builtin-sched.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/symbol.h"
  6. #include "util/thread.h"
  7. #include "util/header.h"
  8. #include "util/session.h"
  9. #include "util/parse-options.h"
  10. #include "util/trace-event.h"
  11. #include "util/debug.h"
  12. #include <sys/prctl.h>
  13. #include <semaphore.h>
  14. #include <pthread.h>
  15. #include <math.h>
  16. static char const *input_name = "perf.data";
  17. static char default_sort_order[] = "avg, max, switch, runtime";
  18. static const char *sort_order = default_sort_order;
  19. static int profile_cpu = -1;
  20. #define PR_SET_NAME 15 /* Set process name */
  21. #define MAX_CPUS 4096
  22. static u64 run_measurement_overhead;
  23. static u64 sleep_measurement_overhead;
  24. #define COMM_LEN 20
  25. #define SYM_LEN 129
  26. #define MAX_PID 65536
  27. static unsigned long nr_tasks;
  28. struct sched_atom;
  29. struct task_desc {
  30. unsigned long nr;
  31. unsigned long pid;
  32. char comm[COMM_LEN];
  33. unsigned long nr_events;
  34. unsigned long curr_event;
  35. struct sched_atom **atoms;
  36. pthread_t thread;
  37. sem_t sleep_sem;
  38. sem_t ready_for_work;
  39. sem_t work_done_sem;
  40. u64 cpu_usage;
  41. };
  42. enum sched_event_type {
  43. SCHED_EVENT_RUN,
  44. SCHED_EVENT_SLEEP,
  45. SCHED_EVENT_WAKEUP,
  46. SCHED_EVENT_MIGRATION,
  47. };
  48. struct sched_atom {
  49. enum sched_event_type type;
  50. int specific_wait;
  51. u64 timestamp;
  52. u64 duration;
  53. unsigned long nr;
  54. sem_t *wait_sem;
  55. struct task_desc *wakee;
  56. };
  57. static struct task_desc *pid_to_task[MAX_PID];
  58. static struct task_desc **tasks;
  59. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  60. static u64 start_time;
  61. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  62. static unsigned long nr_run_events;
  63. static unsigned long nr_sleep_events;
  64. static unsigned long nr_wakeup_events;
  65. static unsigned long nr_sleep_corrections;
  66. static unsigned long nr_run_events_optimized;
  67. static unsigned long targetless_wakeups;
  68. static unsigned long multitarget_wakeups;
  69. static u64 cpu_usage;
  70. static u64 runavg_cpu_usage;
  71. static u64 parent_cpu_usage;
  72. static u64 runavg_parent_cpu_usage;
  73. static unsigned long nr_runs;
  74. static u64 sum_runtime;
  75. static u64 sum_fluct;
  76. static u64 run_avg;
  77. static unsigned int replay_repeat = 10;
  78. static unsigned long nr_timestamps;
  79. static unsigned long nr_unordered_timestamps;
  80. static unsigned long nr_state_machine_bugs;
  81. static unsigned long nr_context_switch_bugs;
  82. static unsigned long nr_events;
  83. static unsigned long nr_lost_chunks;
  84. static unsigned long nr_lost_events;
  85. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  86. enum thread_state {
  87. THREAD_SLEEPING = 0,
  88. THREAD_WAIT_CPU,
  89. THREAD_SCHED_IN,
  90. THREAD_IGNORE
  91. };
  92. struct work_atom {
  93. struct list_head list;
  94. enum thread_state state;
  95. u64 sched_out_time;
  96. u64 wake_up_time;
  97. u64 sched_in_time;
  98. u64 runtime;
  99. };
  100. struct work_atoms {
  101. struct list_head work_list;
  102. struct thread *thread;
  103. struct rb_node node;
  104. u64 max_lat;
  105. u64 max_lat_at;
  106. u64 total_lat;
  107. u64 nb_atoms;
  108. u64 total_runtime;
  109. };
  110. typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  111. static struct rb_root atom_root, sorted_atom_root;
  112. static u64 all_runtime;
  113. static u64 all_count;
  114. static u64 get_nsecs(void)
  115. {
  116. struct timespec ts;
  117. clock_gettime(CLOCK_MONOTONIC, &ts);
  118. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  119. }
  120. static void burn_nsecs(u64 nsecs)
  121. {
  122. u64 T0 = get_nsecs(), T1;
  123. do {
  124. T1 = get_nsecs();
  125. } while (T1 + run_measurement_overhead < T0 + nsecs);
  126. }
  127. static void sleep_nsecs(u64 nsecs)
  128. {
  129. struct timespec ts;
  130. ts.tv_nsec = nsecs % 999999999;
  131. ts.tv_sec = nsecs / 999999999;
  132. nanosleep(&ts, NULL);
  133. }
  134. static void calibrate_run_measurement_overhead(void)
  135. {
  136. u64 T0, T1, delta, min_delta = 1000000000ULL;
  137. int i;
  138. for (i = 0; i < 10; i++) {
  139. T0 = get_nsecs();
  140. burn_nsecs(0);
  141. T1 = get_nsecs();
  142. delta = T1-T0;
  143. min_delta = min(min_delta, delta);
  144. }
  145. run_measurement_overhead = min_delta;
  146. printf("run measurement overhead: %Ld nsecs\n", min_delta);
  147. }
  148. static void calibrate_sleep_measurement_overhead(void)
  149. {
  150. u64 T0, T1, delta, min_delta = 1000000000ULL;
  151. int i;
  152. for (i = 0; i < 10; i++) {
  153. T0 = get_nsecs();
  154. sleep_nsecs(10000);
  155. T1 = get_nsecs();
  156. delta = T1-T0;
  157. min_delta = min(min_delta, delta);
  158. }
  159. min_delta -= 10000;
  160. sleep_measurement_overhead = min_delta;
  161. printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
  162. }
  163. static struct sched_atom *
  164. get_new_event(struct task_desc *task, u64 timestamp)
  165. {
  166. struct sched_atom *event = zalloc(sizeof(*event));
  167. unsigned long idx = task->nr_events;
  168. size_t size;
  169. event->timestamp = timestamp;
  170. event->nr = idx;
  171. task->nr_events++;
  172. size = sizeof(struct sched_atom *) * task->nr_events;
  173. task->atoms = realloc(task->atoms, size);
  174. BUG_ON(!task->atoms);
  175. task->atoms[idx] = event;
  176. return event;
  177. }
  178. static struct sched_atom *last_event(struct task_desc *task)
  179. {
  180. if (!task->nr_events)
  181. return NULL;
  182. return task->atoms[task->nr_events - 1];
  183. }
  184. static void
  185. add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
  186. {
  187. struct sched_atom *event, *curr_event = last_event(task);
  188. /*
  189. * optimize an existing RUN event by merging this one
  190. * to it:
  191. */
  192. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  193. nr_run_events_optimized++;
  194. curr_event->duration += duration;
  195. return;
  196. }
  197. event = get_new_event(task, timestamp);
  198. event->type = SCHED_EVENT_RUN;
  199. event->duration = duration;
  200. nr_run_events++;
  201. }
  202. static void
  203. add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
