input.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. /*
  2. * Copyright (c) 2006,2007 Daniel Mack, Tim Ruetz
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. */
  18. #include <linux/gfp.h>
  19. #include <linux/init.h>
  20. #include <linux/usb.h>
  21. #include <linux/usb/input.h>
  22. #include <sound/core.h>
  23. #include <sound/pcm.h>
  24. #include "device.h"
  25. #include "input.h"
  26. static unsigned short keycode_ak1[] = { KEY_C, KEY_B, KEY_A };
  27. static unsigned short keycode_rk2[] = { KEY_1, KEY_2, KEY_3, KEY_4,
  28. KEY_5, KEY_6, KEY_7 };
  29. static unsigned short keycode_rk3[] = { KEY_1, KEY_2, KEY_3, KEY_4,
  30. KEY_5, KEY_6, KEY_7, KEY_5, KEY_6 };
  31. static unsigned short keycode_kore[] = {
  32. KEY_FN_F1, /* "menu" */
  33. KEY_FN_F7, /* "lcd backlight */
  34. KEY_FN_F2, /* "control" */
  35. KEY_FN_F3, /* "enter" */
  36. KEY_FN_F4, /* "view" */
  37. KEY_FN_F5, /* "esc" */
  38. KEY_FN_F6, /* "sound" */
  39. KEY_FN_F8, /* array spacer, never triggered. */
  40. KEY_RIGHT,
  41. KEY_DOWN,
  42. KEY_UP,
  43. KEY_LEFT,
  44. KEY_SOUND, /* "listen" */
  45. KEY_RECORD,
  46. KEY_PLAYPAUSE,
  47. KEY_STOP,
  48. BTN_4, /* 8 softkeys */
  49. BTN_3,
  50. BTN_2,
  51. BTN_1,
  52. BTN_8,
  53. BTN_7,
  54. BTN_6,
  55. BTN_5,
  56. KEY_BRL_DOT4, /* touch sensitive knobs */
  57. KEY_BRL_DOT3,
  58. KEY_BRL_DOT2,
  59. KEY_BRL_DOT1,
  60. KEY_BRL_DOT8,
  61. KEY_BRL_DOT7,
  62. KEY_BRL_DOT6,
  63. KEY_BRL_DOT5
  64. };
  65. #define KONTROLX1_INPUTS 40
  66. #define DEG90 (range / 2)
  67. #define DEG180 (range)
  68. #define DEG270 (DEG90 + DEG180)
  69. #define DEG360 (DEG180 * 2)
  70. #define HIGH_PEAK (268)
  71. #define LOW_PEAK (-7)
  72. /* some of these devices have endless rotation potentiometers
  73. * built in which use two tapers, 90 degrees phase shifted.
  74. * this algorithm decodes them to one single value, ranging
  75. * from 0 to 999 */
  76. static unsigned int decode_erp(unsigned char a, unsigned char b)
  77. {
  78. int weight_a, weight_b;
  79. int pos_a, pos_b;
  80. int ret;
  81. int range = HIGH_PEAK - LOW_PEAK;
  82. int mid_value = (HIGH_PEAK + LOW_PEAK) / 2;
  83. weight_b = abs(mid_value - a) - (range / 2 - 100) / 2;
  84. if (weight_b < 0)
  85. weight_b = 0;
  86. if (weight_b > 100)
  87. weight_b = 100;
  88. weight_a = 100 - weight_b;
  89. if (a < mid_value) {
  90. /* 0..90 and 270..360 degrees */
  91. pos_b = b - LOW_PEAK + DEG270;
  92. if (pos_b >= DEG360)
  93. pos_b -= DEG360;
  94. } else
  95. /* 90..270 degrees */
  96. pos_b = HIGH_PEAK - b + DEG90;
  97. if (b > mid_value)
  98. /* 0..180 degrees */
  99. pos_a = a - LOW_PEAK;
  100. else
  101. /* 180..360 degrees */
  102. pos_a = HIGH_PEAK - a + DEG180;
  103. /* interpolate both slider values, depending on weight factors */
  104. /* 0..99 x DEG360 */
  105. ret = pos_a * weight_a + pos_b * weight_b;
  106. /* normalize to 0..999 */
  107. ret *= 10;
  108. ret /= DEG360;
  109. if (ret < 0)
  110. ret += 1000;
  111. if (ret >= 1000)
  112. ret -= 1000;
  113. return ret;
  114. }
  115. #undef DEG90
  116. #undef DEG180
  117. #undef DEG270
  118. #undef DEG360
  119. #undef HIGH_PEAK
  120. #undef LOW_PEAK
  121. static void snd_caiaq_input_read_analog(struct snd_usb_caiaqdev *dev,
  122. const unsigned char *buf,
