sched.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979
  1. /*
  2. * linux/net/sunrpc/sched.c
  3. *
  4. * Scheduling for synchronous and asynchronous RPC requests.
  5. *
  6. * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
  7. *
  8. * TCP NFS related read + write fixes
  9. * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10. */
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/slab.h>
  15. #include <linux/mempool.h>
  16. #include <linux/smp.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/mutex.h>
  19. #include <linux/sunrpc/clnt.h>
  20. #include "sunrpc.h"
  21. #ifdef RPC_DEBUG
  22. #define RPCDBG_FACILITY RPCDBG_SCHED
  23. #endif
  24. /*
  25. * RPC slabs and memory pools
  26. */
  27. #define RPC_BUFFER_MAXSIZE (2048)
  28. #define RPC_BUFFER_POOLSIZE (8)
  29. #define RPC_TASK_POOLSIZE (8)
  30. static struct kmem_cache *rpc_task_slabp __read_mostly;
  31. static struct kmem_cache *rpc_buffer_slabp __read_mostly;
  32. static mempool_t *rpc_task_mempool __read_mostly;
  33. static mempool_t *rpc_buffer_mempool __read_mostly;
  34. static void rpc_async_schedule(struct work_struct *);
  35. static void rpc_release_task(struct rpc_task *task);
  36. static void __rpc_queue_timer_fn(unsigned long ptr);
  37. /*
  38. * RPC tasks sit here while waiting for conditions to improve.
  39. */
  40. static struct rpc_wait_queue delay_queue;
  41. /*
  42. * rpciod-related stuff
  43. */
  44. struct workqueue_struct *rpciod_workqueue;
  45. /*
  46. * Disable the timer for a given RPC task. Should be called with
  47. * queue->lock and bh_disabled in order to avoid races within
  48. * rpc_run_timer().
  49. */
  50. static void
  51. __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  52. {
  53. if (task->tk_timeout == 0)
  54. return;
  55. dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  56. task->tk_timeout = 0;
  57. list_del(&task->u.tk_wait.timer_list);
  58. if (list_empty(&queue->timer_list.list))
  59. del_timer(&queue->timer_list.timer);
  60. }
  61. static void
  62. rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  63. {
  64. queue->timer_list.expires = expires;
  65. mod_timer(&queue->timer_list.timer, expires);
  66. }
  67. /*
  68. * Set up a timer for the current task.
  69. */
  70. static void
  71. __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  72. {
  73. if (!task->tk_timeout)
  74. return;
  75. dprintk("RPC: %5u setting alarm for %lu ms\n",
  76. task->tk_pid, task->tk_timeout * 1000 / HZ);
  77. task->u.tk_wait.expires = jiffies + task->tk_timeout;
  78. if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  79. rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  80. list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  81. }
  82. /*
  83. * Add new request to a priority queue.
  84. */
  85. static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
  86. {
  87. struct list_head *q;
  88. struct rpc_task *t;
  89. INIT_LIST_HEAD(&task->u.tk_wait.links);
  90. q = &queue->tasks[task->tk_priority];
  91. if (unlikely(task->tk_priority > queue->maxpriority))
  92. q = &queue->tasks[queue->maxpriority];
  93. list_for_each_entry(t, q, u.tk_wait.list) {
  94. if (t->tk_owner == task->tk_owner) {
  95. list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
  96. return;
  97. }
  98. }
  99. list_add_tail(&task->u.tk_wait.list, q);
  100. }
  101. /*
  102. * Add new request to wait queue.
  103. *
  104. * Swapper tasks always get inserted at the head of the queue.
  105. * This should avoid many nasty memory deadlocks and hopefully
  106. * improve overall performance.
  107. * Everyone else gets appended to the queue to ensure proper FIFO behavior.
  108. */
  109. static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  110. {
  111. BUG_ON (RPC_IS_QUEUED(task));
  112. if (RPC_IS_PRIORITY(queue))
  113. __rpc_add_wait_queue_priority(queue, task);
  114. else if (RPC_IS_SWAPPER(task))
  115. list_add(&task->u.tk_wait.list, &queue->tasks[0]);
  116. else
  117. list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
  118. task->tk_waitqueue = queue;
  119. queue->qlen++;
  120. rpc_set_queued(task);
  121. dprintk("RPC: %5u added to queue %p \"%s\"\n",
  122. task->tk_pid, queue, rpc_qname(queue));
  123. }
  124. /*
  125. * Remove request from a priority queue.