  204. struct task_desc *wakee)
  205. {
  206. struct sched_atom *event, *wakee_event;
  207. event = get_new_event(task, timestamp);
  208. event->type = SCHED_EVENT_WAKEUP;
  209. event->wakee = wakee;
  210. wakee_event = last_event(wakee);
  211. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  212. targetless_wakeups++;
  213. return;
  214. }
  215. if (wakee_event->wait_sem) {
  216. multitarget_wakeups++;
  217. return;
  218. }
  219. wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
  220. sem_init(wakee_event->wait_sem, 0, 0);
  221. wakee_event->specific_wait = 1;
  222. event->wait_sem = wakee_event->wait_sem;
  223. nr_wakeup_events++;
  224. }
  225. static void
  226. add_sched_event_sleep(struct task_desc *task, u64 timestamp,
  227. u64 task_state __used)
  228. {
  229. struct sched_atom *event = get_new_event(task, timestamp);
  230. event->type = SCHED_EVENT_SLEEP;
  231. nr_sleep_events++;
  232. }
  233. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  234. {
  235. struct task_desc *task;
  236. BUG_ON(pid >= MAX_PID);
  237. task = pid_to_task[pid];
  238. if (task)
  239. return task;
  240. task = zalloc(sizeof(*task));
  241. task->pid = pid;
  242. task->nr = nr_tasks;
  243. strcpy(task->comm, comm);
  244. /*
  245. * every task starts in sleeping state - this gets ignored
  246. * if there's no wakeup pointing to this sleep state:
  247. */
  248. add_sched_event_sleep(task, 0, 0);
  249. pid_to_task[pid] = task;
  250. nr_tasks++;
  251. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  252. BUG_ON(!tasks);
  253. tasks[task->nr] = task;
  254. if (verbose)
  255. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  256. return task;
  257. }
  258. static void print_task_traces(void)
  259. {
  260. struct task_desc *task;
  261. unsigned long i;
  262. for (i = 0; i < nr_tasks; i++) {
  263. task = tasks[i];
  264. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  265. task->nr, task->comm, task->pid, task->nr_events);
  266. }
  267. }
  268. static void add_cross_task_wakeups(void)
  269. {
  270. struct task_desc *task1, *task2;
  271. unsigned long i, j;
  272. for (i = 0; i < nr_tasks; i++) {
  273. task1 = tasks[i];
  274. j = i + 1;
  275. if (j == nr_tasks)
  276. j = 0;
  277. task2 = tasks[j];
  278. add_sched_event_wakeup(task1, 0, task2);
  279. }
  280. }
  281. static void
  282. process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
  283. {
  284. int ret = 0;
  285. u64 now;
  286. long long delta;
  287. now = get_nsecs();
  288. delta = start_time + atom->timestamp - now;
  289. switch (atom->type) {
  290. case SCHED_EVENT_RUN:
  291. burn_nsecs(atom->duration);
  292. break;
  293. case SCHED_EVENT_SLEEP:
  294. if (atom->wait_sem)
  295. ret = sem_wait(atom->wait_sem);
  296. BUG_ON(ret);
  297. break;
  298. case SCHED_EVENT_WAKEUP:
  299. if (atom->wait_sem)
  300. ret = sem_post(atom->wait_sem);
  301. BUG_ON(ret);
  302. break;
  303. case SCHED_EVENT_MIGRATION:
  304. break;
  305. default:
  306. BUG_ON(1);
  307. }
  308. }
  309. static u64 get_cpu_usage_nsec_parent(void)
  310. {
  311. struct rusage ru;
  312. u64 sum;
  313. int err;
  314. err = getrusage(RUSAGE_SELF, &ru);
  315. BUG_ON(err);
  316. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  317. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  318. return sum;
  319. }
  320. static int self_open_counters(void)
  321. {
  322. struct perf_event_attr attr;
  323. int fd;
  324. memset(&attr, 0, sizeof(attr));
  325. attr.type = PERF_TYPE_SOFTWARE;
  326. attr.config = PERF_COUNT_SW_TASK_CLOCK;
  327. fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
  328. if (fd < 0)
  329. die("Error: sys_perf_event_open() syscall returned"
  330. "with %d (%s)\n", fd, strerror(errno));
  331. return fd;
  332. }
  333. static u64 get_cpu_usage_nsec_self(int fd)
  334. {
  335. u64 runtime;
  336. int ret;
  337. ret = read(fd, &runtime, sizeof(runtime));
  338. BUG_ON(ret != sizeof(runtime));
  339. return runtime;
  340. }
  341. static void *thread_func(void *ctx)
  342. {
  343. struct task_desc *this_task = ctx;
  344. u64 cpu_usage_0, cpu_usage_1;
  345. unsigned long i, ret;
  346. char comm2[22];
  347. int fd;
  348. sprintf(comm2, ":%s", this_task->comm);
  349. prctl(PR_SET_NAME, comm2);
  350. fd = self_open_counters();
  351. again:
  352. ret = sem_post(&this_task->ready_for_work);
  353. BUG_ON(ret);
  354. ret = pthread_mutex_lock(&start_work_mutex);
  355. BUG_ON(ret);
  356. ret = pthread_mutex_unlock(&start_work_mutex);
  357. BUG_ON(ret);
  358. cpu_usage_0 = get_cpu_usage_nsec_self(fd);
  359. for (i = 0; i < this_task->nr_events; i++) {
  360. this_task->curr_event = i;
  361. process_sched_event(this_task, this_task->atoms[i]);
  362. }
  363. cpu_usage_1 = get_cpu_usage_nsec_self(fd);
  364. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  365. ret = sem_post(&this_task->work_done_sem);
  366. BUG_ON(ret);
  367. ret = pthread_mutex_lock(&work_done_wait_mutex);
  368. BUG_ON(ret);
  369. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  370. BUG_ON(ret);
  371. goto again;
  372. }
  373. static void create_tasks(void)
  374. {
  375. struct task_desc *task;
  376. pthread_attr_t attr;
  377. unsigned long i;
  378. int err;
  379. err = pthread_attr_init(&attr);
  380. BUG_ON(err);
  381. err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
  382. BUG_ON(err);
  383. err = pthread_mutex_lock(&start_work_mutex);
  384. BUG_ON(err);
  385. err = pthread_mutex_lock(&work_done_wait_mutex);
  386. BUG_ON(err);
  387. for (i = 0; i < nr_tasks; i++) {
  388. task = tasks[i];
  389. sem_init(&task->sleep_sem, 0, 0);
  390. sem_init(&task->ready_for_work, 0, 0);
  391. sem_init(&task->work_done_sem, 0, 0);
  392. task->curr_event = 0;
  393. err = pthread_create(&task->thread, &attr, thread_func, task);
  394. BUG_ON(err);
  395. }
  396. }
  397. static void wait_for_tasks(void)
  398. {
  399. u64 cpu_usage_0, cpu_usage_1;
  400. struct task_desc *task;
  401. unsigned long i, ret;
  402. start_time = get_nsecs();
  403. cpu_usage = 0;
  404. pthread_mutex_unlock(&work_done_wait_mutex);
  405. for (i = 0; i < nr_tasks; i++) {
  406. task = tasks[i];
  407. ret = sem_wait(&task->ready_for_work);
  408. BUG_ON(ret);
  409. sem_init(&task->ready_for_work, 0, 0);
  410. }
