ar-peer.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. /* RxRPC remote transport endpoint management
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/net.h>
  13. #include <linux/skbuff.h>
  14. #include <linux/udp.h>
  15. #include <linux/in.h>
  16. #include <linux/in6.h>
  17. #include <linux/icmp.h>
  18. #include <linux/slab.h>
  19. #include <net/sock.h>
  20. #include <net/af_rxrpc.h>
  21. #include <net/ip.h>
  22. #include <net/route.h>
  23. #include "ar-internal.h"
  24. static LIST_HEAD(rxrpc_peers);
  25. static DEFINE_RWLOCK(rxrpc_peer_lock);
  26. static DECLARE_WAIT_QUEUE_HEAD(rxrpc_peer_wq);
  27. static void rxrpc_destroy_peer(struct work_struct *work);
  28. /*
  29. * assess the MTU size for the network interface through which this peer is
  30. * reached
  31. */
  32. static void rxrpc_assess_MTU_size(struct rxrpc_peer *peer)
  33. {
  34. struct rtable *rt;
  35. struct flowi fl;
  36. int ret;
  37. peer->if_mtu = 1500;
  38. memset(&fl, 0, sizeof(fl));
  39. switch (peer->srx.transport.family) {
  40. case AF_INET:
  41. fl.oif = 0;
  42. fl.proto = IPPROTO_UDP,
  43. fl.nl_u.ip4_u.saddr = 0;
  44. fl.nl_u.ip4_u.daddr = peer->srx.transport.sin.sin_addr.s_addr;
  45. fl.nl_u.ip4_u.tos = 0;
  46. /* assume AFS.CM talking to AFS.FS */
  47. fl.uli_u.ports.sport = htons(7001);
  48. fl.uli_u.ports.dport = htons(7000);
  49. break;
  50. default:
  51. BUG();
  52. }
  53. ret = ip_route_output_key(&init_net, &rt, &fl);
  54. if (ret < 0) {
  55. _leave(" [route err %d]", ret);
  56. return;
  57. }
  58. peer->if_mtu = dst_mtu(&rt->dst);
  59. dst_release(&rt->dst);
  60. _leave(" [if_mtu %u]", peer->if_mtu);
  61. }
  62. /*
  63. * allocate a new peer
  64. */
  65. static struct rxrpc_peer *rxrpc_alloc_peer(struct sockaddr_rxrpc *srx,
  66. gfp_t gfp)
  67. {
  68. struct rxrpc_peer *peer;
  69. _enter("");
  70. peer = kzalloc(sizeof(struct rxrpc_peer), gfp);
  71. if (peer) {
  72. INIT_WORK(&peer->destroyer, &rxrpc_destroy_peer);
  73. INIT_LIST_HEAD(&peer->link);
  74. INIT_LIST_HEAD(&peer->error_targets);
  75. spin_lock_init(&peer->lock);
  76. atomic_set(&peer->usage, 1);
  77. peer->debug_id = atomic_inc_return(&rxrpc_debug_id);
  78. memcpy(&peer->srx, srx, sizeof(*srx));
  79. rxrpc_assess_MTU_size(peer);
  80. peer->mtu = peer->if_mtu;
  81. if (srx->transport.family == AF_INET) {
  82. peer->hdrsize = sizeof(struct iphdr);
  83. switch (srx->transport_type) {
  84. case SOCK_DGRAM:
  85. peer->hdrsize += sizeof(struct udphdr);
  86. break;
  87. default:
  88. BUG();
  89. break;
  90. }
  91. } else {
  92. BUG();
  93. }
  94. peer->hdrsize += sizeof(struct rxrpc_header);
  95. peer->maxdata = peer->mtu - peer->hdrsize;
  96. }
  97. _leave(" = %p", peer);
  98. return peer;
  99. }
  100. /*
  101. * obtain a remote transport endpoint for the specified address
  102. */
  103. struct rxrpc_peer *rxrpc_get_peer(struct sockaddr_rxrpc *srx, gfp_t gfp)
  104. {
  105. struct rxrpc_peer *peer, *candidate;
  106. const char *new = "old";
  107. int usage;
  108. _enter("{%d,%d,%pI4+%hu}",
  109. srx->transport_type,
  110. srx->transport_len,
  111. &srx->transport.sin.sin_addr,
  112. ntohs(srx->transport.sin.sin_port));
  113. /* search the peer list first */
  114. read_lock_bh(&rxrpc_peer_lock);
  115. list_for_each_entry(peer, &rxrpc_peers, link) {
  116. _debug("check PEER %d { u=%d t=%d l=%d }",
  117. peer->debug_id,
  118. atomic_read(&peer->usage),
  119. peer->srx.transport_type,
  120. peer->srx.transport_len);
  121. if (atomic_read(&peer->usage) > 0 &&
  122. peer->srx.transport_type == srx->transport_type &&
  123. peer->srx.transport_len == srx->transport_len &&
  124. memcmp(&peer->srx.transport,
  125. &srx->transport,
  126. srx->transport_len) == 0)
  127. goto found_extant_peer;
  128. }
  129. read_unlock_bh(&rxrpc_peer_lock);
  130. /* not yet present - create a candidate for a new record and then
  131. * redo the search */
  132. candidate = rxrpc_alloc_peer(srx, gfp);
  133. if (!candidate) {
  134. _leave(" = -ENOMEM");
  135. return ERR_PTR(-ENOMEM);
  136. }
  137. write_lock_bh(&rxrpc_peer_lock);
  138. list_for_each_entry(peer, &rxrpc_peers, link) {
  139. if (atomic_read(&peer->usage) > 0 &&