  123. unsigned int len)
  124. {
  125. struct input_dev *input_dev = dev->input_dev;
  126. switch (dev->chip.usb_id) {
  127. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL2):
  128. input_report_abs(input_dev, ABS_X, (buf[4] << 8) | buf[5]);
  129. input_report_abs(input_dev, ABS_Y, (buf[0] << 8) | buf[1]);
  130. input_report_abs(input_dev, ABS_Z, (buf[2] << 8) | buf[3]);
  131. input_sync(input_dev);
  132. break;
  133. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL3):
  134. input_report_abs(input_dev, ABS_X, (buf[0] << 8) | buf[1]);
  135. input_report_abs(input_dev, ABS_Y, (buf[2] << 8) | buf[3]);
  136. input_report_abs(input_dev, ABS_Z, (buf[4] << 8) | buf[5]);
  137. input_sync(input_dev);
  138. break;
  139. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  140. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  141. input_report_abs(input_dev, ABS_X, (buf[0] << 8) | buf[1]);
  142. input_report_abs(input_dev, ABS_Y, (buf[2] << 8) | buf[3]);
  143. input_report_abs(input_dev, ABS_Z, (buf[4] << 8) | buf[5]);
  144. input_sync(input_dev);
  145. break;
  146. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_TRAKTORKONTROLX1):
  147. input_report_abs(input_dev, ABS_HAT0X, (buf[8] << 8) | buf[9]);
  148. input_report_abs(input_dev, ABS_HAT0Y, (buf[4] << 8) | buf[5]);
  149. input_report_abs(input_dev, ABS_HAT1X, (buf[12] << 8) | buf[13]);
  150. input_report_abs(input_dev, ABS_HAT1Y, (buf[2] << 8) | buf[3]);
  151. input_report_abs(input_dev, ABS_HAT2X, (buf[14] << 8) | buf[15]);
  152. input_report_abs(input_dev, ABS_HAT2Y, (buf[0] << 8) | buf[1]);
  153. input_report_abs(input_dev, ABS_HAT3X, (buf[10] << 8) | buf[11]);
  154. input_report_abs(input_dev, ABS_HAT3Y, (buf[6] << 8) | buf[7]);
  155. input_sync(input_dev);
  156. break;
  157. }
  158. }
  159. static void snd_caiaq_input_read_erp(struct snd_usb_caiaqdev *dev,
  160. const char *buf, unsigned int len)
  161. {
  162. struct input_dev *input_dev = dev->input_dev;
  163. int i;
  164. switch (dev->chip.usb_id) {
  165. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AK1):
  166. i = decode_erp(buf[0], buf[1]);
  167. input_report_abs(input_dev, ABS_X, i);
  168. input_sync(input_dev);
  169. break;
  170. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  171. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  172. i = decode_erp(buf[7], buf[5]);
  173. input_report_abs(input_dev, ABS_HAT0X, i);
  174. i = decode_erp(buf[12], buf[14]);
  175. input_report_abs(input_dev, ABS_HAT0Y, i);
  176. i = decode_erp(buf[15], buf[13]);
  177. input_report_abs(input_dev, ABS_HAT1X, i);
  178. i = decode_erp(buf[0], buf[2]);
  179. input_report_abs(input_dev, ABS_HAT1Y, i);
  180. i = decode_erp(buf[3], buf[1]);
  181. input_report_abs(input_dev, ABS_HAT2X, i);
  182. i = decode_erp(buf[8], buf[10]);
  183. input_report_abs(input_dev, ABS_HAT2Y, i);
  184. i = decode_erp(buf[11], buf[9]);
  185. input_report_abs(input_dev, ABS_HAT3X, i);
  186. i = decode_erp(buf[4], buf[6]);
  187. input_report_abs(input_dev, ABS_HAT3Y, i);
  188. input_sync(input_dev);
  189. break;
  190. }
  191. }
  192. static void snd_caiaq_input_read_io(struct snd_usb_caiaqdev *dev,
  193. unsigned char *buf, unsigned int len)
  194. {
  195. struct input_dev *input_dev = dev->input_dev;