  126. */
  127. static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
  128. {
  129. struct rpc_task *t;
  130. if (!list_empty(&task->u.tk_wait.links)) {
  131. t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
  132. list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
  133. list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
  134. }
  135. }
  136. /*
  137. * Remove request from queue.
  138. * Note: must be called with spin lock held.
  139. */
  140. static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  141. {
  142. __rpc_disable_timer(queue, task);
  143. if (RPC_IS_PRIORITY(queue))
  144. __rpc_remove_wait_queue_priority(task);
  145. list_del(&task->u.tk_wait.list);
  146. queue->qlen--;
  147. dprintk("RPC: %5u removed from queue %p \"%s\"\n",
  148. task->tk_pid, queue, rpc_qname(queue));
  149. }
  150. static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
  151. {
  152. queue->priority = priority;
  153. queue->count = 1 << (priority * 2);
  154. }
  155. static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
  156. {
  157. queue->owner = pid;
  158. queue->nr = RPC_BATCH_COUNT;
  159. }
  160. static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
  161. {
  162. rpc_set_waitqueue_priority(queue, queue->maxpriority);
  163. rpc_set_waitqueue_owner(queue, 0);
  164. }
  165. static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
  166. {
  167. int i;
  168. spin_lock_init(&queue->lock);
  169. for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
  170. INIT_LIST_HEAD(&queue->tasks[i]);
  171. queue->maxpriority = nr_queues - 1;
  172. rpc_reset_waitqueue_priority(queue);
  173. queue->qlen = 0;
  174. setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
  175. INIT_LIST_HEAD(&queue->timer_list.list);
  176. #ifdef RPC_DEBUG
  177. queue->name = qname;
  178. #endif
  179. }
  180. void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  181. {
  182. __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
  183. }
  184. EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
  185. void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  186. {
  187. __rpc_init_priority_wait_queue(queue, qname, 1);
  188. }
  189. EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
  190. void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
  191. {
  192. del_timer_sync(&queue->timer_list.timer);
  193. }
  194. EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
  195. static int rpc_wait_bit_killable(void *word)
  196. {
  197. if (fatal_signal_pending(current))
  198. return -ERESTARTSYS;
  199. schedule();
  200. return 0;
  201. }
  202. #ifdef RPC_DEBUG
  203. static void rpc_task_set_debuginfo(struct rpc_task *task)
  204. {
  205. static atomic_t rpc_pid;
  206. task->tk_pid = atomic_inc_return(&rpc_pid);
  207. }
  208. #else
  209. static inline void rpc_task_set_debuginfo(struct rpc_task *task)
  210. {
  211. }
  212. #endif
  213. static void rpc_set_active(struct rpc_task *task)
  214. {
  215. rpc_task_set_debuginfo(task);
  216. set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  217. }
  218. /*
  219. * Mark an RPC call as having completed by clearing the 'active' bit
  220. */
  221. static void rpc_mark_complete_task(struct rpc_task *task)
  222. {
  223. smp_mb__before_clear_bit();
  224. clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  225. smp_mb__after_clear_bit();
  226. wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
  227. }
  228. /*
  229. * Allow callers to wait for completion of an RPC call
  230. */
  231. int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
  232. {
  233. if (action == NULL)
  234. action = rpc_wait_bit_killable;
  235. return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
  236. action, TASK_KILLABLE);
  237. }
  238. EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
  239. /*
  240. * Make an RPC task runnable.
  241. *
  242. * Note: If the task is ASYNC, this must be called with
  243. * the spinlock held to protect the wait queue operation.
  244. */
  245. static void rpc_make_runnable(struct rpc_task *task)
  246. {
  247. rpc_clear_queued(task);
  248. if (rpc_test_and_set_running(task))
  249. return;
  250. if (RPC_IS_ASYNC(task)) {
  251. int status;
  252. INIT_WORK(&task->u.tk_work, rpc_async_schedule);
  253. status = queue_work(rpciod_workqueue, &task->u.tk_work);
  254. if (status < 0) {
  255. printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
  256. task->tk_status = status;
  257. return;
  258. }
  259. } else
  260. wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
  261. }
  262. /*
  263. * Prepare for sleeping on a wait queue.
