sch_hfsc.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749
  1. /*
  2. * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version 2
  7. * of the License, or (at your option) any later version.
  8. *
  9. * 2003-10-17 - Ported from altq
  10. */
  11. /*
  12. * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
  13. *
  14. * Permission to use, copy, modify, and distribute this software and
  15. * its documentation is hereby granted (including for commercial or
  16. * for-profit use), provided that both the copyright notice and this
  17. * permission notice appear in all copies of the software, derivative
  18. * works, or modified versions, and any portions thereof.
  19. *
  20. * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
  21. * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
  22. * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
  23. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  24. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  25. * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
  26. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  27. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  28. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  29. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  30. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  32. * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  33. * DAMAGE.
  34. *
  35. * Carnegie Mellon encourages (but does not require) users of this
  36. * software to return any improvements or extensions that they make,
  37. * and to grant Carnegie Mellon the rights to redistribute these
  38. * changes without encumbrance.
  39. */
  40. /*
  41. * H-FSC is described in Proceedings of SIGCOMM'97,
  42. * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
  43. * Real-Time and Priority Service"
  44. * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
  45. *
  46. * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
  47. * when a class has an upperlimit, the fit-time is computed from the
  48. * upperlimit service curve. the link-sharing scheduler does not schedule
  49. * a class whose fit-time exceeds the current time.
  50. */
  51. #include <linux/kernel.h>
  52. #include <linux/module.h>
  53. #include <linux/types.h>
  54. #include <linux/errno.h>
  55. #include <linux/compiler.h>
  56. #include <linux/spinlock.h>
  57. #include <linux/skbuff.h>
  58. #include <linux/string.h>
  59. #include <linux/slab.h>
  60. #include <linux/list.h>
  61. #include <linux/rbtree.h>
  62. #include <linux/init.h>
  63. #include <linux/rtnetlink.h>
  64. #include <linux/pkt_sched.h>
  65. #include <net/netlink.h>
  66. #include <net/pkt_sched.h>
  67. #include <net/pkt_cls.h>
  68. #include <asm/div64.h>
  69. /*
  70. * kernel internal service curve representation:
  71. * coordinates are given by 64 bit unsigned integers.
  72. * x-axis: unit is clock count.
  73. * y-axis: unit is byte.
  74. *
  75. * The service curve parameters are converted to the internal
  76. * representation. The slope values are scaled to avoid overflow.
  77. * the inverse slope values as well as the y-projection of the 1st
  78. * segment are kept in order to avoid 64-bit divide operations
  79. * that are expensive on 32-bit architectures.
  80. */
  81. struct internal_sc
  82. {
  83. u64 sm1; /* scaled slope of the 1st segment */
  84. u64 ism1; /* scaled inverse-slope of the 1st segment */
  85. u64 dx; /* the x-projection of the 1st segment */
  86. u64 dy; /* the y-projection of the 1st segment */
  87. u64 sm2; /* scaled slope of the 2nd segment */
  88. u64 ism2; /* scaled inverse-slope of the 2nd segment */
  89. };
  90. /* runtime service curve */
  91. struct runtime_sc
  92. {
  93. u64 x; /* current starting position on x-axis */
  94. u64 y; /* current starting position on y-axis */
  95. u64 sm1; /* scaled slope of the 1st segment */
  96. u64 ism1; /* scaled inverse-slope of the 1st segment */
  97. u64 dx; /* the x-projection of the 1st segment */
  98. u64 dy; /* the y-projection of the 1st segment */
  99. u64 sm2; /* scaled slope of the 2nd segment */
  100. u64 ism2; /* scaled inverse-slope of the 2nd segment */
  101. };
  102. enum hfsc_class_flags
  103. {
  104. HFSC_RSC = 0x1,
  105. HFSC_FSC = 0x2,
  106. HFSC_USC = 0x4
  107. };
  108. struct hfsc_class
  109. {
  110. struct Qdisc_class_common cl_common;
  111. unsigned int refcnt; /* usage count */
  112. struct gnet_stats_basic_packed bstats;
  113. struct gnet_stats_queue qstats;
  114. struct gnet_stats_rate_est rate_est;
  115. unsigned int level; /* class level in hierarchy */
  116. struct tcf_proto *filter_list; /* filter list */
  117. unsigned int filter_cnt; /* filter count */
  118. struct hfsc_sched *sched; /* scheduler data */
  119. struct hfsc_class *cl_parent; /* parent class */
  120. struct list_head siblings; /* sibling classes */
  121. struct list_head children; /* child classes */
  122. struct Qdisc *qdisc; /* leaf qdisc */
  123. struct rb_node el_node; /* qdisc's eligible tree member */
  124. struct rb_root vt_tree; /* active children sorted by cl_vt */
  125. struct rb_node vt_node; /* parent's vt_tree member */
  126. struct rb_root cf_tree; /* active children sorted by cl_f */
  127. struct rb_node cf_node; /* parent's cf_heap member */
  128. struct list_head dlist; /* drop list member */
  129. u64 cl_total; /* total work in bytes */
  130. u64 cl_cumul; /* cumulative work in bytes done by
  131. real-time criteria */
  132. u64 cl_d; /* deadline*/
  133. u64 cl_e; /* eligible time */
  134. u64 cl_vt; /* virtual time */
  135. u64 cl_f; /* time when this class will fit for
  136. link-sharing, max(myf, cfmin) */
  137. u64 cl_myf; /* my fit-time (calculated from this
  138. class's own upperlimit curve) */
  139. u64 cl_myfadj; /* my fit-time adjustment (to cancel
  140. history dependence) */
  141. u64 cl_cfmin; /* earliest children's fit-time (used
  142. with cl_myf to obtain cl_f) */
  143. u64 cl_cvtmin; /* minimal virtual time among the
  144. children fit for link-sharing
  145. (monotonic within a period) */
  146. u64 cl_vtadj; /* intra-period cumulative vt
  147. adjustment */
  148. u64 cl_vtoff; /* inter-period cumulative vt offset */
  149. u64 cl_cvtmax; /* max child's vt in the last period */
  150. u64 cl_cvtoff; /* cumulative cvtmax of all periods */
  151. u64 cl_pcvtoff; /* parent's cvtoff at initialization
  152. time */
  153. struct internal_sc cl_rsc; /* internal real-time service curve */
  154. struct internal_sc cl_fsc; /* internal fair service curve */
  155. struct internal_sc cl_usc; /* internal upperlimit service curve */
  156. struct runtime_sc cl_deadline; /* deadline curve */
  157. struct runtime_sc cl_eligible; /* eligible curve */
  158. struct runtime_sc cl_virtual; /* virtual curve */
  159. struct runtime_sc cl_ulimit; /* upperlimit curve */
  160. unsigned long cl_flags; /* which curves are valid */
  161. unsigned long cl_vtperiod; /* vt period sequence number */
  162. unsigned long cl_parentperiod;/* parent's vt period sequence number*/
  163. unsigned long cl_nactive; /* number of active children */
  164. };
  165. struct hfsc_sched
  166. {
  167. u16 defcls; /* default class id */
  168. struct hfsc_class root; /* root class */
  169. struct Qdisc_class_hash clhash; /* class hash */
  170. struct rb_root eligible; /* eligible tree */
  171. struct list_head droplist; /* active leaf class list (for
  172. dropping) */
  173. struct qdisc_watchdog watchdog; /* watchdog timer */
  174. };
  175. #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
  176. /*
  177. * eligible tree holds backlogged classes being sorted by their eligible times.