  196. unsigned short *keycode = input_dev->keycode;
  197. int i;
  198. if (!keycode)
  199. return;
  200. if (input_dev->id.product == USB_PID_RIGKONTROL2)
  201. for (i = 0; i < len; i++)
  202. buf[i] = ~buf[i];
  203. for (i = 0; i < input_dev->keycodemax && i < len * 8; i++)
  204. input_report_key(input_dev, keycode[i],
  205. buf[i / 8] & (1 << (i % 8)));
  206. switch (dev->chip.usb_id) {
  207. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  208. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  209. input_report_abs(dev->input_dev, ABS_MISC, 255 - buf[4]);
  210. break;
  211. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_TRAKTORKONTROLX1):
  212. /* rotary encoders */
  213. input_report_abs(dev->input_dev, ABS_X, buf[5] & 0xf);
  214. input_report_abs(dev->input_dev, ABS_Y, buf[5] >> 4);
  215. input_report_abs(dev->input_dev, ABS_Z, buf[6] & 0xf);
  216. input_report_abs(dev->input_dev, ABS_MISC, buf[6] >> 4);
  217. break;
  218. }
  219. input_sync(input_dev);
  220. }
  221. static void snd_usb_caiaq_ep4_reply_dispatch(struct urb *urb)
  222. {
  223. struct snd_usb_caiaqdev *dev = urb->context;
  224. unsigned char *buf = urb->transfer_buffer;
  225. int ret;
  226. if (urb->status || !dev || urb != dev->ep4_in_urb)
  227. return;
  228. if (urb->actual_length < 24)
  229. goto requeue;
  230. switch (dev->chip.usb_id) {
  231. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_TRAKTORKONTROLX1):
  232. if (buf[0] & 0x3)
  233. snd_caiaq_input_read_io(dev, buf + 1, 7);
  234. if (buf[0] & 0x4)
  235. snd_caiaq_input_read_analog(dev, buf + 8, 16);
  236. break;
  237. }
  238. requeue:
  239. dev->ep4_in_urb->actual_length = 0;
  240. ret = usb_submit_urb(dev->ep4_in_urb, GFP_ATOMIC);
  241. if (ret < 0)
  242. log("unable to submit urb. OOM!?\n");
  243. }
  244. static int snd_usb_caiaq_input_open(struct input_dev *idev)
  245. {
  246. struct snd_usb_caiaqdev *dev = input_get_drvdata(idev);
  247. if (!dev)
  248. return -EINVAL;
  249. switch (dev->chip.usb_id) {
  250. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_TRAKTORKONTROLX1):
  251. if (usb_submit_urb(dev->ep4_in_urb, GFP_KERNEL) != 0)
  252. return -EIO;
  253. break;
  254. }
  255. return 0;
  256. }
  257. static void snd_usb_caiaq_input_close(struct input_dev *idev)
  258. {
  259. struct snd_usb_caiaqdev *dev = input_get_drvdata(idev);
  260. if (!dev)
  261. return;
  262. switch (dev->chip.usb_id) {
  263. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_TRAKTORKONTROLX1):
  264. usb_kill_urb(dev->ep4_in_urb);
  265. break;
  266. }
  267. }
  268. void snd_usb_caiaq_input_dispatch(struct snd_usb_caiaqdev *dev,
  269. char *buf,
  270. unsigned int len)
  271. {
  272. if (!dev->input_dev || len < 1)
  273. return;
  274. switch (buf[0]) {
  275. case EP1_CMD_READ_ANALOG:
  276. snd_caiaq_input_read_analog(dev, buf + 1, len - 1);
  277. break;
  278. case EP1_CMD_READ_ERP:
  279. snd_caiaq_input_read_erp(dev, buf + 1, len - 1);
  280. break;
  281. case EP1_CMD_READ_IO:
  282. snd_caiaq_input_read_io(dev, buf + 1, len - 1);
  283. break;
  284. }
  285. }
  286. int snd_usb_caiaq_input_init(struct snd_usb_caiaqdev *dev)
  287. {
  288. struct usb_device *usb_dev = dev->chip.dev;
  289. struct input_dev *input;