  264. * By always appending tasks to the list we ensure FIFO behavior.
  265. * NB: An RPC task will only receive interrupt-driven events as long
  266. * as it's on a wait queue.
  267. */
  268. static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  269. rpc_action action)
  270. {
  271. dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
  272. task->tk_pid, rpc_qname(q), jiffies);
  273. __rpc_add_wait_queue(q, task);
  274. BUG_ON(task->tk_callback != NULL);
  275. task->tk_callback = action;
  276. __rpc_add_timer(q, task);
  277. }
  278. void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  279. rpc_action action)
  280. {
  281. /* We shouldn't ever put an inactive task to sleep */
  282. BUG_ON(!RPC_IS_ACTIVATED(task));
  283. /*
  284. * Protect the queue operations.
  285. */
  286. spin_lock_bh(&q->lock);
  287. __rpc_sleep_on(q, task, action);
  288. spin_unlock_bh(&q->lock);
  289. }
  290. EXPORT_SYMBOL_GPL(rpc_sleep_on);
  291. /**
  292. * __rpc_do_wake_up_task - wake up a single rpc_task
  293. * @queue: wait queue
  294. * @task: task to be woken up
  295. *
  296. * Caller must hold queue->lock, and have cleared the task queued flag.
  297. */
  298. static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  299. {
  300. dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
  301. task->tk_pid, jiffies);
  302. /* Has the task been executed yet? If not, we cannot wake it up! */
  303. if (!RPC_IS_ACTIVATED(task)) {
  304. printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
  305. return;
  306. }
  307. __rpc_remove_wait_queue(queue, task);
  308. rpc_make_runnable(task);
  309. dprintk("RPC: __rpc_wake_up_task done\n");
  310. }
  311. /*
  312. * Wake up a queued task while the queue lock is being held
  313. */
  314. static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
  315. {
  316. if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
  317. __rpc_do_wake_up_task(queue, task);
  318. }
  319. /*
  320. * Tests whether rpc queue is empty
  321. */
  322. int rpc_queue_empty(struct rpc_wait_queue *queue)
  323. {
  324. int res;
  325. spin_lock_bh(&queue->lock);
  326. res = queue->qlen;
  327. spin_unlock_bh(&queue->lock);
  328. return (res == 0);
  329. }
  330. EXPORT_SYMBOL_GPL(rpc_queue_empty);
  331. /*
  332. * Wake up a task on a specific queue
  333. */
  334. void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  335. {
  336. spin_lock_bh(&queue->lock);
  337. rpc_wake_up_task_queue_locked(queue, task);
  338. spin_unlock_bh(&queue->lock);
  339. }
  340. EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
  341. /*
  342. * Wake up the next task on a priority queue.
  343. */
  344. static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
  345. {
  346. struct list_head *q;
  347. struct rpc_task *task;
  348. /*
  349. * Service a batch of tasks from a single owner.
  350. */
  351. q = &queue->tasks[queue->priority];
  352. if (!list_empty(q)) {
  353. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  354. if (queue->owner == task->tk_owner) {
  355. if (--queue->nr)
  356. goto out;
  357. list_move_tail(&task->u.tk_wait.list, q);
  358. }
  359. /*
  360. * Check if we need to switch queues.
  361. */
  362. if (--queue->count)
  363. goto new_owner;
  364. }
  365. /*
  366. * Service the next queue.
  367. */
  368. do {
  369. if (q == &queue->tasks[0])
  370. q = &queue->tasks[queue->maxpriority];
  371. else
  372. q = q - 1;
  373. if (!list_empty(q)) {
  374. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  375. goto new_queue;
  376. }
  377. } while (q != &queue->tasks[queue->priority]);
  378. rpc_reset_waitqueue_priority(queue);
  379. return NULL;
  380. new_queue:
  381. rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
  382. new_owner:
  383. rpc_set_waitqueue_owner(queue, task->tk_owner);
  384. out:
  385. rpc_wake_up_task_queue_locked(queue, task);
  386. return task;
  387. }
  388. /*
  389. * Wake up the next task on the wait queue.