  178. * there is one eligible tree per hfsc instance.
  179. */
  180. static void
  181. eltree_insert(struct hfsc_class *cl)
  182. {
  183. struct rb_node **p = &cl->sched->eligible.rb_node;
  184. struct rb_node *parent = NULL;
  185. struct hfsc_class *cl1;
  186. while (*p != NULL) {
  187. parent = *p;
  188. cl1 = rb_entry(parent, struct hfsc_class, el_node);
  189. if (cl->cl_e >= cl1->cl_e)
  190. p = &parent->rb_right;
  191. else
  192. p = &parent->rb_left;
  193. }
  194. rb_link_node(&cl->el_node, parent, p);
  195. rb_insert_color(&cl->el_node, &cl->sched->eligible);
  196. }
  197. static inline void
  198. eltree_remove(struct hfsc_class *cl)
  199. {
  200. rb_erase(&cl->el_node, &cl->sched->eligible);
  201. }
  202. static inline void
  203. eltree_update(struct hfsc_class *cl)
  204. {
  205. eltree_remove(cl);
  206. eltree_insert(cl);
  207. }
  208. /* find the class with the minimum deadline among the eligible classes */
  209. static inline struct hfsc_class *
  210. eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
  211. {
  212. struct hfsc_class *p, *cl = NULL;
  213. struct rb_node *n;
  214. for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
  215. p = rb_entry(n, struct hfsc_class, el_node);
  216. if (p->cl_e > cur_time)
  217. break;
  218. if (cl == NULL || p->cl_d < cl->cl_d)
  219. cl = p;
  220. }
  221. return cl;
  222. }
  223. /* find the class with minimum eligible time among the eligible classes */
  224. static inline struct hfsc_class *
  225. eltree_get_minel(struct hfsc_sched *q)
  226. {
  227. struct rb_node *n;
  228. n = rb_first(&q->eligible);
  229. if (n == NULL)
  230. return NULL;
  231. return rb_entry(n, struct hfsc_class, el_node);
  232. }
  233. /*
  234. * vttree holds holds backlogged child classes being sorted by their virtual
  235. * time. each intermediate class has one vttree.
  236. */
  237. static void
  238. vttree_insert(struct hfsc_class *cl)
  239. {
  240. struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
  241. struct rb_node *parent = NULL;
  242. struct hfsc_class *cl1;
  243. while (*p != NULL) {
  244. parent = *p;
  245. cl1 = rb_entry(parent, struct hfsc_class, vt_node);
  246. if (cl->cl_vt >= cl1->cl_vt)
  247. p = &parent->rb_right;
  248. else
  249. p = &parent->rb_left;
  250. }
  251. rb_link_node(&cl->vt_node, parent, p);
  252. rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
  253. }
  254. static inline void
  255. vttree_remove(struct hfsc_class *cl)
  256. {
  257. rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
  258. }
  259. static inline void
  260. vttree_update(struct hfsc_class *cl)
  261. {
  262. vttree_remove(cl);
  263. vttree_insert(cl);
  264. }
  265. static inline struct hfsc_class *
  266. vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
  267. {
  268. struct hfsc_class *p;
  269. struct rb_node *n;
  270. for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
  271. p = rb_entry(n, struct hfsc_class, vt_node);
  272. if (p->cl_f <= cur_time)
  273. return p;
  274. }
  275. return NULL;
  276. }
  277. /*
  278. * get the leaf class with the minimum vt in the hierarchy
  279. */
  280. static struct hfsc_class *
  281. vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
  282. {
  283. /* if root-class's cfmin is bigger than cur_time nothing to do */
  284. if (cl->cl_cfmin > cur_time)
  285. return NULL;
  286. while (cl->level > 0) {
  287. cl = vttree_firstfit(cl, cur_time);
  288. if (cl == NULL)
  289. return NULL;
  290. /*
  291. * update parent's cl_cvtmin.
  292. */
  293. if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
  294. cl->cl_parent->cl_cvtmin = cl->cl_vt;
  295. }
  296. return cl;
  297. }
  298. static void
  299. cftree_insert(struct hfsc_class *cl)
  300. {
  301. struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
  302. struct rb_node *parent = NULL;
  303. struct hfsc_class *cl1;
  304. while (*p != NULL) {
  305. parent = *p;
  306. cl1 = rb_entry(parent, struct hfsc_class, cf_node);
  307. if (cl->cl_f >= cl1->cl_f)
  308. p = &parent->rb_right;
  309. else
  310. p = &parent->rb_left;
  311. }
  312. rb_link_node(&cl->cf_node, parent, p);
  313. rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
  314. }
  315. static inline void
  316. cftree_remove(struct hfsc_class *cl)
  317. {
  318. rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
  319. }
  320. static inline void
  321. cftree_update(struct hfsc_class *cl)
  322. {
  323. cftree_remove(cl);
  324. cftree_insert(cl);
  325. }
  326. /*
  327. * service curve support functions
  328. *
  329. * external service curve parameters
  330. * m: bps
  331. * d: us
  332. * internal service curve parameters
  333. * sm: (bytes/psched_us) << SM_SHIFT
  334. * ism: (psched_us/byte) << ISM_SHIFT
  335. * dx: psched_us
  336. *
  337. * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
  338. *
  339. * sm and ism are scaled in order to keep effective digits.
  340. * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
  341. * digits in decimal using the following table.