  290. int i, ret = 0;
  291. input = input_allocate_device();
  292. if (!input)
  293. return -ENOMEM;
  294. usb_make_path(usb_dev, dev->phys, sizeof(dev->phys));
  295. strlcat(dev->phys, "/input0", sizeof(dev->phys));
  296. input->name = dev->product_name;
  297. input->phys = dev->phys;
  298. usb_to_input_id(usb_dev, &input->id);
  299. input->dev.parent = &usb_dev->dev;
  300. input_set_drvdata(input, dev);
  301. switch (dev->chip.usb_id) {
  302. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL2):
  303. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  304. input->absbit[0] = BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  305. BIT_MASK(ABS_Z);
  306. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_rk2));
  307. memcpy(dev->keycode, keycode_rk2, sizeof(keycode_rk2));
  308. input->keycodemax = ARRAY_SIZE(keycode_rk2);
  309. input_set_abs_params(input, ABS_X, 0, 4096, 0, 10);
  310. input_set_abs_params(input, ABS_Y, 0, 4096, 0, 10);
  311. input_set_abs_params(input, ABS_Z, 0, 4096, 0, 10);
  312. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 0);
  313. break;
  314. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL3):
  315. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  316. input->absbit[0] = BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  317. BIT_MASK(ABS_Z);
  318. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_rk3));
  319. memcpy(dev->keycode, keycode_rk3, sizeof(keycode_rk3));
  320. input->keycodemax = ARRAY_SIZE(keycode_rk3);
  321. input_set_abs_params(input, ABS_X, 0, 1024, 0, 10);
  322. input_set_abs_params(input, ABS_Y, 0, 1024, 0, 10);
  323. input_set_abs_params(input, ABS_Z, 0, 1024, 0, 10);
  324. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 0);
  325. break;
  326. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AK1):
  327. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  328. input->absbit[0] = BIT_MASK(ABS_X);
  329. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_ak1));
  330. memcpy(dev->keycode, keycode_ak1, sizeof(keycode_ak1));
  331. input->keycodemax = ARRAY_SIZE(keycode_ak1);
  332. input_set_abs_params(input, ABS_X, 0, 999, 0, 10);
  333. snd_usb_caiaq_set_auto_msg(dev, 1, 0, 5);
  334. break;
  335. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  336. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  337. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  338. input->absbit[0] = BIT_MASK(ABS_HAT0X) | BIT_MASK(ABS_HAT0Y) |
  339. BIT_MASK(ABS_HAT1X) | BIT_MASK(ABS_HAT1Y) |
  340. BIT_MASK(ABS_HAT2X) | BIT_MASK(ABS_HAT2Y) |
  341. BIT_MASK(ABS_HAT3X) | BIT_MASK(ABS_HAT3Y) |
  342. BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  343. BIT_MASK(ABS_Z);
  344. input->absbit[BIT_WORD(ABS_MISC)] |= BIT_MASK(ABS_MISC);
  345. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_kore));
  346. memcpy(dev->keycode, keycode_kore, sizeof(keycode_kore));
  347. input->keycodemax = ARRAY_SIZE(keycode_kore);
  348. input_set_abs_params(input, ABS_HAT0X, 0, 999, 0, 10);
  349. input_set_abs_params(input, ABS_HAT0Y, 0, 999, 0, 10);
  350. input_set_abs_params(input, ABS_HAT1X, 0, 999, 0, 10);
  351. input_set_abs_params(input, ABS_HAT1Y, 0, 999, 0, 10);
  352. input_set_abs_params(input, ABS_HAT2X, 0, 999, 0, 10);