  140. peer->srx.transport_type == srx->transport_type &&
  141. peer->srx.transport_len == srx->transport_len &&
  142. memcmp(&peer->srx.transport,
  143. &srx->transport,
  144. srx->transport_len) == 0)
  145. goto found_extant_second;
  146. }
  147. /* we can now add the new candidate to the list */
  148. peer = candidate;
  149. candidate = NULL;
  150. list_add_tail(&peer->link, &rxrpc_peers);
  151. write_unlock_bh(&rxrpc_peer_lock);
  152. new = "new";
  153. success:
  154. _net("PEER %s %d {%d,%u,%pI4+%hu}",
  155. new,
  156. peer->debug_id,
  157. peer->srx.transport_type,
  158. peer->srx.transport.family,
  159. &peer->srx.transport.sin.sin_addr,
  160. ntohs(peer->srx.transport.sin.sin_port));
  161. _leave(" = %p {u=%d}", peer, atomic_read(&peer->usage));
  162. return peer;
  163. /* we found the peer in the list immediately */
  164. found_extant_peer:
  165. usage = atomic_inc_return(&peer->usage);
  166. read_unlock_bh(&rxrpc_peer_lock);
  167. goto success;
  168. /* we found the peer on the second time through the list */
  169. found_extant_second:
  170. usage = atomic_inc_return(&peer->usage);
  171. write_unlock_bh(&rxrpc_peer_lock);
  172. kfree(candidate);
  173. goto success;
  174. }
  175. /*
  176. * find the peer associated with a packet
  177. */
  178. struct rxrpc_peer *rxrpc_find_peer(struct rxrpc_local *local,
  179. __be32 addr, __be16 port)
  180. {
  181. struct rxrpc_peer *peer;
  182. _enter("");
  183. /* search the peer list */
  184. read_lock_bh(&rxrpc_peer_lock);
  185. if (local->srx.transport.family == AF_INET &&
  186. local->srx.transport_type == SOCK_DGRAM
  187. ) {
  188. list_for_each_entry(peer, &rxrpc_peers, link) {
  189. if (atomic_read(&peer->usage) > 0 &&
  190. peer->srx.transport_type == SOCK_DGRAM &&
  191. peer->srx.transport.family == AF_INET &&
  192. peer->srx.transport.sin.sin_port == port &&
  193. peer->srx.transport.sin.sin_addr.s_addr == addr)
  194. goto found_UDP_peer;
  195. }
  196. goto new_UDP_peer;
  197. }
  198. read_unlock_bh(&rxrpc_peer_lock);
  199. _leave(" = -EAFNOSUPPORT");
  200. return ERR_PTR(-EAFNOSUPPORT);
  201. found_UDP_peer:
  202. _net("Rx UDP DGRAM from peer %d", peer->debug_id);
  203. atomic_inc(&peer->usage);
  204. read_unlock_bh(&rxrpc_peer_lock);
  205. _leave(" = %p", peer);
  206. return peer;
  207. new_UDP_peer:
  208. _net("Rx UDP DGRAM from NEW peer %d", peer->debug_id);
  209. read_unlock_bh(&rxrpc_peer_lock);
  210. _leave(" = -EBUSY [new]");
  211. return ERR_PTR(-EBUSY);
  212. }
  213. /*
  214. * release a remote transport endpoint
  215. */
  216. void rxrpc_put_peer(struct rxrpc_peer *peer)
  217. {
  218. _enter("%p{u=%d}", peer, atomic_read(&peer->usage));
  219. ASSERTCMP(atomic_read(&peer->usage), >, 0);
  220. if (likely(!atomic_dec_and_test(&peer->usage))) {
  221. _leave(" [in use]");
  222. return;
  223. }
  224. rxrpc_queue_work(&peer->destroyer);
  225. _leave("");
  226. }
  227. /*
  228. * destroy a remote transport endpoint
  229. */
  230. static void rxrpc_destroy_peer(struct work_struct *work)
  231. {
  232. struct rxrpc_peer *peer =
  233. container_of(work, struct rxrpc_peer, destroyer);
  234. _enter("%p{%d}", peer, atomic_read(&peer->usage));
  235. write_lock_bh(&rxrpc_peer_lock);
  236. list_del(&peer->link);
  237. write_unlock_bh(&rxrpc_peer_lock);
  238. _net("DESTROY PEER %d", peer->debug_id);
  239. kfree(peer);
  240. if (list_empty(&rxrpc_peers))
  241. wake_up_all(&rxrpc_peer_wq);
  242. _leave("");
  243. }
  244. /*
  245. * preemptively destroy all the peer records from a transport endpoint rather
  246. * than waiting for them to time out
  247. */
  248. void __exit rxrpc_destroy_all_peers(void)
  249. {
  250. DECLARE_WAITQUEUE(myself,current);
  251. _enter("");
  252. /* we simply have to wait for them to go away */
  253. if (!list_empty(&rxrpc_peers)) {
  254. set_current_state(TASK_UNINTERRUPTIBLE);
  255. add_wait_queue(&rxrpc_peer_wq, &myself);
  256. while (!list_empty(&rxrpc_peers)) {
  257. schedule();
  258. set_current_state(TASK_UNINTERRUPTIBLE);
  259. }
  260. remove_wait_queue(&rxrpc_peer_wq, &myself);
  261. set_current_state(TASK_RUNNING);
  262. }
  263. _leave("");
  264. }