  342. *
  343. * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
  344. * ------------+-------------------------------------------------------
  345. * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
  346. *
  347. * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
  348. *
  349. * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
  350. */
  351. #define SM_SHIFT (30 - PSCHED_SHIFT)
  352. #define ISM_SHIFT (8 + PSCHED_SHIFT)
  353. #define SM_MASK ((1ULL << SM_SHIFT) - 1)
  354. #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
  355. static inline u64
  356. seg_x2y(u64 x, u64 sm)
  357. {
  358. u64 y;
  359. /*
  360. * compute
  361. * y = x * sm >> SM_SHIFT
  362. * but divide it for the upper and lower bits to avoid overflow
  363. */
  364. y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
  365. return y;
  366. }
  367. static inline u64
  368. seg_y2x(u64 y, u64 ism)
  369. {
  370. u64 x;
  371. if (y == 0)
  372. x = 0;
  373. else if (ism == HT_INFINITY)
  374. x = HT_INFINITY;
  375. else {
  376. x = (y >> ISM_SHIFT) * ism
  377. + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
  378. }
  379. return x;
  380. }
  381. /* Convert m (bps) into sm (bytes/psched us) */
  382. static u64
  383. m2sm(u32 m)
  384. {
  385. u64 sm;
  386. sm = ((u64)m << SM_SHIFT);
  387. sm += PSCHED_TICKS_PER_SEC - 1;
  388. do_div(sm, PSCHED_TICKS_PER_SEC);
  389. return sm;
  390. }
  391. /* convert m (bps) into ism (psched us/byte) */
  392. static u64
  393. m2ism(u32 m)
  394. {
  395. u64 ism;
  396. if (m == 0)
  397. ism = HT_INFINITY;
  398. else {
  399. ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
  400. ism += m - 1;
  401. do_div(ism, m);
  402. }
  403. return ism;
  404. }
  405. /* convert d (us) into dx (psched us) */
  406. static u64
  407. d2dx(u32 d)
  408. {
  409. u64 dx;
  410. dx = ((u64)d * PSCHED_TICKS_PER_SEC);
  411. dx += USEC_PER_SEC - 1;
  412. do_div(dx, USEC_PER_SEC);
  413. return dx;
  414. }
  415. /* convert sm (bytes/psched us) into m (bps) */
  416. static u32
  417. sm2m(u64 sm)
  418. {
  419. u64 m;
  420. m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
  421. return (u32)m;
  422. }
  423. /* convert dx (psched us) into d (us) */
  424. static u32
  425. dx2d(u64 dx)
  426. {
  427. u64 d;
  428. d = dx * USEC_PER_SEC;
  429. do_div(d, PSCHED_TICKS_PER_SEC);
  430. return (u32)d;
  431. }
  432. static void
  433. sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
  434. {
  435. isc->sm1 = m2sm(sc->m1);
  436. isc->ism1 = m2ism(sc->m1);
  437. isc->dx = d2dx(sc->d);
  438. isc->dy = seg_x2y(isc->dx, isc->sm1);
  439. isc->sm2 = m2sm(sc->m2);
  440. isc->ism2 = m2ism(sc->m2);
  441. }
  442. /*
  443. * initialize the runtime service curve with the given internal
  444. * service curve starting at (x, y).
  445. */
  446. static void
  447. rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
  448. {
  449. rtsc->x = x;
  450. rtsc->y = y;
  451. rtsc->sm1 = isc->sm1;
  452. rtsc->ism1 = isc->ism1;
  453. rtsc->dx = isc->dx;
  454. rtsc->dy = isc->dy;
  455. rtsc->sm2 = isc->sm2;
  456. rtsc->ism2 = isc->ism2;
  457. }
  458. /*
  459. * calculate the y-projection of the runtime service curve by the
  460. * given x-projection value
  461. */
  462. static u64
  463. rtsc_y2x(struct runtime_sc *rtsc, u64 y)
  464. {
  465. u64 x;
  466. if (y < rtsc->y)
  467. x = rtsc->x;
  468. else if (y <= rtsc->y + rtsc->dy) {
  469. /* x belongs to the 1st segment */
  470. if (rtsc->dy == 0)
  471. x = rtsc->x + rtsc->dx;
  472. else
  473. x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
  474. } else {
  475. /* x belongs to the 2nd segment */
  476. x = rtsc->x + rtsc->dx
  477. + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
  478. }
  479. return x;
  480. }
  481. static u64
  482. rtsc_x2y(struct runtime_sc *rtsc, u64 x)
  483. {
  484. u64 y;
  485. if (x <= rtsc->x)
  486. y = rtsc->y;
  487. else if (x <= rtsc->x + rtsc->dx)
  488. /* y belongs to the 1st segment */
  489. y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
  490. else
  491. /* y belongs to the 2nd segment */
  492. y = rtsc->y + rtsc->dy
  493. + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
  494. return y;
  495. }
  496. /*
  497. * update the runtime service curve by taking the minimum of the current
  498. * runtime service curve and the service curve starting at (x, y).
  499. */
  500. static void
  501. rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
  502. {
  503. u64 y1, y2, dx, dy;
  504. u32 dsm;
  505. if (isc->sm1 <= isc->sm2) {
  506. /* service curve is convex */
  507. y1 = rtsc_x2y(rtsc, x);
  508. if (y1 < y)
  509. /* the current rtsc is smaller */
  510. return;
  511. rtsc->x = x;
  512. rtsc->y = y;
  513. return;
  514. }
  515. /*
  516. * service curve is concave
  517. * compute the two y values of the current rtsc
  518. * y1: at x
  519. * y2: at (x + dx)
  520. */
  521. y1 = rtsc_x2y(rtsc, x);
  522. if (y1 <= y) {
  523. /* rtsc is below isc, no change to rtsc */
  524. return;
  525. }
  526. y2 = rtsc_x2y(rtsc, x + isc->dx);
  527. if (y2 >= y + isc->dy) {
  528. /* rtsc is above isc, replace rtsc by isc */
  529. rtsc->x = x;
  530. rtsc->y = y;
  531. rtsc->dx = isc->dx;
  532. rtsc->dy = isc->dy;
  533. return;
  534. }
  535. /*
  536. * the two curves intersect
  537. * compute the offsets (dx, dy) using the reverse
  538. * function of seg_x2y()
  539. * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
  540. */
  541. dx = (y1 - y) << SM_SHIFT;
  542. dsm = isc->sm1 - isc->sm2;
  543. do_div(dx, dsm);
  544. /*
  545. * check if (x, y1) belongs to the 1st segment of rtsc.
  546. * if so, add the offset.
  547. */
  548. if (rtsc->x + rtsc->dx > x)
  549. dx += rtsc->x + rtsc->dx - x;
  550. dy = seg_x2y(dx, isc->sm1);
  551. rtsc->x = x;
  552. rtsc->y = y;
  553. rtsc->dx = dx;
  554. rtsc->dy = dy;
  555. }
  556. static void
  557. init_ed(struct hfsc_class *cl, unsigned int next_len)
  558. {
  559. u64 cur_time = psched_get_time();
  560. /* update the deadline curve */
  561. rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
  562. /*
  563. * update the eligible curve.
  564. * for concave, it is equal to the deadline curve.
  565. * for convex, it is a linear curve with slope m2.