  353. input_set_abs_params(input, ABS_HAT2Y, 0, 999, 0, 10);
  354. input_set_abs_params(input, ABS_HAT3X, 0, 999, 0, 10);
  355. input_set_abs_params(input, ABS_HAT3Y, 0, 999, 0, 10);
  356. input_set_abs_params(input, ABS_X, 0, 4096, 0, 10);
  357. input_set_abs_params(input, ABS_Y, 0, 4096, 0, 10);
  358. input_set_abs_params(input, ABS_Z, 0, 4096, 0, 10);
  359. input_set_abs_params(input, ABS_MISC, 0, 255, 0, 1);
  360. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 5);
  361. break;
  362. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_TRAKTORKONTROLX1):
  363. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  364. input->absbit[0] = BIT_MASK(ABS_HAT0X) | BIT_MASK(ABS_HAT0Y) |
  365. BIT_MASK(ABS_HAT1X) | BIT_MASK(ABS_HAT1Y) |
  366. BIT_MASK(ABS_HAT2X) | BIT_MASK(ABS_HAT2Y) |
  367. BIT_MASK(ABS_HAT3X) | BIT_MASK(ABS_HAT3Y) |
  368. BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  369. BIT_MASK(ABS_Z);
  370. input->absbit[BIT_WORD(ABS_MISC)] |= BIT_MASK(ABS_MISC);
  371. BUILD_BUG_ON(sizeof(dev->keycode) < KONTROLX1_INPUTS);
  372. for (i = 0; i < KONTROLX1_INPUTS; i++)
  373. dev->keycode[i] = BTN_MISC + i;
  374. input->keycodemax = KONTROLX1_INPUTS;
  375. /* analog potentiometers */
  376. input_set_abs_params(input, ABS_HAT0X, 0, 4096, 0, 10);
  377. input_set_abs_params(input, ABS_HAT0Y, 0, 4096, 0, 10);
  378. input_set_abs_params(input, ABS_HAT1X, 0, 4096, 0, 10);
  379. input_set_abs_params(input, ABS_HAT1Y, 0, 4096, 0, 10);
  380. input_set_abs_params(input, ABS_HAT2X, 0, 4096, 0, 10);
  381. input_set_abs_params(input, ABS_HAT2Y, 0, 4096, 0, 10);
  382. input_set_abs_params(input, ABS_HAT3X, 0, 4096, 0, 10);
  383. input_set_abs_params(input, ABS_HAT3Y, 0, 4096, 0, 10);
  384. /* rotary encoders */
  385. input_set_abs_params(input, ABS_X, 0, 0xf, 0, 1);
  386. input_set_abs_params(input, ABS_Y, 0, 0xf, 0, 1);
  387. input_set_abs_params(input, ABS_Z, 0, 0xf, 0, 1);
  388. input_set_abs_params(input, ABS_MISC, 0, 0xf, 0, 1);
  389. dev->ep4_in_urb = usb_alloc_urb(0, GFP_KERNEL);
  390. if (!dev->ep4_in_urb) {
  391. ret = -ENOMEM;
  392. goto exit_free_idev;
  393. }
  394. usb_fill_bulk_urb(dev->ep4_in_urb, usb_dev,
  395. usb_rcvbulkpipe(usb_dev, 0x4),
  396. dev->ep4_in_buf, EP4_BUFSIZE,
  397. snd_usb_caiaq_ep4_reply_dispatch, dev);
  398. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 5);
  399. break;
  400. default:
  401. /* no input methods supported on this device */
  402. goto exit_free_idev;
  403. }
  404. input->open = snd_usb_caiaq_input_open;
  405. input->close = snd_usb_caiaq_input_close;
  406. input->keycode = dev->keycode;
  407. input->keycodesize = sizeof(unsigned short);
  408. for (i = 0; i < input->keycodemax; i++)
  409. __set_bit(dev->keycode[i], input->keybit);
  410. ret = input_register_device(input);
  411. if (ret < 0)
  412. goto exit_free_idev;
  413. dev->input_dev = input;
  414. return 0;
  415. exit_free_idev:
  416. input_free_device(input);
  417. return ret;
  418. }
  419. void snd_usb_caiaq_input_free(struct snd_usb_caiaqdev *dev)
  420. {
  421. if (!dev || !dev->input_dev)
  422. return;
  423. usb_kill_urb(dev->ep4_in_urb);
  424. usb_free_urb(dev->ep4_in_urb);
  425. dev->ep4_in_urb = NULL;
  426. input_unregister_device(dev->input_dev);
  427. dev->input_dev = NULL;
  428. }