  411. ret = pthread_mutex_lock(&work_done_wait_mutex);
  412. BUG_ON(ret);
  413. cpu_usage_0 = get_cpu_usage_nsec_parent();
  414. pthread_mutex_unlock(&start_work_mutex);
  415. for (i = 0; i < nr_tasks; i++) {
  416. task = tasks[i];
  417. ret = sem_wait(&task->work_done_sem);
  418. BUG_ON(ret);
  419. sem_init(&task->work_done_sem, 0, 0);
  420. cpu_usage += task->cpu_usage;
  421. task->cpu_usage = 0;
  422. }
  423. cpu_usage_1 = get_cpu_usage_nsec_parent();
  424. if (!runavg_cpu_usage)
  425. runavg_cpu_usage = cpu_usage;
  426. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  427. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  428. if (!runavg_parent_cpu_usage)
  429. runavg_parent_cpu_usage = parent_cpu_usage;
  430. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  431. parent_cpu_usage)/10;
  432. ret = pthread_mutex_lock(&start_work_mutex);
  433. BUG_ON(ret);
  434. for (i = 0; i < nr_tasks; i++) {
  435. task = tasks[i];
  436. sem_init(&task->sleep_sem, 0, 0);
  437. task->curr_event = 0;
  438. }
  439. }
  440. static void run_one_test(void)
  441. {
  442. u64 T0, T1, delta, avg_delta, fluct, std_dev;
  443. T0 = get_nsecs();
  444. wait_for_tasks();
  445. T1 = get_nsecs();
  446. delta = T1 - T0;
  447. sum_runtime += delta;
  448. nr_runs++;
  449. avg_delta = sum_runtime / nr_runs;
  450. if (delta < avg_delta)
  451. fluct = avg_delta - delta;
  452. else
  453. fluct = delta - avg_delta;
  454. sum_fluct += fluct;
  455. std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
  456. if (!run_avg)
  457. run_avg = delta;
  458. run_avg = (run_avg*9 + delta)/10;
  459. printf("#%-3ld: %0.3f, ",
  460. nr_runs, (double)delta/1000000.0);
  461. printf("ravg: %0.2f, ",
  462. (double)run_avg/1e6);
  463. printf("cpu: %0.2f / %0.2f",
  464. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  465. #if 0
  466. /*
  467. * rusage statistics done by the parent, these are less
  468. * accurate than the sum_exec_runtime based statistics:
  469. */
  470. printf(" [%0.2f / %0.2f]",
  471. (double)parent_cpu_usage/1e6,
  472. (double)runavg_parent_cpu_usage/1e6);
  473. #endif
  474. printf("\n");
  475. if (nr_sleep_corrections)
  476. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  477. nr_sleep_corrections = 0;
  478. }
  479. static void test_calibrations(void)
  480. {
  481. u64 T0, T1;
  482. T0 = get_nsecs();
  483. burn_nsecs(1e6);
  484. T1 = get_nsecs();
  485. printf("the run test took %Ld nsecs\n", T1-T0);
  486. T0 = get_nsecs();
  487. sleep_nsecs(1e6);
  488. T1 = get_nsecs();
  489. printf("the sleep test took %Ld nsecs\n", T1-T0);
  490. }
  491. #define FILL_FIELD(ptr, field, event, data) \
  492. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  493. #define FILL_ARRAY(ptr, array, event, data) \
  494. do { \
  495. void *__array = raw_field_ptr(event, #array, data); \
  496. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  497. } while(0)
  498. #define FILL_COMMON_FIELDS(ptr, event, data) \
  499. do { \
  500. FILL_FIELD(ptr, common_type, event, data); \
  501. FILL_FIELD(ptr, common_flags, event, data); \
  502. FILL_FIELD(ptr, common_preempt_count, event, data); \
  503. FILL_FIELD(ptr, common_pid, event, data); \
  504. FILL_FIELD(ptr, common_tgid, event, data); \
  505. } while (0)
  506. struct trace_switch_event {
  507. u32 size;
  508. u16 common_type;
  509. u8 common_flags;
  510. u8 common_preempt_count;
  511. u32 common_pid;
  512. u32 common_tgid;
  513. char prev_comm[16];
  514. u32 prev_pid;
  515. u32 prev_prio;
  516. u64 prev_state;
  517. char next_comm[16];
  518. u32 next_pid;
  519. u32 next_prio;
  520. };
  521. struct trace_runtime_event {
  522. u32 size;
  523. u16 common_type;
  524. u8 common_flags;
  525. u8 common_preempt_count;
  526. u32 common_pid;
  527. u32 common_tgid;
  528. char comm[16];
  529. u32 pid;
  530. u64 runtime;
  531. u64 vruntime;
  532. };
  533. struct trace_wakeup_event {
  534. u32 size;
  535. u16 common_type;
  536. u8 common_flags;
  537. u8 common_preempt_count;
  538. u32 common_pid;
  539. u32 common_tgid;
  540. char comm[16];
  541. u32 pid;
  542. u32 prio;
  543. u32 success;
  544. u32 cpu;
  545. };
  546. struct trace_fork_event {
  547. u32 size;
  548. u16 common_type;
  549. u8 common_flags;
  550. u8 common_preempt_count;
  551. u32 common_pid;
  552. u32 common_tgid;
  553. char parent_comm[16];
  554. u32 parent_pid;
  555. char child_comm[16];
  556. u32 child_pid;
  557. };
  558. struct trace_migrate_task_event {
  559. u32 size;
  560. u16 common_type;
  561. u8 common_flags;
  562. u8 common_preempt_count;
  563. u32 common_pid;
  564. u32 common_tgid;
  565. char comm[16];
  566. u32 pid;
  567. u32 prio;
  568. u32 cpu;
  569. };
  570. struct trace_sched_handler {
  571. void (*switch_event)(struct trace_switch_event *,
  572. struct perf_session *,
  573. struct event *,
  574. int cpu,
  575. u64 timestamp,
  576. struct thread *thread);
  577. void (*runtime_event)(struct trace_runtime_event *,
  578. struct perf_session *,
  579. struct event *,
  580. int cpu,
  581. u64 timestamp,
  582. struct thread *thread);
  583. void (*wakeup_event)(struct trace_wakeup_event *,
  584. struct perf_session *,
  585. struct event *,
  586. int cpu,
  587. u64 timestamp,
  588. struct thread *thread);
  589. void (*fork_event)(struct trace_fork_event *,
  590. struct event *,
  591. int cpu,
  592. u64 timestamp,
  593. struct thread *thread);
  594. void (*migrate_task_event)(struct trace_migrate_task_event *,
  595. struct perf_session *session,
  596. struct event *,
  597. int cpu,
  598. u64 timestamp,
  599. struct thread *thread);
  600. };
  601. static void
  602. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  603. struct perf_session *session __used,
  604. struct event *event,
  605. int cpu __used,
  606. u64 timestamp __used,
  607. struct thread *thread __used)
  608. {
  609. struct task_desc *waker, *wakee;
  610. if (verbose) {
  611. printf("sched_wakeup event %p\n", event);
  612. printf(" ... pid %d woke up %s/%d\n",
  613. wakeup_event->common_pid,
  614. wakeup_event->comm,
  615. wakeup_event->pid);
  616. }
  617. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  618. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  619. add_sched_event_wakeup(waker, timestamp, wakee);
  620. }