  566. */
  567. cl->cl_eligible = cl->cl_deadline;
  568. if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
  569. cl->cl_eligible.dx = 0;
  570. cl->cl_eligible.dy = 0;
  571. }
  572. /* compute e and d */
  573. cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
  574. cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
  575. eltree_insert(cl);
  576. }
  577. static void
  578. update_ed(struct hfsc_class *cl, unsigned int next_len)
  579. {
  580. cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
  581. cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
  582. eltree_update(cl);
  583. }
  584. static inline void
  585. update_d(struct hfsc_class *cl, unsigned int next_len)
  586. {
  587. cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
  588. }
  589. static inline void
  590. update_cfmin(struct hfsc_class *cl)
  591. {
  592. struct rb_node *n = rb_first(&cl->cf_tree);
  593. struct hfsc_class *p;
  594. if (n == NULL) {
  595. cl->cl_cfmin = 0;
  596. return;
  597. }
  598. p = rb_entry(n, struct hfsc_class, cf_node);
  599. cl->cl_cfmin = p->cl_f;
  600. }
  601. static void
  602. init_vf(struct hfsc_class *cl, unsigned int len)
  603. {
  604. struct hfsc_class *max_cl;
  605. struct rb_node *n;
  606. u64 vt, f, cur_time;
  607. int go_active;
  608. cur_time = 0;
  609. go_active = 1;
  610. for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
  611. if (go_active && cl->cl_nactive++ == 0)
  612. go_active = 1;
  613. else
  614. go_active = 0;
  615. if (go_active) {
  616. n = rb_last(&cl->cl_parent->vt_tree);
  617. if (n != NULL) {
  618. max_cl = rb_entry(n, struct hfsc_class,vt_node);
  619. /*
  620. * set vt to the average of the min and max
  621. * classes. if the parent's period didn't
  622. * change, don't decrease vt of the class.
  623. */
  624. vt = max_cl->cl_vt;
  625. if (cl->cl_parent->cl_cvtmin != 0)
  626. vt = (cl->cl_parent->cl_cvtmin + vt)/2;
  627. if (cl->cl_parent->cl_vtperiod !=
  628. cl->cl_parentperiod || vt > cl->cl_vt)
  629. cl->cl_vt = vt;
  630. } else {
  631. /*
  632. * first child for a new parent backlog period.
  633. * add parent's cvtmax to cvtoff to make a new
  634. * vt (vtoff + vt) larger than the vt in the
  635. * last period for all children.
  636. */
  637. vt = cl->cl_parent->cl_cvtmax;
  638. cl->cl_parent->cl_cvtoff += vt;
  639. cl->cl_parent->cl_cvtmax = 0;
  640. cl->cl_parent->cl_cvtmin = 0;
  641. cl->cl_vt = 0;
  642. }
  643. cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
  644. cl->cl_pcvtoff;
  645. /* update the virtual curve */
  646. vt = cl->cl_vt + cl->cl_vtoff;
  647. rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
  648. cl->cl_total);
  649. if (cl->cl_virtual.x == vt) {
  650. cl->cl_virtual.x -= cl->cl_vtoff;
  651. cl->cl_vtoff = 0;
  652. }
  653. cl->cl_vtadj = 0;
  654. cl->cl_vtperiod++; /* increment vt period */
  655. cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
  656. if (cl->cl_parent->cl_nactive == 0)
  657. cl->cl_parentperiod++;
  658. cl->cl_f = 0;
  659. vttree_insert(cl);
  660. cftree_insert(cl);
  661. if (cl->cl_flags & HFSC_USC) {
  662. /* class has upper limit curve */
  663. if (cur_time == 0)
  664. cur_time = psched_get_time();
  665. /* update the ulimit curve */
  666. rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
  667. cl->cl_total);
  668. /* compute myf */
  669. cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
  670. cl->cl_total);
  671. cl->cl_myfadj = 0;
  672. }
  673. }
  674. f = max(cl->cl_myf, cl->cl_cfmin);
  675. if (f != cl->cl_f) {
  676. cl->cl_f = f;
  677. cftree_update(cl);
  678. }
  679. update_cfmin(cl->cl_parent);
  680. }
  681. }
  682. static void
  683. update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
  684. {
  685. u64 f; /* , myf_bound, delta; */
  686. int go_passive = 0;
  687. if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
  688. go_passive = 1;
  689. for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
  690. cl->cl_total += len;
  691. if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
  692. continue;
  693. if (go_passive && --cl->cl_nactive == 0)
  694. go_passive = 1;
  695. else
  696. go_passive = 0;
  697. if (go_passive) {
  698. /* no more active child, going passive */
  699. /* update cvtmax of the parent class */
  700. if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
  701. cl->cl_parent->cl_cvtmax = cl->cl_vt;
  702. /* remove this class from the vt tree */
  703. vttree_remove(cl);
  704. cftree_remove(cl);
  705. update_cfmin(cl->cl_parent);
  706. continue;
  707. }
  708. /*
  709. * update vt and f
  710. */
  711. cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
  712. - cl->cl_vtoff + cl->cl_vtadj;
  713. /*
  714. * if vt of the class is smaller than cvtmin,
  715. * the class was skipped in the past due to non-fit.
  716. * if so, we need to adjust vtadj.
  717. */
  718. if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
  719. cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
  720. cl->cl_vt = cl->cl_parent->cl_cvtmin;
  721. }
  722. /* update the vt tree */
  723. vttree_update(cl);
  724. if (cl->cl_flags & HFSC_USC) {
  725. cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
  726. cl->cl_total);
  727. #if 0
  728. /*
  729. * This code causes classes to stay way under their
  730. * limit when multiple classes are used at gigabit
  731. * speed. needs investigation. -kaber
  732. */
  733. /*
  734. * if myf lags behind by more than one clock tick
  735. * from the current time, adjust myfadj to prevent
  736. * a rate-limited class from going greedy.
  737. * in a steady state under rate-limiting, myf
  738. * fluctuates within one clock tick.
  739. */
  740. myf_bound = cur_time - PSCHED_JIFFIE2US(1);
  741. if (cl->cl_myf < myf_bound) {
  742. delta = cur_time - cl->cl_myf;
  743. cl->cl_myfadj += delta;
  744. cl->cl_myf += delta;
  745. }
  746. #endif
  747. }
  748. f = max(cl->cl_myf, cl->cl_cfmin);
  749. if (f != cl->cl_f) {
  750. cl->cl_f = f;
  751. cftree_update(cl);
  752. update_cfmin(cl->cl_parent);
  753. }
  754. }
  755. }
  756. static void
  757. set_active(struct hfsc_class *cl, unsigned int len)
  758. {
  759. if (cl->cl_flags & HFSC_RSC)
  760. init_ed(cl, len);
  761. if (cl->cl_flags & HFSC_FSC)
  762. init_vf(cl, len);
  763. list_add_tail(&cl->dlist, &cl->sched->droplist);
  764. }
  765. static void
  766. set_passive(struct hfsc_class *cl)
  767. {
  768. if (cl->cl_flags & HFSC_RSC)
  769. eltree_remove(cl);
  770. list_del(&cl->dlist);
  771. /*
  772. * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
  773. * needs to be called explicitly to remove a class from vttree.