  390. */
  391. struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
  392. {
  393. struct rpc_task *task = NULL;
  394. dprintk("RPC: wake_up_next(%p \"%s\")\n",
  395. queue, rpc_qname(queue));
  396. spin_lock_bh(&queue->lock);
  397. if (RPC_IS_PRIORITY(queue))
  398. task = __rpc_wake_up_next_priority(queue);
  399. else {
  400. task_for_first(task, &queue->tasks[0])
  401. rpc_wake_up_task_queue_locked(queue, task);
  402. }
  403. spin_unlock_bh(&queue->lock);
  404. return task;
  405. }
  406. EXPORT_SYMBOL_GPL(rpc_wake_up_next);
  407. /**
  408. * rpc_wake_up - wake up all rpc_tasks
  409. * @queue: rpc_wait_queue on which the tasks are sleeping
  410. *
  411. * Grabs queue->lock
  412. */
  413. void rpc_wake_up(struct rpc_wait_queue *queue)
  414. {
  415. struct rpc_task *task, *next;
  416. struct list_head *head;
  417. spin_lock_bh(&queue->lock);
  418. head = &queue->tasks[queue->maxpriority];
  419. for (;;) {
  420. list_for_each_entry_safe(task, next, head, u.tk_wait.list)
  421. rpc_wake_up_task_queue_locked(queue, task);
  422. if (head == &queue->tasks[0])
  423. break;
  424. head--;
  425. }
  426. spin_unlock_bh(&queue->lock);
  427. }
  428. EXPORT_SYMBOL_GPL(rpc_wake_up);
  429. /**
  430. * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
  431. * @queue: rpc_wait_queue on which the tasks are sleeping
  432. * @status: status value to set
  433. *
  434. * Grabs queue->lock
  435. */
  436. void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
  437. {
  438. struct rpc_task *task, *next;
  439. struct list_head *head;
  440. spin_lock_bh(&queue->lock);
  441. head = &queue->tasks[queue->maxpriority];
  442. for (;;) {
  443. list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
  444. task->tk_status = status;
  445. rpc_wake_up_task_queue_locked(queue, task);
  446. }
  447. if (head == &queue->tasks[0])
  448. break;
  449. head--;
  450. }
  451. spin_unlock_bh(&queue->lock);
  452. }
  453. EXPORT_SYMBOL_GPL(rpc_wake_up_status);
  454. static void __rpc_queue_timer_fn(unsigned long ptr)
  455. {
  456. struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
  457. struct rpc_task *task, *n;
  458. unsigned long expires, now, timeo;
  459. spin_lock(&queue->lock);
  460. expires = now = jiffies;
  461. list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
  462. timeo = task->u.tk_wait.expires;
  463. if (time_after_eq(now, timeo)) {
  464. dprintk("RPC: %5u timeout\n", task->tk_pid);
  465. task->tk_status = -ETIMEDOUT;
  466. rpc_wake_up_task_queue_locked(queue, task);
  467. continue;
  468. }
  469. if (expires == now || time_after(expires, timeo))
  470. expires = timeo;
  471. }
  472. if (!list_empty(&queue->timer_list.list))
  473. rpc_set_queue_timer(queue, expires);
  474. spin_unlock(&queue->lock);
  475. }
  476. static void __rpc_atrun(struct rpc_task *task)
  477. {
  478. task->tk_status = 0;
  479. }
  480. /*
  481. * Run a task at a later time
  482. */
  483. void rpc_delay(struct rpc_task *task, unsigned long delay)
  484. {
  485. task->tk_timeout = delay;
  486. rpc_sleep_on(&delay_queue, task, __rpc_atrun);
  487. }
  488. EXPORT_SYMBOL_GPL(rpc_delay);
  489. /*
  490. * Helper to call task->tk_ops->rpc_call_prepare
  491. */
  492. void rpc_prepare_task(struct rpc_task *task)
  493. {
  494. task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
  495. }
  496. /*
  497. * Helper that calls task->tk_ops->rpc_call_done if it exists
  498. */
  499. void rpc_exit_task(struct rpc_task *task)
  500. {
  501. task->tk_action = NULL;
  502. if (task->tk_ops->rpc_call_done != NULL) {
  503. task->tk_ops->rpc_call_done(task, task->tk_calldata);
  504. if (task->tk_action != NULL) {
  505. WARN_ON(RPC_ASSASSINATED(task));
  506. /* Always release the RPC slot and buffer memory */
  507. xprt_release(task);
  508. }
  509. }
  510. }
  511. void rpc_exit(struct rpc_task *task, int status)
  512. {
  513. task->tk_status = status;
  514. task->tk_action = rpc_exit_task;
  515. if (RPC_IS_QUEUED(task))
  516. rpc_wake_up_queued_task(task->tk_waitqueue, task);
  517. }
  518. EXPORT_SYMBOL_GPL(rpc_exit);
  519. void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
  520. {
  521. if (ops->rpc_release != NULL)
  522. ops->rpc_release(calldata);
  523. }
  524. /*
  525. * This is the RPC `scheduler' (or rather, the finite state machine).