  621. static u64 cpu_last_switched[MAX_CPUS];
  622. static void
  623. replay_switch_event(struct trace_switch_event *switch_event,
  624. struct perf_session *session __used,
  625. struct event *event,
  626. int cpu,
  627. u64 timestamp,
  628. struct thread *thread __used)
  629. {
  630. struct task_desc *prev, *next;
  631. u64 timestamp0;
  632. s64 delta;
  633. if (verbose)
  634. printf("sched_switch event %p\n", event);
  635. if (cpu >= MAX_CPUS || cpu < 0)
  636. return;
  637. timestamp0 = cpu_last_switched[cpu];
  638. if (timestamp0)
  639. delta = timestamp - timestamp0;
  640. else
  641. delta = 0;
  642. if (delta < 0)
  643. die("hm, delta: %Ld < 0 ?\n", delta);
  644. if (verbose) {
  645. printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
  646. switch_event->prev_comm, switch_event->prev_pid,
  647. switch_event->next_comm, switch_event->next_pid,
  648. delta);
  649. }
  650. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  651. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  652. cpu_last_switched[cpu] = timestamp;
  653. add_sched_event_run(prev, timestamp, delta);
  654. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  655. }
  656. static void
  657. replay_fork_event(struct trace_fork_event *fork_event,
  658. struct event *event,
  659. int cpu __used,
  660. u64 timestamp __used,
  661. struct thread *thread __used)
  662. {
  663. if (verbose) {
  664. printf("sched_fork event %p\n", event);
  665. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  666. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  667. }
  668. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  669. register_pid(fork_event->child_pid, fork_event->child_comm);
  670. }
  671. static struct trace_sched_handler replay_ops = {
  672. .wakeup_event = replay_wakeup_event,
  673. .switch_event = replay_switch_event,
  674. .fork_event = replay_fork_event,
  675. };
  676. struct sort_dimension {
  677. const char *name;
  678. sort_fn_t cmp;
  679. struct list_head list;
  680. };
  681. static LIST_HEAD(cmp_pid);
  682. static int
  683. thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
  684. {
  685. struct sort_dimension *sort;
  686. int ret = 0;
  687. BUG_ON(list_empty(list));
  688. list_for_each_entry(sort, list, list) {
  689. ret = sort->cmp(l, r);
  690. if (ret)
  691. return ret;
  692. }
  693. return ret;
  694. }
  695. static struct work_atoms *
  696. thread_atoms_search(struct rb_root *root, struct thread *thread,
  697. struct list_head *sort_list)
  698. {
  699. struct rb_node *node = root->rb_node;
  700. struct work_atoms key = { .thread = thread };
  701. while (node) {
  702. struct work_atoms *atoms;
  703. int cmp;
  704. atoms = container_of(node, struct work_atoms, node);
  705. cmp = thread_lat_cmp(sort_list, &key, atoms);
  706. if (cmp > 0)
  707. node = node->rb_left;
  708. else if (cmp < 0)
  709. node = node->rb_right;
  710. else {
  711. BUG_ON(thread != atoms->thread);
  712. return atoms;
  713. }
  714. }
  715. return NULL;
  716. }
  717. static void
  718. __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
  719. struct list_head *sort_list)
  720. {
  721. struct rb_node **new = &(root->rb_node), *parent = NULL;
  722. while (*new) {
  723. struct work_atoms *this;
  724. int cmp;
  725. this = container_of(*new, struct work_atoms, node);
  726. parent = *new;
  727. cmp = thread_lat_cmp(sort_list, data, this);
  728. if (cmp > 0)
  729. new = &((*new)->rb_left);
  730. else
  731. new = &((*new)->rb_right);
  732. }
  733. rb_link_node(&data->node, parent, new);
  734. rb_insert_color(&data->node, root);
  735. }
  736. static void thread_atoms_insert(struct thread *thread)
  737. {
  738. struct work_atoms *atoms = zalloc(sizeof(*atoms));
  739. if (!atoms)
  740. die("No memory");
  741. atoms->thread = thread;
  742. INIT_LIST_HEAD(&atoms->work_list);
  743. __thread_latency_insert(&atom_root, atoms, &cmp_pid);
  744. }
  745. static void
  746. latency_fork_event(struct trace_fork_event *fork_event __used,
  747. struct event *event __used,
  748. int cpu __used,
  749. u64 timestamp __used,
  750. struct thread *thread __used)
  751. {
  752. /* should insert the newcomer */
  753. }
  754. __used
  755. static char sched_out_state(struct trace_switch_event *switch_event)
  756. {
  757. const char *str = TASK_STATE_TO_CHAR_STR;
  758. return str[switch_event->prev_state];
  759. }
  760. static void
  761. add_sched_out_event(struct work_atoms *atoms,
  762. char run_state,
  763. u64 timestamp)
  764. {
  765. struct work_atom *atom = zalloc(sizeof(*atom));
  766. if (!atom)
  767. die("Non memory");
  768. atom->sched_out_time = timestamp;
  769. if (run_state == 'R') {
  770. atom->state = THREAD_WAIT_CPU;
  771. atom->wake_up_time = atom->sched_out_time;
  772. }
  773. list_add_tail(&atom->list, &atoms->work_list);
  774. }
  775. static void
  776. add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
  777. {
  778. struct work_atom *atom;
  779. BUG_ON(list_empty(&atoms->work_list));
  780. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  781. atom->runtime += delta;
  782. atoms->total_runtime += delta;
  783. }
  784. static void
  785. add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
  786. {
  787. struct work_atom *atom;
  788. u64 delta;
  789. if (list_empty(&atoms->work_list))
  790. return;
  791. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  792. if (atom->state != THREAD_WAIT_CPU)
  793. return;
  794. if (timestamp < atom->wake_up_time) {
  795. atom->state = THREAD_IGNORE;
  796. return;
  797. }
  798. atom->state = THREAD_SCHED_IN;
  799. atom->sched_in_time = timestamp;
  800. delta = atom->sched_in_time - atom->wake_up_time;
  801. atoms->total_lat += delta;
  802. if (delta > atoms->max_lat) {
  803. atoms->max_lat = delta;
  804. atoms->max_lat_at = timestamp;
  805. }
  806. atoms->nb_atoms++;
  807. }
  808. static void
  809. latency_switch_event(struct trace_switch_event *switch_event,
  810. struct perf_session *session,
  811. struct event *event __used,
  812. int cpu,
  813. u64 timestamp,
  814. struct thread *thread __used)
  815. {
  816. struct work_atoms *out_events, *in_events;
  817. struct thread *sched_out, *sched_in;
  818. u64 timestamp0;
  819. s64 delta;
  820. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  821. timestamp0 = cpu_last_switched[cpu];