  774. */
  775. }
  776. static unsigned int
  777. qdisc_peek_len(struct Qdisc *sch)
  778. {
  779. struct sk_buff *skb;
  780. unsigned int len;
  781. skb = sch->ops->peek(sch);
  782. if (skb == NULL) {
  783. qdisc_warn_nonwc("qdisc_peek_len", sch);
  784. return 0;
  785. }
  786. len = qdisc_pkt_len(skb);
  787. return len;
  788. }
  789. static void
  790. hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
  791. {
  792. unsigned int len = cl->qdisc->q.qlen;
  793. qdisc_reset(cl->qdisc);
  794. qdisc_tree_decrease_qlen(cl->qdisc, len);
  795. }
  796. static void
  797. hfsc_adjust_levels(struct hfsc_class *cl)
  798. {
  799. struct hfsc_class *p;
  800. unsigned int level;
  801. do {
  802. level = 0;
  803. list_for_each_entry(p, &cl->children, siblings) {
  804. if (p->level >= level)
  805. level = p->level + 1;
  806. }
  807. cl->level = level;
  808. } while ((cl = cl->cl_parent) != NULL);
  809. }
  810. static inline struct hfsc_class *
  811. hfsc_find_class(u32 classid, struct Qdisc *sch)
  812. {
  813. struct hfsc_sched *q = qdisc_priv(sch);
  814. struct Qdisc_class_common *clc;
  815. clc = qdisc_class_find(&q->clhash, classid);
  816. if (clc == NULL)
  817. return NULL;
  818. return container_of(clc, struct hfsc_class, cl_common);
  819. }
  820. static void
  821. hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
  822. u64 cur_time)
  823. {
  824. sc2isc(rsc, &cl->cl_rsc);
  825. rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
  826. cl->cl_eligible = cl->cl_deadline;
  827. if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
  828. cl->cl_eligible.dx = 0;
  829. cl->cl_eligible.dy = 0;
  830. }
  831. cl->cl_flags |= HFSC_RSC;
  832. }
  833. static void
  834. hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
  835. {
  836. sc2isc(fsc, &cl->cl_fsc);
  837. rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
  838. cl->cl_flags |= HFSC_FSC;
  839. }
  840. static void
  841. hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
  842. u64 cur_time)
  843. {
  844. sc2isc(usc, &cl->cl_usc);
  845. rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
  846. cl->cl_flags |= HFSC_USC;
  847. }
  848. static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
  849. [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) },
  850. [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) },
  851. [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) },
  852. };
  853. static int
  854. hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
  855. struct nlattr **tca, unsigned long *arg)
  856. {
  857. struct hfsc_sched *q = qdisc_priv(sch);
  858. struct hfsc_class *cl = (struct hfsc_class *)*arg;
  859. struct hfsc_class *parent = NULL;
  860. struct nlattr *opt = tca[TCA_OPTIONS];
  861. struct nlattr *tb[TCA_HFSC_MAX + 1];
  862. struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
  863. u64 cur_time;
  864. int err;
  865. if (opt == NULL)
  866. return -EINVAL;
  867. err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy);
  868. if (err < 0)
  869. return err;
  870. if (tb[TCA_HFSC_RSC]) {
  871. rsc = nla_data(tb[TCA_HFSC_RSC]);
  872. if (rsc->m1 == 0 && rsc->m2 == 0)
  873. rsc = NULL;
  874. }
  875. if (tb[TCA_HFSC_FSC]) {
  876. fsc = nla_data(tb[TCA_HFSC_FSC]);
  877. if (fsc->m1 == 0 && fsc->m2 == 0)
  878. fsc = NULL;
  879. }
  880. if (tb[TCA_HFSC_USC]) {
  881. usc = nla_data(tb[TCA_HFSC_USC]);
  882. if (usc->m1 == 0 && usc->m2 == 0)
  883. usc = NULL;
  884. }
  885. if (cl != NULL) {
  886. if (parentid) {
  887. if (cl->cl_parent &&
  888. cl->cl_parent->cl_common.classid != parentid)
  889. return -EINVAL;
  890. if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
  891. return -EINVAL;
  892. }
  893. cur_time = psched_get_time();
  894. if (tca[TCA_RATE]) {
  895. err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
  896. qdisc_root_sleeping_lock(sch),
  897. tca[TCA_RATE]);
  898. if (err)
  899. return err;
  900. }
  901. sch_tree_lock(sch);
  902. if (rsc != NULL)
  903. hfsc_change_rsc(cl, rsc, cur_time);
  904. if (fsc != NULL)
  905. hfsc_change_fsc(cl, fsc);
  906. if (usc != NULL)
  907. hfsc_change_usc(cl, usc, cur_time);
  908. if (cl->qdisc->q.qlen != 0) {
  909. if (cl->cl_flags & HFSC_RSC)
  910. update_ed(cl, qdisc_peek_len(cl->qdisc));
  911. if (cl->cl_flags & HFSC_FSC)
  912. update_vf(cl, 0, cur_time);
  913. }
  914. sch_tree_unlock(sch);
  915. return 0;
  916. }
  917. if (parentid == TC_H_ROOT)
  918. return -EEXIST;
  919. parent = &q->root;
  920. if (parentid) {
  921. parent = hfsc_find_class(parentid, sch);
  922. if (parent == NULL)
  923. return -ENOENT;
  924. }
  925. if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
  926. return -EINVAL;
  927. if (hfsc_find_class(classid, sch))
  928. return -EEXIST;
  929. if (rsc == NULL && fsc == NULL)
  930. return -EINVAL;
  931. cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
  932. if (cl == NULL)
  933. return -ENOBUFS;
  934. if (tca[TCA_RATE]) {
  935. err = gen_new_estimator(&cl->bstats, &cl->rate_est,
  936. qdisc_root_sleeping_lock(sch),
  937. tca[TCA_RATE]);
  938. if (err) {
  939. kfree(cl);
  940. return err;
  941. }
  942. }
  943. if (rsc != NULL)
  944. hfsc_change_rsc(cl, rsc, 0);
  945. if (fsc != NULL)
  946. hfsc_change_fsc(cl, fsc);
  947. if (usc != NULL)
  948. hfsc_change_usc(cl, usc, 0);
  949. cl->cl_common.classid = classid;
  950. cl->refcnt = 1;
  951. cl->sched = q;
  952. cl->cl_parent = parent;
  953. cl->qdisc = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
  954. &pfifo_qdisc_ops, classid);
  955. if (cl->qdisc == NULL)
  956. cl->qdisc = &noop_qdisc;
  957. INIT_LIST_HEAD(&cl->children);
  958. cl->vt_tree = RB_ROOT;
  959. cl->cf_tree = RB_ROOT;
  960. sch_tree_lock(sch);
  961. qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
  962. list_add_tail(&cl->siblings, &parent->children);
  963. if (parent->level == 0)
  964. hfsc_purge_queue(sch, parent);
  965. hfsc_adjust_levels(parent);
  966. cl->cl_pcvtoff = parent->cl_cvtoff;
  967. sch_tree_unlock(sch);
  968. qdisc_class_hash_grow(sch, &q->clhash);
  969. *arg = (unsigned long)cl;
  970. return 0;
  971. }
  972. static void
  973. hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
  974. {
  975. struct hfsc_sched *q = qdisc_priv(sch);
  976. tcf_destroy_chain(&cl->filter_list);
  977. qdisc_destroy(cl->qdisc);
  978. gen_kill_estimator(&cl->bstats, &cl->rate_est);
  979. if (cl != &q->root)
  980. kfree(cl);
  981. }
  982. static int
  983. hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
  984. {
  985. struct hfsc_sched *q = qdisc_priv(sch);
  986. struct hfsc_class *cl = (struct hfsc_class *)arg;
  987. if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
  988. return -EBUSY;
  989. sch_tree_lock(sch);
  990. list_del(&cl->siblings);
  991. hfsc_adjust_levels(cl->cl_parent);
  992. hfsc_purge_queue(sch, cl);
  993. qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
  994. BUG_ON(--cl->refcnt == 0);
  995. /*
  996. * This shouldn't happen: we "hold" one cops->get() when called
  997. * from tc_ctl_tclass; the destroy method is done from cops->put().