  526. */
  527. static void __rpc_execute(struct rpc_task *task)
  528. {
  529. struct rpc_wait_queue *queue;
  530. int task_is_async = RPC_IS_ASYNC(task);
  531. int status = 0;
  532. dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
  533. task->tk_pid, task->tk_flags);
  534. BUG_ON(RPC_IS_QUEUED(task));
  535. for (;;) {
  536. /*
  537. * Execute any pending callback.
  538. */
  539. if (task->tk_callback) {
  540. void (*save_callback)(struct rpc_task *);
  541. /*
  542. * We set tk_callback to NULL before calling it,
  543. * in case it sets the tk_callback field itself:
  544. */
  545. save_callback = task->tk_callback;
  546. task->tk_callback = NULL;
  547. save_callback(task);
  548. }
  549. /*
  550. * Perform the next FSM step.
  551. * tk_action may be NULL when the task has been killed
  552. * by someone else.
  553. */
  554. if (!RPC_IS_QUEUED(task)) {
  555. if (task->tk_action == NULL)
  556. break;
  557. task->tk_action(task);
  558. }
  559. /*
  560. * Lockless check for whether task is sleeping or not.
  561. */
  562. if (!RPC_IS_QUEUED(task))
  563. continue;
  564. /*
  565. * The queue->lock protects against races with
  566. * rpc_make_runnable().
  567. *
  568. * Note that once we clear RPC_TASK_RUNNING on an asynchronous
  569. * rpc_task, rpc_make_runnable() can assign it to a
  570. * different workqueue. We therefore cannot assume that the
  571. * rpc_task pointer may still be dereferenced.
  572. */
  573. queue = task->tk_waitqueue;
  574. spin_lock_bh(&queue->lock);
  575. if (!RPC_IS_QUEUED(task)) {
  576. spin_unlock_bh(&queue->lock);
  577. continue;
  578. }
  579. rpc_clear_running(task);
  580. spin_unlock_bh(&queue->lock);
  581. if (task_is_async)
  582. return;
  583. /* sync task: sleep here */
  584. dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
  585. status = out_of_line_wait_on_bit(&task->tk_runstate,
  586. RPC_TASK_QUEUED, rpc_wait_bit_killable,
  587. TASK_KILLABLE);
  588. if (status == -ERESTARTSYS) {
  589. /*
  590. * When a sync task receives a signal, it exits with
  591. * -ERESTARTSYS. In order to catch any callbacks that
  592. * clean up after sleeping on some queue, we don't
  593. * break the loop here, but go around once more.
  594. */
  595. dprintk("RPC: %5u got signal\n", task->tk_pid);
  596. task->tk_flags |= RPC_TASK_KILLED;
  597. rpc_exit(task, -ERESTARTSYS);
  598. }
  599. rpc_set_running(task);
  600. dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
  601. }
  602. dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
  603. task->tk_status);
  604. /* Release all resources associated with the task */
  605. rpc_release_task(task);
  606. }
  607. /*
  608. * User-visible entry point to the scheduler.
  609. *
  610. * This may be called recursively if e.g. an async NFS task updates
  611. * the attributes and finds that dirty pages must be flushed.
  612. * NOTE: Upon exit of this function the task is guaranteed to be
  613. * released. In particular note that tk_release() will have
  614. * been called, so your task memory may have been freed.
  615. */
  616. void rpc_execute(struct rpc_task *task)
  617. {
  618. rpc_set_active(task);
  619. rpc_make_runnable(task);
  620. if (!RPC_IS_ASYNC(task))
  621. __rpc_execute(task);
  622. }
  623. static void rpc_async_schedule(struct work_struct *work)
  624. {
  625. __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
  626. }
  627. /**
  628. * rpc_malloc - allocate an RPC buffer
  629. * @task: RPC task that will use this buffer
  630. * @size: requested byte size
  631. *
  632. * To prevent rpciod from hanging, this allocator never sleeps,
  633. * returning NULL if the request cannot be serviced immediately.