  822. cpu_last_switched[cpu] = timestamp;
  823. if (timestamp0)
  824. delta = timestamp - timestamp0;
  825. else
  826. delta = 0;
  827. if (delta < 0)
  828. die("hm, delta: %Ld < 0 ?\n", delta);
  829. sched_out = perf_session__findnew(session, switch_event->prev_pid);
  830. sched_in = perf_session__findnew(session, switch_event->next_pid);
  831. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  832. if (!out_events) {
  833. thread_atoms_insert(sched_out);
  834. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  835. if (!out_events)
  836. die("out-event: Internal tree error");
  837. }
  838. add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
  839. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  840. if (!in_events) {
  841. thread_atoms_insert(sched_in);
  842. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  843. if (!in_events)
  844. die("in-event: Internal tree error");
  845. /*
  846. * Take came in we have not heard about yet,
  847. * add in an initial atom in runnable state:
  848. */
  849. add_sched_out_event(in_events, 'R', timestamp);
  850. }
  851. add_sched_in_event(in_events, timestamp);
  852. }
  853. static void
  854. latency_runtime_event(struct trace_runtime_event *runtime_event,
  855. struct perf_session *session,
  856. struct event *event __used,
  857. int cpu,
  858. u64 timestamp,
  859. struct thread *this_thread __used)
  860. {
  861. struct thread *thread = perf_session__findnew(session, runtime_event->pid);
  862. struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  863. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  864. if (!atoms) {
  865. thread_atoms_insert(thread);
  866. atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  867. if (!atoms)
  868. die("in-event: Internal tree error");
  869. add_sched_out_event(atoms, 'R', timestamp);
  870. }
  871. add_runtime_event(atoms, runtime_event->runtime, timestamp);
  872. }
  873. static void
  874. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  875. struct perf_session *session,
  876. struct event *__event __used,
  877. int cpu __used,
  878. u64 timestamp,
  879. struct thread *thread __used)
  880. {
  881. struct work_atoms *atoms;
  882. struct work_atom *atom;
  883. struct thread *wakee;
  884. /* Note for later, it may be interesting to observe the failing cases */
  885. if (!wakeup_event->success)
  886. return;
  887. wakee = perf_session__findnew(session, wakeup_event->pid);
  888. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  889. if (!atoms) {
  890. thread_atoms_insert(wakee);
  891. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  892. if (!atoms)
  893. die("wakeup-event: Internal tree error");
  894. add_sched_out_event(atoms, 'S', timestamp);
  895. }
  896. BUG_ON(list_empty(&atoms->work_list));
  897. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  898. /*
  899. * You WILL be missing events if you've recorded only
  900. * one CPU, or are only looking at only one, so don't
  901. * make useless noise.
  902. */
  903. if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
  904. nr_state_machine_bugs++;
  905. nr_timestamps++;
  906. if (atom->sched_out_time > timestamp) {
  907. nr_unordered_timestamps++;
  908. return;
  909. }
  910. atom->state = THREAD_WAIT_CPU;
  911. atom->wake_up_time = timestamp;
  912. }
  913. static void
  914. latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
  915. struct perf_session *session,
  916. struct event *__event __used,
  917. int cpu __used,
  918. u64 timestamp,
  919. struct thread *thread __used)
  920. {
  921. struct work_atoms *atoms;
  922. struct work_atom *atom;
  923. struct thread *migrant;
  924. /*
  925. * Only need to worry about migration when profiling one CPU.
  926. */
  927. if (profile_cpu == -1)
  928. return;
  929. migrant = perf_session__findnew(session, migrate_task_event->pid);
  930. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  931. if (!atoms) {
  932. thread_atoms_insert(migrant);
  933. register_pid(migrant->pid, migrant->comm);
  934. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  935. if (!atoms)
  936. die("migration-event: Internal tree error");
  937. add_sched_out_event(atoms, 'R', timestamp);
  938. }
  939. BUG_ON(list_empty(&atoms->work_list));
  940. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  941. atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
  942. nr_timestamps++;
  943. if (atom->sched_out_time > timestamp)
  944. nr_unordered_timestamps++;
  945. }
  946. static struct trace_sched_handler lat_ops = {
  947. .wakeup_event = latency_wakeup_event,
  948. .switch_event = latency_switch_event,
  949. .runtime_event = latency_runtime_event,
  950. .fork_event = latency_fork_event,
  951. .migrate_task_event = latency_migrate_task_event,
  952. };
  953. static void output_lat_thread(struct work_atoms *work_list)
  954. {
  955. int i;
  956. int ret;
  957. u64 avg;
  958. if (!work_list->nb_atoms)
  959. return;
  960. /*
  961. * Ignore idle threads:
  962. */
  963. if (!strcmp(work_list->thread->comm, "swapper"))
  964. return;
  965. all_runtime += work_list->total_runtime;
  966. all_count += work_list->nb_atoms;
  967. ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
  968. for (i = 0; i < 24 - ret; i++)
  969. printf(" ");
  970. avg = work_list->total_lat / work_list->nb_atoms;
  971. printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
  972. (double)work_list->total_runtime / 1e6,
  973. work_list->nb_atoms, (double)avg / 1e6,
  974. (double)work_list->max_lat / 1e6,
  975. (double)work_list->max_lat_at / 1e9);
  976. }
  977. static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
  978. {
  979. if (l->thread->pid < r->thread->pid)
  980. return -1;
  981. if (l->thread->pid > r->thread->pid)
  982. return 1;
  983. return 0;
  984. }
  985. static struct sort_dimension pid_sort_dimension = {
  986. .name = "pid",
  987. .cmp = pid_cmp,
  988. };
  989. static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
  990. {
  991. u64 avgl, avgr;
  992. if (!l->nb_atoms)
  993. return -1;
  994. if (!r->nb_atoms)
  995. return 1;
  996. avgl = l->total_lat / l->nb_atoms;
  997. avgr = r->total_lat / r->nb_atoms;
  998. if (avgl < avgr)
  999. return -1;
  1000. if (avgl > avgr)