  998. */
  999. sch_tree_unlock(sch);
  1000. return 0;
  1001. }
  1002. static struct hfsc_class *
  1003. hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
  1004. {
  1005. struct hfsc_sched *q = qdisc_priv(sch);
  1006. struct hfsc_class *head, *cl;
  1007. struct tcf_result res;
  1008. struct tcf_proto *tcf;
  1009. int result;
  1010. if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
  1011. (cl = hfsc_find_class(skb->priority, sch)) != NULL)
  1012. if (cl->level == 0)
  1013. return cl;
  1014. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
  1015. head = &q->root;
  1016. tcf = q->root.filter_list;
  1017. while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
  1018. #ifdef CONFIG_NET_CLS_ACT
  1019. switch (result) {
  1020. case TC_ACT_QUEUED:
  1021. case TC_ACT_STOLEN:
  1022. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
  1023. case TC_ACT_SHOT:
  1024. return NULL;
  1025. }
  1026. #endif
  1027. if ((cl = (struct hfsc_class *)res.class) == NULL) {
  1028. if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
  1029. break; /* filter selected invalid classid */
  1030. if (cl->level >= head->level)
  1031. break; /* filter may only point downwards */
  1032. }
  1033. if (cl->level == 0)
  1034. return cl; /* hit leaf class */
  1035. /* apply inner filter chain */
  1036. tcf = cl->filter_list;
  1037. head = cl;
  1038. }
  1039. /* classification failed, try default class */
  1040. cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
  1041. if (cl == NULL || cl->level > 0)
  1042. return NULL;
  1043. return cl;
  1044. }
  1045. static int
  1046. hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
  1047. struct Qdisc **old)
  1048. {
  1049. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1050. if (cl->level > 0)
  1051. return -EINVAL;
  1052. if (new == NULL) {
  1053. new = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
  1054. &pfifo_qdisc_ops,
  1055. cl->cl_common.classid);
  1056. if (new == NULL)
  1057. new = &noop_qdisc;
  1058. }
  1059. sch_tree_lock(sch);
  1060. hfsc_purge_queue(sch, cl);
  1061. *old = cl->qdisc;
  1062. cl->qdisc = new;
  1063. sch_tree_unlock(sch);
  1064. return 0;
  1065. }
  1066. static struct Qdisc *
  1067. hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
  1068. {
  1069. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1070. if (cl->level == 0)
  1071. return cl->qdisc;
  1072. return NULL;
  1073. }
  1074. static void
  1075. hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
  1076. {
  1077. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1078. if (cl->qdisc->q.qlen == 0) {
  1079. update_vf(cl, 0, 0);
  1080. set_passive(cl);
  1081. }
  1082. }
  1083. static unsigned long
  1084. hfsc_get_class(struct Qdisc *sch, u32 classid)
  1085. {
  1086. struct hfsc_class *cl = hfsc_find_class(classid, sch);
  1087. if (cl != NULL)
  1088. cl->refcnt++;
  1089. return (unsigned long)cl;
  1090. }
  1091. static void
  1092. hfsc_put_class(struct Qdisc *sch, unsigned long arg)
  1093. {
  1094. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1095. if (--cl->refcnt == 0)
  1096. hfsc_destroy_class(sch, cl);
  1097. }
  1098. static unsigned long
  1099. hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
  1100. {
  1101. struct hfsc_class *p = (struct hfsc_class *)parent;
  1102. struct hfsc_class *cl = hfsc_find_class(classid, sch);
  1103. if (cl != NULL) {
  1104. if (p != NULL && p->level <= cl->level)
  1105. return 0;
  1106. cl->filter_cnt++;
  1107. }
  1108. return (unsigned long)cl;
  1109. }
  1110. static void
  1111. hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
  1112. {
  1113. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1114. cl->filter_cnt--;
  1115. }
  1116. static struct tcf_proto **
  1117. hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
  1118. {
  1119. struct hfsc_sched *q = qdisc_priv(sch);
  1120. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1121. if (cl == NULL)
  1122. cl = &q->root;
  1123. return &cl->filter_list;
  1124. }
  1125. static int
  1126. hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
  1127. {
  1128. struct tc_service_curve tsc;
  1129. tsc.m1 = sm2m(sc->sm1);
  1130. tsc.d = dx2d(sc->dx);
  1131. tsc.m2 = sm2m(sc->sm2);
  1132. NLA_PUT(skb, attr, sizeof(tsc), &tsc);
  1133. return skb->len;
  1134. nla_put_failure:
  1135. return -1;
  1136. }
  1137. static inline int
  1138. hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
  1139. {
  1140. if ((cl->cl_flags & HFSC_RSC) &&
  1141. (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
  1142. goto nla_put_failure;
  1143. if ((cl->cl_flags & HFSC_FSC) &&
  1144. (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
  1145. goto nla_put_failure;
  1146. if ((cl->cl_flags & HFSC_USC) &&
  1147. (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
  1148. goto nla_put_failure;
  1149. return skb->len;
  1150. nla_put_failure:
  1151. return -1;
  1152. }
  1153. static int
  1154. hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
  1155. struct tcmsg *tcm)
  1156. {
  1157. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1158. struct nlattr *nest;
  1159. tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
  1160. TC_H_ROOT;
  1161. tcm->tcm_handle = cl->cl_common.classid;
  1162. if (cl->level == 0)
  1163. tcm->tcm_info = cl->qdisc->handle;
