size == 0 ||
  611. (skip = perf_session__process_event(self, &event, ops,
  612. 0, head)) < 0) {
  613. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  614. head, event.header.size, event.header.type);
  615. /*
  616. * assume we lost track of the stream, check alignment, and
  617. * increment a single u64 in the hope to catch on again 'soon'.
  618. */
  619. if (unlikely(head & 7))
  620. head &= ~7ULL;
  621. size = 8;
  622. }
  623. head += size;
  624. dump_printf("\n%#Lx [%#x]: event: %d\n",
  625. head, event.header.size, event.header.type);
  626. if (skip > 0)
  627. head += skip;
  628. if (!session_done())
  629. goto more;
  630. done:
  631. err = 0;
  632. out_err:
  633. return err;
  634. }
  635. int __perf_session__process_events(struct perf_session *self,
  636. u64 data_offset, u64 data_size,
  637. u64 file_size, struct perf_event_ops *ops)
  638. {
  639. int err, mmap_prot, mmap_flags;
  640. u64 head, shift;
  641. u64 offset = 0;
  642. size_t page_size;
  643. event_t *event;
  644. uint32_t size;
  645. char *buf;
  646. struct ui_progress *progress = ui_progress__new("Processing events...",
  647. self->size);
  648. if (progress == NULL)
  649. return -1;
  650. perf_event_ops__fill_defaults(ops);
  651. page_size = sysconf(_SC_PAGESIZE);
  652. head = data_offset;
  653. shift = page_size * (head / page_size);
  654. offset += shift;
  655. head -= shift;
  656. mmap_prot = PROT_READ;
  657. mmap_flags = MAP_SHARED;
  658. if (self->header.needs_swap) {
  659. mmap_prot |= PROT_WRITE;
  660. mmap_flags = MAP_PRIVATE;
  661. }
  662. remap:
  663. buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
  664. mmap_flags, self->fd, offset);
  665. if (buf == MAP_FAILED) {
  666. pr_err("failed to mmap file\n");
  667. err = -errno;
  668. goto out_err;
  669. }
  670. more:
  671. event = (event_t *)(buf + head);
  672. ui_progress__update(progress, offset);
  673. if (self->header.needs_swap)
  674. perf_event_header__bswap(&event->header);
  675. size = event->header.size;
  676. if (size == 0)
  677. size = 8;
  678. if (head + event->header.size >= page_size * self->mmap_window) {
  679. int munmap_ret;
  680. shift = page_size * (head / page_size);
  681. munmap_ret = munmap(buf, page_size * self->mmap_window);
  682. assert(munmap_ret == 0);
  683. offset += shift;
  684. head -= shift;
  685. goto remap;
  686. }
  687. size = event->header.size;
  688. dump_printf("\n%#Lx [%#x]: event: %d\n",
  689. offset + head, event->header.size, event->header.type);
  690. if (size == 0 ||
  691. perf_session__process_event(self, event, ops, offset, head) < 0) {
  692. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  693. offset + head, event->header.size,
  694. event->header.type);
  695. /*
  696. * assume we lost track of the stream, check alignment, and
  697. * increment a single u64 in the hope to catch on again 'soon'.
  698. */
  699. if (unlikely(head & 7))
  700. head &= ~7ULL;
  701. size = 8;
  702. }
  703. head += size;
  704. if (offset + head >= data_offset + data_size)
  705. goto done;
  706. if (offset + head < file_size)
  707. goto more;
  708. done:
  709. err = 0;
  710. /* do the final flush for ordered samples */
  711. self->ordered_samples.next_flush = ULLONG_MAX;
  712. flush_sample_queue(self, ops);
  713. out_err:
  714. ui_progress__delete(progress);
  715. return err;
  716. }
  717. int perf_session__process_events(struct perf_session *self,
  718. struct perf_event_ops *ops)
  719. {
  720. int err;
  721. if (perf_session__register_idle_thread(self) == NULL)
  722. return -ENOMEM;
  723. if (!self->fd_pipe)
  724. err = __perf_session__process_events(self,
  725. self->header.data_offset,
  726. self->header.data_size,
  727. self->size, ops);
  728. else
  729. err = __perf_session__process_pipe_events(self, ops);
  730. return err;
  731. }
  732. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  733. {
  734. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  735. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  736. return false;
  737. }
  738. return true;
  739. }
  740. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  741. const char *symbol_name,
  742. u64 addr)
  743. {
  744. char *bracket;
  745. enum map_type i;
  746. struct ref_reloc_sym *ref;
  747. ref = zalloc(sizeof(struct ref_reloc_sym));
  748. if (ref == NULL)
  749. return -ENOMEM;
  750. ref->name = strdup(symbol_name);
  751. if (ref->name == NULL) {
  752. free(ref);
  753. return -ENOMEM;
  754. }
  755. bracket = strchr(ref->name, ']');
  756. if (bracket)
  757. *bracket = '\0';
  758. ref->addr = addr;
  759. for (i = 0; i < MAP__NR_TYPES; ++i) {
  760. struct kmap *kmap = map__kmap(maps[i]);
  761. kmap->ref_reloc_sym = ref;
  762. }
  763. return 0;
  764. }
  765. size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
  766. {
  767. return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
  768. __dsos__fprintf(&self->host_machine.user_dsos, fp) +
  769. machines__fprintf_dsos(&self->machines, fp);
  770. }
  771. size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
  772. bool with_hits)
  773. {
  774. size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
  775. return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
  776. }