  1001. return 1;
  1002. return 0;
  1003. }
  1004. static struct sort_dimension avg_sort_dimension = {
  1005. .name = "avg",
  1006. .cmp = avg_cmp,
  1007. };
  1008. static int max_cmp(struct work_atoms *l, struct work_atoms *r)
  1009. {
  1010. if (l->max_lat < r->max_lat)
  1011. return -1;
  1012. if (l->max_lat > r->max_lat)
  1013. return 1;
  1014. return 0;
  1015. }
  1016. static struct sort_dimension max_sort_dimension = {
  1017. .name = "max",
  1018. .cmp = max_cmp,
  1019. };
  1020. static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
  1021. {
  1022. if (l->nb_atoms < r->nb_atoms)
  1023. return -1;
  1024. if (l->nb_atoms > r->nb_atoms)
  1025. return 1;
  1026. return 0;
  1027. }
  1028. static struct sort_dimension switch_sort_dimension = {
  1029. .name = "switch",
  1030. .cmp = switch_cmp,
  1031. };
  1032. static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
  1033. {
  1034. if (l->total_runtime < r->total_runtime)
  1035. return -1;
  1036. if (l->total_runtime > r->total_runtime)
  1037. return 1;
  1038. return 0;
  1039. }
  1040. static struct sort_dimension runtime_sort_dimension = {
  1041. .name = "runtime",
  1042. .cmp = runtime_cmp,
  1043. };
  1044. static struct sort_dimension *available_sorts[] = {
  1045. &pid_sort_dimension,
  1046. &avg_sort_dimension,
  1047. &max_sort_dimension,
  1048. &switch_sort_dimension,
  1049. &runtime_sort_dimension,
  1050. };
  1051. #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
  1052. static LIST_HEAD(sort_list);
  1053. static int sort_dimension__add(const char *tok, struct list_head *list)
  1054. {
  1055. int i;
  1056. for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
  1057. if (!strcmp(available_sorts[i]->name, tok)) {
  1058. list_add_tail(&available_sorts[i]->list, list);
  1059. return 0;
  1060. }
  1061. }
  1062. return -1;
  1063. }
  1064. static void setup_sorting(void);
  1065. static void sort_lat(void)
  1066. {
  1067. struct rb_node *node;
  1068. for (;;) {
  1069. struct work_atoms *data;
  1070. node = rb_first(&atom_root);
  1071. if (!node)
  1072. break;
  1073. rb_erase(node, &atom_root);
  1074. data = rb_entry(node, struct work_atoms, node);
  1075. __thread_latency_insert(&sorted_atom_root, data, &sort_list);
  1076. }
  1077. }
  1078. static struct trace_sched_handler *trace_handler;
  1079. static void
  1080. process_sched_wakeup_event(void *data, struct perf_session *session,
  1081. struct event *event,
  1082. int cpu __used,
  1083. u64 timestamp __used,
  1084. struct thread *thread __used)
  1085. {
  1086. struct trace_wakeup_event wakeup_event;
  1087. FILL_COMMON_FIELDS(wakeup_event, event, data);
  1088. FILL_ARRAY(wakeup_event, comm, event, data);
  1089. FILL_FIELD(wakeup_event, pid, event, data);
  1090. FILL_FIELD(wakeup_event, prio, event, data);
  1091. FILL_FIELD(wakeup_event, success, event, data);
  1092. FILL_FIELD(wakeup_event, cpu, event, data);
  1093. if (trace_handler->wakeup_event)
  1094. trace_handler->wakeup_event(&wakeup_event, session, event,
  1095. cpu, timestamp, thread);
  1096. }
  1097. /*
  1098. * Track the current task - that way we can know whether there's any
  1099. * weird events, such as a task being switched away that is not current.
  1100. */
  1101. static int max_cpu;
  1102. static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
  1103. static struct thread *curr_thread[MAX_CPUS];
  1104. static char next_shortname1 = 'A';
  1105. static char next_shortname2 = '0';
  1106. static void
  1107. map_switch_event(struct trace_switch_event *switch_event,
  1108. struct perf_session *session,
  1109. struct event *event __used,
  1110. int this_cpu,
  1111. u64 timestamp,
  1112. struct thread *thread __used)
  1113. {
  1114. struct thread *sched_out, *sched_in;
  1115. int new_shortname;
  1116. u64 timestamp0;
  1117. s64 delta;
  1118. int cpu;
  1119. BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
  1120. if (this_cpu > max_cpu)
  1121. max_cpu = this_cpu;
  1122. timestamp0 = cpu_last_switched[this_cpu];
  1123. cpu_last_switched[this_cpu] = timestamp;
  1124. if (timestamp0)
  1125. delta = timestamp - timestamp0;
  1126. else
  1127. delta = 0;
  1128. if (delta < 0)
  1129. die("hm, delta: %Ld < 0 ?\n", delta);
  1130. sched_out = perf_session__findnew(session, switch_event->prev_pid);
  1131. sched_in = perf_session__findnew(session, switch_event->next_pid);
  1132. curr_thread[this_cpu] = sched_in;
  1133. printf(" ");
  1134. new_shortname = 0;
  1135. if (!sched_in->shortname[0]) {
  1136. sched_in->shortname[0] = next_shortname1;
  1137. sched_in->shortname[1] = next_shortname2;
  1138. if (next_shortname1 < 'Z') {
  1139. next_shortname1++;
  1140. } else {
  1141. next_shortname1='A';
  1142. if (next_shortname2 < '9') {
  1143. next_shortname2++;
  1144. } else {
  1145. next_shortname2='0';
  1146. }
  1147. }
  1148. new_shortname = 1;
  1149. }
  1150. for (cpu = 0; cpu <= max_cpu; cpu++) {
  1151. if (cpu != this_cpu)
  1152. printf(" ");
  1153. else
  1154. printf("*");
  1155. if (curr_thread[cpu]) {
  1156. if (curr_thread[cpu]->pid)
  1157. printf("%2s ", curr_thread[cpu]->shortname);
  1158. else
  1159. printf(". ");
  1160. } else
  1161. printf(" ");
  1162. }
  1163. printf(" %12.6f secs ", (double)timestamp/1e9);
  1164. if (new_shortname) {
  1165. printf("%s => %s:%d\n",
  1166. sched_in->shortname, sched_in->comm, sched_in->pid);
  1167. } else {
  1168. printf("\n");
  1169. }
  1170. }
  1171. static void
  1172. process_sched_switch_event(void *data, struct perf_session *session,
  1173. struct event *event,
  1174. int this_cpu,
  1175. u64 timestamp __used,
  1176. struct thread *thread __used)
  1177. {
  1178. struct trace_switch_event switch_event;
  1179. FILL_COMMON_FIELDS(switch_event, event, data);
  1180. FILL_ARRAY(switch_event, prev_comm, event, data);
  1181. FILL_FIELD(switch_event, prev_pid, event, data);
  1182. FILL_FIELD(switch_event, prev_prio, event, data);
  1183. FILL_FIELD(switch_event, prev_state, event, data);
  1184. FILL_ARRAY(switch_event, next_comm, event, data);
  1185. FILL_FIELD(switch_event, next_pid, event, data);
  1186. FILL_FIELD(switch_event, next_prio, event, data);
  1187. if (curr_pid[this_cpu] != (u32)-1) {
  1188. /*
  1189. * Are we trying to switch away a PID that is
  1190. * not current?