  1164. nest = nla_nest_start(skb, TCA_OPTIONS);
  1165. if (nest == NULL)
  1166. goto nla_put_failure;
  1167. if (hfsc_dump_curves(skb, cl) < 0)
  1168. goto nla_put_failure;
  1169. nla_nest_end(skb, nest);
  1170. return skb->len;
  1171. nla_put_failure:
  1172. nla_nest_cancel(skb, nest);
  1173. return -EMSGSIZE;
  1174. }
  1175. static int
  1176. hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
  1177. struct gnet_dump *d)
  1178. {
  1179. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1180. struct tc_hfsc_stats xstats;
  1181. cl->qstats.qlen = cl->qdisc->q.qlen;
  1182. xstats.level = cl->level;
  1183. xstats.period = cl->cl_vtperiod;
  1184. xstats.work = cl->cl_total;
  1185. xstats.rtwork = cl->cl_cumul;
  1186. if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
  1187. gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
  1188. gnet_stats_copy_queue(d, &cl->qstats) < 0)
  1189. return -1;
  1190. return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
  1191. }
  1192. static void
  1193. hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
  1194. {
  1195. struct hfsc_sched *q = qdisc_priv(sch);
  1196. struct hlist_node *n;
  1197. struct hfsc_class *cl;
  1198. unsigned int i;
  1199. if (arg->stop)
  1200. return;
  1201. for (i = 0; i < q->clhash.hashsize; i++) {
  1202. hlist_for_each_entry(cl, n, &q->clhash.hash[i],
  1203. cl_common.hnode) {
  1204. if (arg->count < arg->skip) {
  1205. arg->count++;
  1206. continue;
  1207. }
  1208. if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
  1209. arg->stop = 1;
  1210. return;
  1211. }
  1212. arg->count++;
  1213. }
  1214. }
  1215. }
  1216. static void
  1217. hfsc_schedule_watchdog(struct Qdisc *sch)
  1218. {
  1219. struct hfsc_sched *q = qdisc_priv(sch);
  1220. struct hfsc_class *cl;
  1221. u64 next_time = 0;
  1222. if ((cl = eltree_get_minel(q)) != NULL)
  1223. next_time = cl->cl_e;
  1224. if (q->root.cl_cfmin != 0) {
  1225. if (next_time == 0 || next_time > q->root.cl_cfmin)
  1226. next_time = q->root.cl_cfmin;
  1227. }
  1228. WARN_ON(next_time == 0);
  1229. qdisc_watchdog_schedule(&q->watchdog, next_time);
  1230. }
  1231. static int
  1232. hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
  1233. {
  1234. struct hfsc_sched *q = qdisc_priv(sch);
  1235. struct tc_hfsc_qopt *qopt;
  1236. int err;
  1237. if (opt == NULL || nla_len(opt) < sizeof(*qopt))
  1238. return -EINVAL;
  1239. qopt = nla_data(opt);
  1240. q->defcls = qopt->defcls;
  1241. err = qdisc_class_hash_init(&q->clhash);
  1242. if (err < 0)
  1243. return err;
  1244. q->eligible = RB_ROOT;
  1245. INIT_LIST_HEAD(&q->droplist);
  1246. q->root.cl_common.classid = sch->handle;
  1247. q->root.refcnt = 1;
  1248. q->root.sched = q;
  1249. q->root.qdisc = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
  1250. &pfifo_qdisc_ops,
  1251. sch->handle);
  1252. if (q->root.qdisc == NULL)
  1253. q->root.qdisc = &noop_qdisc;
  1254. INIT_LIST_HEAD(&q->root.children);
  1255. q->root.vt_tree = RB_ROOT;
  1256. q->root.cf_tree = RB_ROOT;
  1257. qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
  1258. qdisc_class_hash_grow(sch, &q->clhash);
  1259. qdisc_watchdog_init(&q->watchdog, sch);
  1260. return 0;
  1261. }
  1262. static int
  1263. hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
  1264. {
  1265. struct hfsc_sched *q = qdisc_priv(sch);
  1266. struct tc_hfsc_qopt *qopt;
  1267. if (opt == NULL || nla_len(opt) < sizeof(*qopt))
  1268. return -EINVAL;
  1269. qopt = nla_data(opt);
  1270. sch_tree_lock(sch);
  1271. q->defcls = qopt->defcls;
  1272. sch_tree_unlock(sch);
  1273. return 0;
  1274. }
  1275. static void
  1276. hfsc_reset_class(struct hfsc_class *cl)
  1277. {
  1278. cl->cl_total = 0;
  1279. cl->cl_cumul = 0;
  1280. cl->cl_d = 0;
  1281. cl->cl_e = 0;
  1282. cl->cl_vt = 0;
  1283. cl->cl_vtadj = 0;
  1284. cl->cl_vtoff = 0;
  1285. cl->cl_cvtmin = 0;
  1286. cl->cl_cvtmax = 0;
  1287. cl->cl_cvtoff = 0;
  1288. cl->cl_pcvtoff = 0;
  1289. cl->cl_vtperiod = 0;
  1290. cl->cl_parentperiod = 0;
  1291. cl->cl_f = 0;
  1292. cl->cl_myf = 0;
  1293. cl->cl_myfadj = 0;
  1294. cl->cl_cfmin = 0;
  1295. cl->cl_nactive = 0;
  1296. cl->vt_tree = RB_ROOT;
  1297. cl->cf_tree = RB_ROOT;
  1298. qdisc_reset(cl->qdisc);
  1299. if (cl->cl_flags & HFSC_RSC)
  1300. rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
  1301. if (cl->cl_flags & HFSC_FSC)
  1302. rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
  1303. if (cl->cl_flags & HFSC_USC)
  1304. rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
  1305. }
  1306. static void
  1307. hfsc_reset_qdisc(struct Qdisc *sch)
  1308. {
  1309. struct hfsc_sched *q = qdisc_priv(sch);
  1310. struct hfsc_class *cl;
  1311. struct hlist_node *n;
  1312. unsigned int i;
  1313. for (i = 0; i < q->clhash.hashsize; i++) {
  1314. hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode)
  1315. hfsc_reset_class(cl);
  1316. }
  1317. q->eligible = RB_ROOT;
  1318. INIT_LIST_HEAD(&q->droplist);
  1319. qdisc_watchdog_cancel(&q->watchdog);
  1320. sch->q.qlen = 0;
  1321. }
  1322. static void
  1323. hfsc_destroy_qdisc(struct Qdisc *sch)
  1324. {
  1325. struct hfsc_sched *q = qdisc_priv(sch);
  1326. struct hlist_node *n, *next;
  1327. struct hfsc_class *cl;
  1328. unsigned int i;
  1329. for (i = 0; i < q->clhash.hashsize; i++) {