  634. * The caller can arrange to sleep in a way that is safe for rpciod.
  635. *
  636. * Most requests are 'small' (under 2KiB) and can be serviced from a
  637. * mempool, ensuring that NFS reads and writes can always proceed,
  638. * and that there is good locality of reference for these buffers.
  639. *
  640. * In order to avoid memory starvation triggering more writebacks of
  641. * NFS requests, we avoid using GFP_KERNEL.
  642. */
  643. void *rpc_malloc(struct rpc_task *task, size_t size)
  644. {
  645. struct rpc_buffer *buf;
  646. gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
  647. size += sizeof(struct rpc_buffer);
  648. if (size <= RPC_BUFFER_MAXSIZE)
  649. buf = mempool_alloc(rpc_buffer_mempool, gfp);
  650. else
  651. buf = kmalloc(size, gfp);
  652. if (!buf)
  653. return NULL;
  654. buf->len = size;
  655. dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
  656. task->tk_pid, size, buf);
  657. return &buf->data;
  658. }
  659. EXPORT_SYMBOL_GPL(rpc_malloc);
  660. /**
  661. * rpc_free - free buffer allocated via rpc_malloc
  662. * @buffer: buffer to free
  663. *
  664. */
  665. void rpc_free(void *buffer)
  666. {
  667. size_t size;
  668. struct rpc_buffer *buf;
  669. if (!buffer)
  670. return;
  671. buf = container_of(buffer, struct rpc_buffer, data);
  672. size = buf->len;
  673. dprintk("RPC: freeing buffer of size %zu at %p\n",
  674. size, buf);
  675. if (size <= RPC_BUFFER_MAXSIZE)
  676. mempool_free(buf, rpc_buffer_mempool);
  677. else
  678. kfree(buf);
  679. }
  680. EXPORT_SYMBOL_GPL(rpc_free);
  681. /*
  682. * Creation and deletion of RPC task structures
  683. */
  684. static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
  685. {
  686. memset(task, 0, sizeof(*task));
  687. atomic_set(&task->tk_count, 1);
  688. task->tk_flags = task_setup_data->flags;
  689. task->tk_ops = task_setup_data->callback_ops;
  690. task->tk_calldata = task_setup_data->callback_data;
  691. INIT_LIST_HEAD(&task->tk_task);
  692. /* Initialize retry counters */
  693. task->tk_garb_retry = 2;
  694. task->tk_cred_retry = 2;
  695. task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
  696. task->tk_owner = current->tgid;
  697. /* Initialize workqueue for async tasks */
  698. task->tk_workqueue = task_setup_data->workqueue;
  699. if (task->tk_ops->rpc_call_prepare != NULL)
  700. task->tk_action = rpc_prepare_task;
  701. /* starting timestamp */
  702. task->tk_start = ktime_get();
  703. dprintk("RPC: new task initialized, procpid %u\n",
  704. task_pid_nr(current));
  705. }
  706. static struct rpc_task *
  707. rpc_alloc_task(void)
  708. {
  709. return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
  710. }
  711. /*
  712. * Create a new task for the specified client.