  1191. */
  1192. if (curr_pid[this_cpu] != switch_event.prev_pid)
  1193. nr_context_switch_bugs++;
  1194. }
  1195. if (trace_handler->switch_event)
  1196. trace_handler->switch_event(&switch_event, session, event,
  1197. this_cpu, timestamp, thread);
  1198. curr_pid[this_cpu] = switch_event.next_pid;
  1199. }
  1200. static void
  1201. process_sched_runtime_event(void *data, struct perf_session *session,
  1202. struct event *event,
  1203. int cpu __used,
  1204. u64 timestamp __used,
  1205. struct thread *thread __used)
  1206. {
  1207. struct trace_runtime_event runtime_event;
  1208. FILL_ARRAY(runtime_event, comm, event, data);
  1209. FILL_FIELD(runtime_event, pid, event, data);
  1210. FILL_FIELD(runtime_event, runtime, event, data);
  1211. FILL_FIELD(runtime_event, vruntime, event, data);
  1212. if (trace_handler->runtime_event)
  1213. trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
  1214. }
  1215. static void
  1216. process_sched_fork_event(void *data,
  1217. struct event *event,
  1218. int cpu __used,
  1219. u64 timestamp __used,
  1220. struct thread *thread __used)
  1221. {
  1222. struct trace_fork_event fork_event;
  1223. FILL_COMMON_FIELDS(fork_event, event, data);
  1224. FILL_ARRAY(fork_event, parent_comm, event, data);
  1225. FILL_FIELD(fork_event, parent_pid, event, data);
  1226. FILL_ARRAY(fork_event, child_comm, event, data);
  1227. FILL_FIELD(fork_event, child_pid, event, data);
  1228. if (trace_handler->fork_event)
  1229. trace_handler->fork_event(&fork_event, event,
  1230. cpu, timestamp, thread);
  1231. }
  1232. static void
  1233. process_sched_exit_event(struct event *event,
  1234. int cpu __used,
  1235. u64 timestamp __used,
  1236. struct thread *thread __used)
  1237. {
  1238. if (verbose)
  1239. printf("sched_exit event %p\n", event);
  1240. }
  1241. static void
  1242. process_sched_migrate_task_event(void *data, struct perf_session *session,
  1243. struct event *event,
  1244. int cpu __used,
  1245. u64 timestamp __used,
  1246. struct thread *thread __used)
  1247. {
  1248. struct trace_migrate_task_event migrate_task_event;
  1249. FILL_COMMON_FIELDS(migrate_task_event, event, data);
  1250. FILL_ARRAY(migrate_task_event, comm, event, data);
  1251. FILL_FIELD(migrate_task_event, pid, event, data);
  1252. FILL_FIELD(migrate_task_event, prio, event, data);
  1253. FILL_FIELD(migrate_task_event, cpu, event, data);
  1254. if (trace_handler->migrate_task_event)
  1255. trace_handler->migrate_task_event(&migrate_task_event, session,
  1256. event, cpu, timestamp, thread);
  1257. }
  1258. static void
  1259. process_raw_event(event_t *raw_event __used, struct perf_session *session,
  1260. void *data, int cpu, u64 timestamp, struct thread *thread)
  1261. {
  1262. struct event *event;
  1263. int type;
  1264. type = trace_parse_common_type(data);
  1265. event = trace_find_event(type);
  1266. if (!strcmp(event->name, "sched_switch"))
  1267. process_sched_switch_event(data, session, event, cpu, timestamp, thread);
  1268. if (!strcmp(event->name, "sched_stat_runtime"))
  1269. process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
  1270. if (!strcmp(event->name, "sched_wakeup"))
  1271. process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
  1272. if (!strcmp(event->name, "sched_wakeup_new"))
  1273. process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
  1274. if (!strcmp(event->name, "sched_process_fork"))
  1275. process_sched_fork_event(data, event, cpu, timestamp, thread);
  1276. if (!strcmp(event->name, "sched_process_exit"))
  1277. process_sched_exit_event(event, cpu, timestamp, thread);
  1278. if (!strcmp(event->name, "sched_migrate_task"))
  1279. process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
  1280. }
  1281. static int process_sample_event(event_t *event, struct perf_session *session)
  1282. {
  1283. struct sample_data data;
  1284. struct thread *thread;
  1285. if (!(session->sample_type & PERF_SAMPLE_RAW))
  1286. return 0;
  1287. memset(&data, 0, sizeof(data));
  1288. data.time = -1;
  1289. data.cpu = -1;
  1290. data.period = -1;
  1291. event__parse_sample(event, session->sample_type, &data);
  1292. dump_printf("(IP, %d): %d/%d: %#Lx period: %Ld\n", event->header.misc,
  1293. data.pid, data.tid, data.ip, data.period);
  1294. thread = perf_session__findnew(session, data.pid);
  1295. if (thread == NULL) {
  1296. pr_debug("problem processing %d event, skipping it.\n",
  1297. event->header.type);
  1298. return -1;
  1299. }
  1300. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1301. if (profile_cpu != -1 && profile_cpu != (int)data.cpu)
  1302. return 0;
  1303. process_raw_event(event, session, data.raw_data, data.cpu, data.time, thread);
  1304. return 0;
  1305. }
  1306. static struct perf_event_ops event_ops = {
  1307. .sample = process_sample_event,
  1308. .comm = event__process_comm,
  1309. .lost = event__process_lost,
  1310. .fork = event__process_task,
  1311. .ordered_samples = true,
  1312. };
  1313. static int read_events(void)
  1314. {
  1315. int err = -EINVAL;
  1316. struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0, false);
  1317. if (session == NULL)
  1318. return -ENOMEM;
  1319. if (perf_session__has_traces(session, "record -R")) {
  1320. err = perf_session__process_events(session, &event_ops);
  1321. nr_events = session->hists.stats.nr_events[0];
  1322. nr_lost_events = session->hists.stats.total_lost;
  1323. nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
  1324. }
  1325. perf_session__delete(session);
  1326. return err;
  1327. }
  1328. static void print_bad_events(void)
  1329. {
  1330. if (nr_unordered_timestamps && nr_timestamps) {
  1331. printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
  1332. (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
  1333. nr_unordered_timestamps, nr_timestamps);
  1334. }
  1335. if (nr_lost_events && nr_events) {
  1336. printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
  1337. (double)nr_lost_events/(double)nr_events*100.0,
  1338. nr_lost_events, nr_events, nr_lost_chunks);
  1339. }
  1340. if (nr_state_machine_bugs && nr_timestamps) {
  1341. printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
  1342. (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
  1343. nr_state_machine_bugs, nr_timestamps);
  1344. if (nr_lost_events)
  1345. printf(" (due to lost events?)");
  1346. printf("\n");
  1347. }
  1348. if (nr_context_switch_bugs && nr_timestamps) {
  1349. printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
  1350. (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
  1351. nr_context_switch_bugs, nr_timestamps);
  1352. if (nr_lost_events)
  1353. printf(" (due to lost events?)");
  1354. printf("\n");
  1355. }