  1330. hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode)
  1331. tcf_destroy_chain(&cl->filter_list);
  1332. }
  1333. for (i = 0; i < q->clhash.hashsize; i++) {
  1334. hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
  1335. cl_common.hnode)
  1336. hfsc_destroy_class(sch, cl);
  1337. }
  1338. qdisc_class_hash_destroy(&q->clhash);
  1339. qdisc_watchdog_cancel(&q->watchdog);
  1340. }
  1341. static int
  1342. hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
  1343. {
  1344. struct hfsc_sched *q = qdisc_priv(sch);
  1345. unsigned char *b = skb_tail_pointer(skb);
  1346. struct tc_hfsc_qopt qopt;
  1347. qopt.defcls = q->defcls;
  1348. NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
  1349. return skb->len;
  1350. nla_put_failure:
  1351. nlmsg_trim(skb, b);
  1352. return -1;
  1353. }
  1354. static int
  1355. hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
  1356. {
  1357. struct hfsc_class *cl;
  1358. int uninitialized_var(err);
  1359. cl = hfsc_classify(skb, sch, &err);
  1360. if (cl == NULL) {
  1361. if (err & __NET_XMIT_BYPASS)
  1362. sch->qstats.drops++;
  1363. kfree_skb(skb);
  1364. return err;
  1365. }
  1366. err = qdisc_enqueue(skb, cl->qdisc);
  1367. if (unlikely(err != NET_XMIT_SUCCESS)) {
  1368. if (net_xmit_drop_count(err)) {
  1369. cl->qstats.drops++;
  1370. sch->qstats.drops++;
  1371. }
  1372. return err;
  1373. }
  1374. if (cl->qdisc->q.qlen == 1)
  1375. set_active(cl, qdisc_pkt_len(skb));
  1376. cl->bstats.packets++;
  1377. cl->bstats.bytes += qdisc_pkt_len(skb);
  1378. sch->bstats.packets++;
  1379. sch->bstats.bytes += qdisc_pkt_len(skb);
  1380. sch->q.qlen++;
  1381. return NET_XMIT_SUCCESS;
  1382. }
  1383. static struct sk_buff *
  1384. hfsc_dequeue(struct Qdisc *sch)
  1385. {
  1386. struct hfsc_sched *q = qdisc_priv(sch);
  1387. struct hfsc_class *cl;
  1388. struct sk_buff *skb;
  1389. u64 cur_time;
  1390. unsigned int next_len;
  1391. int realtime = 0;
  1392. if (sch->q.qlen == 0)
  1393. return NULL;
  1394. cur_time = psched_get_time();
  1395. /*
  1396. * if there are eligible classes, use real-time criteria.
  1397. * find the class with the minimum deadline among
  1398. * the eligible classes.
  1399. */
  1400. if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
  1401. realtime = 1;
  1402. } else {
  1403. /*
  1404. * use link-sharing criteria
  1405. * get the class with the minimum vt in the hierarchy
  1406. */
  1407. cl = vttree_get_minvt(&q->root, cur_time);
  1408. if (cl == NULL) {
  1409. sch->qstats.overlimits++;
  1410. hfsc_schedule_watchdog(sch);
  1411. return NULL;
  1412. }
  1413. }
  1414. skb = qdisc_dequeue_peeked(cl->qdisc);
  1415. if (skb == NULL) {
  1416. qdisc_warn_nonwc("HFSC", cl->qdisc);
  1417. return NULL;
  1418. }
  1419. update_vf(cl, qdisc_pkt_len(skb), cur_time);
  1420. if (realtime)
  1421. cl->cl_cumul += qdisc_pkt_len(skb);
  1422. if (cl->qdisc->q.qlen != 0) {
  1423. if (cl->cl_flags & HFSC_RSC) {
  1424. /* update ed */
  1425. next_len = qdisc_peek_len(cl->qdisc);
  1426. if (realtime)
  1427. update_ed(cl, next_len);
  1428. else
  1429. update_d(cl, next_len);
  1430. }
  1431. } else {
  1432. /* the class becomes passive */
  1433. set_passive(cl);
  1434. }
  1435. sch->flags &= ~TCQ_F_THROTTLED;
  1436. sch->q.qlen--;
  1437. return skb;
  1438. }
  1439. static unsigned int
  1440. hfsc_drop(struct Qdisc *sch)
  1441. {
  1442. struct hfsc_sched *q = qdisc_priv(sch);
  1443. struct hfsc_class *cl;
  1444. unsigned int len;
  1445. list_for_each_entry(cl, &q->droplist, dlist) {
  1446. if (cl->qdisc->ops->drop != NULL &&
  1447. (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
  1448. if (cl->qdisc->q.qlen == 0) {
  1449. update_vf(cl, 0, 0);
  1450. set_passive(cl);
  1451. } else {
  1452. list_move_tail(&cl->dlist, &q->droplist);
  1453. }
  1454. cl->qstats.drops++;
  1455. sch->qstats.drops++;
  1456. sch->q.qlen--;
  1457. return len;
  1458. }
  1459. }
  1460. return 0;
  1461. }
  1462. static const struct Qdisc_class_ops hfsc_class_ops = {
  1463. .change = hfsc_change_class,
  1464. .delete = hfsc_delete_class,
  1465. .graft = hfsc_graft_class,
  1466. .leaf = hfsc_class_leaf,
  1467. .qlen_notify = hfsc_qlen_notify,
  1468. .get = hfsc_get_class,
  1469. .put = hfsc_put_class,
  1470. .bind_tcf = hfsc_bind_tcf,
  1471. .unbind_tcf = hfsc_unbind_tcf,
  1472. .tcf_chain = hfsc_tcf_chain,
  1473. .dump = hfsc_dump_class,
  1474. .dump_stats = hfsc_dump_class_stats,
  1475. .walk = hfsc_walk
  1476. };
  1477. static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
  1478. .id = "hfsc",
  1479. .init = hfsc_init_qdisc,
  1480. .change = hfsc_change_qdisc,
  1481. .reset = hfsc_reset_qdisc,
  1482. .destroy = hfsc_destroy_qdisc,
  1483. .dump = hfsc_dump_qdisc,
  1484. .enqueue = hfsc_enqueue,
  1485. .dequeue = hfsc_dequeue,
  1486. .peek = qdisc_peek_dequeued,
  1487. .drop = hfsc_drop,
  1488. .cl_ops = &hfsc_class_ops,
  1489. .priv_size = sizeof(struct hfsc_sched),
  1490. .owner = THIS_MODULE
  1491. };
  1492. static int __init
  1493. hfsc_init(void)
  1494. {
  1495. return register_qdisc(&hfsc_qdisc_ops);
  1496. }
  1497. static void __exit
  1498. hfsc_cleanup(void)
  1499. {
  1500. unregister_qdisc(&hfsc_qdisc_ops);
  1501. }
  1502. MODULE_LICENSE("GPL");
  1503. module_init(hfsc_init);
  1504. module_exit(hfsc_cleanup);