  713. */
  714. struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
  715. {
  716. struct rpc_task *task = setup_data->task;
  717. unsigned short flags = 0;
  718. if (task == NULL) {
  719. task = rpc_alloc_task();
  720. if (task == NULL) {
  721. rpc_release_calldata(setup_data->callback_ops,
  722. setup_data->callback_data);
  723. return ERR_PTR(-ENOMEM);
  724. }
  725. flags = RPC_TASK_DYNAMIC;
  726. }
  727. rpc_init_task(task, setup_data);
  728. if (task->tk_status < 0) {
  729. int err = task->tk_status;
  730. rpc_put_task(task);
  731. return ERR_PTR(err);
  732. }
  733. task->tk_flags |= flags;
  734. dprintk("RPC: allocated task %p\n", task);
  735. return task;
  736. }
  737. static void rpc_free_task(struct rpc_task *task)
  738. {
  739. const struct rpc_call_ops *tk_ops = task->tk_ops;
  740. void *calldata = task->tk_calldata;
  741. if (task->tk_flags & RPC_TASK_DYNAMIC) {
  742. dprintk("RPC: %5u freeing task\n", task->tk_pid);
  743. mempool_free(task, rpc_task_mempool);
  744. }
  745. rpc_release_calldata(tk_ops, calldata);
  746. }
  747. static void rpc_async_release(struct work_struct *work)
  748. {
  749. rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
  750. }
  751. void rpc_put_task(struct rpc_task *task)
  752. {
  753. if (!atomic_dec_and_test(&task->tk_count))
  754. return;
  755. /* Release resources */
  756. if (task->tk_rqstp)
  757. xprt_release(task);
  758. if (task->tk_msg.rpc_cred)
  759. put_rpccred(task->tk_msg.rpc_cred);
  760. rpc_task_release_client(task);
  761. if (task->tk_workqueue != NULL) {
  762. INIT_WORK(&task->u.tk_work, rpc_async_release);
  763. queue_work(task->tk_workqueue, &task->u.tk_work);
  764. } else
  765. rpc_free_task(task);
  766. }
  767. EXPORT_SYMBOL_GPL(rpc_put_task);
  768. static void rpc_release_task(struct rpc_task *task)
  769. {
  770. dprintk("RPC: %5u release task\n", task->tk_pid);
  771. BUG_ON (RPC_IS_QUEUED(task));
  772. /* Wake up anyone who is waiting for task completion */
  773. rpc_mark_complete_task(task);
  774. rpc_put_task(task);
  775. }
  776. int rpciod_up(void)
  777. {
  778. return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
  779. }
  780. void rpciod_down(void)
  781. {
  782. module_put(THIS_MODULE);
  783. }
  784. /*
  785. * Start up the rpciod workqueue.
  786. */
  787. static int rpciod_start(void)
  788. {
  789. struct workqueue_struct *wq;
  790. /*
  791. * Create the rpciod thread and wait for it to start.
  792. */
  793. dprintk("RPC: creating workqueue rpciod\n");
  794. wq = create_workqueue("rpciod");
  795. rpciod_workqueue = wq;
  796. return rpciod_workqueue != NULL;
  797. }
  798. static void rpciod_stop(void)
  799. {
  800. struct workqueue_struct *wq = NULL;
  801. if (rpciod_workqueue == NULL)
  802. return;
  803. dprintk("RPC: destroying workqueue rpciod\n");
  804. wq = rpciod_workqueue;
  805. rpciod_workqueue = NULL;
  806. destroy_workqueue(wq);
  807. }
  808. void
  809. rpc_destroy_mempool(void)
  810. {
  811. rpciod_stop();
  812. if (rpc_buffer_mempool)
  813. mempool_destroy(rpc_buffer_mempool);
  814. if (rpc_task_mempool)
  815. mempool_destroy(rpc_task_mempool);
  816. if (rpc_task_slabp)
  817. kmem_cache_destroy(rpc_task_slabp);
  818. if (rpc_buffer_slabp)
  819. kmem_cache_destroy(rpc_buffer_slabp);
  820. rpc_destroy_wait_queue(&delay_queue);
  821. }
  822. int
  823. rpc_init_mempool(void)
  824. {
  825. /*
  826. * The following is not strictly a mempool initialisation,
  827. * but there is no harm in doing it here
  828. */
  829. rpc_init_wait_queue(&delay_queue, "delayq");
  830. if (!rpciod_start())
  831. goto err_nomem;
  832. rpc_task_slabp = kmem_cache_create("rpc_tasks",
  833. sizeof(struct rpc_task),
  834. 0, SLAB_HWCACHE_ALIGN,
  835. NULL);
  836. if (!rpc_task_slabp)
  837. goto err_nomem;
  838. rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
  839. RPC_BUFFER_MAXSIZE,
  840. 0, SLAB_HWCACHE_ALIGN,
  841. NULL);
  842. if (!rpc_buffer_slabp)
  843. goto err_nomem;
  844. rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
  845. rpc_task_slabp);
  846. if (!rpc_task_mempool)
  847. goto err_nomem;
  848. rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
  849. rpc_buffer_slabp);
  850. if (!rpc_buffer_mempool)
  851. goto err_nomem;
  852. return 0;
  853. err_nomem:
  854. rpc_destroy_mempool();
  855. return -ENOMEM;
  856. }