  1356. }
  1357. static void __cmd_lat(void)
  1358. {
  1359. struct rb_node *next;
  1360. setup_pager();
  1361. read_events();
  1362. sort_lat();
  1363. printf("\n ---------------------------------------------------------------------------------------------------------------\n");
  1364. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
  1365. printf(" ---------------------------------------------------------------------------------------------------------------\n");
  1366. next = rb_first(&sorted_atom_root);
  1367. while (next) {
  1368. struct work_atoms *work_list;
  1369. work_list = rb_entry(next, struct work_atoms, node);
  1370. output_lat_thread(work_list);
  1371. next = rb_next(next);
  1372. }
  1373. printf(" -----------------------------------------------------------------------------------------\n");
  1374. printf(" TOTAL: |%11.3f ms |%9Ld |\n",
  1375. (double)all_runtime/1e6, all_count);
  1376. printf(" ---------------------------------------------------\n");
  1377. print_bad_events();
  1378. printf("\n");
  1379. }
  1380. static struct trace_sched_handler map_ops = {
  1381. .wakeup_event = NULL,
  1382. .switch_event = map_switch_event,
  1383. .runtime_event = NULL,
  1384. .fork_event = NULL,
  1385. };
  1386. static void __cmd_map(void)
  1387. {
  1388. max_cpu = sysconf(_SC_NPROCESSORS_CONF);
  1389. setup_pager();
  1390. read_events();
  1391. print_bad_events();
  1392. }
  1393. static void __cmd_replay(void)
  1394. {
  1395. unsigned long i;
  1396. calibrate_run_measurement_overhead();
  1397. calibrate_sleep_measurement_overhead();
  1398. test_calibrations();
  1399. read_events();
  1400. printf("nr_run_events: %ld\n", nr_run_events);
  1401. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  1402. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  1403. if (targetless_wakeups)
  1404. printf("target-less wakeups: %ld\n", targetless_wakeups);
  1405. if (multitarget_wakeups)
  1406. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  1407. if (nr_run_events_optimized)
  1408. printf("run atoms optimized: %ld\n",
  1409. nr_run_events_optimized);
  1410. print_task_traces();
  1411. add_cross_task_wakeups();
  1412. create_tasks();
  1413. printf("------------------------------------------------------------\n");
  1414. for (i = 0; i < replay_repeat; i++)
  1415. run_one_test();
  1416. }
  1417. static const char * const sched_usage[] = {
  1418. "perf sched [<options>] {record|latency|map|replay|trace}",
  1419. NULL
  1420. };
  1421. static const struct option sched_options[] = {
  1422. OPT_STRING('i', "input", &input_name, "file",
  1423. "input file name"),
  1424. OPT_INCR('v', "verbose", &verbose,
  1425. "be more verbose (show symbol address, etc)"),
  1426. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1427. "dump raw trace in ASCII"),
  1428. OPT_END()
  1429. };
  1430. static const char * const latency_usage[] = {
  1431. "perf sched latency [<options>]",
  1432. NULL
  1433. };
  1434. static const struct option latency_options[] = {
  1435. OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
  1436. "sort by key(s): runtime, switch, avg, max"),
  1437. OPT_INCR('v', "verbose", &verbose,
  1438. "be more verbose (show symbol address, etc)"),
  1439. OPT_INTEGER('C', "CPU", &profile_cpu,
  1440. "CPU to profile on"),
  1441. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1442. "dump raw trace in ASCII"),
  1443. OPT_END()
  1444. };
  1445. static const char * const replay_usage[] = {
  1446. "perf sched replay [<options>]",
  1447. NULL
  1448. };
  1449. static const struct option replay_options[] = {
  1450. OPT_UINTEGER('r', "repeat", &replay_repeat,
  1451. "repeat the workload replay N times (-1: infinite)"),
  1452. OPT_INCR('v', "verbose", &verbose,
  1453. "be more verbose (show symbol address, etc)"),
  1454. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1455. "dump raw trace in ASCII"),
  1456. OPT_END()
  1457. };
  1458. static void setup_sorting(void)
  1459. {
  1460. char *tmp, *tok, *str = strdup(sort_order);
  1461. for (tok = strtok_r(str, ", ", &tmp);
  1462. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1463. if (sort_dimension__add(tok, &sort_list) < 0) {
  1464. error("Unknown --sort key: `%s'", tok);
  1465. usage_with_options(latency_usage, latency_options);
  1466. }
  1467. }
  1468. free(str);
  1469. sort_dimension__add("pid", &cmp_pid);
  1470. }
  1471. static const char *record_args[] = {
  1472. "record",
  1473. "-a",
  1474. "-R",
  1475. "-f",
  1476. "-m", "1024",
  1477. "-c", "1",
  1478. "-e", "sched:sched_switch:r",
  1479. "-e", "sched:sched_stat_wait:r",
  1480. "-e", "sched:sched_stat_sleep:r",
  1481. "-e", "sched:sched_stat_iowait:r",
  1482. "-e", "sched:sched_stat_runtime:r",
  1483. "-e", "sched:sched_process_exit:r",
  1484. "-e", "sched:sched_process_fork:r",
  1485. "-e", "sched:sched_wakeup:r",
  1486. "-e", "sched:sched_migrate_task:r",
  1487. };
  1488. static int __cmd_record(int argc, const char **argv)
  1489. {
  1490. unsigned int rec_argc, i, j;
  1491. const char **rec_argv;
  1492. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1493. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1494. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1495. rec_argv[i] = strdup(record_args[i]);
  1496. for (j = 1; j < (unsigned int)argc; j++, i++)
  1497. rec_argv[i] = argv[j];
  1498. BUG_ON(i != rec_argc);
  1499. return cmd_record(i, rec_argv, NULL);
  1500. }
  1501. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1502. {
  1503. argc = parse_options(argc, argv, sched_options, sched_usage,
  1504. PARSE_OPT_STOP_AT_NON_OPTION);
  1505. if (!argc)
  1506. usage_with_options(sched_usage, sched_options);
  1507. /*
  1508. * Aliased to 'perf trace' for now:
  1509. */
  1510. if (!strcmp(argv[0], "trace"))
  1511. return cmd_trace(argc, argv, prefix);
  1512. symbol__init();
  1513. if (!strncmp(argv[0], "rec", 3)) {
  1514. return __cmd_record(argc, argv);
  1515. } else if (!strncmp(argv[0], "lat", 3)) {
  1516. trace_handler = &lat_ops;
  1517. if (argc > 1) {
  1518. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1519. if (argc)
  1520. usage_with_options(latency_usage, latency_options);
  1521. }
  1522. setup_sorting();
  1523. __cmd_lat();
  1524. } else if (!strcmp(argv[0], "map")) {
  1525. trace_handler = &map_ops;
  1526. setup_sorting();
  1527. __cmd_map();
  1528. } else if (!strncmp(argv[0], "rep", 3)) {
  1529. trace_handler = &replay_ops;
  1530. if (argc) {
  1531. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1532. if (argc)
  1533. usage_with_options(replay_usage, replay_options);
  1534. }
  1535. __cmd_replay();
  1536. } else {
  1537. usage_with_options(sched_usage, sched_options);
  1538. }
  1539. return 0;
  1540. }